TVP5158, TVP5157, TVP5156 Four-Channel

TVP5158, TVP5157, TVP5156
Four-Channel NTSC/PAL Video Decoders
With Independent Scalers, Noise Reduction, Auto
Contrast, and Flexible Output Formatter for Security and
Other Multi-Channel Video Applications
Data Manual
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Literature Number: SLES243G
July 2009 – Revised April 2013
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Contents
1
Introduction
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
2
....................................................................................................... 12
....................................................................................................................... 12
Functional Description ....................................................................................................... 15
3.1
Analog Video Processing and A/D Converters ........................................................................ 15
3.1.1
Analog Video Input ............................................................................................. 15
3.1.2
Analog Video Input Clamping ................................................................................. 16
3.1.3
A/D Converter ................................................................................................... 16
3.2
Digital Video Processing .................................................................................................. 16
3.2.1
2x Decimation Filter ............................................................................................ 16
3.2.2
Automatic Gain Control ........................................................................................ 16
3.2.3
Composite Processor .......................................................................................... 16
3.2.3.1
Color Low-Pass Filter .............................................................................. 17
3.2.3.2
Y/C Separation ..................................................................................... 18
3.2.4
Luminance Processing ......................................................................................... 19
3.3
AVID Cropping ............................................................................................................. 20
3.4
Embedded Syncs .......................................................................................................... 20
3.5
Scaler ....................................................................................................................... 21
3.6
Noise Reduction ........................................................................................................... 21
3.7
Auto Contrast .............................................................................................................. 21
3.8
Output Formatter .......................................................................................................... 22
3.8.1
Non-Interleaved Mode ......................................................................................... 22
3.8.2
Pixel-Interleaved Mode ......................................................................................... 22
3.8.2.1
2-Ch Pixel-Interleaved Mode ..................................................................... 23
3.8.2.2
4-Ch Pixel-Interleaved Mode ..................................................................... 23
3.8.2.3
Metadata Insertion for Non-Interleave Mode and Pixel-Interleaved Mode ................. 24
3.8.3
Line-Interleaved Mode Support (TVP5158 only) ........................................................... 25
3.8.3.1
2-Ch Line-Interleaved Mode ...................................................................... 25
3.8.3.2
4-Ch Line-Interleaved Mode ...................................................................... 26
3.8.3.3
8-Ch Line-Interleaved Mode ...................................................................... 26
3.8.3.4
Hybrid Modes ....................................................................................... 28
3.8.3.5
Metadata Insertion for Line-Interleaved Mode ................................................. 28
3.9
Audio Sub-System (TVP5157 and TVP5158 Only) ................................................................... 31
3.9.1
Features ......................................................................................................... 31
3.9.2
Audio Sub-System Functional Diagram ..................................................................... 32
3.9.3
Serial Audio Interface .......................................................................................... 33
3.9.4
Analog Audio Input Clamping ................................................................................. 33
3.9.5
Audio Cascade Connection ................................................................................... 34
3.10 I2C Host Interface .......................................................................................................... 36
3.10.1 I2C Write Operation ............................................................................................. 37
3.10.2 I2C Read Operation ............................................................................................ 37
3.10.3 VBUS Access ................................................................................................... 39
3.11 Clock Circuits .............................................................................................................. 40
Terminal Assignments
2.1
3
2
........................................................................................................................ 8
Features ...................................................................................................................... 8
Applications .................................................................................................................. 9
Description ................................................................................................................... 9
Related Products ............................................................................................................ 9
Trademarks ................................................................................................................ 10
Document Conventions ................................................................................................... 10
Ordering Information ...................................................................................................... 10
Functional Block Diagram ................................................................................................ 11
Pinout
Contents
Copyright © 2009–2013, Texas Instruments Incorporated
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
................................................................................................................ 41
................................................................................................... 42
4.1
Overview .................................................................................................................... 42
4.2
Register Definitions ....................................................................................................... 45
5
Electrical Specifications ..................................................................................................... 90
5.1
Absolute Maximum Ratings .............................................................................................. 90
5.2
Recommended Operating Conditions .................................................................................. 91
5.3
Reference Clock Specifications ......................................................................................... 91
5.4
Electrical Characteristics ................................................................................................. 92
5.5
DC Electrical Characteristics ............................................................................................. 92
5.6
Video A/D Converters Electrical Characteristics ...................................................................... 93
5.7
Audio A/D Converters Electrical Characteristics ...................................................................... 93
5.8
Video Output Clock and Data Timing ................................................................................... 94
5.8.1
Video Input Clock and Data Timing .......................................................................... 94
5.9
I2C Host Port Timing ...................................................................................................... 95
5.9.1
I2S Port Timing .................................................................................................. 96
5.10 Miscellaneous Timings .................................................................................................... 96
5.11 Power Dissipation Ratings ............................................................................................... 96
6
Application Information ...................................................................................................... 97
6.1
4-Ch D1 Applications ..................................................................................................... 97
6.2
8-Ch CIF Applications ..................................................................................................... 97
6.3
16-Ch CIF Applications ................................................................................................... 98
6.4
Application Circuit Examples ............................................................................................. 99
6.5
Designing with PowerPAD™ Devices ................................................................................. 100
Revison History ........................................................................................................................ 101
3.12
4
Reset Mode
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Contents
3
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
List of Figures
1-1
Functional Block Diagram ....................................................................................................... 11
3-1
Video Analog Processing and ADC Block Diagram ......................................................................... 15
3-2
Anti-Aliasing Filter Frequency Response
3-3
Composite Processor Block Diagram.......................................................................................... 17
3-4
Color Low-Pass Filter Frequency Response
3-5
Color Low-Pass Filter with Filter Characteristics, NTSC/PAL ITU-R BT.601 Sampling................................. 18
3-6
Chroma Trap Filter Frequency Response, NTSC ITU-R BT.601 Sampling .............................................. 19
3-7
Chroma Trap Filter Frequency Response, PAL ITU-R BT.601 Sampling ................................................ 19
3-8
Luminance Edge-Enhancer Peaking Block Diagram ........................................................................ 20
3-9
Peaking Filter Response, NTSC/PAL ITU-R BT.601 Sampling ............................................................ 20
3-10
2-Ch Pixel-Interleaved Mode Timing Diagram................................................................................ 23
3-11
4-Ch Pixel-Interleaved Mode Timing Diagram................................................................................ 24
3-12
Cascade Connection for 16-Ch CIF Recoding and Multi-Ch CIF Preview
3-13
Cascade Connection for 16-Ch CIF Recoding and Multi-Ch Half-D1 Preview ........................................... 28
3-14
Cascade Connection for 16-Ch CIF Recoding and 2-Ch D1/Multi-Ch CIF Preview ..................................... 28
3-15
Start Code in 8-Bit BT.656 Interface ........................................................................................... 29
3-16
Start Code in 16-Bit YCbCr 4:2:2 Interface ................................................................................... 30
3-17
Audio Sub-System Functional Diagram ....................................................................................... 33
3-18
Serial Audio Interface Timing Diagram ........................................................................................ 33
3-19
Audio Cascade Connection ..................................................................................................... 34
3-20
VBUS Access ..................................................................................................................... 39
3-21
Clock and Crystal Connectivity ................................................................................................. 40
.....................................................................................
.................................................................................
...............................................
16
18
27
3-22
Reset Timing ...................................................................................................................... 41
5-1
Video Output Clock and Data Timing .......................................................................................... 94
5-2
I2C Host Port Timing ............................................................................................................. 95
6-1
4-Ch D1 Application (Single BT.656 Interface) ............................................................................... 97
6-2
4-Ch D1 Application (16-Bit YCbCr 4:2:2 Interface) ......................................................................... 97
6-3
8-Ch CIF Real Time Encoding and Multi-Ch D1 Preview Application ..................................................... 98
6-4
8-Ch CIF Real Time Encoding and Multi-Ch D1 Preview Application ..................................................... 98
6-5
Video Input Connectivity ....................................................................................................... 100
6-6
Audio Input Connectivity ....................................................................................................... 100
4
List of Figures
Copyright © 2009–2013, Texas Instruments Incorporated
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
List of Tables
1-1
Device Options ..................................................................................................................... 9
2-1
Terminal Functions
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
..............................................................................................................
EAV and SAV Sequence ........................................................................................................
Standard Video Resolutions ....................................................................................................
Video Resolutions Converted by the Scaler ..................................................................................
Summary of Line Frequencies, Data Rates and Pixel Counts for Different Standards .................................
Output Ports Configuration for Non-Interleaved Mode ......................................................................
Output Ports Configuration for Pixel-Interleaved Mode .....................................................................
VDET Statues Insertion in SAV/EAV Codes ..................................................................................
Channel ID Insertion in Horizontal Blanking Code ...........................................................................
Channel ID Insertion in SAV/EAV Code Sequence ..........................................................................
Output Ports Configuration for Line-Interleaved Mode ......................................................................
Default Super-Frame Format and Timing .....................................................................................
Bit Assignment of 4-Byte Start Code for Active Video Line.................................................................
Bit Field Definition of 4-Byte Start Code for Active Video Line .............................................................
Bit Assignment of 4-Byte Start Code for the Dummy Line ..................................................................
Serial Audio Output Channel Assignment.....................................................................................
I2C Terminal Description ........................................................................................................
I2C Host Interface Device Addresses ..........................................................................................
Reset Mode .......................................................................................................................
Reset Sequence ..................................................................................................................
Registers Summary ..............................................................................................................
Status 1 ...........................................................................................................................
Status 2 ...........................................................................................................................
Color Subcarrier Phase Status ................................................................................................
ROM Version .....................................................................................................................
RAM Version MSB ..............................................................................................................
RAM Version LSB ...............................................................................................................
Chip ID MSB .....................................................................................................................
Chip ID LSB ......................................................................................................................
Video Standard Status ..........................................................................................................
Video Standard Select ..........................................................................................................
CVBS Autoswitch Mask .........................................................................................................
Auto Contrast Mode .............................................................................................................
Luminance Brightness ..........................................................................................................
Luminance Contrast .............................................................................................................
Brightness and Contrast Range Extender ....................................................................................
Chrominance Saturation ........................................................................................................
Chrominance Hue ...............................................................................................................
Color Killer ........................................................................................................................
Luminance Processing Control 1 ..............................................................................................
Luminance Processing Control 2 ..............................................................................................
Power Control ....................................................................................................................
Chrominance Processing Control 1 ...........................................................................................
Chrominance Processing Control 2 ...........................................................................................
AGC Gain Status ................................................................................................................
Back-End AGC Status ..........................................................................................................
Copyright © 2009–2013, Texas Instruments Incorporated
List of Tables
13
20
21
21
22
22
23
24
24
24
25
29
30
30
31
35
36
36
41
41
42
45
46
46
46
47
47
47
47
48
48
49
49
49
50
50
50
51
51
52
52
53
54
54
55
55
5
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
..................................................................................................................
................................................................................................................
Luma ALC Freeze Upper Threshold ..........................................................................................
Chroma ALC Freeze Upper Threshold .......................................................................................
AGC Increment Speed ..........................................................................................................
AGC Increment Delay ...........................................................................................................
AGC Decrement Speed .........................................................................................................
AGC Decrement Delay .........................................................................................................
AGC White Peak Processing ..................................................................................................
Back-End AGC Control .........................................................................................................
AFE Fine Gain ...................................................................................................................
AVID Start Pixel ..................................................................................................................
AVID Pixel Width ................................................................................................................
Noise Reduction Max Noise ....................................................................................................
Noise Reduction Control ........................................................................................................
Noise Reduction Noise Filter Beta ............................................................................................
Operation Mode Control ........................................................................................................
Color PLL Speed Control .......................................................................................................
Sync Height Low Threshold ....................................................................................................
Sync Height High Threshold ...................................................................................................
Clear Lost Lock Detect ..........................................................................................................
VSYNC Filter Shift ...............................................................................................................
656 Version/F-bit Control .......................................................................................................
F-Bit and V-Bit Decode Control ................................................................................................
F-Bit and V-Bit Control ..........................................................................................................
Output Timing Delay ............................................................................................................
Auto Contrast User Table Index ...............................................................................................
Blue Screen Y Control ..........................................................................................................
Blue Screen Cb Control ........................................................................................................
Blue Screen Cr Control .........................................................................................................
Blue Screen LSB Control .......................................................................................................
Noise Measurement .............................................................................................................
Weak Signal High Threshold ...................................................................................................
Weak Signal Low Threshold ...................................................................................................
Noise Reduction Y/U/V T0 .....................................................................................................
Vertical Line Count Status ......................................................................................................
Output Formatter Control 1 .....................................................................................................
Output Formatter Control 2 .....................................................................................................
Interrupt Control .................................................................................................................
Embedded Sync Offset Control 1 .............................................................................................
Embedded Sync Offset Control 2 .............................................................................................
AVD Output Control 1 ...........................................................................................................
AVD Output Control 2 ...........................................................................................................
OFM Mode Control ..............................................................................................................
OFM Channel Select 1 ..........................................................................................................
OFM Channel Select 2 ..........................................................................................................
OFM Channel Select 3 ..........................................................................................................
OFM Super-Frame Size ........................................................................................................
4-27
Status Request
55
4-28
AFE Gain Control
55
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-45
4-46
4-47
4-48
4-49
4-50
4-51
4-52
4-53
4-54
4-55
4-56
4-57
4-58
4-59
4-60
4-61
4-62
4-63
4-64
4-65
4-66
4-67
4-68
4-69
4-70
4-71
4-72
4-73
4-74
6
List of Tables
56
56
56
56
57
57
58
59
59
60
60
60
61
61
62
62
63
63
63
63
64
65
66
66
67
67
67
68
68
68
68
68
69
69
69
70
70
70
71
72
73
74
75
76
76
77
Copyright © 2009–2013, Texas Instruments Incorporated
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
.......................................................................................................
...............................................................................................................
Audio Sample Rate Control ....................................................................................................
Analog Audio Gain Control 1 ...................................................................................................
Analog Audio Gain Control 2 ...................................................................................................
Audio Mode Control .............................................................................................................
Audio Mixer Select ..............................................................................................................
Audio Mute Control ..............................................................................................................
Analog Mixing Ratio Control 1 .................................................................................................
Analog Mixing Ratio Control 2 .................................................................................................
Audio Cascade Mode Control ..................................................................................................
Super-Frame EAV2SAV Duration Status .....................................................................................
Super-Frame SAV2EAV Duration Status .....................................................................................
VBUS Data Access With No VBUS Address Increment ...................................................................
VBUS Data Access With VBUS Address Increment ........................................................................
VBUS Address Access .........................................................................................................
Interrupt Status ..................................................................................................................
Interrupt Mask ....................................................................................................................
Interrupt Clear ....................................................................................................................
Decoder Write Enable ..........................................................................................................
Decoder Read Enable ..........................................................................................................
4-75
OFM EAV2SAV Duration
77
4-76
Misc OFM Control
78
4-77
4-78
4-79
4-80
4-81
4-82
4-83
4-84
4-85
4-86
4-87
4-88
4-89
4-90
4-91
4-92
4-93
4-94
4-95
Copyright © 2009–2013, Texas Instruments Incorporated
List of Tables
78
79
80
81
82
83
83
84
84
84
85
85
85
85
86
87
88
88
89
7
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Four-Channel NTSC/PAL Video Decoders
Check for Samples: TVP5158, TVP5157, TVP5156
1
Introduction
1.1
Features
1234
• Common Device Features
(TVP5158, TVP5157, and TVP5156)
– Four separate video decoder channels
having the following features for each
channel
• Accepts NTSC (J, M, 4.43) and PAL (B, D,
G, H, I, M, N, Nc, 60) video data
• Composite video inputs, pseudodifferential video inputs to improved
noise immunity
• High-speed 10-bit ADC
• Fully differential CMOS analog
preprocessing channels with clamping
• Integrated anti-aliasing filter
• 2D 5-line (5H) adaptive comb filter
• Noise reduction and auto contrast
• Robust automatic video standard
detection (NTSC/PAL) and switching
• Programmable hue, saturation,
sharpness, brightness, and contrast
• Luma-peaking processing
• Patented architecture for locking to weak,
noisy, or unstable signals
– Four independent scalers support horizontal
and/or vertical 2:1 downscaling
– Channel multiplexing capabilities with
metadata insertion
• Pixel-interleaved mode supports up to
four-channel D1 multiplexed 8-bit output
at 108 MHz
• Supports concurrent NTSC and PAL
inputs
– Support crystal interface with on-chip
oscillator and single clock input mode
– Single 27-MHz clock input or crystal for all
standards and all channels
– Internal phase-locked loop (PLL) for linelocked clock (separate for each channel) and
sampling
– Standard programmable video output format
• ITU-R BT.656, 8-bit 4:2:2 with embedded
syncs
• YCbCr 16-bit 4:2:2 with embedded syncs
– Macrovision™ copy protection detection
– 3.3-V compatible I/O
– 128-pin TQFP package
– Available in commercial (0°C to 70°C)
temperature range
• Additional TVP5158 and TVP5157 Specific
Features
– Integrated four-channel audio ADC with
audio sample rate of 8 kHz or 16 kHz
– Support Master and Slave mode I2S Output
– Support audio cascade connection
• Additional TVP5158 Specific Features
– Enhanced channel multiplexing capability –
Line-interleaved mode
– Four-channel D1 multiplexed output at 8 bit
at 108 MHz
– Video cascade connection for 8-Ch CIF, 8-Ch
Half-D1, and 8-Ch CIF + 1-Ch D1 outputs
– Also available in Industrial (-40°C to 85°C)
temperature range
• Qualified for Automotive Applications
(AEC-Q100 Rev G – TVP5158IPNPQ1,
TVP5158IPNPRQ1)
1
2
3
4
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
DaVinci is a trademark of Texas Instruments.
Macrovision is a trademark of Macrovision Corporation.
All other trademarks are the property of their respective owners.
Copyright © 2009–2013, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date. Products conform to
specifications per the terms of the Texas Instruments standard warranty. Production
processing does not necessarily include testing of all parameters.
TVP5158, TVP5157, TVP5156
www.ti.com
1.2
•
•
•
•
SLES243G – JULY 2009 – REVISED APRIL 2013
Applications
Security and surveillance digital video recorders or servers and PCI products
Automotive infotainment video hub
Large format video wall displays
Game systems
1.3
Description
The TVP5158, TVP5157, and TVP5156 devices are 4-channel high-quality NTSC/PAL video decoders
that digitize and decode all popular base-band analog video formats into digital video output. Each
channel of this decoder includes 10-bit 27-MSPS A/D converter (ADC). Preceding each ADC in the
device, the corresponding analog channel contains an analog circuit that clamps the input to a reference
voltage and applies the gain.
Composite input signal is sampled at 2x the ITU-R BT.601 clock frequency, line-locked alignment, and is
then decimated to the 1x pixel rate. CVBS decoding uses five-line adaptive comb filtering for both the
luma and chroma data paths to reduce both cross-luma and cross-chroma artifacts. A chroma trap filter is
also available. On CVBS inputs, the user can control video characteristics such as contrast, brightness,
saturation, and hue via an I2C host port interface. Furthermore, luma peaking (sharpness) with
programmable gain is included.
All four channels are independently controllable. These decoders share a single clock input for all
channels and for all supported standards.
TVP5158 provides a glueless audio and video interface to TI DaVinci™ video processors. Video output
ports support 8-bit ITU-R BT.656 and 16-bit 4:2:2 YCbCr with embedded synchronization. TVP5158
supports multiplexed pixel-interleaved and line-interleaved mode video outputs with metadata insertion.
TVP5158 and TVP5157 integrate 4-Ch audio ADCs to reduce the BOM cost for surveillance market.
Multiple TVP5158 devices can be cascade connected to support up to 8-Ch Video or 16-Ch audio
processing.
Noise reduction and auto contrast functions improve the video quality under low light condition which is
very critical for surveillance products.
The TVP5158, TVP5157, and TVP5156 can be programmed by using a single I2C serial interface. I2C
commands can be sent to one or more decoder cores simultaneously, reducing the amount of I2C activity
necessary to configure each core. This is especially useful for fast downloading modified firmware to the
decoder cores.
TVP5158, TVP5157, and TVP5156 use 1.1-V, 1.8-V, and 3.3-V power supplies for the analog/digital core
and I/O. These devices are available in a 128-pin TQFP package.
Table 1-1. Device Options
1.4
Device Name
4-Ch Audio ADC
Line-Interleaved Modes
TVP5156
No
No
TVP5157
Yes
No
TVP5158
Yes
Yes
Related Products
•
•
•
•
TVP5154A
TVP5150AM1
TVP5146M2
TVP5147M1
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Introduction
9
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
1.5
www.ti.com
Trademarks
DaVinci, PowerPAD are trademarks of Texas Instruments.
Macrovision is a trademark of Macrovision Corporation.
Other trademarks are the property of their respective owners.
1.6
Document Conventions
Throughout this data manual, several conventions are used to convey information. These conventions are
as follows:
• To identify a binary number or field, a lower case b follows the numbers. For example: 000b is a 3-bit
binary field.
• To identify a hexadecimal number or field, a lower case h follows the numbers. For example: 8AFh is a
12-bit hexadecimal field.
• All other numbers that appear in this document that do not have either a b or h following the number
are assumed to be decimal format.
• If the signal or terminal name has a bar above the name (for example, RESETB), then this indicates
the logical NOT function. When asserted, this signal is a logic low, 0, or 0b.
• RSVD indicates that the referenced item is reserved.
1.7
Ordering Information
TA
0°C to 70°C
-40°C to 85°C
(1)
(2)
(3)
10
PACKAGED DEVICES (1) (2)
TQFP 128-Pin PowerPADTM Package
PACKAGE OPTION
TVP5156PNP
Tray
TVP5156PNPR
Tape and reel
TVP5157PNP
Tray
TVP5157PNPR
Tape and reel
TVP5158PNP
Tray
TVP5158PNPR
Tape and reel
TVP5158IPNP
Tray
TVP5158IPNPR
Tape and reel
TVP5158IPNPQ1 (3)
Tray
TVP5158IPNPRQ1 (3)
Tape and reel
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
web site at www.ti.com.
Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
AEC-Q100 Rev G certified
Introduction
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
1.8
SLES243G – JULY 2009 – REVISED APRIL 2013
Functional Block Diagram
VIN_1_P
VIN_1_N
VIN_2_P
VIN_2_N
10-Bit
ADC
Y/C
Separation
Noise Reduction/
Auto Contrast
Scaler
10-Bit
ADC
Y/C
Separation
Noise Reduction/
Auto Contrast
Scaler
DVO_A_[7:0]
DVO_B_[7:0]
Output
Formattor
VIN_3_P
VIN_3_N
VIN_4_P
VIN_4_N
10-Bit
ADC
Y/C
Separation
Noise Reduction/
Auto Contrast
Scaler
10-Bit
ADC
Y/C
Separation
Noise Reduction/
Auto Contrast
Scaler
ARM/Memory
Registers
DVO_C_[7:0]
DVO_D_[7:0]
Delay Match
and Re-Sync
2
I C Host port
Cascade
Input
2
IC
AIN_1
AIN_2
AIN_3
Audio
ADC
Decimation Filter
and Mixer
AIN_4
BCLK_R
LRCLK_R
2
I S Encoder
SD_R/SD_M
SD_CO
Audio Cascade Input
Figure 1-1. Functional Block Diagram
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Introduction
11
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
2
Terminal Assignments
2.1
Pinout
I2CA1
VSS
65
69
68
67
66
DVO_A_5
VDD_3_3
DVO_A_6
DVO_A_7
VDD_1_1
70
DVO_A_2
DVO_A_3
VSS
DVO_A_4
74
73
72
71
I2CA0
VSS
DVO_A_0
DVO_A_1
VDD_1_1
79
78
77
76
75
VDD_1_1
SD_CO
VSS
VDD_3_3
83
82
81
80
SD_M
SD_R
VSS
LRCLK_R
BCLK_R
88
87
86
85
84
AIN_3
AIN_4
VDDA_1_8
VSS
VIN_2_N
VDDA_1_8
VDDA_1_8
REXT_2K
113
114
115
116
48
47
46
45
VSSA
VSSA
VDDA_1_1
VDDA_1_8
117
118
119
120
44
43
42
41
VIN_3_P
VIN_3_N
121
122
123
124
40
39
38
37
125
126
127
128
36
35
34
33
Terminal Assignments
VSS
DVO_B_2
DVO_B_3
VDD_3_3
DVO_B_4
DVO_B_5
VSS
DVO_B_6
DVO_B_7
VDD_1_1
OCLK_P
OCLK_N/CLKIN
VSS
I2CA2
VSS
DVO_C_0
DVO_C_1
VDD_1_1
DVO_C_2
DVO_C_3
VDD_3_3
DVO_C_4
DVO_C_5
VSS
DVO_C_6
DVO_C_7
VDD_1_1
NC
VSS
DVO_D_0
VDD_1_1
VSS
DVO_D_3
DVO_D_2
VDD_3_3
DVO_D_1
DVO_D_7
DVO_D_6
VDD_1_1
DVO_D_5
DVO_D_4
BCLK_CI
VDD_1_1
SD_CI
VSS
VDD_1_1
VSS
VDD_3_3
LRCLK_CI
T5
VSS
T3
T4
SCL
SDA
VSS
T1
VSS
INTREQ
RESETB
1
2
3
4
VSSA
VSSA
VIN_4_P
VIN_4_N
VDDA_1_8
VDAA_3_3
T2
VSSA
VDD_1_1
DVO_B_0
DVO_B_1
32
52
51
50
49
27
28
29
30
31
VSSA
VIN_2_P
109
110
111
112
VIN_1_N
24
25
26
56
55
54
53
VSSA
VSSA
VDDA_1_1
VDDA_1_8
VIN_1_P
23
105
106
107
108
VDDA_1_1
18
19
20
21
22
60
59
58
57
14
15
16
17
101
102
103
104
9
10
11
12
13
64
63
62
61
5
6
7
8
97
98
99
100
OSC_OUT
VSSA
XTAL_IN
XTAL_REF
XTAL_OUT
VDDA_1_8
12
92
91
90
89
96
95
94
93
VSSA
AIN_1
AIN_2
128-PIN TQFP PACKAGE
(TOP VIEW)
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 2-1. Terminal Functions
TERMINAL
NAME
NO.
I/O
DESCRIPTION
Analog Section
VIN_1_P
108
I
Analog video input for ADC channel 1.
VIN_1_N
109
I
Common-mode reference input for ADC channel 1.
VIN_2_P
112
I
Analog video input for ADC channel 2.
VIN_2_N
113
I
Common-mode reference input for ADC channel 2.
VIN_3_P
121
I
Analog video input for ADC channel 3.
VIN_3_N
122
I
Common-mode reference input for ADC channel 3.
VIN_4_P
125
I
Analog video input for ADC channel 4.
VIN_4_N
126
I
Common-mode reference input for ADC channels.
REXT_2K
116
I
External resistor for AFE bias generator. Connect external 1.8kΩ resistor to ground.
AIN_1
95
I
Analog audio input for channel 1 (No Connect for TVP5156 Only)
AIN_2
94
I
Analog audio input for channel 2 (No Connect for TVP5156 Only)
AIN_3
93
I
Analog audio input for channel 3 (No Connect for TVP5156 Only)
AIN_4
92
I
Analog audio input for channel 4 (No Connect for TVP5156 Only)
XTAL_IN
99
I
External clock reference input. It may be connected to external oscillator with 1.8-V compatible
clock signal or 27.0-MHz crystal oscillator.
XTAL_REF
100
G
Crystal reference. Connected to analog ground internally.
XTAL_OUT
101
O
External clock reference output. Not connected if XTAL_IN is driven by an external singleended oscillator.
VDDA_1_1
103, 106, 119
P
1.1-V analog supply
VDDA_1_8
91, 102, 107,
114, 115, 120,
127
P
1.8-V analog supply
Analog Power
VDDA_3_3
128
P
3.3-V analog supply for all 4 video channels
96, 98, 104,
105, 110, 111,
117, 118, 123,
124
G
Analog ground
VSS
1, 6, 12, 14, 20,
26, 33, 38, 47,
49, 55, 61, 65,
73, 79, 82, 87,
90
G
Digital ground
VDD_1_1
13, 18, 23, 32,
35, 44, 52, 64,
67, 76, 84
P
Digital core supply. Connect to 1.1-V digital supply.
VDD_3_3
15, 29, 41, 58,
70, 81
P
Digital I/O supply. Connect to 3.3-V digital supply.
INTREQ
2
O
Interrupt request. Interrupt signal to host processor.
RESETB
3
I
Reset. An active low signal that controls the reset state.
SCL
4
I/O
I2C serial clock (open drain)
SDA
5
I/O
I2C serial data (open drain)
OSC_OUT
97
O
Buffered crystal oscillator output. 1.8-V compatible.
OCLK_P
51
O
Output data clock+. All four digital video output ports are synchronized to this clock.
OCLK_N/CLKIN
50
I/O
Output data clock- for 2-Ch time-multiplexed mode or data clock input for 8-Ch video cascade
mode
68, 69, 71, 72,
74, 75, 77, 78
O
Digital video output data bus.
VSSA
Digital Power
Digital Section
DVO_A_[7:0]
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Terminal Assignments
13
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 2-1. Terminal Functions (continued)
TERMINAL
NAME
NO.
I/O
DESCRIPTION
DVO_B_[7:0]
53, 54, 56, 57,
59, 60, 62, 63
O
Digital video output data bus.
DVO_C_[7:0]
36, 37, 39, 40,
42, 43, 45, 46
I/O
Digital video output data bus. In cascade mode, all pins operate as input from another
TVP5158 device.
DVO_D_[7:0]
21, 22, 24, 25,
27, 28, 30, 31
I/O
Digital video output data bus. In cascade mode, all pins operate as input from another
TVP5158 device.
I2CA0
80
I
I2C slave address bit 0
I2CA1
66
I
I2C slave address bit 1
I2CA2
48
I
I2C slave address bit 2
Digital Audio Section (Not supported on TVP5156)
BCLK_R
85
I/O
I2S bit clock for recording. Also known as I2S serial clock (SCK). Supports master and slave
modes.
LRCLK_R
86
I/O
I2S left/right clock for recording. Also known as I2S word select (WS). Supports master and
slave modes.
SD_R
88
O
I2S serial data output for recording.
SD_M
89
O
I2S serial data output for mixed audio or recording.
SD_CO
83
O
Audio serial data output for cascade mode
LRCLK_CI
16
I
I2S left/right clock input for cascade mode. Also known as I2S word select (WS).
BCLK_CI
17
I
I2S bit clock input for cascade mode. Also known as I2S serial clock (SCK).
SD_CI
19
I
Audio serial data input for cascade mode.
7, 8, 9, 10, 11,
34
NC
No Connect Pins
T1, T2, T3, T4,
T5, NC
14
Terminal Assignments
For normal operation, no connect
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
3
Functional Description
3.1
Analog Video Processing and A/D Converters
Each video decoder accepts one composite video input and performs video clamping, anti-aliasing
filtering, video amplification, A/D conversion, and gain and offset adjustments to center the digitized video
signal. Figure 3-1 shows the video analog processing and ADC block diagram.
Analog
CVBS Input
Anti-Aliasing
Filter
Output to
Digital
Processing
ADC
Clamp
Reference & Bias
Figure 3-1. Video Analog Processing and ADC Block Diagram
3.1.1
Analog Video Input
Supports NTSC (J, M, 4.43) and PAL (B, D, G, H, I, M, N, Nc, 60) video standards. Each video decoder
channel supports a composite video input with a pseudo-differential pin which improves the noise
immunity and analog performance.
Each video decoder input should be ac-coupled through a 0.1-µF capacitor. The nominal parallel
termination resistor before the input to the device is 75 Ω.
Each video decoder integrates an anti-aliasing filter to provide good stop-band rejection on the analog
video input signal. Figure 3-2 shows the frequency response of the anti-aliasing filter.
Frequency Response
5
0
-5
Gain(dB)
-10
-15
-20
-25
-30
-35
-
5
10
15
20
25
Frequency (MHz)
Figure 3-2. Anti-Aliasing Filter Frequency Response
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Functional Description
15
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
3.1.2
www.ti.com
Analog Video Input Clamping
An internal clamping circuit provides dc restoration for all four analog composite video inputs. The dc
restoration circuit (sync-tip clamp) restores sync-tip level of the ac-coupled composite video signal to a
fixed dc level near the bottom of the A/D converter range.
3.1.3
A/D Converter
All ADCs have a resolution of 10 bits and can operate at 27 MSPS. Each A/D channel receives a clock
from the on-chip phase-locked loop (PLL) at a nominal frequency of 27 MHz. All ADC reference voltages
are generated internally.
3.2
Digital Video Processing
Digital Video Processing block receives digitized video signals from the ADCs and performs composite
processing and YCbCr signal enhancements. The digital data output can be programmed to two formats:
ITU-R BT.656 8-bit 4:2:2 with embedded syncs or 16-bit 4:2:2 with embedded syncs. The circuit also
detects pseudo-sync pulses, AGC pulses, and color striping in Macrovision-encoded copy-protected
material.
3.2.1
2x Decimation Filter
All input signals are over-sampled by a factor of 2 (by 27-MHz clock). The A/D outputs initially pass
through decimation filters that reduce the data rate to 1x the pixel rate. The decimation filter is a half-band
filter. Over-sampling and decimation filtering can effectively increase the overall signal-to-noise ratio by
3 dB.
3.2.2
Automatic Gain Control
The automatic gain control (AGC) can be enabled and can adjust the signal amplitude controlled by 14-bit
digital gain stage after the ADC. The AGC algorithms can use up to four amplitude references: sync
height, color burst amplitude, composite peak, and luma peak.
The specific amplitude references being used by the AGC algorithms can be controlled using the AGC
white peak processing register located at subaddress 2Dh. The gain increment speed and gain increment
delay can be controlled using the AGC increment speed register located at subaddress 29h and the AGC
increment delay register located at subaddress 2Ah. The gain decrement speed and gain decrement delay
can be controlled using the AGC decrement speed register located at subaddress 2Bh and the AGC
decrement delay register located at subaddress 2Ch.
3.2.3
Composite Processor
This Composite Processor circuit receives a digitized composite signal from the ADCs and performs sync
and Y/C separation, chroma demodulation for PAL/NTSC, and YUV signal enhancements. The slice levels
of the sync separator are adaptive. The slice levels continually adapt to changes in the back-porch and
sync-tip levels. The 10-bit composite video is multiplied by the sub carrier signals in the quadrature
demodulator to generate U and V color difference signals. The U and V signals are then sent to low-pass
filters to achieve the desired bandwidth. An adaptive 5-line comb filter separates UV from Y based on the
unique property of color phase shifts from line to line. The chroma is re-modulated through a quadrature
modulator and subtracted from line-delayed composite video to generate luma. This form of Y/C
separation is completely complementary, thus there is no loss of information. However, in some
applications, it is desirable to limit the U/V bandwidth to avoid crosstalk. In that case, notch filters can be
turned on. To accommodate some viewing preferences, a peaking filter is also available in the luma path.
Contrast, brightness, sharpness, hue, and saturation controls are programmable through the I2C host port.
Figure 3-3 shows the block diagram of Composite Processor.
16
Functional Description
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
CVBS
SLES243G – JULY 2009 – REVISED APRIL 2013
Line
Delay
Delay
Peaking
Y
NTSC/PAL
Remodulation
Y
Contrast
Notch
Notch
Filter
Filter
Brightness
Saturation
Adjust
Cr
Color LPF
2
Cb
Burst
Accumulator
(U)
5 Line
Adaptive
CVBS
NTSC/PAL
Demodulation
Color LPF
2
Burst
Accumulator
(V)
Comb Filter
Notch
Filter
Delay
Notch
Filter
Delay
U
V
Figure 3-3. Composite Processor Block Diagram
3.2.3.1
Color Low-Pass Filter
High filter bandwidth preserves sharp color transitions and produces crisp color boundaries. However, for
nonstandard video sources that have asymmetrical U and V side bands, it is desirable to limit the filter
bandwidth to avoid UV crosstalk. The color low-pass filter bandwidth is programmable to enable one of the
three notch filters. Figure 3-4 and Figure 3-5 represent the frequency responses of the wideband color
low-pass filters.
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Functional Description
17
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Figure 3-4. Color Low-Pass Filter Frequency Response
Figure 3-5. Color Low-Pass Filter with Filter Characteristics, NTSC/PAL ITU-R BT.601 Sampling
3.2.3.2
Y/C Separation
Y/C separation can be done using adaptive 5-line (5-H delay) comb filters or a chroma trap filter. The
comb filter can be selectively bypassed in the luma or chroma path. If the comb filter is bypassed in the
luma path, then chroma trap filters are used which are shown in Figure 3-6 and Figure 3-7. The TI
patented adaptive comb filter algorithm reduces artifacts such as hanging dots at color boundaries. It
detects and properly handles false colors in high-frequency luminance images such as a multiburst pattern
or circle pattern.
18
Functional Description
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Figure 3-6. Chroma Trap Filter Frequency Response, NTSC ITU-R BT.601 Sampling
Figure 3-7. Chroma Trap Filter Frequency Response, PAL ITU-R BT.601 Sampling
3.2.4
Luminance Processing
The digitized composite video signal passes through either a luminance comb filter or a chroma trap filter,
either of which removes chrominance information from the composite signal to generate a luminance
signal. The luminance signal is then fed into the input of a peaking circuit. Figure 3-8 shows the basic
functions of the luminance data path. A peaking filter (edge enhancer) amplifies high-frequency
components of the luminance signal. Figure 3-9 shows the characteristics of the peaking filter at four
different gain settings that are user-programmable via the I2C interface.
Gain
IN
Peak
Detector
Bandpass
Filter
x
Peaking
Filter
Delay
+
OUT
Figure 3-8. Luminance Edge-Enhancer Peaking Block Diagram
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Functional Description
19
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Figure 3-9. Peaking Filter Response, NTSC/PAL ITU-R BT.601 Sampling
3.3
AVID Cropping
AVID or active video cropping provides a means to decrease the amount of video data output. This is
accomplished by horizontally blanking a number of AVID pulses and by vertically blanking a number of
lines per frame. Horizontal cropping can be enabled/disabled using bit-6 of address B1h. When line
cropping is enabled, active video is reduced from 720 to 704 pixels for unscaled video and from 360 to
352 pixels for down-scaled video.
When line cropping is enabled, the TVP5158 crops an equal amount from both the start and end of active
video. Register 8Ch can be used to delay both the start and end of active video. It allows selecting which
704 pixels out of 720 are actually being used for active video when line cropping is enabled.
3.4
Embedded Syncs
Standards with embedded syncs insert SAV and EAV codes into the data stream at the beginning and end
of horizontal blanking. These codes contain the V and F bits which also define vertical timing. F and V
change on EAV. Table 3-1 gives the format of the SAV and EAV codes.
H equals 1 always indicates EAV. H equals 0 always indicates SAV. The alignment of V and F to the line
and field counter varies depending on the standard. Please refer to ITU-R BT.656 for more information on
embedded syncs.
The P bits are protection bits:
P3 = V xor H
P2 = F xor H
P1 = F xor V
P0 = F xor V xor H
Table 3-1. EAV and SAV Sequence
8-BIT DATA
D7 (MSB)
D6
D5
D4
D3
D2
D1
D0
Preamble
1
1
1
1
1
1
1
1
Preamble
0
0
0
0
0
0
0
0
Preamble
0
0
0
0
0
0
0
0
Status word
1
F
V
H
P3
P2
P1
P0
20
Functional Description
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
3.5
SLES243G – JULY 2009 – REVISED APRIL 2013
Scaler
Each video decoder has an independent horizontal and vertical scaler, which supports D1 to half-D1 or
CIF conversion. Table 3-2 gives the details of video resolution including un-cropped and cropped. Table 33 shows the video resolutions converted by the scaler.
Table 3-2. Standard Video Resolutions
Uncropped
Format
Cropped
NTSC
PAL
NTSC
PAL
D1
720 x 480
720 x 576
704 x 480
704 x 576
Half-D1
360 x 480
360 x 576
352 x 480
352 x 576
CIF
360 x 240
360 x 288
352 x 240
352 x 288
Table 3-3. Video Resolutions Converted by the Scaler
Scaling Ratio
D1
D1 to Half-D1
D1 to CIF
3.6
Format
Horizontal Scaling
Vertical Scaling
Total Pixel
Active Output
Resolution
NTSC
1:1
1:1
858 x 525
720 x 480
PAL
1:1
1:1
864 x 625
720 x 576
NTSC
2:1
1:1
429 x 525
360 x 480
PAL
2:1
1:1
432 x 625
360 x 576
NTSC
2:1
2:1
429 x 262
360 x 240
PAL
2:1
2:1
432 x 312
360 x 288
Noise Reduction
A video sequence shot under low light condition, which is typical of video surveillance applications, can
contain lots of noise. Human eyes are very sensitive to oscillating signals, the visual quality degenerates
significantly even when the noise level is small.
Each video decoder uses a TI proprietary spatial filter to reduce video noise. For each frame of image, the
video noise filter (VNF) produces an estimate of the Y/U/V noise. Based on the noise estimates, the
firmware adjusts the threshold for Y/U/V filtering. The filtered video shows improved video quality and
lower compression bit-rate. The firmware can also utilize the Y/U/V noise estimates to make decisions to
disable color if the video noise is determined to be too high. This "color killer" decision bit can be used to
control another module that implements the color killing function.
The Noise Reduction can be controlled using I2C registers from 5Ch to 5Fh. This module can also be set
to bypass mode by I2C register 5Dh (Bit 0).
3.7
Auto Contrast
The Auto Contrast (AC) module can adjust the picture brightness automatically or manually (user
programmable) for better image quality. The goal of AC processing is to make the dark area brighter and
high-light area dimmer. This makes it possible for the viewer to see details hidden in the shadows. It also
prevents loss of details in the washed-out high light area. The AC processing is mostly for video
surveillance applications.
For each frame of image, the auto contrast module collects the statistics of its Y (luminance) values. The
AC algorithm implemented in the firmware processes the statistics and generates a look-up table (LUT).
This LUT is used to map each incoming pixel Y value to an output pixel Y value for the next frame of
image. The LUT is updated during the blanking period between two frames.
The Auto Contrast Mode can be controlled by using I2C registers 0Fh. This module can also be set to
disable mode by I2C register 0Fh (Bit 1:0).
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Functional Description
21
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
3.8
www.ti.com
Output Formatter
The output formatter is responsible for generating the output digital video stream. Table 3-4 provides a
summary of line frequencies, data rates, and pixel counts for different input standards. TVP5158 supports
non-interleaved output mode, pixel-interleaved output mode and line-interleaved output mode. The noninterleaved mode is similar to the TVP5154A device, except that a single fixed clock output is used. In the
interleaved modes, the video output data from multiple decoder channels are multiplexed together and
then output to a single 8-bit or 16-bit port. The video output data from selected channels can be
interleaved on a pixel or line basis.
Table 3-4. Summary of Line Frequencies, Data Rates and Pixel Counts for Different Standards
Standards
(ITU-R BT.601)
Pixels per Line
Active Pixels
per Line
Lines per
Frame
Pixel
Frequency
(MHz)
Color Subcarrier
Frequency
(MHz)
Horizontal Line
Rate
(kHz)
NTSC-J, M
858
720
525
13.5
3.579545
15.73426
NTSC-4.43
858
720
525
13.5
4.43361875
15.73426
PAL-M
858
720
525
13.5
3.57561149
15.73426
PAL-60
858
720
525
13.5
4.43361875
15.73426
PAL-B, D, G, H, I
864
720
625
13.5
4.43361875
15.625
PAL-N
864
720
625
13.5
4.43361875
15.625
PAL-Nc
864
720
625
13.5
3.58205625
15.625
3.8.1
Non-Interleaved Mode
In the non-interleaved mode, the YCbCr digital output is programmed as 8-bit ITU-R BT.656 parallel
interface standard. Depending on which output mode is selected, the output for each channel can be unscaled data or scaled data. Also each video output port can be selected to output the video data from any
1 of 4 video decoders. Table 3-5 shows the detailed information about non-interleaved mode.
Table 3-5. Output Ports Configuration for Non-Interleaved Mode
Video Output
Format
Cascade
Stage
I2C Address:
B0h
OCLK
(MHz)
Port A
Port B
Port C
Port D
1-Ch D1
n/a
00h
27
Any 1 of 4 Ch
Any 1 of 4 Ch
Any 1 of 4 Ch
Any 1 of 4 Ch
1-Ch Half-D1
n/a
02h
27
Any 1 of 4 Ch
Any 1 of 4 Ch
Any 1 of 4 Ch
Any 1 of 4 Ch
1-Ch CIF
n/a
03h
27
Any 1 of 4 Ch
Any 1 of 4 Ch
Any 1 of 4 Ch
Any 1 of 4 Ch
3.8.2
Pixel-Interleaved Mode
Each video decoder supports multiplexing two or four channels ITU-R BT.656 format data together on a
pixel basis. The output from each video decoder channel is still ITU-R BT.656 format. After the processing
in output formatter, two or four channels video data has been interleaved together by strictly one pixel
from each channel.
The pixel-interleaved mode is dedicated for the backend chip which has limited video input ports. Table 36 gives the output port configuration for pixel-interleaved mode.
22
Functional Description
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 3-6. Output Ports Configuration for Pixel-Interleaved Mode
Video Output
Format
Cascade
Stage
I2C Address:
B0h
2-Ch D1
n/a
4-Ch D1
n/a
4-Ch Half-D1
4-Ch CIF
3.8.2.1
OCLK
(MHz)
Port A
Port B
Port C
Port D
50h
54
Any 2 of 4 Ch
Any 2 of 4 Ch
Hi-Z
Hi-Z
60h
108
All 4 Ch
Hi-Z
Hi-Z
Hi-Z
n/a
62h
54
All 4 Ch
Hi-Z
Hi-Z
Hi-Z
n/a
63h
54
All 4 Ch
Hi-Z
Hi-Z
Hi-Z
2-Ch Pixel-Interleaved Mode
In 2-Ch pixel-interleaved mode, the video output data with D1 resolution from two video channels is
multiplexed pixel by pixel at 54 MHz. The output ports DVO_A and DVO_B are used in this mode. The
output clocks OCLK_P and OCLK_N are synchronized with each channel so that the backend chip can
de-multiplexed each video channel data easily. The video output from each channel is compatible with
ITU-R BT.656 format. Figure 3-10 shows the timing diagram for 2-Ch pixel-interleaved mode.
CLK_P
(27MHz)
CLK_N
(27MHz)
CH1_D
FF
CH2_D
00
00
Cb20
DVO_A_
[7:0]
FF
Cb20
Y20
00
Y20
Cr20
00
Cb0
XY
Cr20
XY
Y0
Y21
Cb22
Y21
Cb0 Cb22
Cr0
Y22
Y0
Y22
Y1
Cr22
Cr0
Cr22
Y1
Cb2
Y2
Y23
Cb24
Y23
Cb2 Cb24
Cr2
Y24
Y2
Y24
Y3
Cr24
Cr2
Cr24
Y25
Y3
Y25
Figure 3-10. 2-Ch Pixel-Interleaved Mode Timing Diagram
3.8.2.2
4-Ch Pixel-Interleaved Mode
In 4-Ch pixel-interleaved mode, the video output data with D1 resolution from four video channels is
multiplexed pixel by pixel at 108 MHz. The output DVO_A is used in this mode. The output clock OCLK_P
is synchronized with all four channels data. Each channel video data is compatible with ITU-R BT.656
format. Figure 3-11 shows the timing diagram for 4-Ch pixel-interleaved mode.
CLK (108MHz)
CH1_D
FF
CH2_D
Cb20
CH3_D
Y 20
Cr92
FF
Cb20 Cr50 Cr92
Y 20
Y51
Cb0
Y93
Y52
Cb94
00
Y0
Cb22
Y21
Cb52
Y93
00
XY
Cr20
Y51
Cr50
CH4_D
DVO_A_
[7:0]
00
00
Cr20 Cb52 Cb94
XY
Y21
Y52
Y22
Y53
Cr52
Y94
Cr94
Y94
Cb0 Cb22 Cr52 Cr94
Y95
Y0
Y22
Y53
Y95
Figure 3-11. 4-Ch Pixel-Interleaved Mode Timing Diagram
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Functional Description
23
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
In 4-Ch pixel-interleaved mode, TVP5158 also supports Half-D1 and CIF format data multiplexed at 54
MHz. The output DVO_A is used in this mode. The output clock OCLK_P is synchronized with all four
channels data.
3.8.2.3
Metadata Insertion for Non-Interleave Mode and Pixel-Interleaved Mode
In non-interleaved mode and pixel-interleaved mode, the video detection status (VDET) has also been
inserted in MSB of SAV/EAV control byte. Table 3-7 shows VDET status insertion in SAV/EAV codes.
Table 3-7. VDET Statues Insertion in SAV/EAV Codes
CONDITION
FVH VALUE
SAV/EAV CODE SEQUENCE
4th
FIELD
V TIME
H TIME
F
V
H
1st
2nd
3rd
1
Active
SAV
0
0
0
FFh
00h
00h
80h
00h
1
Active
EAV
0
0
1
FFh
00h
00h
9Dh
1Dh
1
Blank
SAV
0
1
0
FFh
00h
00h
ABh
2Bh
1
Blank
EAV
0
1
1
FFh
00h
00h
B6h
36h
2
Active
SAV
1
0
0
FFh
00h
00h
C7h
47h
2
Active
EAV
1
0
1
FFh
00h
00h
DAh
5Ah
2
Blank
SAV
1
1
0
FFh
00h
00h
ECh
6Ch
2
Blank
EAV
1
1
1
FFh
00h
00h
F1h
71h
VDET = 1
VDET = 0
In the pixel-interleaved mode, Channel ID is inserted in the horizontal blanking code as Table 3-8. The
backend chip can easily identify the video data from which video decoder channel by inserted Channel ID.
Table 3-8. Channel ID Insertion in Horizontal Blanking Code
H BLANKING CODE WITH CHANNEL ID
CHANNEL
Y
Cb
Cr
Ch1
10h
80h
80h
Ch2
11h
81h
81h
Ch3
12h
82h
82h
Ch4
13h
83h
83h
In the pixel-interleaved mode, Channel ID can also be inserted in 4 LSBs of SAV/EAV control byte
replacing protection bits as Table 3-9.
Table 3-9. Channel ID Insertion in SAV/EAV Code Sequence
CONDITION
FVH VALUE
SAV/EAV CODE SEQUENCE
4th
FIELD
V TIME
H TIME
F
V
H
1st
2nd
3rd
Ch1
Ch2
Ch3
Ch4
1
Active
SAV
0
0
0
FFh
00h
00h
80h
81h
82h
83h
1
Active
EAV
0
0
1
FFh
00h
00h
90h
91h
92h
93h
1
Blank
SAV
0
1
0
FFh
00h
00h
A0h
A1h
A2h
A3h
1
Blank
EAV
0
1
1
FFh
00h
00h
B0h
B1h
B2h
B3h
2
Active
SAV
1
0
0
FFh
00h
00h
C0h
C1h
C2h
C3h
2
Active
EAV
1
0
1
FFh
00h
00h
D0h
D1h
D2h
D3h
2
Blank
SAV
1
1
0
FFh
00h
00h
E0h
E1h
E2h
E3h
2
Blank
EAV
1
1
1
FFh
00h
00h
F0h
F1h
F2h
F3h
24
Functional Description
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
3.8.3
SLES243G – JULY 2009 – REVISED APRIL 2013
Line-Interleaved Mode Support (TVP5158 only)
The TVP5158 supports 2-Ch, 4-Ch, and 8-Ch line-interleaved modes. In the line-interleaved mode, the
video channels are multiplexed together on a line-by-line basis. Compared to the pixel-interleaved mode,
the line-interleaved mode significantly reduces the code complexity and MIPS consumption of the backend
processor. The 8-Ch modes require connecting two TVP5158 devices together using a video cascade
interface (see Section 3.8.3.3). The TVP5158 also supports different image resolutions (for example, D1,
Half-D1, and CIF) in the line-interleaved mode. All supported line-interleaved modes are shown in Table 310.
Table 3-10. Output Ports Configuration for Line-Interleaved Mode
Cascade
Stage
I2C Address:
B0h
OCLK
(MHz)
Port A
Port B
Port C
Port D
2-Ch D1
n/a
90h
54
Any 2 of 4 Ch
Any 2 of 4 Ch
Hi-Z
Hi-Z
2-Ch Half-D1
n/a
92h
27
Any 2 of 4 Ch
Any 2 of 4 Ch
Hi-Z
Hi-Z
3-Ch D1
n/a
80h
81/108
Any 3 of 4 Ch
Hi-Z
Hi-Z
Hi-Z
4-Ch D1
n/a
A0h
108
All 4 Ch
Hi-Z
Hi-Z
Hi-Z
4-Ch Half-D1
n/a
A2h
54
All 4 Ch
Hi-Z
Hi-Z
Hi-Z
4-Ch CIF
n/a
A3h
27
All 4 Ch
Hi-Z
Hi-Z
Hi-Z
All 4 Ch
(C data)
Hi-Z
Hi-Z
Video Output Format
4-Ch D1 (16-bit)
n/a
A8h
54
All 4 Ch
(Y data)
4-Ch Half-D1 (16-bit)
n/a
AAh
27
All 4 Ch
(Y data)
All 4 Ch
(C data)
Hi-Z
Hi-Z
1st
82h
81/108
6-Ch Half-D1
Output
Hi-Z
Hi-Z
2-Ch Half-D1
Input
2nd
86h
27
2-Ch Half-D1
Output
Hi-Z
Hi-Z
Hi-Z
1st
B2h
108
8-Ch Half-D1
Output
Hi-Z
Hi-Z
4-Ch Half-D1
Input
2nd
B6h
54
4-Ch Half-D1
Output
Hi-Z
Hi-Z
Hi-Z
1st
B3h
54
8-Ch CIF
Output
Hi-Z
Hi-Z
4-Ch CIF Input
2nd
B7h
27
4-Ch CIF
Output
Hi-Z
Hi-Z
Hi-Z
4-Ch Half-D1 +
1-Ch D1
n/a
E2h
81/108
4 Ch Half-D1
+ Any 1 of 4
D1
Hi-Z
Hi-Z
Hi-Z
4-Ch CIF + 1-Ch D1
n/a
E3h
54
4-Ch CIF +
Any 1 of 4 D1
Hi-Z
Hi-Z
Hi-Z
1st
C2h
108
6-Ch Half-D1
+ Any 1 of 8
D1
Hi-Z
1-Ch D1 Input
2-Ch Half-D1
Input
2nd
C6h
27
2-Ch Half-D1
Output
1-Ch D1
Output
Hi-Z
Hi-Z
1st
F3h
81/108
8-Ch CIF +
Any 1 of 8 D1
Hi-Z
2nd
F7h
27
4-Ch CIF
Output
1-Ch D1
Output
6-Ch Half-D1
8-Ch Half-D1
8-Ch CIF
6-Ch Half-D1 +
1-Ch D1
8-Ch CIF + 1-Ch D1
3.8.3.1
1-Ch D1 Input 4-Ch CIF Input
Hi-Z
Hi-Z
2-Ch Line-Interleaved Mode
TVP5158 supports 2-Ch line-interleaved mode at 54 MHz. The video output data with D1 resolution from
any two video channels is multiplexed together on a line basis. The output ports DVO_A and DVO_B are
used in this mode. The output clock OCLK_P is synchronized with both output ports.
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Functional Description
25
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
3.8.3.2
www.ti.com
4-Ch Line-Interleaved Mode
In 4-Ch line-interleaved mode, the video output data from all 4 channels is multiplexed together on a line
basis. The output resolution of video data can be D1, Half-D1 or CIF. For D1 and Half-D1 output
resolutions, the video output port can be configured to support 8-bit BT.656 or 16-Bit YCbCr 4:2:2 data
with embedded sync. Port DVO_A is used for 8-bit output. Ports DVO_A and DVO_B are used for 16-Bit
output. The output clock OCLK_P is synchronized with all four output ports.
TVP5158 supports multiplexing 4-Ch CIF and 1-Ch D1 data together and then output through DVO_A at
54 MHz. 1-Ch D1 can be from any one of 4 video channels. In typical surveillance applications, CIF
resolution is used for recording and D1 resolution is used for video preview.
TVP5158 also supports multiplexing 4-Ch Half-D1 and 1-Ch D1 data together and then output through
DVO_A at 108 MHz. The backend chip can use Half-D1 to generate CIF format by dropped one field.
Pleas note that the line-interleaved mode does NOT strictly output one line from each decoder channel
sequentially. The order of multiplexed the video line data is based on the availability of video output data
from each decoder channel. Therefore, it is possible to output two consecutive lines from the same
decoder channel or to skip one decoder channel output.
3.8.3.3
8-Ch Line-Interleaved Mode
Two TVP5158 devices can be cascade connected and work as single 8-Ch video decoder. In cascade
mode, the port DVO_C and DVO_D of master TVP5158 (first stage) can be configured as the video input
interface. The DVO_A and DVO_B of master TVP5158 are configured as the output interface for two
devices. This mode is dedicated for the backend chip with extremely limited input ports.
In the video cascade mode, the open-drain interrupt request (INTREQ) outputs from the first and second
stages can be combined using a wired-OR connection.
Typical applications with cascade mode show in the following diagrams.
Figure 3-12 shows the Cascade Connection for 16-Ch CIF Recoding and Multi-Ch CIF Preview.
Figure 3-13 shows the Cascade Connection for 16-Ch CIF Recoding and Multi-Ch Half-D1 Preview.
Figure 3-14 shows the Cascade Connection for 16-Ch CIF Recoding and 2-Ch D1/Multi-Ch CIF
Preview.
26
Functional Description
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
VIN_1
VIN_2
VIN_3
VIN_4
DVO_A_[7:0]
OCLK_P
TVP5158
8-C h CIF
8Bit@54MH z
VPIF_A
DVO_D_[7:0]
OCLKN/CLKIN
I2 C
VIN_1
VIN_2
VIN_3
TVP5158
VIN_4
VIN_1
VIN_2
H.264
DVO_A_[7:0]
OCLK_P
DVO_A_[7:0]
OCLK_P
TVP5158
4-C h CIF
8Bit@ 27MHz
8-C h CIF
16 -Ch CIF Recording
DM6467
DaVinci HD
VPIF_B
8Bit@54MH z
Multi-Ch CIF
Preview
VIN_3
VIN_4
DVO _D_[7:0]
OCLKN/CLKIN
I2 C
VIN_1
VIN_2
VIN_3
DVO_A_[7:0]
OCLK_P
TVP5158
VIN_4
4-C h CIF
8Bit@ 27MHz
Figure 3-12. Cascade Connection for 16-Ch CIF Recoding and Multi-Ch CIF Preview
VIN_1
VIN_2
VIN_3
VIN_4
DVO_A_[7:0]
OCLK_P
TVP5158
8-Ch Half-D1
8Bit@108 MHz
VPIF _A
DVO_D_[7:0]
OCLKN/CLKIN
I2C
VIN_1
VIN_2
VIN_3
H.264
DVO_A_[7:0]
OCLK_P
TVP5158
VIN_4
VIN_1
VIN_2
VIN_3
VIN_4
TVP5158
DVO_A_[7:0]
OCLK_P
16 -Ch CIF R ecording
4-Ch H alf-D1
8Bit@ 54MHz
8-Ch Half-D1
8Bit@ 108MHz
DM6467
DaVinci HD
VPIF _B
DVO_D_[7:0]
OCLKN/CLKIN
Multi-Ch H alf-D1
Preview
I2C
VIN_1
VIN_2
VIN_3
DVO_A_[7:0]
OCLK_P
TVP5158
VIN_4
4-Ch H alf-D1
8Bit@ 54MHz
Figure 3-13. Cascade Connection for 16-Ch CIF Recoding and Multi-Ch Half-D1 Preview
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Functional Description
27
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
VIN_1
VIN_2
VIN_3
VIN_4
www.ti.com
DVO_A_[7:0]
OCLK_P
TVP5158
8-Ch CIF + 1 -Ch D 1
VPIF_A
8Bit@108MHz
DVO _C_[7:0]
DVO_D_[7:0]
OCLKN/CLKIN
I2C
VIN_1
VIN_2
VIN_3
DVO_A_[7:0]
OCLK_P
4-C h CIF
8 Bit@ 27 MHz
DVO_B _[7:0]
TVP5158
H.264
1-Ch D1
8Bit@27MH z
16 -C h CIF Recording
VIN_4
VIN_1
VIN_2
VIN_3
VIN_4
DM6467
DaVinci HD
DVO_A_[7:0]
OCLK_P
TVP5158
8-C h C IF + 1 -C h D 1
2 -Ch D1/Multi-Ch CIF
Preview
VPIF_B
8Bit@108MHz
DVO _C_[7:0]
DVO_D_[7:0]
OCLKN/CLKIN
I2C
VIN_1
VIN_2
VIN_3
DVO_A_[7:0]
OCLK_P
4 -C h CIF
8 Bit@ 27 MHz
DVO_B _[7:0]
TVP 5158
1 -Ch D1
8Bit@27MH z
VIN_4
Figure 3-14. Cascade Connection for 16-Ch CIF Recoding and 2-Ch D1/Multi-Ch CIF Preview
3.8.3.4
Hybrid Modes
The TVP5158 also supports multiplexing both scaled and unscaled data streams in the line-interleaved
mode. In these hybrid modes (4-Ch Half-D1 + 1-Ch D1, 4-Ch CIF + 1-Ch D1, and 8-Ch CIF + 1-Ch D1),
the D1 line is split into two equal-length half lines and then multiplexed with the other CIF lines. Therefore,
all video data is actually multiplexed by CIF line length. In these hybrid modes, the line cropping mode
affects both the scaled and unscaled data streams. The line cropping mode is controlled by bit 6 of I2C
register B1h.
3.8.3.5
Metadata Insertion for Line-Interleaved Mode
In the line-interleaved mode, the video data is rearranged on a line-by-line basis. There can be no
guaranteed output line order, because all analog video inputs are not synchronized. To be compatible with
general backend BT.656 decoder, the video data is encapsulated on TVP5158 output so that all input data
is preserved and output data is understandable to a BT.656 decoder.
To prevent confusion over image line count and vertical blanking appearing haphazardly, SAV/EAV codes
have FID and V data stripped and replaced with FID = V = 0. Because vertical blanking in the input is
being masked out, artificial vertical sync is inserted every encapsulated frame (a.k.a., super frame). Thus,
to the unaware BT.656 decoder, the stream appears to be progressive data with two lines of vertical
blanking. The default super-frame format and timing for each line-interleaved output format is shown in
Table 3-11.
28
Functional Description
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 3-11. Default Super-Frame Format and Timing
Video Output Formats
OCLK
(MHz)
EAV
(bytes)
Cropping Enable
n/a
n/a
1
0
n/a
1
0
n/a
n/a
2-Ch D1
54
4
280
248
4
1416
1448
1704
1052
2-Ch Half-D1
27
4
128
112
4
712
728
848
1052
108
4
848
816
4
1416
1448
2272
1577
81
4
280
248
4
1416
1448
1704
1577
4-Ch D1
108
4
280
248
4
1416
1448
1704
2102
4-Ch Half-D1
54
4
128
112
4
712
728
848
2102
4-Ch CIF
27
4
128
112
4
712
728
848
1054
4-Ch D1 (16 bit)
54
4
136
120
4
708
724
852
2102
3-Ch D1 (1)
4-Ch Half-D1 (16 bit)
SAV
(bytes)
EAV2SAV (bytes)
SF HSIZE
(bytes)
SAV2EAV (bytes)
SF VSIZE
(bytes)
27
4
60
52
4
356
364
424
2102
108
4
416
400
4
712
728
1136
3152
81
4
128
112
4
712
728
848
3152
108
4
128
112
4
712
728
848
4095
8-Ch CIF
54
4
128
1121
4
712
728
848
2106
6-Ch Half-D1 + 1-Ch D1
108
4
128
112
4
712
728
848
4095
108
4
416
400
4
712
728
1136
3152
81
4
128
112
4
712
728
848
3152
54
4
128
112
4
712
728
848
2104
108
4
416
400
4
712
728
1136
3156
81
4
128
112
4
712
728
848
3156
6-Ch Half-D1 (1)
8-Ch Half-D1
4-Ch Half-D1 + 1-Ch D1 (1)
4-Ch CIF + 1-Ch D1
8-Ch CIF + 1-Ch D1 (1)
(1)
The output clock frequency for these output formats can be selected using bit 6 of I2C register B2h. The default clock frequency is 108
MHz.
4-Byte Start Code (SC3:SC0) is inserted immediately after SAV code for encapsulated frame. Figure 3-15
and Figure 3-16 show the start code details.
Horizontal Active Period (SAV2EAV)
Horizontal Blanking Interval
EAV
FFh
00h
SAV
EAV2SAV
00h
FFh
XYh
00h
00h
XYh SC3 SC3 SC2 SC2 SC1 SC1 SC0 SC0
Cb
Y
Cr
Y
Start code for
channel data
SAV for
encapsulated
frame
64 clock cycles (fixed)
EAV for
encapsulated
frame
Channel Data
Start Code
Figure 3-15. Start Code in 8-Bit BT.656 Interface
Horizontal Blanking Interval
EAV
Horizontal Active Period (SAV2EAV)
EAV2SAV
SAV
Start Code
Channel Data
FFh
00h
00h
XYh
FFh
00h
00h
XYh SC3 SC2 SC1 SC0
FFh
00h
00h
XYh
FFh
00h
00h
XYh SC3 SC2 SC1 SC0
Y
Y
Cb
EAV for
encapsulated
frame
64 clock cycles (fixed)
SAV for
encapsulated
frame
Cr
Y
Cb
Y
Cr
Start code for
channel data
Figure 3-16. Start Code in 16-Bit YCbCr 4:2:2 Interface
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Functional Description
29
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 3-12 and Table 3-13 show the bit assignment and field definition of 4-Byte start code for Active
Video Line.
Table 3-12. Bit Assignment of 4-Byte Start Code for Active Video Line
BYTE
7
6
5
SC[3]
1
BOP
EOP
SC[2]
0
BOL
EOL
SC[1]
~LD_ID[6]
SC[0]
1
4
3
2
RSVD
1
VCS_ID
VDET
0
CH_ID[1:0]
RSVD
LN_ID[8:7]
LN_ID[6:0]
F
V
H
P3
P2
P1
P0
Table 3-13. Bit Field Definition of 4-Byte Start Code for Active Video Line
BIT
NAME
31
1
FUNCTION
Always set to 1.
Active-high beginning of period flag. Set high for first line of both active video and vertical blanking interval.
In split-line mode, the BOP bit is the same for both halves of the same line.
30
BOP
0: Not BOP
1: BOP
Active-high end of period flag. Set high for last line of both active video and vertical blanking interval. In splitline mode, the EOP bit is the same for both halves of the same line.
29
EOP
[28:27]
RSVD
0: Not EOP
1: EOP
Reserved
Video cascade stage ID. Set to 0 for normal operation. In cascade mode, the back-end device (for example,
TMS320DM6467) interfaces to the first stage.
26
VCS_ID
0: First stage (channels 1 to 4)
1: Second stage (channels 5 to 8)
2-bit Channel ID. Video decoder channel number.
00: Channel 1
[25:24]
CH_ID[1:0]
01: Channel 2
10: Channel 3
11: Channel 4
23
0
22
BOL
Always set to 0.
Active-high beginning of line flag. Used in split-line mode which may be required for hybrid formats (e.g. 1Ch D1 + 8-Ch CIF). Set high when the current encapsulated line of channel data includes the beginning of a
video line.
0: BOL not included (2nd half of split line)
1: BOL included (1st half of split line or full line)
Active-high end of line flag. Used in split-line mode which may be required for hybrid formats (e.g. 1-Ch D1 +
8-Ch CIF). Set high when the current line of channel data includes the end of a video line.
21
EOL
0: EOL not included (1st half of split line)
1: EOL included (2nd half of split line or full line)
Active-high video detection status
20
VDET
0: Video not detected
1: Video detected
30
[19:18]
RSVD
[17:16]
LN_ID[8:7]
Two MSBs of 9-bit Line ID, active video line number. Line counter resets to 000h at beginning of active
video (that is, resets once per field). During the vertical blanking interval, the line counter may either
continue counting or hold the terminal count determined at the end of active video.
15
~LN_ID[6]
Always set to the complement of bit 14 (LN_ID[6]).
[14:8]
LN_ID[6:0]
Seven LSBs of 9-bit Line ID, active video line number. Line counter resets to 000h at beginning of active
video (that is, resets once per field). During the vertical blanking interval, the line counter may either
continue counting or hold the terminal count determined at the end of active video.
Functional Description
Reserved
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 3-13. Bit Field Definition of 4-Byte Start Code for Active Video Line (continued)
BIT
NAME
7
1
6
F
FUNCTION
Always set to 1.
F-bit
0: First field of frame
1: Second field of frame
V-bit
5
V
0: when not in vertical blanking
1: during vertical blanking
H-bit. Always set to 0.
4
H
0: SAV
3
P3
P3 = V XOR H, Protection bits used for error detection/correction
2
P2
P2 = F XOR H, Protection bits used for error detection/correction
1
P1
P1 = F XOR V, Protection bits used for error detection/correction
0
P0
P0 = F XOR V XOR H, Protection bits used for error detection/correction
1: EAV (never used)
NOTE
For line-interleaved output mode, if none of video decoder channels has the data ready at a
given time, TVP5158 outputs the dummy line until any one of video decoder channels is
ready to output a line. The backend chip needs to keep only the active video line and ignore
the dummy line.
The start code of the dummy line is different with active video line. Table 3-14 shows the bit assignment
and field definition of 4-Byte start code for the Dummy Line.
Table 3-14. Bit Assignment of 4-Byte Start Code for the Dummy Line
BYTE
7
6
5
4
3
2
1
0
SC[3]
0
0
0
0
0
0
0
1
SC[2]
0
0
0
0
0
0
0
1
SC[1]
0
0
0
0
0
0
0
1
SC[0]
0
0
0
0
0
0
0
1
NOTE
The Dummy Line can be distinguished from active video line by looking at the MSB of byte
SC[0].
3.9
Audio Sub-System (TVP5157 and TVP5158 Only)
The audio sub-system integrates a 4-Ch audio analog-to-digital converter, digital processing, and I2S
encoder. TVP5158 audio sub-system supports 4-Ch mono analog audio input and standard/multiple I2S
output. TVP5158 also supports audio cascade connection up to four devices cascade connected for 16-Ch
audio input.
3.9.1
Features
•
Four mono analog audio input channels
– Requires external passive attenuator to support 2.828-Vpp analog audio input
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Functional Description
31
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
•
•
•
•
•
•
•
•
3.9.2
www.ti.com
Programmable Gain Amplifier (PGA)
– Gain range: -12 ~ 0 dB, Gain Step: 1.5 dB
Integrated Anti-Aliasing Filter (AAF)
10-Bit Analog-to-Digital Converter
Integrates Audio High-pass filter to eliminate low frequency hum
Digital serial audio interface
– 16-Bit Linear PCM, 8-Bit A-Law and 8-Bit µ-Law Data
– I2S or DSP Format
– Master and Slave mode operation
– Up to 16 slots TDM output
– 64 fs or 256 fs system clock
Sampling Rate : 16 kHz, 8 kHz
Audio Cascade connection
– Up to 4 cascaded devices
– I2S format
– 256 fs system clock
Audio Mixing Output
– Audio ADC has one register to set mix ratio
– The Mixing output pin SD_M can also be used for recording. Combined with the recording output
pin SD_R, two I2S bit-streams can be output simultaneously.
Audio Sub-System Functional Diagram
Figure 3-17. Audio Sub-System Functional Diagram
32
Functional Description
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
3.9.3
SLES243G – JULY 2009 – REVISED APRIL 2013
Serial Audio Interface
The timing for the TVP5158 serial audio interface is shown in Figure 3-18. The TVP5158 audio data
output (SD_R) and frame sync pulse (LRCLK) are aligned with the falling edge of the bit clock (BCLK).
The TVP5158 audio data is delayed one BCLK cycles from the falling edge of the frame sync pulse. In the
DSP mode, the TVP5158 frame sync pulse is high for only one BCLK cycle.
1/fs
LRCLK_R
BCLK_R
SD_R
LSB MSB
LSB MSB
Data 1
LSB
Data 2
2
(a) I S Format
1/fs
LRCLK_R
BCLK_R
SD_R
LSB MSB
LSB MSB
Data 1
LSB
Data 2
(b) DSP Format
Figure 3-18. Serial Audio Interface Timing Diagram
3.9.4
Analog Audio Input Clamping
An internal clamping circuit provides mid-level clamping of all four analog audio inputs to a dc level of
approximately 0.625 V.
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Functional Description
33
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
3.9.5
www.ti.com
Audio Cascade Connection
A IN_1
S D_CO
BCLK_R
A IN_2
LRCLK_R
A IN_3
SD_R
A IN_4
XTAL_IN
X TAL
TVP5158
First Stage
SD_M
XTAL_OUT
B CLK_CI
OS C_OUT
LRC LK_CI
A IN_5
SD_CI
S D_CO
A IN_6
A IN_7
TVP5158
Second Stage
A IN_8
XTAL_IN
OS C_OUT
A IN_9
SD_CI
S D_CO
AIN_11
TVP5158
Third Stage
XTAL_IN
OS C_OUT
AIN_13
BCLK_R
LRCLK_R
SD_R
LRCLK_R
SD_R
SD_M
SD_M
Record Output
(A IN_5-AN_16)
LRC LK_CI
BC LK_R
BCLK_R
LRCLK_R
SD_R
LRCLK_R
SD_R
SD_M
SD_M
Record Output
(A IN_9-AN_16)
BC LK_CI
SD_CI
S D_CO
AIN_14
AIN_15
TVP5158
Last Stage
AIN_16
BC LK_R
B CLK_CI
AIN_10
AIN_12
Record Output
(A IN_1-AN_16)
Mix Output
LRCLK_CI
BC LK_R
BCLK_R
LRCLK_R
SD _R
LRCLK_R
SD_R
SD _M
SD_M
Record Output
(A IN_13-AN_16)
XTAL_IN
OS C_OUT
SD_CI
Figure 3-19. Audio Cascade Connection
TVP5158 supports up to four devices cascaded together for audio cascade connection. The I2S output of
master TVP5158 (1st stage) combines all audio channel data from cascaded TVP5158 devices.
Key Features of Audio Cascade Connection
• 16-Bit linear PCM data
• I2S format
• Bit Clock: 256 fs
• All cascade inputs are always in slave mode
• Second to fourth stage serial audio outputs are always in master mode
• First stage serial audio output can be in either master or slave mode
• Common clock source for all cascaded devices is required
The Serial Audio Output Channel Assignment shown on Table 3-15.
34
Functional Description
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 3-15. Serial Audio Output Channel Assignment
I2S
LRCLK_R Left
tdm_ch
tdm_out_pin
Slot 1
SD_R
Slot 2
Slot 3
Slot 4
Slot 5
LRCLK_R Right
Slot 6
Slot 7
Slot 8
AIN_1
Slot 9
Slot 10 Slot 11 Slot 12 Slot 13 Slot 14 Slot 15 Slot 16
AIN_2
0
SD_M
0 (2 channel)
SD_R
AIN_1
SD_M
AIN_2
SD_R
AIN_1
1
AIN_3
AIN_2
AIN_4
0
SD_M
1 (4 channel)
SD_R
AIN_1
SD_M
AIN_3
AIN_2
SD_R
AIN_1
AIN_3
1
AIN_4
AIN_5
AIN_7
AIN_2
AIN_4
AIN_6
AIN_8
AIN_8
AIN_10 AIN_12
AIN_8
AIN_10 AIN_12 AIN_14 AIN_16
0
SD_M
2 (8 channel)
SD_R
AIN_1
AIN_5
AIN_2
AIN_6
SD_M
AIN_3
AIN_7
AIN_4
AIN_8
SD_R
AIN_1
AIN_3
AIN_2
AIN_4
AIN_6
1
AIN_5
AIN_7
AIN_9
AIN_11
0
SD_M
3 (12 channel)
SD_R
AIN_1
AIN_5
AIN_9
AIN_2
AIN_6
AIN_10
SD_M
AIN_3
AIN_7
AIN_11
AIN_4
AIN_8
AIN_12
SD_R
AIN_1
AIN_3
AIN_5
AIN_7
AIN_2
AIN_4
AIN_6
1
AIN_9
AIN_11 AIN_13 AIN_15
0
SD_M
4 (16 channel)
SD_R
AIN_1
AIN_5
AIN_9
AIN_13
AIN_2
AIN_6
AIN_10 AIN_14
SD_M
AIN_3
AIN_7
AIN_11 AIN_15
AIN_4
AIN_8
AIN_12 AIN_16
Slot 1
Slot 2
Slot 9
Slot 10 Slot 11 Slot 12 Slot 13 Slot 14 Slot 15 Slot 16
SD_R
AIN_1
AIN_2
1
DSP Format
tdm_ch
tdm_out_pin
Slot 3
Slot 4
AIN_2
AIN_4
Slot 5
Slot 6
Slot 7
Slot 8
AIN_2
AIN_4
AIN_6
AIN_8
AIN_2
AIN_4
AIN_6
AIN_8
AIN_10 AIN_12
AIN_2
AIN_4
AIN_6
0
SD_M
0 (2 channel)
SD_R
AIN_1
SD_M
AIN_2
SD_R
AIN_1
AIN_3
1
0
SD_M
1 (4 channel)
SD_R
AIN_1
AIN_2
SD_M
AIN_3
AIN_4
SD_R
AIN_1
AIN_3
AIN_5
AIN_7
1
0
SD_M
2 (8 channel)
SD_R
AIN_1
AIN_5
AIN_2
AIN_6
SD_M
AIN_3
AIN_7
AIN_4
AIN_8
SD_R
AIN_1
AIN_3
AIN_5
AIN_7
AIN_9
AIN_11
1
0
SD_M
3 (12 channel)
SD_R
AIN_1
AIN_5
AIN_9
AIN_2
AIN_6
AIN_10
SD_M
AIN_3
AIN_7
AIN_11
AIN_4
AIN_8
AIN_12
SD_R
AIN_1
AIN_3
AIN_5
AIN_7
AIN_9
AIN_11 AIN_13 AIN_15
SD_R
AIN_1
AIN_5
AIN_9
AIN_13
AIN_2
AIN_6
AIN_10 AIN_14
SD_M
AIN_3
AIN_7
AIN_11 AIN_15
AIN_4
AIN_8
AIN_12 AIN_16
1
AIN_8
AIN_10 AIN_12 AIN_14 AIN_16
0
SD_M
4 (16 channel)
1
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Functional Description
35
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
3.10 I2C Host Interface
The I2C standard consists of two signals, serial input/output data line (SDA) and input/output clock line
(SCL), which carry information between the devices connected to the bus. The input pins I2CA0, I2CA1
and I2CA2 are used to select the slave address to which the device responds. Although the I2C system
can be multi-mastered, the TVP5158 decoder functions as a slave device only.
Both SDA and SCL must be connected to IOVDD via pullup resistors. When the bus is free, both lines are
high. The slave address select terminals (I2CA0, I2CA1 and I2CA2) enable the use of up to eight devices
on the same I2C bus. At the trailing edge of reset, the status of the I2CA0, I2CA1 and I2CA2 lines are
sampled to determine the device address used. Table 3-16 summarizes the terminal functions of the I2C
host interface. Table 3-17 shows the device address selection options.
Table 3-16. I2C Terminal Description
SIGNAL
TYPE
DESCRIPTION
I2CA0
I
Slave address selection
I2CA1
I
Slave address selection
I2CA2
I
Slave address selection
SCL
I/O (open drain)
Input/output clock line
SDA
I/O (open drain)
Input/output data line
Table 3-17. I2C Host Interface Device Addresses
A6
A5
A4
A3
A2(I2CA2)
A1(I2CA1)
A0 (I2CA0)
R/W
HEX
1
0
1
1
0
0
0
1/0
B1/B0
1
0
1
1
0
0
1
1/0
B3/B2
1
0
1
1
0
1
0
1/0
B5/B4
1
0
1
1
0
1
1
1/0
B7/B6
1
0
1
1
1
0
0
1/0
B9/B8
1
0
1
1
1
0
1
1/0
BB/BA
1
0
1
1
1
1
0
1/0
BD/BC
1
0
1
1
1
1
1
1/0
BF/BE
Data transfer rate on the bus is up to 400 kbit/s. The number of devices connected to the bus is
dependent on the bus capacitance limit of 400 pF. The data on the SDA line must be stable during the
high period of the SCL except for start and stop conditions. The high or low state of the data line can only
change with the clock signal on the SCL line being low. A high-to-low transition on the SDA line while the
SCL is high indicates an I2C start condition. A low-to-high transition on the SDA line while the SCL is high
indicates an I2C stop condition.
Every byte placed on the SDA must be 8 bits long. The number of bytes which can be transferred is
unrestricted. Each byte must be followed by an acknowledge bit. The acknowledge-related clock pulse is
generated by the I2C master.
To simplify programming of each of the 4 decoder channels a single I2C write transaction can be
transmitted to any one or more of the 4 cores in parallel. This reduces the time required to download
firmware or to configure the device when all channels are to be configured in the same manner. It also
enables the addresses for all registers to be common across all decoders.
I2C subaddress FEh contains 4 bits with each bit corresponding to one of the decoder cores. If a decoder
write enable bit is set, then I2C write transactions are sent to the corresponding decoder core. For multibyte I2C write transactions, there are options to auto-increment the subaddress or to auto-increment
through the selected decoders or both.
36
Functional Description
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
I2C subaddress FFh contains 4 bits with each bit corresponding to one of the decoder cores. If a decoder
read enable bit is set, then I2C read transactions are sent to the corresponding decoder core.
If more than one decoder is enabled for reads, then the lowest numbered decoder that is enabled
responds to the read transaction. For multi-byte I2C read transactions, there are options to auto-increment
the subaddress or to auto-increment through the selected decoders or both.
3.10.1 I2C Write Operation
Data transfers occur utilizing the following formats.
An I2C master initiates a write operation to the decoder by generating a start condition (S) followed by the
decoder I2C address (as shown below), in MSB first bit order, followed by a 0 to indicate a write cycle.
After receiving an acknowledge from the decoder, the master presents the subaddress of the register, or
the first of a block of registers it wants to write, followed by one or more bytes of data, MSB first. The
decoder acknowledges each byte after completion of each transfer. The I2C master terminates the write
operation by generating a stop condition (P).
Step 1
0
I2C Start (master)
S
Step 2
7
6
5
4
3
2
1
0
1
0
1
1
1
0
X
0
2
I C General address (master)
Step 3
9
I2C Acknowledge (slave)
A
Step 4
I2C Write register address (master)
Step 5
I C Acknowledge (slave)
5
4
3
2
1
0
Addr
Addr
Addr
Addr
Addr
Addr
A
(1)
I2C Write data (master)
7
6
5
4
3
2
1
0
Data
Data
Data
Data
Data
Data
Data
Data
Step 7 (1)
9
I2C Acknowledge (slave)
A
Step 8
0
2
I C Stop (master)
(1)
6
Addr
9
2
Step 6
7
Addr
P
Repeat steps 6 and 7 until all data have been written.
3.10.2 I2C Read Operation
The read operation consists of two phases. The first phase is the address phase. In this phase, an I2C
master initiates a write operation to the decoder by generating a start condition (S) followed by the
decoder slave address, in MSB first bit order, followed by a 0 to indicate a write cycle. After receiving
acknowledge from the decoder, the master presents the subaddress of the register or the first of a block of
registers it wants to read. After the cycle is acknowledged, the master has the option of generating a stop
condition or not.
In the data phase, an I2C master initiates a read operation to the decoder by generating a start condition
followed by the decoder I2C slave address (as shown below for a read operation), in MSB first bit order,
followed by a 1 to indicate a read cycle. After an acknowledge from the decoder, the I2C master receives
one or more bytes of data from the decoder. The I2C master acknowledges the transfer at the end of each
byte. After the last data byte has been transferred from the decoder, the master generates a not
acknowledge followed by a stop.
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Functional Description
37
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Read Phase 1
Step 1
0
I2C Start (master)
S
Step 2
7
6
5
4
3
2
1
0
1
0
1
1
X
X
X
0
2
I C General address (master)
Step 3
9
I2C Acknowledge (slave)
A
Step 4
I2C Read register address (master)
Step 5
I C Acknowledge (slave)
3
2
1
0
Addr
Addr
Addr
Addr
0
Step 6 is optional.
Read Phase 2
Step 7
0
I2C Start (master)
S
Step 8
7
6
5
4
3
2
1
0
1
0
1
1
X
X
X
1
I C General address (master)
Step 9
9
I2C Acknowledge (slave)
A
Step 10 (1)
I2C Read data (slave)
Step 11 (1)
2
7
6
5
4
3
2
1
0
Data
Data
Data
Data
Data
Data
Data
Data
9
I C Not Acknowledge (master)
38
4
Addr
P
2
(1)
5
Addr
A
(1)
I2C Stop (master)
(1)
6
Addr
9
2
Step 6
7
Addr
A
Step 12
0
I2C Stop (master)
P
Repeat steps 10 and 11 for all bytes read. Master does not acknowledge the last read data received.
Functional Description
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
3.10.3 VBUS Access
The TVP5158 video decoder has additional internal registers accessible through an indirect access to an
internal 24-bit address wide VBUS. Figure 3-20 shows the VBUS registers access.
00h
I2C Registers
Comb
Filter RAM
2
IC
Host
Processor
VBUS Registers
00 0000h
VBUS [23:0]
E0h
E1h
E8h
EAh
40 3E50h
40 3EEFh
VBUS
Data
VBUS
Address
A0 3FFFh
FFh
Figure 3-20. VBUS Access
VBUS Write
Single Byte
S
B8
ACK
E8
ACK
S
B8
ACK
E0
ACK
VA0
ACK
Send Data
VA1
ACK
ACK
P
VA1
ACK
ACK
...
ACK
VA2
ACK
P
VA2
ACK
P
Multiple Bytes
S
B8
ACK
E8
ACK
S
B8
ACK
E1
ACK
VA0
ACK
Send Data
Send Data
ACK
P
VBUS Read
Single Byte
S
B8
ACK
E8
ACK
VA0
ACK
VA1
S
B8
ACK
E0
ACK
S
B9
ACK
VA2
Read Data
ACK
P
NAK
P
ACK
P
Multiple Bytes
S
B8
ACK
E8
ACK
VA0
ACK
VA1
S
B8
ACK
E1
ACK
S
B9
ACK
NOTE:
ACK
VA2
Read Data
MACK
...
Read Data
NAK
P
Examples use default I2C address
ACK:
Acknowledge generated by the slave
MACK: Acknowledge generated by the master
NAK:
No Acknowledge generated by the master
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Functional Description
39
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
3.11 Clock Circuits
An analog clock multiplier PLL is used to generate a system clock from an external 27-MHz crystal
(fundamental resonant frequency) or external clock reference input. A crystal can be connected across
terminals 99 (XTAL_IN) and 101 (XTAL_OUT), or a 1.8-V external clock input can be connected to
terminal 99. Four horizontal PLLs generate the line-locked sample clock for each video decoder core from
the system clock. Four color PLLs generate the color subcarrier frequency for each video decoder core
from the corresponding line-locked clock. Four vertical PLLs generate the field/frame sync for each video
decoder core. A frequency synthesizer generates the 32.768-MHz audio oversampling clock for each
analog audio input from the system clock.
Figure 3-21 shows the reference clock configurations. For the example crystal circuit shown, the external
capacitors must have the following relationship:
CL1 = CL2 = 2CL – CSTRAY
Where,
CSTRAY is the terminal capacitance with respect to ground
CL is the crystal load capacitance specified by the crystal manufacturer
27-MHz
Crystal
0W
VSSA
27-MHz CLK
Output to other TVP5158
XTAL_IN pin
27-MHz CLK
Output to other TVP5158
XTAL_IN pin
Figure 3-21. Clock and Crystal Connectivity
40
Functional Description
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
3.12 Reset Mode
Terminal 3 (RESETB) is active low signal to hold the decoder into reset. Table 3-18 shows the
configuration of reset mode. Table 3-19 describes the status of the decoder signals during and
immediately after reset. Figure 3-22 shows the reset timing.
After power-up, the device is in an unknown state until properly reset. An active-low reset, Reset B, of
greater than or equal to 20 ms is required following active and stable supply ramp-up. To avoid potential
I2C issues, keep SCL and SDA inactive (high) for at least 260 µs after reset goes high. There are no
power sequencing requirements except that all power supplies should become active and stable within
500 ms of each other.
Table 3-18. Reset Mode
RESETB
CONFIGURATION
0
Resets the decoder
1
Normal operation
Table 3-19. Reset Sequence
SIGNAL NAME
DURING RESET
RESET COMPLETED
DVO_A_[7:0], DVO_B_[7:0], DVO_C_[7:0], DVO_D_[7:0], OCLK_P, OCLK_N,
INTREQ, I2CA[2:0], BCLK_R, LRCLK_R, SD_R, SD_M, SD_CO
Input
High-impedance
RESETB, SDA, SCL, LRCLK_CI, BCLK_CI, SD_CI, XTAL_IN
Input
Input
XTAL_OUT, OSC_OUT
Output
Output
20 ms (min)
Normal operation
RESETB
(Terminal 3)
Reset
260 µs (min)
2
Invalid I C Cycle
Valid
Figure 3-22. Reset Timing
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Functional Description
41
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
4
Internal Control Registers
4.1
Overview
The decoder is initialized and controlled by a set of internal registers which set all device operating
parameters. Communication between the external controller and the decoder is through I2C. Table 4-1
shows the summary of these registers. The reserved registers must not be written. Reserved bits in the
defined registers must be written with 0s, unless otherwise noted. The detailed programming information
of each register is described in the following sections.
I2C register FEh controls which of the four decoders will receive I2C commands. I2C register FFh controls
which decoder core responds to I2C reads. Note that for a read operation, it is necessary to perform a
write first to set the desired subaddress for reading.
Compared to previous video decoder, TVP5154A, the TVP5158, TVP5157, and TVP5156 add decoder
auto increment and address auto increment bits control. If decoder auto increment bit is set, the next
read/write is from/to the next decoder that is enabled. If address auto-increment bit is set, the address
increments after all the decoders enabled read/writes are completed. The detail of I2C registers FEh and
FFh is shown in their register section.
Table 4-1. Registers Summary
REGISTER NAME
I2C
SUBADDRESS
DEFAULT
R/W (1)
Status 1
00h
R
Status 2
01h
R
Color Subcarrier Phase Status
02h
R
Reserved
03h
ROM Version
04h
R
RAM Version MSB
05h
R
RAM Version LSB
06h
R
Reserved
07h
Chip ID MSB
08h
51h
R
09h
58h
R
Chip ID LSB
Reserved
0Ah - 0Bh
Video Standard Status
0Ch
Video Standard Select
0Dh
00h
R/W
R
CVBS Autoswitch Mask
0Eh
03h
R/W
Auto Contrast Mode
0Fh
03h
R/W
Luminance Brightness
10h
80h
R/W
Luminance Contrast
11h
80h
R/W
Brightness and Contrast Range Extender
12h
00h
R/W
Chrominance Saturation
13h
80h
R/W
Chrominance Hue
14h
00h
R/W
Reserved
15h
Color Killer
16h
10h
R/W
Reserved
17h
Luminance Processing Control 1
18h
40h
R/W
Luminance Processing Control 2
19h
00h
R/W
Power Control
1Ah
00h
R/W
Chrominance Processing Control 1
1Bh
00h
R/W
Chrominance Processing Control 2
1Ch
0Ch
R/W
(1)
42
R = Read only, W = Write only, R/W = Read and write
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-1. Registers Summary (continued)
REGISTER NAME
Reserved
I2C
SUBADDRESS
DEFAULT
R/W (1)
1Dh - 1Fh
AGC Gain Status 1
20h
R
AGC Gain Status 2
21h
R
Reserved
22h
Back-End AGC Status
23h
Status Request
24h
00h
R/W
AFE Gain Control
25h
F5h
R/W
Luma ALC Freeze Upper Threshold
26h
00h
R/W
Chroma ALC Freeze Upper Threshold
27h
00h
R/W
Reserved
28h
R
AGC Increment Speed
29h
06h
R/W
AGC Increment Delay
2Ah
1Eh
R/W
AGC Decrement Speed
2Bh
04h
R/W
AGC Decrement Delay
2Ch
00h
R/W
AGC White Peak Processing
2Dh
F2h
R/W
Back-End AGC Control
2Eh
08h
R/W
086Ah
R/W
7Ah/84h
R/W
Reserved
2Fh - 33h
AFE Fine Gain
34h - 35h
Reserved
36h - 47h
AVID Start Pixel LSBs
48h
AVID Start Pixel MSBs
49h
00h/00h
R/W
AVID Pixel Width
4Ah - 4Bh
02D0h/02D0h
R/W
Reserved
4Ch - 5Bh
NR_Max_Noise
5Ch
28h
R/W
NR_Control
5Dh
09h
R/W
5Eh - 5Fh
0330h
R/W
Operation Mode Control
60h
00h
R/W
Color PLL Speed Control
61h
09h
R/W
7Ch
02h
R/W
NR_Noise_Filter
Reserved
62h - 7Bh
Sync Height Low Threshold
Sync Height High Threshold
Reserved
Clear Lost Lock Detect
Reserved
7Dh
08h
R/W
7Eh - 80h
03h
R/W
81h
00h
R/W
03h
R/W
82h - 84h
V-Sync Filter Shift
85h
Reserved
86h
656 Version/F Bit Control
87h
00h
R/W
F- and V-Bit Decode Control
88h
00h
R/W
F- and V-Bit Control
89h
16h
R/W
00h
R/W
Reserved
8Ah - 8Bh
Output Timing Delay
8Ch
Reserved
8Dh - 8Fh
Auto Contrast User Table Index
8Fh
04h
R/W
Blue Screen Y Control
90h
10h
R/W
Blue Screen Cb Control
91h
80h
R/W
Blue Screen Cr Control
92h
80h
R/W
Blue Screen LSB Control
93h
00h
R/W
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
43
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-1. Registers Summary (continued)
REGISTER NAME
I2C
SUBADDRESS
DEFAULT
R/W (1)
Noise Measurement LSB
94h
Noise Measurement MSB
95h
Weak Signal High Threshold
96h
60h
R/W
97h
50h
R/W
Weak Signal Low Threshold
R
R
Reserved
98h - 9Dh
NR_Y_T0
9Eh
0Ah
R/W
NR_U_T0
9Fh
BCh
R/W
NR_V_T0
A0h
BCh
R/W
Reserved
A1h
Vertical Line Count Status
A2h - A3h
Reserved
A4h - A7H
R
Output Formatter Control 1 (write to all four decoder cores)
A8h
44h
R/W
Output Formatter Control 2 (write to all four decoder cores)
A9h
40h
R/W
Reserved
AAh - ACh
Interrupt Control
ADh
00h
R/W
Embedded Sync Offset Control 1 (write to all four decoder cores)
AEh
01h
R/W
Embedded Sync Offset Control 2 (write to all four decoder cores)
AFh
00h
R/W
AVD Output Control 1
B0h
00h
R/W
AVD Output Control 2
B1h
10h
R/W
OFM Mode Control
B2h
20h
R/W
OFM Channel Select 1
B3h
E4h
R/W
OFM Channel Select 2
B4h
E4h
R/W
OFM Channel Select 3
B5h
00h
R/W
OFM Super-Frame Size LSBs
B6h
1Bh
R/W
OFM Super-Frame Size MSBs
B7h
04h
R/W
OFM H-Blank Duration LSBs
B8h
40h
R/W
OFM H-Blank Duration MSBs
B9h
00h
R/W
Misc Ofm Control
BAh
00h
R/W
BBh - BFh
00h
R/W
Audio Sample Rate Control
C0h
00h
R/W
Analog Audio Gain Control 1
C1h
88h
R/W
Analog Audio Gain Control 2
C2h
88h
R/W
Audio Mode Control
C3h
C9h
R/W
Audio Mixer Select
C4h
01h
R/W
Audio Mute Control
C5h
00h
R/W
Audio Mixing Ratio Control 1
C6h
00h
R/W
Audio Mixing Ratio Control 2
C7h
00h
R/W
Audio Cascade Mode Control
C8h
00h
R/W
Reserved
C9h
A5h
R/W
Reserved
CAh
FFh
R/W
Reserved
CBh
7Eh
R/W
Reserved
CCh
01h
R/W
Reserved
CDh - CFh
Reserved
Super-frame EAV2SAV duration status LSBs
D0h
R
Super-frame EAV2SAV duration status MSBs
D1h
R
Super-frame SAV2EAV duration status LSBs
D2h
R
Super-frame SAV2EAV duration status MSBs
D3h
R
44
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-1. Registers Summary (continued)
I2C
SUBADDRESS
REGISTER NAME
Reserved
DEFAULT
R/W (1)
D4h - DFh
VBUS Data Access With No VBUS Address Increment
E0h
R/W
VBUS Data Access With VBUS Address Increment
E1h
R/W
Reserved
E2h - E7h
VBUS Address Access
E8h - EAh
Reserved
EBh - F1h
R/W
Interrupt Status
F2h
R
Reserved
F3h
Interrupt Mask
F4h
Reserved
F5h
00 0000h
R/W
00h
R/W
Interrupt Clear
F6h
00h
R/W
Decoder Write Enable
FEh
0Fh
R/W
Decoder Read Enable
FFh
01h
R/W
4.2
Register Definitions
Table 4-2. Status 1
Subaddress
Default
00h
Read only
7
6
5
4
Reserved
Line-alternating
status
Field rate
status
Lost lock detect
3
Color
subcarrier lock
status
2
1
0
Vertical sync
lock status
Horizontal sync
lock status
TV/VCR status
Line-alternating status
0
Non line alternating
1
Line alternating
Field rate status
0
60 Hz
1
50 Hz
Lost lock detect
0
No lost lock since this bit was last cleared
1
Lost lock since this bit was last cleared
Color subcarrier lock status
0
Color subcarrier is not locked
1
Color subcarrier is locked
Vertical sync lock status
0
Vertical sync is not locked
1
Vertical sync is locked
Horizontal sync lock status
0
Horizontal sync is not locked
1
Horizontal sync is locked
TV/VCR status
0
TV
1
VCR
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
45
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-3. Status 2
Subaddress
Default
7
Signal present
01h
Read only
6
Weak signal
detection
5
PAL switch
polarity
4
Field sequence
status
3
2
Color killed
1
0
Macrovision detection [2:0]
Signal present
0
Signal is not present
1
Signal is present
Weak signal detection
0
No weak signal
1
Weak signal mode
PAL switch polarity
0
PAL switch is zero
1
PAL switch is one
Field sequence status
0
Even field
1
Odd field
Color killed
0
Color killer is not active
1
Color killer is active
Macrovision detection [2:0]
000
No copy protection
001
AGC pulses/pseudo syncs present (Type 1)
010
2-line colorstripe only present
011
AGC pulses/pseudo syncs and 2-line colorstripe present (Type 2)
100
Reserved
101
Reserved
110
4-line colorstripe only present
111
AGC pulses/pseudo syncs and 4-line colorstripe present (Type 3)
Table 4-4. Color Subcarrier Phase Status
Subaddress
Default
7
02h
Read only
6
5
4
3
Color subcarrier phase [7:0]
2
1
0
2
1
0
This register shows the color subcarrier phase.
Table 4-5. ROM Version
Subaddress
Default
7
04h
Read only
6
5
4
3
ROM version [7:0]
ROM Version [7:0]
ROM revision number = 02h for PG 1.1
46
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-6. RAM Version MSB
Subaddress
Default
7
05h
Read only
6
5
4
3
RAM version MSB [7:0]
2
1
0
2
1
0
2
1
0
2
1
0
RAM version MSB [7:0]
This register identifies the MSB of the RAM code revision number.
Table 4-7. RAM Version LSB
Subaddress
Default
7
06h
Read only
6
5
4
3
RAM version LSB [7:0]
RAM version LSB [7:0]
This register identifies the LSB of the RAM code revision number.
Example:
Patch Release = v02.01.22
ROM Version = 02h
RAM Version MSB = 01h
RAM Version LSB = 22h
Table 4-8. Chip ID MSB
Subaddress
Default
7
08h
Read only
6
5
4
3
Chip ID MSB [7:0]
Chip ID MSB[7:0]
This register identifies the MSB of device ID. Value = 51h
Table 4-9. Chip ID LSB
Subaddress
Default
7
09h
Read only
6
5
4
3
Chip ID LSB [7:0]
Chip ID LSB [7:0]
This register identifies the LSB of device ID. This value equals 58h for TVP5158, 57h for TVP5157, and 56h for
TVP5156.
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
47
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-10. Video Standard Status
Subaddress
Default
7
Autoswitch
0Ch
Read only
6
5
4
3
2
Reserved
1
Video standard [2:0]
0
This register contains information about the detected video standard that the device is currently operating. When in autoswitch mode, this
register can be tested to determine which video standard as has been detected. See subaddress: 0Dh.
Autoswitch Mode
0
Single standard set
1
Autoswitch mode enabled
Video Standard [2:0]
00h
Reserved
01h
(M, J) NTSC
02h
(B, D, G, H, I, N) PAL
03h
(M) PAL
04h
05h
06h
07h
(Combination-N) PAL
NTSC 4.43
Reserved
PAL 60
Table 4-11. Video Standard Select
Subaddress
Default
7
0Dh
00h
6
5
Reserved
4
3
2
1
CVBS Standard [2:0]
0
The user can force the device to operate in a particular video standard mode by writing the appropriate value into this register. Changing
these bits causes some register settings to be reset to their defaults. See subaddress: 0Ch.
CVBS Standard [2:0]
00h
CVBS Autoswitch mode (default)
01h
(M, J) NTSC
02h
(B, D, G, H, I, N) PAL
03h
(M) PAL
04h
(Combination-N) PAL
05h
NTSC 4.43
06h
Reserved
07h
PAL 60
48
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-12. CVBS Autoswitch Mask
Subaddress
Default
7
Reserved
0Eh
03h
6
PAL 60
5
Reserved
4
NTSC 4.43
3
(Nc) PAL
2
(M) PAL
1
PAL
0
(M, J) NTSC
Autoswitch mode mask
Limits the video formats between which autoswitch is possible.
PAL 60
0
Autoswitch does not include PAL 60 (default)
1
Autoswitch includes PAL 60
NTSC 4.43
0
Autoswitch does not include NTSC 4.43 (default)
1
Autoswitch includes NTSC 4.43
(Nc) PAL
0
Autoswitch does not include (Nc) PAL (default)
1
Autoswitch includes (Nc) PAL
(M) PAL
0
Autoswitch does not include (M) PAL (default)
1
Autoswitch includes (M) PAL
PAL
0
1
0
1
(M, J) NTSC
Reserved
Autoswitch includes (B, D, G, H, I, N) PAL (default)
Reserved
Autoswitch includes (M, J) NTSC (default)
Table 4-13. Auto Contrast Mode
Subaddress
Default
7
0Fh
03h
6
5
4
3
2
Reserved
1
0
Auto Contrast Mode [1:0]
Auto Contrast Mode [1:0]
00h
Enabled
01h
Reserved
02h
User Mode
03h
Disabled (default)
Table 4-14. Luminance Brightness
Subaddress
Default
7
10h
80h
6
5
4
3
2
1
0
Brightness [7:0]
Brightness [7:0]
This register works for the luminance. See subaddress 12h.
0000 0000 0 (dark)
1000 0000 128 (default)
1111 1111 255 (bright)
The output black level relative to the nominal black level (64 out of 1024) as a function of the Brightness[7:0] setting is as follows:
Black Level = nominal_black_level + (MB + 1) × (Brightness[7:0] - 128)
Where MB is the brightness multiplier setting in the Brightness and Contrast Range Extender register at I2C subaddress 12h.
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
49
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-15. Luminance Contrast
Subaddress
Default
7
11h
80h
6
5
4
3
2
1
0
Contrast [7:0]
Contrast [7:0]
This register works for the luminance. See subaddress 12h.
0000 0000 0 (minimum contrast)
1000 0000 128 (default)
1111 1111 255 (maximum contrast)
The total luminance gain relative to the nominal luminance gain as a function of the Contrast [7:0] setting is as follows:
Luminance Gain = (nominal_luminance_gain) × [Contrast[7:0] / 64 / (2MC) + MC - 1]
Where MC is the contrast multiplier setting in the Brightness and Contrast Range Extender register at I2C subaddress 12h.
Table 4-16. Brightness and Contrast Range Extender
Subaddress
Default
7
12h
00h
6
5
Reserved
4
Contrast
multiplier
3
2
1
0
Brightness multiplier [3:0]
Contrast multiplier [4] (MC)
Increases the contrast control range.
0
2x contrast control range (default), Gain = n/64 – 1 where n is the contrast control and 64 ≤ n ≤255
1
Normal contrast control range, Gain = n/128 where n is the contrast control and 0 ≤ n ≤ 255
Brightness multiplier [3:0] (MB)
Increases the brightness control range from 1x to 16x.
0h
1x (default)
1h
2x
3h
4x
7h
8x
Fh
16x
NOTE: The brightness multiplier should be set to 3h for 8-bit outputs.
Table 4-17. Chrominance Saturation
Subaddress
Default
7
13h
80h
6
5
4
3
2
1
0
Saturation [7:0]
Saturation [7:0]
This register works for the chrominance.
0000 0000 0 (no color)
1000 0000 128 (default)
1111 1111 255 (maximum)
The total chrominance gain relative to the nominal chrominance gain as a function of the Saturation [7:0] setting is as follows:
Chrominance Gain = (nominal_chrominance_gain) × (Saturation[7:0] / 128)
50
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-18. Chrominance Hue
Subaddress
Default
7
14h
80h
6
5
4
3
2
1
0
2
Color killer threshold [4:0]
1
0
Hue [7:0]
Saturation [7:0]
This register works for the chrominance.
0000 0000 -180°
1000 0000 0° (default)
1111 1111 +180°
Table 4-19. Color Killer
Subaddress
Default
7
Reserved
16h
10h
6
5
Automatic color killer
4
Automatic color killer
00
Automatic mode (default)
01
Reserved
Color killer enabled, The UV terminals are forced to a zero
10
color state.
11
Color killer disabled
Color killer threshold [4:0]:
Controls the upper and lower color killer hysteresis thresholds.
NTSC-M,J (1) (2)
Lower Threshold
Upper Threshold
0 0000
1.0%
1.4%
0 1000
3.0%
4.3%
1 0000
5.0%
7.2%
1 1000
7.0%
10.0%
1 1111
8.8%
12.6%
(1)
(2)
3
PAL-B,D,G,H,I,M,N (1) (2)
Lower Threshold
Upper Threshold
0.8%
1.2%
2.4%
3.5%
4.0%
5.8%
5.6%
8.0%
7.0%
10.0%
Expressed as a percent of the nominal color burst amplitude (measured after front-end AGC).
For proper color killer operation, the color PLL must be locked to the color burst frequency.
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
51
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-20. Luminance Processing Control 1
Subaddress
Default
7
NTSC_Ped
18h
40h
6
5
4
3
2
Reserved
1
Luminance signal delay [2:0]
0
NTSC_Ped
Specifies whether NTSC composite video inputs are compliant with NTSC-M or NTSC-J.
0
NTSC-M (714/286 ratio, w/ pedestal) - default
1
NTSC-J (714/286 ratio, w/o pedestal)
Luminance signal delay [2:0]
Luminance signal delays respect to chroma signal in 1x pixel clock increments.
011
3 pixel clocks delay
010
2 pixel clocks delay
001
1 pixel clocks delay
000
0 pixel clocks delay (default)
111
110
101
100
-1 pixel clocks delay
-2 pixel clocks delay
-3 pixel clocks delay
0 pixel clocks delay
Table 4-21. Luminance Processing Control 2
Subaddress
Default
19h
00h
7
6
Luma filter select [1:0]
5
4
Reserved
3
2
Peaking gain [1:0]
1
0
Trap filter select [1:0]
Luma filter selected [1:0]
00
Luminance adaptive comb enable (default)
01
Luminance adaptive comb disable (trap filter selected)
10
Luma comb/trap filter bypassed
11
Reserved
Peaking gain [1:0]
00
0 (default)
01
0.5
10
1
11
2
Trap filter select [1:0]
Selects one of the four trap filters to produce the luminance signal by removing the chrominance signal from the composite video
signal. The stop band of the chroma trap filter is centered at the chroma subcarrier frequency with the stop-band bandwidth
controlled by the two control bits.
Trap filter stop-band bandwidth (MHz)
Filter select [1:0]
NTSC ITU-R BT.601
PAL ITU-R BT.601
00 = (default)
1.2129
1.2129
01
0.8701
0.8701
10
0.7183
0.7383
11
0.5010
0.5010
52
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-22. Power Control
Subaddress
Default
7
Pwd_ach4
1Ah
00h
6
Pwd_ach3
5
Pwd_ach2
4
Pwd_ach1
3
Pwd_vpll
2
Pwd_ref
1
Pwd_ofm_clk
0
Pwd_video
Pwd_ach4
Power down audio channel 4, active high
0
Normal operation (default)
1
Audio channel 4 power down
Pwd_ach3
Power down audio channel 3, active high
0
Normal operation (default)
1
Audio channel 3 power down
Pwd_ach2
Power down audio channel 2, active high
0
Normal operation (default)
1
Audio channel 2 power down
Pwd_ach1
Power down audio channel 1, active high
0
Normal operation (default)
1
Audio channel 1 power down
Pwd_vpll
Power down video PLL, active high
0
Normal operation (default)
1
Video PLL power down
Pwd_ref
Power down bandgap reference, active high
0
Normal operation (default)
1
Bandgap reference power down
Pwd_ofm_clk
Power down OFM clock, active high
0
Normal operation (default)
1
OFM clock power down
Pwd_video
Power down video channel corresponding to current decoder core, active high
0
Normal operation (default)
1
Power down video channel corresponding to current decoder core
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
53
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-23. Chrominance Processing Control 1
Subaddress
Default
7
1Bh
00h
6
5
Reserved
4
Color PLL reset
3
Chroma
adaptive comb
enable
2
Reserved
1
0
Automatic color gain control [1:0]
Color PLL reset
0
Color subcarrier PLL not reset (default)
1
Color subcarrier PLL reset
Chrominance adaptive comb enable
This bit is effective on composite video only.
0
Enabled (default)
1
Disabled
Automatic color gain control (ACGC) [1:0]
00
01
10
11
ACGC enabled (default)
Reserved
ACGC disabled, ACGC set to the nominal value
ACGC frozen to the previously set value
Table 4-24. Chrominance Processing Control 2
Subaddress
Default
7
1Ch
0Ch
6
5
4
Reserved
3
PAL
compensation
2
WCF
1
0
Chrominance filter select [1:0]
PAL compensation
This bit is not effective to NTSC mode.
0
Disabled
1
Enabled (default)
Wideband chroma LPF filter (WCF)
0
Disabled
1
Enabled (default)
Chrominance filter select [1:0]
This register trades chroma bandwidth for less false color.
00
Disabled (default)
01
Notch 1
10
Notch 2
11
Notch 3
54
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-25. AGC Gain Status
Subaddress
Default
20h-21h
Read Only
Subaddress
20h
21h
7
6
5
4
3
2
Fine Gain [7:0]
Fine Gain [13:8]
Reserved
1
0
These AGC gain status registers are updated automatically when the AGC is enabled; in manual gain control mode these register values
are not updated.
Because this register is a multi-byte register, it is necessary to "capture" the setting into the register to ensure that the value is not updated
between reading the lower and upper bytes. To cause this register to "capture" the current settings bit 0 of I2C register 24h (Status
Request) should be set to a 1. After the internal processor has updated this register, bit 0 of register 24h is cleared, indicating that both
bytes of the AGC gain status register have been updated and can be read. Either byte may be read first, because no further update occurs
until bit 0 of 24h is set to 1 again.
Table 4-26. Back-End AGC Status
Subaddress
Default
7
23h
Read Only
6
5
4
3
2
1
0
2
1
0
Capture
Gain [7:0]
Current back-end AGC ratio = Gain/128.
Table 4-27. Status Request
Subaddress
Default
7
24h
00h
6
5
4
Reserved
3
Capture
Setting a 1 in this register causes the inter processor to capture the current settings of the AGC status, noise measurement, and
the vertical line count registers. Because this capture is not immediate, it is necessary to check for completion of the capture by
reading the "capture" bit repeatedly after setting it and waiting for it to be cleared by the internal processor. After the "capture" bit is
0, the AGC status, noise measurement, and vertical line counters (20h/21h, 94h/95h, and A2h/A3h) have been updated, and can
be safely read in any order.
Table 4-28. AFE Gain Control
Subaddress
Default
7
25h
F5h
6
5
Reserved
4
3
2
ALC
1
Reserved
0
AGC
Reserved
For future compatibility, all reserved bits must be set to logic 1.
ALC
Active-high automatic level control (ALC) enable
0
ALC disabled (manual level control)
1
ALC enabled (default)
AGC
Active-high automatic gain control (AGC) enable
0
AGC disabled (manual gain control)
1
AGC enabled (default)
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
55
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-29. Luma ALC Freeze Upper Threshold
Subaddress
Default
7
26h
00h
6
5
4
3
Luma ALC freeze [7:0]
2
1
0
Upper hysteresis threshold for luma ALC freeze function. The lower hysteresis threshold for the ALC freeze function is fixed at 1 count out
of 4096. Setting the upper threshold to 00h (default condition) disables the ALC freeze function.
Table 4-30. Chroma ALC Freeze Upper Threshold
Subaddress
Default
7
27h
00h
6
5
4
3
Chroma ALC freeze [7:0]
2
1
0
Upper hysteresis threshold for chroma ALC freeze function. The lower hysteresis threshold for the ALC freeze function is fixed at 1 count
out of 4096. Setting the upper threshold to 00h (default condition) disables the ALC freeze function. Recommend a setting of 02h or greater
when enabled.
Table 4-31. AGC Increment Speed
Subaddress
Default
7
29h
06h
6
5
Reserved
4
3
2
1
AGC increment speed [3:0]
0
AGC increment speed
Controls the filter coefficient of the first-order, recursive automatic gain control (AGC) algorithm whenever incrementing the gain.
000
0 (fastest)
110
6 (default)
111
7 (slowest)
Table 4-32. AGC Increment Delay
Subaddress
Default
7
2Ah
1Eh
6
5
4
3
AGC increment delay [7:0]
2
1
0
AGC increment delay [7:0]
Number of frames to delay gain increments. Also see AGC decrement delay at subaddress 2Ch.
00000000 0
00011110 30 frames (default)
11111111 255 frames
56
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-33. AGC Decrement Speed
Subaddress
Default
7
2Bh
04h
6
5
Reserved
4
3
2
1
AGC decrement speed [2:0]
0
AGC decrement speed
Controls the filter coefficient of the first-order recursive automatic gain control (AGC) algorithm when decrementing the gain.
NOTE: This register affects the decrement speed only when the amplitude reference used by the AGC is either the composite peak
or the luma peak.
Also see AGC increment speed at subaddress 29h.
111
7 (slowest)
110
6 (default)
000
0 (fastest)
Table 4-34. AGC Decrement Delay
Subaddress
Default
7
2Ch
00h
6
5
4
3
AGC decrement delay [7:0]
2
1
0
AGC decrement delay [7:0]
Number of frames to delay gain decrements.
NOTE: This register affects the decrement delay only when the amplitude reference used by the AGC is either the composite peak
or the luma peak.
Also see AGC increment delay at subaddress 2Ah.
111
0
110
30 (default)
000
255
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
57
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-35. AGC White Peak Processing
Subaddress
Default
2Dh
F2h
7
6
5
4
3
Luma peak A
Reserved
Color burst A
Sync height A
Luma peak B
2
Composite
peak
1
0
Color burst B
Sync height B
If all four bits of the lower nibble are set to logic 1 (that is, no amplitude reference selected), then the front-end analog and digital gains are
automatically set to nominal values.
If all four bits of the upper nibble are set to logic 1 (that is, no amplitude reference selected), then the back-end gain is set automatically to
unity. If the input sync height is greater than 100% and the AGC-adjusted output video amplitude becomes less than 100%, then the backend scale factor attempts to increase the contrast in the back-end to restore the video amplitude to 100%.
Luma peak A
Use of the luma peak as a video amplitude reference for the back-end feed-forward type AGC algorithm
0
Enabled (default)
1
Disabled
Color burst A
Use of the color burst amplitude as a video amplitude reference for the back-end
0
Enabled (default)
1
Disabled
Sync height A
Use of the sync-height as a video amplitude reference for the back-end feed-forward type AGC algorithm
0
Enabled (default)
1
Disabled
Luma peak B
Use of the luma peak as a video amplitude reference for front-end feedback type AGC algorithm
0
Enabled (default)
1
Disabled
Composite peak
Use of the composite peak as a video amplitude reference for front-end feedback type AGC algorithm
0
Enabled (default)
1
Disabled
Color burst B
Use of the color burst amplitude as a video amplitude reference for front-end feedback type AGC algorithm
0
Enabled (default)
1
Disabled
Sync height B
Use of the sync-height as a video amplitude reference for front-end feedback type AGC algorithm
0
Enabled (default)
1
Disabled
58
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-36. Back-End AGC Control
Subaddress
Default
2Eh
08h
7
6
5
4
3
1
Reserved
2
Peak
1
Color
0
Sync
This register allows disabling the back-end AGC when the front-end AGC uses specific amplitude references (sync-height, color burst or
composite peak) to decrement the front-end gain. For example, writing 09h to this register disables the back-end AGC whenever the frontend AGC uses the sync-height to decrement the front-end gain.
Peak
Disables back-end AGC when the front-end AGC uses the composite peak as an amplitude reference.
0
Enabled (default)
1
Disabled
Color
Disables back-end AGC when the front-end AGC uses the color burst as an amplitude reference.
0
Enabled (default)
1
Disabled
Sync
Disables back-end AGC when the front-end AGC uses the sync height as an amplitude reference.
0
Enabled (default)
1
Disabled
Table 4-37. AFE Fine Gain
Subaddress
Default
34h-35h
086Ah
Subaddress
34h
35h
7
6
5
4
3
2
1
0
FGAIN [7:0]
Reserved
FGAIN [13:8]
FGAIN [13:0]
This fine gain applies to CVBS. Fine Gain = (1/2048) × FGAIN where 0 ≤ FGAIN ≤ 16383. This register works only in manual gain
control mode. When AGC is active, writing to any value is ignored.
00 0000 0000 0000 to
Reserved
00 0011 1111 1111
00 0100 0000 0000
0.5
00 1000 0000 0000
1
00 1000 0110 1010
1.052 (default)
00 1100 0000 0000
1.5
11 1111 1111 1111
7.9995
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
59
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-38. AVID Start Pixel
Subaddress
Default
Subaddress
48h
49h
48h-49h
007Ah/0084h
7
6
5
4
3
AVID start [7:0]
AVID active
Reserved
2
1
Reserved
0
AVID start [9:8]
AVID start [9:0]
AVID start pixel number, this is a absolute pixel location from HS start pixel 0.
The TVP5158 updates the AVID start only when the AVID start MSB byte is written to. AVID start pixel register also controls the
position of SAV code. If these registers are modified, then the TVP5158 retains the values for each video standard until the device
is reset. The values for a particular video standard should be set by forcing the TVP5158 to the desired video standard first using
register 0Dh then setting this register. This should be repeated for each video standard where the default values need to be
changed.
AVID active
0
AVID out active in VBLK (default)
1
AVID out inactive in VBLK
Table 4-39. AVID Pixel Width
Subaddress
Default
4Ah-4Bh
02D0h
Subaddress
4Ah
4Bh
7
6
5
4
3
AVID Width [7:0]
2
1
Reserved
0
AVID Width [9:8]
AVID Width [9:0]
AVID pixel width. The number of pixels width of active video must be an even number. This is an absolute pixel location from HS
start pixel 0.
The TVP5158 updates the AVID pixel width only when the AVID pixel width MSB byte is written to. AVID Pixel Width register also
controls the position of EAV code. If these registers are modified, then the TVP5158 retains the values for each video standard
until the device is reset. The values for a particular video standard should be set by forcing the TVP5158 to the desired video
standard first using register 0Dh then setting this register. This should be repeated for each video standard where the default
values need to be changed.
Table 4-40. Noise Reduction Max Noise
Subaddress
Default
7
Reserved
5Ch
28h
6
5
4
3
NR_Max_Noise [6:0]
2
1
0
NR_Max_Noise [6:0]
User-defined maximum noise level
0010 1000 40 (default)
60
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-41. Noise Reduction Control
Subaddress
Default
5Dh
09h
7
6
5
4
NR_Color_
Killer_En
Reserved
3
Block_Width_
UV
2
1
0
Block_Width_Y
Test_ Bypass
NR_ Bypass
NR_Color_Killer_En
Noise reduction color killer enabled
0
Disabled (default)
1
Enabled
Block_Width_UV
Number of UV pixel values which the algorithm uses to generate the noise average.
0
128 pixels
1
256 pixels (default)
Block_Width_Y
Number of Y pixel values which the algorithm uses to generate the noise average.
0
256 pixels (default)
1
512 pixels
Test_Bypass
Test mode bypass. This test bypass mode bypasses the Noise Reduction module completely via hard wires and has zero delay for
processing.
0
Bypass disabled (default)
1
Bypass enabled
NR_Bypass
Noise reduction module bypass. The noise reduction module has a bypass capability which enables it to pass through the incoming
data during the output active video period, while matching the delay in operation mode.
0
Bypass disabled
1
Bypass enabled (default)
Table 4-42. Noise Reduction Noise Filter Beta
Subaddress
Default
5Eh-5Fh
0330h
Subaddress
5Eh
5Fh
7
6
5
4
3
NR_NoiseFilter [7:0]
Reserved
2
1
0
NR_NoiseFilter [9:8]
NR_NoiseFilter [9:0]
Noise reduction noise filter setting
0000 0011 0011 0000
816 (default)
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
61
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-43. Operation Mode Control
Subaddress
Default
7
V-PLL free run
60h
00h
6
Reserved
5
4
H-PLL Response Time
3
V-bit control
2
Freeze C-PLL
1
0
Reserved
V-PLL free run mode
0
Disabled (default)
1
Enabled
H-PLL Response Time
When in the Normal mode, the horizontal PLL (H-PLL) response time is set to its slowest setting. This mode improves noise
immunity and provides a more stable output line frequency for standard TV signal sources (for example, TV tuners, DVD players,
video surveillance cameras, etc.).
When in the Fast mode, the H-PLL response time is set to its fastest setting. This mode enables the H-PLL to respond more
quickly to large variations in the horizontal timing (for example, VCR head switching intervals). This mode is recommended for
VCRs and also cameras locked to the AC power-line frequency.
When in the Adaptive mode, the H-PLL response time is automatically adjusted based on the measured horizontal phase error. In
this mode, the H-PLL response time typically approaches its slowest setting for most standard TV signal sources and approaches
its fastest setting for most VCR signal sources.
00
Adaptive (default)
01
Reserved
10
Fast
11
Normal
V-bit control mode
0
Vertical blanking interval remains constant as total number of lines per frame varies (default)
1
Active video interval remains constant as total number of lines per frame varies
Freeze C-PLL
0
Normal operation (default)
1
Freeze color PLL
Table 4-44. Color PLL Speed Control
Subaddress
Default
7
61h
09h
6
5
Reserved
4
3
2
1
CPLL speed [3:0]
0
CPLL speed [3:0]
Color PLL speed control
0000
to
Reserved
1000
1001
9: Faster (default)
1010
10
1011
11: Slower
1100
to
Reserved
1111
62
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-45. Sync Height Low Threshold
Subaddress
Default
7
7Ch
02h
6
5
4
3
VSync upper thres [7:0]
2
1
0
1
0
1
0
Clear lost lock
detect
Lower hysteresis threshold for vertical sync-height detection (value/32×target sync height).
Table 4-46. Sync Height High Threshold
Subaddress
Default
7
7Dh
08h
6
5
4
3
VSync upper thres [7:0]
2
Upper hysteresis threshold for vertical sync-height detection (value/32×target sync height).
Table 4-47. Clear Lost Lock Detect
Subaddress
Default
7
81h
00h
6
5
4
3
2
Reserved
Clear lost lock detect
Clear bit 4 (lost lock detect) in the status 1 register at subaddress 00h
0
No effect (default)
1
Clears bit 4 in the status 1 register (00h)
Table 4-48. VSYNC Filter Shift
Subaddress
Default
7
85h
03h
6
5
4
3
2
Reserved
1
0
VSYNC filter shift [1:0]
VSYNC filter shift [1:0]
Used for adaptation of VPLL time constant
00
0 (fast)
01
1
10
2
11
3 (slow)
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
63
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-49. 656 Version/F-bit Control
Subaddress
Default
7
87h
00h
6
5
4
3
2
Reserved
656 version
0
1
F-control
0
1
64
1
656 version
0
F-control
Timing confirms to ITU-R BT.656-4 specifications (default)
Timing confirms to ITU-R BT.656-3 specifications
Odd field causes 0 → 1 transition in F-bit when in TVP5146 F/V mode (see register 88h)
Even field causes 0 → 1 transition in F-bit when in TVP5146 F/V mode (see register 88h)
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-50. F-Bit and V-Bit Decode Control
Subaddress
Default
88h
03h
7
6
Reserved
5
4
VPLL
3
Adaptive
2
Reserved
1
0
F-Mode [1:0]
VPLL
VPLL time constant control
0
VPLL adapts time constants to input signal
1
VPLL time constants fixed
Adaptive
0
Enable F and V bit adaptation to detected lines per frame
1
Disable F and V bit adaptation to detected lines per frame
F-Mode [1:0]
F-bit control mode
Auto: If lines per frame is standard decode F and V bits as per 656 standard from line count else decode F bit from
00
VSYNC input and set V bit = 0
01
Decode F and V from input syncs
10
Reserved
11
Always decode F and V bits from line count (TVP5146 compatible)
This register is used in conjunction with register 89h as shown:
Reg 88h
Bit 1
Bit 0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0
Reg 89h
Bit 3
Bit 2
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
Mode
Reserved
TVP5158
TVP5158
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Standard LPF
F
V
Reserved
Reserved
656
656
656
656
Reserved
Reserved
Reserved
Reserved
656
656
656
656
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
1
1
0
0
TVP5146
656
656
1
1
1
1
1
1
0
1
1
1
0
1
TVP5146
TVP5146
Reserved
656
656
Reserved
656
656
Reserved
656
Toggle
Pulse
Switch
Switch9
Reserved
Non-standard LPF
F
V
Reserved
Reserved
Toggle
Switch9
Pulse
0
Reserved
Reserved
Reserved
Reserved
Toggle
Switch9
Pulse
0
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Even = 1
Switch
Odd = toggle
Toggle
Switch
Pulse
Switch
Reserved
Reserved
ITU-R BT.656 standard
Toggles from field to field
Pulses low for 1 line prior to field transition
V bit switches high before the F bit transition and low after the F bit transition
V bit switches high 1 line prior to F bit transition, then low after 9 lines
Not used
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
65
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-51. F-Bit and V-Bit Control
Subaddress
Default
7
Rabbit
89h
16h
6
5
Reserved
4
Fast lock
3
2
F and V [1:0]
1
Phase Det
0
HPLL
Rabbit
Enable "rabbit ear"
0
Disabled (default)
1
Enabled
Fast lock
Enable fast lock where vertical PLL is reset and a 2 second timer is initialized when vertical lock is lost; during timeout the detected
input VS is output.
0
Disabled
1
Enabled (default)
F and V [1:0]
F and V control bits are only enabled for F-bit control mode 01 and 10 (see register 88h)
F and V
00
01 (default)
10
11
Lines Per Frame
Standard
Non standard-even
Non standard-odd
Standard
Non standard
Standard
Non standard
Reserved
F Bit
V Bit
ITU-R BT.656
Switch at field boundary
Switch at field boundary
ITU-R BT.656
Switch at field boundary
ITU-R BT.656
Switch at field boundary
ITU-R BT.656
Forced to 1
Toggles
ITU-R BT.656
Toggles
ITU-R BT.656
Pulsed mode
Phase Det
Enable integral-window phase detector
0
Disabled
1
Enabled (default)
HPLL
Enable horizontal PLL to free run
0
Disabled (default)
1
Enabled
Table 4-52. Output Timing Delay
Subaddress
Default
7
8Ch
00h
6
Output timing delay [7:0]
Adjusts delay for
0000 1111
0000 0001
0000 0000
1111 1111
1111 0000
66
5
4
3
Output timing delay [7:0]
2
1
0
AVID start and stop.
+15 pixel delay
+1 pixel delay
0 pixel delay (default)
-1 pixel delay
-16 pixel delay
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-53. Auto Contrast User Table Index
Subaddress
Default
7
Reserved
8Fh
04h
6
5
AC_User_Mode_Table [2:0]
4
3
2
1
0
1
0
Reserved
AC_User_Mode_Table [2:0]
User table selection for auto contrast user mode when the register 0Fh sets to 02h.
000
Brighter 1
001
Brighter 2
010
Brighter 3 (Brightest)
011
Darker 1
100
Darker 2
101
Darker 3 (Darkest)
110 to
Reserved
111
Table 4-54. Blue Screen Y Control
Subaddress
Default
7
90h
10h
6
5
4
3
2
Y value [9:2]
The Y value of the color screen output when enabled by bit 2 or 3 of the Output Formatter 2 register is programmable using a 10-bit value.
The 8 MSBs, bits [9:2], are represented in this register. The remaining two LSB are found in the Blue Screen LSB register. The default color
screen output is black.
The following table shows the values for registers 90h, 91h, 92h and 93h for several different screen colors.
Screen Color
Black (default)
Blue
Green
Cyan
Red
Magenta
Yellow
White
Reg 90h
10h
29h
91h
AAh
51h
6Ah
D2h
EBh
Reg 91h
80h
F0h
36h
A6h
5Ah
CAh
10h
80h
Reg 92h
80h
6Eh
22h
10h
F0h
DEh
92h
80h
Reg 93h
00h
00h
00h
00h
00h
00h
00h
00h
NOTE: The blue screen output mode can be enabled or disabled using bits 3:2 of I2C register A9h.
Table 4-55. Blue Screen Cb Control
Subaddress
Default
7
91h
80h
6
5
4
3
2
1
0
Cb value [9:2]
The Cb value of the color screen output when enabled by bit 2 or 3 of the Output Formatter 2 register is programmable using a 10-bit value.
The 8 MSBs, bits[9:2], are represented in this register. The remaining two LSB are found in the Blue screen LSB register. The default color
screen output is black. See Table 4-54 for example colors.
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
67
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-56. Blue Screen Cr Control
Subaddress
Default
92h
80h
7
6
5
4
3
2
1
0
Cr value [9:2]
The Cr value of the color screen output when enabled by bit 2 or 3 of the Output Formatter 2 register is programmable using a 10-bit value.
The 8 MSBs, bits[9:2], are represented in this register. The remaining two LSB are found in the Blue Screen LSB register. The default color
screen output is black. See Table 4-54 for example colors.
Table 4-57. Blue Screen LSB Control
Subaddress
Default
93h
00h
7
6
5
4
Y value LSB [1:0]
Reserved
3
2
Cb value LSB [1:0]
1
0
Cr value LSB [1:0]
The two LSBs for the Blue screen Y, Cb, and Cr values are represented in this register. See Table 4-54 for example colors.
Table 4-58. Noise Measurement
Subaddress
Default
94h-95h
Read Only
Subaddress
94h
95h
7
6
5
4
3
Noise Measurement [7:0]
Noise Measurement [15:8]
2
1
0
Noise measurement [15:0]
Used by the weak signal detection algorithm.
Because this register is a double-byte register, it is necessary to "capture" the setting into the register to ensure that the value is
not updated between reading the lower and upper bytes. To cause this register to "capture" the current settings bit 0 of I2C register
24h (status request) should be set to a 1. After the internal processor has updated this register, bit 0 of register 24h is cleared,
indicating that both bytes of the noise measurement register have been updated and can be read. Either byte may be read first,
because no further update occurs until bit 0 of 24h is set to 1 again.
Table 4-59. Weak Signal High Threshold
Subaddress
Default
7
96h
60h
6
5
4
3
2
1
0
Level [7:0]
This register controls the upper threshold of the noise measurement used to determine whether the input signal should be considered a
weak signal.
Table 4-60. Weak Signal Low Threshold
Subaddress
Default
7
97h
50h
6
5
4
3
2
1
0
Level [7:0]
This register controls the lower threshold of the noise measurement used to determine whether the input signal should be considered a
weak signal.
68
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-61. Noise Reduction Y/U/V T0
Subaddress
Default
9Eh
0Ah
9Fh
BCh
A0h
BCh
Subaddress
9Eh
9Fh
A0h
7
6
5
4
3
Noise Reduction Y T0 [7:0]
Noise Reduction U T0 [7:0]
Noise Reduction V T0 [7:0]
2
1
0
These registers control how much noise filtering is done for Y/U/V channels. The higher the value is, the more noise filtering at the expense
of video details.
Table 4-62. Vertical Line Count Status
Subaddress
Default
A2h-A3h
Read Only
Subaddress
A2h
A3h
7
6
5
4
3
Vertical line [7:0]
2
1
Reserved
0
Vertical line [9:8]
This status register is only updated when a status request is initiated via bit 0 of subaddress 24h.
Vertical line [9:0] represent the detected a total number of lines from the previous frame. This can be used with nonstandard video signals
such as a VCR in trick mode to synchronize downstream video circuitry.
NOTE: This register is not double buffered.
Because this register is a double-byte register, it is necessary to "capture" the setting into the register to ensure that the value is not
updated between reading the lower and upper bytes. To cause this register to "capture" the current settings bit 0 of I2C register 24h (Status
Request) should be set to a 1. After the internal processor has updated this register, bit 0 of register 24h is cleared, indicating that both
bytes of the vertical line count register have been updated and can be read. Either byte may be read first, because no further update occurs
until bit 0 of 24h is set to 1 again.
Table 4-63. Output Formatter Control 1
Subaddress
Default
7
Reserved
A8h
44h
6
YCbCr code
range
5
4
CbCr range
3
2
1
0
Reserved
This register should be written to all four video decoder cores.
YCbCr output code range
0
ITU-R BT.601 coding range (Y ranges from 16 to 235. Cb and Cr range from 16 to 240.)
1
Extended coding range (Y, Cb and Cr range from 1 to 254.) (default)
CbCr range format
0
Offset binary code (2's complement + 512) (default)
1
Straight binary code (2's complement)
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
69
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-64. Output Formatter Control 2
Subaddress
Default
7
A9h
40h
6
5
4
3
2
Blue screen output [1:0]
Reserved
1
0
Reserved
This register should be written to all four video decoder cores.
Blue screen output [1:0]
Fully programmable color of "blue screen" to support clean input/channel switching. When enabled, in case of lost lock, or when
forced, the TVP5158 waits until the end of the current frame, then switches the output data to a programmable color. Once
displaying the "blue screen", the inputs can be switched without causing snow or noise to be displayed on the digital output data.
Once the inputs have settled the "blue screen" can be disabled, where the TVP5158 then waits until the end of the current video
frame before re-enabling the video stream data to the output ports.
00
Normal operation (default)
01
Blue screen out when TVP5158 detects lost lock
10
Force Blue screen out
11
Reserved
Table 4-65. Interrupt Control
Subaddress
Default
7
Int_Pol
ADh
00h
6
Int_Type
5
4
3
2
1
0
1
0
Reserved
Int_Pol
Interrupt polarity
0
Active low (default)
1
Active high (do not use with open-drain output)
NOTE: Active-high output should be used only when push-pull output type is selected (Int_Type = 1).
Int_Type
Interrupt output type
0
Open-drain output (default)
1
Push-pull output
NOTE: An external pullup resistor is required when open drain output is selected (Int Type = 0).
Table 4-66. Embedded Sync Offset Control 1
Subaddress
Default
7
AEh
01h
6
5
4
3
2
Offset [7:0]
Offset [7:0]
This register allows the line position of the embedded F and V bit signals to be offset from the 656 standard positions. This register
is only applicable to input video signals with a standard number of lines per frame.
01111111
+127 lines
⋮
00000001
+1 line (default)
00000000
0 line
11111111
-1 line
⋮
10000000
-128 lines
70
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-67. Embedded Sync Offset Control 2
Subaddress
Default
7
AFh
00h
6
5
4
3
2
1
0
Offset [7:0]
Offset [7:0]
This register allows the line relationship between the embedded F and V bit signals to be offset from the 656 standard positions,
and moves F relative to V. This register is only applicable to input video signals with a standard number of lines per frame.
0000 0010
+2 lines (maximum setting for NTSC and PAL)
⋮
0000 0001
+1 line
0000 0000
0 line
1111 1111
-1 line
⋮
1111 0001
-15 lines (minimum setting for NTSC)
⋮
1110 1011
-21 lines (minimum setting for PAL)
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
71
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-68. AVD Output Control 1
Subaddress
Default
B0h
00h
7
6
Interleave_mode
5
4
Channel_Mux_Number
3
Output_ type
2
VCS_ID
1
0
Video_Res_Sel
This register should be written to all four video decoder cores.
Interleave_mode
Interleave mode for multi-channel formats
00
Non-interleaved (a.k.a. 1-Ch mode) – (default)
01
Pixel-interleaved mode (2-Ch and 4-Ch only)
10
Line-interleaved mode
11
Line-interleaved, hybrid mode (adds 1-Ch D1 to selected 4-Ch Half-D1, 4-Ch CIF or 8-Ch CIF format)
Channel_Mux_Number
Number of time-multiplexed channels
00
1-Ch (reserved)
01
10
11
2-Ch
4-Ch (or 4-Ch Half-D1 or CIF + 1-Ch D1 for line-interleaved, hybrid mode)
8-Ch cascade (format depends on VCS_ID, line-interleaved mode only)
•
Line-interleaved mode
– 1st stage: 8-Ch Half-D1 or 8-Ch CIF (video port A)
– 2nd stage: 4-Ch Half-D1 or 4-Ch CIF (video port A)
•
Line-interleaved, hybrid mode
– 1st stage: 8-Ch CIF + 1-Ch D1 (video port A)
– 2nd stage: 4-Ch CIF (video port A) and 1-Ch D1 (video port B)
Output_type
Output interface type
0
8-bit ITU-R BT.656 interface (default)
1
16-bit ITU-R BT.601 interface (4-Ch D1 and 4-Ch Half-D1 line-interleaved modes only)
VCS_ID
Video cascade stage ID. Set to 0 for normal operation. For line-interleaved mode only.
0
1st stage (channels 1 to 4) (default)
1
2nd stage (channels 5 to 8)
Video_Res_Sel
Video resolution select. Effects multi-channel OFM only.
00
D1 (default)
01
Reserved
10
Half-D1
11
CIF
72
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-69. AVD Output Control 2
Subaddress
Default
B1h
10h
7
6
LLC_En
Line_Crop_En
5
4
Quan_Ctrl
3
Line_ID_Ctrl
2
Chan_ID_
SAVEAV_En
1
Chan_ID_
Blank_En
0
Video_Det_
SAVEAV_En
This register should be written to all four video decoder cores.
LLC_En
Line-locked clock enable, active high. For non-interleaved mode only. For use with Port A only. For D1 resolution only.
0
Line-locked clock disabled (default)
1
Line-locked clock enabled
Line_ Crop_En
AVD line cropping enable, active high. Effects both scaled and unscaled AVD outputs.
0
Cropping disabled (unscaled: 720 pixels/line, down-scaled: 360 pixels/line) – (default)
1
Cropping enabled (unscaled: 704 pixels/line, down-scaled: 352 pixels/line)
Quan_Ctrl
10-bit to 8-bit quantization control. Dithering algorithm based on truncation error from previous pixel.
00
Enable simple truncation
01
Enable dithering (default)
10
Enable simple rounding
11
Reserved
Line_ID_Ctrl
Line ID control. For line-interleaved mode only.
0
Line ID continues counting through the vertical blanking interval - (default)
1
Line ID holds the terminal count from the end of active video through the vertical blanking interval
Chan_ID_SAVEAV_En
Channel ID inserted in SAV/EAV codes enable, active high. For pixel-interleaved mode only. Always disabled for
non-interleaved and line-interleaved modes.
0
Disabled (default)
1
Enabled
Chan_ID_Blank_En
Channel ID inserted in blanking level enable, active high. For pixel-interleaved mode only. Always disabled for non-interleaved and
line-interleaved modes.
0
Disabled (default)
1
Enabled
Video_Det_SAVEAV_En
Video detection status inserted in SAV/EAV codes enable, active high. For non-interleaved and pixel-interleaved
modes. Always enabled for line-interleaved mode.
0
VDET insertion disabled (default)
1
VDET insertion enabled
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
73
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-70. OFM Mode Control
Subaddress
Default
7
Video_Port_B_
En
B2h
20h
6
Out_CLK_
Freq_Ctl
5
OSC_OUT_En
4
Out_CLK_
Pol_Sel
3
Out_CLK_
Freq_Sel
2
Out_CLK_P_En
1
Out_CLK_N_E
n
0
Video_Port_En
This register only needs to be written to video decoder core 0.
Video_Port_B_En
Video port B output enable for 6-Ch Half-D1 (2nd stage), active high
0
Video Port B disabled (default)
1
Video Port B enabled
Out_CLK_Freq_Ctl
Output clock frequency control for 4-Ch Half-D1 + 1-Ch D1 and 8-Ch CIF + 1-Ch D1 line-interleaved, hybrid output formats only.
Affects both OCLK_P and OCLK_N.
0
108 MHz (default)
1
81 MHz
OSC_OUT_En
Oscillator output enable, active high
0
OSC_OUT disabled
1
OSC_OUT enabled (default)
Out_CLK_Pol_Sel
Output clock polarity select. Affects both OCLK_P and OCLK_N.
0
Non-inverted (default)
1
Inverted
Out_CLK_Freq_Sel
Output clock frequency select for 2-ch pixel-interleaved mode only. Affects both OCLK_P and OCLK_N.
0
54 MHz (default)
1
27 MHz
Out_CLK_P_En
Output data clock+ (OCLK_P) enable, active high
0
OCLK_P disabled (default)
1
OCLK_P enabled
Out_CLK_N_En
Output data clock- (OCLK_N) enable, active high
0
OCLK_N disabled (default)
1
OCLK_N enabled (for 2-Ch mode only)
Video_Port_En
Video port output enable, active high
0
All four video ports disabled (default)
1
All video ports required for selected output format enabled
74
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-71. OFM Channel Select 1
Subaddress
Default
B3h
E4h
7
6
Chan_Sel_Port_D
5
4
Chan_Sel_Port_C
3
2
Chan_Sel_Port_B
1
0
Chan_Sel_Port_A
This register only needs to be written to video decoder core 0. OFM channel select by video port in 1-Ch mode.
Chan_Sel_Port_D
Channel select for port D
00
Ch 1
01
Ch 2
10
Ch 3
11
Ch 4 (default)
Chan_Sel_Port_C
Channel select for port C
00
Ch 1
01
Ch 2
10
Ch 3 (default)
11
Ch 4
Chan_Sel_Port_B
Channel select for port B
00
Ch 1
01
Ch 2 (default)
10
Ch 3
11
Ch 4
Chan_Sel_Port_A
Channel select for port A
00
Ch 1 (default)
01
Ch 2
10
Ch 3
11
Ch 4
NOTE: Each video port must be set to a different channel.
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
75
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-72. OFM Channel Select 2
Subaddress
Default
B4h
E4h
7
6
2nd_Chan_Sel_Port_B
5
4
1st_Chan_Sel_Port_B
3
2
2nd_Chan_Sel_Port_A
1
0
1st_Chan_Sel_Port_A
This register only needs to be written to video decoder core 0. OFM channel select by video port in 2-Ch mode.
2nd_Chan_Sel_Port_B
Second channel select for port B
00
Ch 1
01
Ch 2
10
Ch 3
11
Ch 4 (default)
1st_Chan_Sel_Port_B
First channel select for port B
00
Ch 1
01
Ch 2
10
Ch 3 (default)
11
Ch 4
2nd_Chan_Sel_Port_A
Second channel select for port A
00
Ch 1
01
Ch 2 (default)
10
Ch 3
11
Ch 4
1st_Chan_Sel_Port_A
First channel select for port A
00
Ch 1 (default)
01
Ch 2
10
Ch 3
11
Ch 4
NOTE: Each video port must be set to a different channel.
Table 4-73. OFM Channel Select 3
Subaddress
Default
7
B5h
00h
6
5
Reserved
4
3
2
1
Hybrid_Chan_Sel [2:0]
0
This register only needs to be written to video decoder core 0.
Hybrid_Chan_Sel [2:0]
OFM channel select for 1-Ch D1 channel in video cascade mode and hybrid format mode.
000
Ch 1 (default)
001
Ch 2
010
Ch 3
011
Ch 4
100
Cascade input from Port C (for video cascade 1st stage only)
101
Reserved
110
Reserved
111
Reserved
76
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-74. OFM Super-Frame Size
Subaddress
Default
B6h-B7h
041Bh
Subaddress
B6h
B7h
7
6
5
4
3
Super_Frame_Size [7:0]
Ctrl_Mode [1:0]
Reserved
2
1
0
Super_Frame_Size [11:8]
These registers write to decoder core 0 only.
Ctrl_Mode [1:0]
Super-frame size control mode
00
Super-frame size based on 525-line standard (default)
01
Super-frame size based on 625-line standard
10
Reserved
11
Super-frame size based on manual setting (see subaddress B6h/B7h)
Super_Frame_Size [11:0]
Total number of lines per super-frame. For line-interleaved mode only.
0100 0001 1011
1051 (default)
NOTE: Has no effect on port B in the video cascade interface.
Table 4-75. OFM EAV2SAV Duration
Subaddress
Default
B8h-B9h
0040h
Subaddress
B8h
7
B9h
6
5
Horizontal_Freq_Tol
4
3
OFM_EAV2SAV_Duration [7:0]
EAV2SAV_
Duration_
Reserved
Mode
2
1
0
OFM_EAV2SAV_ Duration
[9:8]
These registers only need to be written to video decoder core 0.
Horizontal_Freq_Tol
Nominal horizontal frequency tolerance (%). Only has an affect when bit 4 is set to 0.
000
0.5% (longest EAV2SAV duration) (default)
001
1.0%
010
1.5%
011
2.0%
100
2.5%
101
3.0%
110
3.5%
111
4.0% (shortest EAV2SAV duration)
EAV2SAV_Duration_Mode
EAV2SAV duration control mode.
0
EAV2SAV duration automatically controlled
1
EAV2SAV duration based on manual setting (see subaddress B8h/B9h)
OFM_EAV2SAV_Duration [9:0]
EAV2SAV duration in OCLK_P clock cycles. For non-interleaved and line-interleaved modes.
00 0100 0000 64 (default)
NOTE
See result of automatic EAV2SAV duration algorithm at status registers D0h-D1h.
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
77
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-76. Misc OFM Control
Subaddress
Default
7
BAh
00h
6
5
4
3
2
1
Reserved
0
OFM_Soft_
Reset
OFM_Soft_Reset
Soft reset for OFM logic.
NOTE: This bit is automatically cleared by firmware when the reset is completed.
0
Normal operation (default)
1
Reset output formatter logic
NOTE: In cascade mode, the OFM reset of the 1st stage should be asserted after the OCLK_N output of the 2nd stage is enabled.
Table 4-77. Audio Sample Rate Control
Subaddress
Default
7
C0h
00h
6
5
Reserved
4
3
2
Aud_SamRate_Set[2:0]
1
0
Reserved
Aud_SamRate_Set[2:0]
Audio sample rate control bits
000
16 kHz (default)
001
8 kHz
010
22.05 kHz
011
11.025 kHz
100
24 kHz
101
12 kHz
110
Reserved
111
Reserved
78
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-78. Analog Audio Gain Control 1
Subaddress
Default
7
C1h
88h
6
5
Audio_Gain_Ctrl_CH2
4
3
2
1
Audio_Gain_Ctrl_CH1
0
Audio_Gain_Ctrl_CH2
Analog audio gain control for audio Ch 2. See values below.
Audio_Gain_Ctrl_CH1
Analog audio gain control for audio Ch 1
0000
-12.0 dB
0001
-10.5 dB
0010
-9 dB
0011
-7.5 dB
0100
-6 dB
0101
-4.5 dB
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
-3 dB
-1.5 dB
0 dB (default)
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
79
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-79. Analog Audio Gain Control 2
Subaddress
Default
7
C2h
88h
6
5
Audio_Gain_Ctrl_CH4
4
3
2
1
Audio_Gain_Ctrl_CH3
0
Audio_Gain_Ctrl_CH4
Analog audio gain control for audio Ch 4. See values below.
Audio_Gain_Ctrl_CH3
Analog audio gain control for audio Ch 3
0000
-12.0 dB
0001
-10.5 dB
0010
-9 dB
0011
-7.5 dB
0100
-6 dB
0101
-4.5 dB
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
80
-3 dB
-1.5 dB
0 dB (default)
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-80. Audio Mode Control
Subaddress
Default
C3h
C9h
7
6
5
SD_M_En
SD_R_En
I2S_Mode
4
Serial_IF_Form
at
3
BCLK_R_Freq
2
1
Audio_Data_Format
0
TDM_Pin_Sel
SD_M_En
SD_M output enable, active high
0
SD_M output disabled
1
SD_M output enabled (default)
SD_R_En
SD_R output enable, active high.
0
SD_R output disabled
1
SD_R output enabled (default)
I2S_Mode
Audio serial I2S interface mode
0
Slave mode (default)
1
Master mode
Serial_IF_Format
Audio serial interface format
0
I2S justified mode (default)
1
DSP justified mode
BCLK_R_Freq
Audio serial interface BCLK_R clock frequency
0
256 fs
1
64 fs (stand alone operation only) (default)
Audio_Data_Format
Audio serial interface data format
00
16-bit PCM (default)
01
8-bit µ-Law
10
8-bit A-Law
11
Reserved
TDM_Pin_Sel
TDM output pin select
0
SD_R only
1
SD_R and SD_M (default)
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
81
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-81. Audio Mixer Select
Subaddress
Default
7
C4h
01h
6
5
Audio_Mixer_Sel [4:0]
4
3
2
1
TDM_Chan_Number [2:0]
0
Audio_Mixer_Sel [4:0]
Audio mixer output select
00000 Mix channel (default)
00001 Ch 1
00010 Ch 2
00011 Ch 3
00100 Ch 4
00101 Ch 5
00110 Ch 6
00111 Ch 7
01000 Ch 8
01001 Ch 9
01010 Ch 10
01011 Ch 11
01100 Ch 12
01101 Ch 13
01110 Ch 14
01111 Ch 15
10000 Ch 16
10001
to
Reserved
11111
TDM_Chan_Number [2:0]
Number of Audio channels to TDM
000
2 channels
001
4 channels (default)
010
8 channels
011
12 channels
100
16 channels
101
Reserved
110
Reserved
111
Reserved
82
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-82. Audio Mute Control
Subaddress
Default
7
C5h
00h
6
5
4
Reserved
3
Ch4_Mute
2
Ch3_Mute
1
Ch2_Mute
0
Ch1_Mute
Ch4_Mute
Ch 4 Audio mute enable, active high. Affects the audio mixer output (SD_M) only (see Figure 3-17).
0
Disabled (default)
1
Enabled
Ch3_Mute
Ch 3 Audio mute enable, active high. Affects the audio mixer output (SD_M) only (see Figure 3-17).
0
Disabled (default)
1
Enabled
Ch2_Mute
Ch 2 Audio mute enable, active high. Affects the audio mixer output (SD_M) only (see Figure 3-17).
0
Disabled (default)
1
Enabled
Ch1_Mute
Ch 1 Audio mute enable, active high. Affects the audio mixer output (SD_M) only (see Figure 3-17).
0
Disabled (default)
1
Enabled
Table 4-83. Analog Mixing Ratio Control 1
Subaddress
Default
7
C6h
00h
6
5
Audio_Mixing_Ratio_CH2
4
3
2
1
Audio_Mixing_Ratio_CH1
0
Audio_Mixing_Ratio_CH2
Audio mixing ratio for audio channel 2. See values below.
Audio_Mixing_Ratio_CH1
Audio mixing ratio for audio channel 1
0000
0.25 (default)
0001
0.31
0010
0.38
0011
0.44
0100
0.5
0101
0.63
0110
0.75
0111
0.88
1000
1.00
1001
1.25
1010
1.5
1011
1.75
1100
2.00
1101
2.25
1110
2.5
1111
2.75
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
83
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-84. Analog Mixing Ratio Control 2
Subaddress
Default
C7h
00h
7
6
5
Audio_Mixing_Ratio_CH4
4
3
2
1
Audio_Mixing_Ratio_CH3
0
Audio_Mixing_Ratio_CH4
Audio mixing ratio for audio channel 4. See values below.
Audio_Mixing_Ratio_CH3
Audio mixing ratio for audio channel 3
0000
0.25 (default)
0001
0.31
0010
0.38
0011
0.44
0100
0.5
0101
0.63
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0.75
0.88
1.00
1.25
1.5
1.75
2.00
2.25
2.5
2.75
Table 4-85. Audio Cascade Mode Control
Subaddress
Default
C8h
00h
7
6
5
4
3
2
1
0
Audio_Cas_Mode_Ctrl
Reserved
Audio_Cas_Mode_Ctrl
Audio Cascade Mode control which is cascade stage ID. Set to 00 for standalone operation.
00
First stage (channels 1 to 4) (default)
01
Second stage (channels 5 to 8)
10
Third stage (channels 9 to 12)
11
Fourth stage (channels 13 to 16)
Table 4-86. Super-Frame EAV2SAV Duration Status
Subaddress
Default
D0h-D1h
Read Only
Subaddress
D0h
D1h
7
6
5
4
3
EAV2SAV [7:0]
2
Reserved
1
0
EAV2SAV [9:8]
EAV2SAV [9:0]
Super-frame EAV2SAV duration (bytes). For line-interleaved mode only.
84
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-87. Super-Frame SAV2EAV Duration Status
Subaddress
Default
D2h-D3h
Read Only
Subaddress
D2h
D3h
7
6
5
4
3
SAV2EAV [7:0]
2
Reserved
1
0
EAV2SAV [10:8]
SAV2EAV [10:0]
Super-frame SAV2EAV duration (bytes). For line-interleaved mode only.
Table 4-88. VBUS Data Access With No VBUS Address Increment
Subaddress
Default
E0h
00h
7
6
5
4
3
2
1
0
VBUS data [7:0]
VBUS data [7:0]
VBUS data register for VBUS single-byte read/write transaction
Table 4-89. VBUS Data Access With VBUS Address Increment
Subaddress
Default
E1h
00h
7
6
5
4
3
2
1
0
VBUS data [7:0]
VBUS data [7:0]
VBUS data register for VBUS multi-byte read/write transaction. VBUS address is auto-incremented after each data byte read/write.
Table 4-90. VBUS Address Access
Subaddress
Default
E8h
00h
E9h
00h
EAh
00h
Subaddress
E8h
E9h
EAh
7
6
5
4
3
VBUS address [7:0]
VBUS address [15:8]
VBUS address [23:16]
2
1
0
VBUS access address [23:0]
VBUS is a 24-bit wide internal bus. The user needs to program the 24-bit address of the internal register to be accessed via host
port indirect access mode.
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
85
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-91. Interrupt Status
Subaddress
Default
F2h
Read Only
7
6
Reserved
5
Sig_Present
4
Weak_Sig
3
V_Lock
2
Macrovision
1
Vid_Std
0
Reserved
The host interrupt status register represents the interrupt status after applying mask bits. Therefore, the status bits are the result of a logical
AND between the raw status and mask bits. The external interrupt pin is derived from this register as an OR function of all non-masked
interrupts in this register.
Reading data from the corresponding register does not clear the status flags automatically. These flags are reset using the corresponding
bits in the interrupt clear register.
Sig_Present
Signal present change interrupt. This interrupt is asserted whenever there is a change in the signal present status (bit 7 of register
01h).
0
Not available
1
Available
Weak_Sig
Weak signal change interrupt. This interrupt is asserted whenever there is a change in the weak signal status (bit 6 of register 01h).
0
Not available
1
Available
V_Lock
Vertical lock change interrupt. This interrupt is asserted whenever there is a change in the vertical lock status (bit 2 of register 00h).
0
Not available
1
Available
Macrovision
Macrovision change interrupt. This interrupt is asserted whenever there is a change in the Macrovision detection status (bits 2:0 of
register 01h).
0
Not available
1
Available
Vid_Std
Video standard change interrupt. This interrupt is asserted whenever there is a change in the detected video standard (bits 2:0 of
register 0Ch).
0
Not available
1
Available
86
Internal Control Registers
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-92. Interrupt Mask
Subaddress
Default
7
F4h
00h
6
Reserved
5
Sig_Present
4
Weak_Sig
3
V_Lock
2
Macrovision
1
Vid_Std
0
Reserved
The host interrupt mask register can be used by the external processor to mask unnecessary interrupt sources for the interrupt status
register bits, and for the external interrupt pin. The external interrupt is generated from all non-masked interrupt flags.
Sig_Present
Signal present change interrupt mask
0
Interrupt disabled (default)
1
Interrupt enabled
Weak_Sig
Weak signal change interrupt mask
0
Interrupt disabled (default)
1
Interrupt enabled
V_Lock
Vertical lock change interrupt mask
0
Interrupt disabled (default)
1
Interrupt enabled
Macrovision
Macrovision change interrupt mask
0
Interrupt disabled (default)
1
Interrupt enabled
Vid_Std
Video standard change interrupt mask
0
Interrupt disabled (default)
1
Interrupt enabled
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Internal Control Registers
87
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
Table 4-93. Interrupt Clear
Subaddress
Default
7
F6h
00h
6
5
Sig_Present
Reserved
4
Weak_Sig
3
V_Lock
2
Macrovision
1
Vid_Std
0
Reserved
The host interrupt clear register is used by the external processor to clear the interrupt status bits in the host interrupt status register. When
no non-masked interrupts remain set in the register, the external interrupt pin also becomes inactive.
Sig_Present
Signal present change interrupt clear
0
No effect (default)
1
Clear interrupt bit
Weak_Sig
Weak signal change interrupt clear
0
No effect (default)
1
Clear interrupt bit
V_Lock
Vertical lock change interrupt clear
0
No effect (default)
1
Clear interrupt bit
Macrovision
Macrovision change interrupt clear
0
No effect (default)
1
Clear interrupt bit
Vid_Std
Video standard change interrupt clear
0
No effect (default)
1
Clear interrupt bit
Table 4-94. Decoder Write Enable
Subaddress
Default
7
FEh
0Fh
6
5
Reserved
Addr Auto Incr
4
Decoder Auto
Incr
3
2
1
0
Decoder 4
Decoder 3
Decoder 2
Decoder 1
This register controls which of the four decoder cores receives I2C write transactions. A 1 in the corresponding Decoder bit enables the
decoder to receive write commands. Any combination of decoders can be configured to receive write commands, allowing all four decoders
to be programmed concurrently.
The following table shows how the address auto-increment and decoder auto-increment functions operate when a multi-byte I2C write
transaction occurs. For this example, decoders 2, 3 and 4 are enabled for writes, the subaddress is 0xA0 and 8 bytes of data are written.
Decoder Auto Incr
Addr Auto Incr
Data
1st
2nd
3rd
4th
5th
6th
7th
8th
88
0
0
Dec
2,3,4
2,3,4
2,3,4
2,3,4
2,3,4
2,3,4
2,3,4
2,3,4
Internal Control Registers
0
1
Addr
A0
A0
A0
A0
A0
A0
A0
A0
Dec
2,3,4
2,3,4
2,3,4
2,3,4
2,3,4
2,3,4
2,3,4
2,3,4
1
0
Addr
A0
A1
A2
A3
A4
A5
A6
A7
Dec
2
3
4
2
3
4
2
3
1
1
Addr
A0
A0
A0
A0
A0
A0
A0
A0
Dec
2
3
4
2
3
4
2
3
Addr
A0
A0
A0
A1
A1
A1
A2
A2
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Table 4-95. Decoder Read Enable
Subaddress
Default
7
FFh
01h
6
5
Reserved
Addr Auto Incr
4
Decoder Auto
Incr
3
2
1
0
Decoder 4
Decoder 3
Decoder 2
Decoder 1
This register controls which of the four decoder cores responds to I2C read transactions. A 1 in the corresponding bit position enables the
decoder to respond to read commands. A 1 in Decoder Auto Increment reads the next byte from the next enabled decoder. If Decoder Auto
Increment is 0 and more than one decoder is enabled for reading, then only the lowest numbered decoder responds. A 1 in Address Auto
Increment causes the subaddress to increment after read(s) of the current subaddress are completed.
The following table shows how the address auto-increment and decoder auto-increment functions operate when a multi-byte I2C read
transaction occurs. For this example, decoders 2, 3 and 4 are enabled for reads, the subaddress is 0xA0, and 8 bytes of data are read.
Decoder Auto Incr
Addr Auto Incr
Data
1st
2nd
3rd
4th
5th
6th
7th
8th
0
0
Dec
2
2
2
2
2
2
2
2
0
1
Addr
A0
A0
A0
A0
A0
A0
A0
A0
Dec
2
2
2
2
2
2
2
2
1
0
Addr
A0
A1
A2
A3
A4
A5
A6
A7
Dec
2
3
4
2
3
4
2
3
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
1
1
Addr
A0
A0
A0
A0
A0
A0
A0
A0
Dec
2
3
4
2
3
4
2
3
Addr
A0
A0
A0
A1
A1
A1
A2
A2
Internal Control Registers
89
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
5
Electrical Specifications
5.1
Absolute Maximum Ratings (1)
over operating free-air temperature range (unless otherwise noted)
VDD
Supply voltage range
VDD_3_3 to VSS_3_3
0.5 V to 4.0 V
VDD_1_1 to VSS_1_1
-0.2 V to 1.2 V
VDDA_3_3 to VSSA_3_3
-0.3 V to 3.6 V
VDDA_1_8 to VSSA_1_8
-0.2 V to 2.0 V
VDDA_1_1 to VSSA_1_1
-0.2 V to 1.2 V
VI
Digital input voltage range
VI to DGND
-0.5 V to 4.5 V
VO
Digital output voltage range
VO to DGND
-0.5 V to 4.5 V
Analog video input voltage range
AIN to AGND
-0.2 V to 2.5 V
Analog audio input voltage range
AIN to AGND
-0.2 V to 2.0 V
TA
Operating free-air temperature range
Tstg
Storage temperature range
Commercial range
0°C to 70°C
Industrial range
-40°C to 85°C
-65°C to 150°C
JEDEC (3)
Human-body model
(HBM)
VESD
AEC-Q100 (4)
ESD stress voltage (2)
Charged-device
model (CDM)
(1)
(2)
(3)
(4)
(5)
(6)
90
All pins
>500 V
Excluding VSSA, VDD1_1,
XTAL_REF pins
>1000 V
All pins
>500 V
Excluding VSSA, VDD1_1,
XTAL_REF pins
>1000 V
All pins
>250 V
JEDEC (5)
Excluding VSSA, VDD1_1,
XTAL_REF pins
>500 V
AEC-Q100 (6)
All pins
>400 V
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device.
Level listed is the passing level per ANSI/ESDA/JEDEC JS-001-2010. JEDEC document JEP155 states that 500V HBM allows safe
manufacturing with a standard ESD control process, and manufacturing with less than 500V HBM is possible if necessary precautions
are taken. Pins listed as 1000V may actually have higher performance.
Tested per AEC Q100-002 rev D
Level listed is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP157 states that 250V CDM allows safe
manufacturing with a standard ESD control process. Pins listed s 250V may actually have higher performance.
Tested per AEC Q100-011 rev B
Electrical Specifications
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
5.2
SLES243G – JULY 2009 – REVISED APRIL 2013
Recommended Operating Conditions
MIN
NOM
MAX
VDD_3_3
Supply voltage, digital
3
3.3
3.6
V
VDD_1_1
Supply voltage, digital
1
1.1
1.2
V
VDDA_3_3
Supply voltage, analog
3
3.3
3.6
V
VDDA_1_8
Supply voltage, analog
1.65
1.8
1.95
V
VDDA_1_1
Supply voltage, analog
1
1.1
1.2
V
VI(pp)
Analog video input voltage (ac-coupling necessary) (1)
1.2
V
VI(pp)
Analog audio input voltage (ac-coupling necessary)
0.8
V
(2) (3)
0.7 VDD_3_3
UNIT
VIH
Input voltage high, digital
VIL
Input voltage low, digital (4)
V
IOH
Output current: DVO outputs/OCLK_N (3)
VOUT = 2.4 V
-4
mA
IOL
Output current: DVO outputs/OCLK_N (3)
(3)
0.3 VDD_3_3
V
VOUT = 0.4 V
4
mA
IOH
Output current, OCLK_P
(3)
VOUT = 2.4 V
-8
mA
IOL
Output current, OCLK_P (3)
VOUT = 0.4 V
8
TA
(1)
(2)
(3)
(4)
5.3
Operating free-air temperature
Commercial
Industrial
70
°C
-40
85
°C
Specified based on a typical 100% Color Bar Signal
Exception: 0.7 VDDA_1_8 for XTAL_IN terminal
Specified by design
Exception: 0.3 VDDA_1_8 for XTAL_IN terminal
Reference Clock Specifications
MIN
Frequency
Frequency tolerance
(1)
mA
0
NOM
MAX
27
(1)
-50
UNIT
MHz
50
ppm
This number is the required specification for the external crystal/oscillator and is not tested.
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Electrical Specifications
91
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
5.4
Electrical Characteristics
5.5
DC Electrical Characteristics
For minimum/maximum values: VDD_1_1 = 1.0 to 1.2 V, VDD_3_3 = 3.0 V to 3.6 V, VDDA_1_1 = 1.0 V to 1.2 V,
VDDA_1_8 = 1.65 V to 1.95 V, VDDA_3_3 = 3.0 V to 3.6 V
For typical values (TA = 25°C): VDD_1_1 = 1.1 V, VDD_3_3 = 3.3 V, VDDA_1_1 = 1.1 V, VDDA_1_8 = 1.8 V,
VDDA_3_3 = 3.3 V (1)
PARAMETER
TEST CONDITIONS
IDD(33D)
3.3-V I/O digital supply current
IDD(11D)
1.1-V core digital supply current
IDD(33A)
3.3-V analog supply current
IDD(18A)
1.8-V analog supply current
IDD(11A)
1.1-V analog supply current
PTOT
Total power dissipation, normal
operation
MIN
TYP
MAX
UNIT
2-Ch D1 mode at 54 MHz
33
mA
4-Ch D1 mode at 108 MHz
41
mA
2-Ch D1 mode at 54 MHz
143
mA
4-Ch D1 mode at 108 MHz
156
mA
2-Ch D1 mode at 54 MHz
4.5
mA
4-Ch D1 mode at 108 MHz
4.5
mA
2-Ch D1 mode at 54 MHz
172
mA
4-Ch D1 mode at 108 MHz
168
mA
2-Ch D1 mode at 54 MHz
14
mA
4-Ch D1 mode at 108 MHz
17
mA
2-Ch D1 mode at 54 MHz
606
mW
4-Ch D1 mode at 108 MHz
643
mW
PAPWD
Power dissipation with audio powered
4-Ch D1 mode at 108 MHz
down
619
mW
PDOWN
Total power dissipation with power
down (I2C register 1Ah set to FFh)
90
mW
Ilkg
Input leakage current
20
µA
CI
Input capacitance (2)
8
pF
VOH
Output voltage high
IOH = -4 mA
Output voltage low
IOL = 4 mA
VOL
(1)
(2)
92
0.8 VDD_3_3
V
0.2 VDD_3_3
V
Typical current measurements made with 4-Ch D1 video output at 108 MHz with 4-Ch audio.
Specified by design
Electrical Specifications
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
5.6
SLES243G – JULY 2009 – REVISED APRIL 2013
Video A/D Converters Electrical Characteristics
ADC sample rate = 27 MSPS for video Ch 1, Ch 2, Ch 3, Ch 4
PARAMETER
TEST CONDITIONS
MIN
Video ADC conversion rate
TYP
MAX
27
Zi
Input impedance, analog video inputs (1)
Ci
Input capacitance, analog video inputs (1)
Vi(PP)
Full-scale input range of ADC (2)
MHz
200
kΩ
10
Ccoupling = 0.1 µF
1.4
(1)
UNIT
pF
V
G
Nominal analog video gain
DNL
Absolute differential non-linearity (3)
AFE only
0.75
1
LSB
INL
Absolute integral non-linearity
AFE only
1
2.5
LSB
FR
Frequency response
Multiburst (60 IRE)
-0.9
dB
XTALK
Input crosstalk (1)
1 MHz
-50
dB
SNR
Signal-to-noise ratio (all channels) (4)
Fin = 1 MHz, 1.0 Vpp
54
dB
NS
Noise spectrum
Luma ramp (100 kHz to full, tilt null)
-51
dB
DP
Differential phase
Modulated ramp
0.5
deg
DG
Differential gain
Modulated ramp
±1.5
%
(1)
(2)
(3)
(4)
-2.9
dB
Specified by design
Full range video
No missing codes
Based on 10-bit internal ADC test mode
5.7
Audio A/D Converters Electrical Characteristics
ADC sample rate = 32.768 MSPS for audio Ch 1, Ch 2, Ch 3, Ch 4
PARAMETER
Zi
TEST CONDITIONS
Audio ADC conversion rate
fS = 16 kHz
Input impedance, analog audio inputs (1)
0-dB PGA gain
TYP
Input capacitance, analog audio inputs
Vi(PP)
Full-scale input voltage range of ADC
Ccoupling = 2.2 µF, 0-dB PGA gain
DNL
Absolute differential non-linearity (2)
AFE only
INL
Absolute integral non-linearity
AFE only
XTALK
Crosstalk between any two channels
SNR
Signal-to-noise ratio (all channels)
fS = 16 kHz, VIN = -60 dB, 1 kHz
System clock frequency per channel
MAX
32.768
UNIT
MHz
20
kΩ
(1)
Ci
(1)
(2)
MIN
10
pF
0.75
1
LSB
1
2.5
LSB
1
V
-50
dB
56
dB
512 fS
Hz
Specified by design
No missing codes
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Electrical Specifications
93
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
5.8
www.ti.com
Video Output Clock and Data Timing
10-pF load for 27 MHz and 54 MHz, 6-pF load for 108 MHz
NO.
PARAMETER
Duty cycle, OCLK_P/OCLK_N
t3
t4
Fall time, OCLK_P/OCLK_N
Rise time, OCLK_P/OCLK_N
t1
Fall time, Data
t2
Rise time, Data
t5
Propagation delay from falling edge of
OCLK_P/OCLK_N
TEST CONDITIONS
MIN
TYP
≤50%, OCLK_P/OCLK_N = 108 MHz
44
50
MAX
UNIT
55
%
90% to 10%, OCLK_P/OCLK_N = 27 MHz
1.4
ns
90% to 10%, OCLK_P/OCLK_N = 108 MHz
1.15
ns
10% to 90%, OCLK_P/OCLK_N = 27 MHz
1.4
ns
10% to 90%, OCLK_P/OCLK_N = 108 MHz
1.15
ns
90% to 10%, Data = 27 MHz
3.4
ns
90% to 10%, Data = 108 MHz
2.9
10% to 90%, Data = 27 MHz
4.2
10% to 90%, Data = 108 MHz
3.4
ns
50%, OCLK_P/OCLK_N = 27 MHz
1.9
4.86
ns
50%, OCLK_P/OCLK_N = 108 MHz
0.22
1.5
ns
t3
t4
90%
OCLK_P
10%
t5
t1,t2
90%
DVO_x_[7:0]
Valid Data
Valid Data
10%
Figure 5-1. Video Output Clock and Data Timing
5.8.1
Video Input Clock and Data Timing
NOTE
Video Cascade Modes: Timing is ensured by design at 27/54MHz input frequency with input trace
delays < 2 ns.
94
Electrical Specifications
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
I2C Host Port Timing (1)
5.9
NO.
PARAMETER
MIN
TYP
MAX
UNIT
t1
Bus free time between STOP and START
1.3
µs
t2
Data Hold time
t3
Data Setup time
100
ns
t4
Setup time for a (repeated) START condition
0.6
µs
t5
Setup time for a STOP condition
0.6
ns
t6
Hold time (repeated) START condition
0.6
t7
Rise time SDA and SCL signal
250
0
0.9
µs
µs
ns
t8
Fall time SDA and SCL signal
250
ns
Cb
Capacitive load for each bus line
400
pF
fI2C
I2C clock frequency
400
kHz
(1)
Specified by design
Stop
SDA
Start
Stop
Data
t1
t4
t3
t2
t5
Change
SCL
Data
t7
t6
t8
t6
Figure 5-2. I2C Host Port Timing
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Electrical Specifications
95
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
I2S Port Timing
5.9.1
NOTE
Philips I2S bus compliant (specified by design) – See the Philips I2S bus specification
5.10 Miscellaneous Timings
PARAMETER
tRESET
RESETB Signal Low Time for valid reset
tvalid
I2C valid time, Initialization time after reset until I2C ready
MIN
TYP
MAX
UNIT
20
ms
260
µs
5.11 Power Dissipation Ratings
PARAMETER
TEST CONDITIONS (1)
θJA
Junction-to-ambient thermal resistance, still air
Thermal PAD soldered to 4-layer
High-K PCB
17.17
°C/W
θJC
Junction-to-case thermal resistance, still air
Thermal PAD soldered to 4-layer
High-K PCB
0.12
°C/W
TJ (max)
Maximum junction temperature for reliable operation
(1)
96
MIN
TYP
MAX
105
UNIT
°C
Exposed thermal pad must be soldered to JEDEC High-K PCB with adequate ground plane (see Section 6.5).
Electrical Specifications
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
6
Application Information
6.1
4-Ch D1 Applications
4-Ch D1
8Bit@108MHz
Figure 6-1. 4-Ch D1 Application (Single BT.656 Interface)
DVO_A_[7:0]
DVO_B_[7:0]
OCLK_P
VIN_1
VIN_2
TVP5158
VIN_3
Multi-Ch
Video Decoder
4-Ch D1
16Bit@54MHz
I2C
VPIF-A
VPIF-B
H.264/MPEG-4
4-Ch D1 Recording
DM6467
DaVinci HD
Multi-Ch D1
Preview
VIN_4
Figure 6-2. 4-Ch D1 Application (16-Bit YCbCr 4:2:2 Interface)
6.2
8-Ch CIF Applications
VIN_1
VIN_2
VIN_3
DVO_A_[7:0]
OCLK_P
4-Ch CIF + 1-Ch D1
8Bit@54MHz
TVP5158
H.264/MPEG-4
8-Ch CIF Recording
I2C
VIN_4
I2C
VIN_1
VIN_2
VIN_3
VIN_4
VPIF-A
DVO_A_[7:0]
OCLK_P
4-Ch CIF + 1-Ch D1
8Bit@54MHz
DM6467
DaVinci HD
VPIF-B
Multi-Ch D1
Preview
TVP5158
Figure 6-3. 8-Ch CIF Real Time Encoding and Multi-Ch D1 Preview Application
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Application Information
97
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
4-Ch Half-D1 + 1-Ch D1
8Bit@108MHz
4-Ch Half-D1 + 1-Ch D1
8Bit@108MHz
NOTE: The backend DSP drops one field of Half-D1 to get CIF format video
Figure 6-4. 8-Ch CIF Real Time Encoding and Multi-Ch D1 Preview Application
6.3
16-Ch CIF Applications
See Section 3.8.3.3 for the details of 16-Ch CIF applications.
98
Application Information
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
6.4
SLES243G – JULY 2009 – REVISED APRIL 2013
Application Circuit Examples
U1A
C70
108
R54
R50
J1B
0.1 µF
109
37.4 W
VIN_1_P
VIN_1_N
DVO_A_0
DVO_A_1
DVO_A_2
DVO_A_3
DVO_A_4
DVO_A_5
DVO_A_6
DVO_A_7
78
77
75
74
72
71
69
68
C71
9
75 W
112
3
R55
10
0.1 µF
113
R51
37.4 W
75 W
121
R56
0.1 µF
122
R52
12
75 W
VIN_3_P
VIN_3_N
DVO_B_0
DVO_B_1
DVO_B_2
DVO_B_3
DVO_B_4
DVO_B_5
DVO_B_6
DVO_B_7
63
62
60
59
57
56
54
53
37.4 W
C73
RCA_Octal_stack
125
R57
0.1 µF
126
R53
75 W
VIN_2_N
C72
11
4
VIN_2_P
37.4 W
116
Place R50, R51, R52 and R53 close to J1
Place R54, R55, R56 and R57 close to J1
VIN_4_P
VIN_4_N
REXT_2K
DVO_C_0
DVO_C_1
DVO_C_2
DVO_C_3
DVO_C_4
DVO_C_5
DVO_C_6
DVO_C_7
R58
1.8 kW
DVO_D_0
DVO_D_1
DVO_D_2
DVO_D_3
DVO_D_4
DVO_D_5
DVO_D_6
DVO_D_7
OCLK_P
OCLK_N/CLKIN
46
45
43
42
40
39
37
36
31
30
28
27
25
24
22
21
51
50
TVP5158
NOTE: System level ESD protection is not included in above application circuit but is recommended.
Figure 6-5. Video Input Connectivity
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Application Information
99
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
U1B
C65
J1A
95
5
1
2.2 µF
R60
5.6 kW
6
7
2.2 µF
AIN_2
SD_R
89
88
C67
R62
93
2.2 µF
5.6 kW
8
SD_M
94
R61
5.6 kW
2
AIN_1
C66
AIN_3
LRCLK_R
C68
R63
92
5.6 kW
2.2 µF
BCLK_R
86
85
AIN_4
RCA_Octal_stack
16
R64
R65
R66
R67
5.6 kW 5.6 kW 5.6 kW 5.6 kW
17
19
SD_CO
83
LRCLK_CI
BCLK_CI
SD_CI
TVP5158
NOTE: System level ESD protection is not included in above application circuit but is recommended.
NOTE: Resistor divider may vary dependent on expected max input audio levels. Desired analog audio input levels should
not exceed 1Vpp.
Figure 6-6. Audio Input Connectivity
6.5
Designing with PowerPAD™ Devices
The TVP5158 device is housed in a high-performance, thermally enhanced, 128-terminal PowerPAD
package. Use of the PowerPAD package does not require any special considerations except to note that
the thermal pad, which is an exposed die pad on the bottom of the device, is a metallic thermal and
electrical conductor. Therefore, if not implementing the PowerPAD PCB features, the use of solder masks
(or other assembly techniques) can be required to prevent any inadvertent shorting by the exposed
thermal pad of connection etches or vias under the package. The recommended option, however, is not to
run any etches or signal vias under the device, but to have only a grounded thermal land as in the
following explanation. Although the actual size of the exposed die pad may vary, the minimum size
required for the keep-out area for the 128-terminal PFP PowerPAD package is 9mm x 9mm.
It is recommended that there be a thermal land, which is an area of solder-tinned-copper, underneath the
PowerPAD package. The thermal land varies in size, depending on the PowerPAD package being used,
the PCB construction, and the amount of heat that needs to be removed. In addition, the thermal land may
or may not contain numerous thermal vias depending on PCB construction.
Other requirements for using thermal lands and thermal vias are detailed in the TI application note
PowerPAD Thermally Enhanced Package application report (SLMA002).
For the TVP5158 device, this thermal land must be grounded to the low-impedance ground plane of the
device. This improves not only thermal performance but also the electrical grounding of the device. It is
also recommended that the device ground terminal landing pads be connected directly to the grounded
thermal land. The land size should be as large as possible without shorting device signal terminals. The
thermal land can be soldered to the exposed thermal pad using standard reflow soldering techniques.
While the thermal land can be electrically floated and configured to remove heat to an external heat sink, it
is recommended that the thermal land be connected to the low-impedance ground plane for the device.
More information can be obtained from the TI application note PHY Layout (SLLA020).
100
Application Information
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
TVP5158, TVP5157, TVP5156
www.ti.com
SLES243G – JULY 2009 – REVISED APRIL 2013
Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
REVISION
SLES243
SLES243A
COMMENTS
Initial release
Table 2-1, XTAL_REF description change.
Figure 3-21, 0-Ω resistor added inline between XTAL_REF pin and VSSA.
SLES243B
YUV references changed to YCbCr.
Section 1, Trademarks added.
Table 2-1, XTAL_IN, XTAL_REF, and XTAL_OUT terminal descriptions moved to Analog Section.
Section 3.1.2, Analog Video Input Clamping description changed.
Section 3.9.4, Analog Audio Input Clamping description added.
Section 3.11, Clock Circuit description changed.
SLES243C
Section 1.5, Trademarks added.
Section 1.6, Document Conventions added.
Section 1.7, Package options added.
Section 3.9.3, Serial Audio Interface added.
Figure 3-18, Serial Audio Interface Timing Diagram added.
Table 4-14, Luminance Brightness description modified.
Table 4-15, Luminance Contrast description modified.
Table 4-16, Brightness and Contrast Range Extender register added.
Table 4-17, Chrominance Saturation description modified.
Table 4-65, Interrupt Control register added.
Minor editorial changes throughout.
SLES243D
AEC-Q100 qualification added.
Section 3.8.3.3, Added comment about INTREQ outputs in video cascade mode
Section 3.10.3, Added VBUS access information.
Table 4-1, Added VBUS data and address registers.
Table 4-89, Added VBUS data register description.
Table 4-90, Added VBUS address register description.
Table 3-5, Added output format settings for I2C address B0h.
Table 3-6, Added output format settings for I2C address B0h.
Table 3-10, Combined original Table 3-11 with Table 3-10.
Table 3-10, Added output format settings for I2C address B0h.
Section 3.8.3.4, Added Hybrid Mode section.
Table 3-11, Added default super-frame output format table.
Figure 3-15, Made minor editorial changes.
Figure 3-16, Made minor editorial changes.
Table 4-1, Added super-frame EAV2SAV and SAV2EAV duration status (D0h-D3h)
Table 4-43, Modified TV/VCR mode detection description.
Table 4-19, Modified definition for color killer threshold control.
Table 4-43, Deleted obsolete stable sync control bits.
Table 4-50, Changed the default value for I2C address 88h from 00h to 03h.
Table 4-86, Added super-frame EAV2SAV duration status (subaddress: D0h-D1h)
Table 4-87, Added super-frame SAV2EAV duration status (subaddress: D2h-D3h)
Section 5.11, Modified package thermal specifications.
Minor editorial changes throughout
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
Application Information
101
TVP5158, TVP5157, TVP5156
SLES243G – JULY 2009 – REVISED APRIL 2013
www.ti.com
REVISION
SLES243E
COMMENTS
Table 4-1, Added RAM version MSB and LSB registers (subaddress: 05h-06h).
Table 4-6, Added RAM version MSB register (subaddress: 05h).
Table 4-7, Added RAM version LSB register (subaddress: 06h).
Section 5.1, Updated VESD limits.
SLES243F
Table 3-11, Super-frame format and timing information modified.
Table 3-10, 6-Ch Half-D1, 6-Ch Half-D1 + 1-Ch D1 and 3-Ch D1 formats added
Table 3-12, Added BOP and EOP bits.
Table 3-13, Added definitions for BOP and EOP bits.
Table 4-1, Changed default setting for I2C register AEh from 00h to 01h.
Table 4-1, Corrected register name for I2C register 06h.
Table 4-43, Definitions for bits 7 and 3 of I2C register 60h added.
Table 4-52, Output timing delay control range modified.
Table 4-54, Register settings for several different screen colors provided.
Table 4-63, YCbCr output code range modified.
Table 4-67, Embedded sync offset control range modified.
Table 4-69, Definition for bit 7 of I2C register B1h modified.
Table 4-70, Definition for bit 7 of I2C register B2h added.
Table 4-75, Definition for bits 7:5 of I2C register B9h added.
Table 4-77, 11.025kHz, 12kHz, 22.05kHz and 24kHz audio sample rates added.
Table 4-82, Definition for bits 3:0 of I2C register C5h modified.
Table 4-91, Definition for bits 5:0 of I2C register F2h modified.
Table 4-92, Definition for bits 5:0 of I2C register F4h modified.
Table 4-93, Definition for bits 5:0 of I2C register F6h modified.
SLES243G
102
Section 3.6, Changed I2C addresses shown for Noise Reduction registers
Application Information
Copyright © 2009–2013, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: TVP5158 TVP5157 TVP5156
PACKAGE OPTION ADDENDUM
www.ti.com
30-Aug-2013
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
(2)
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
TVP5156PNP
NRND
HTQFP
PNP
128
90
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
0 to 70
TVP5156
TVP5157PNP
NRND
HTQFP
PNP
128
90
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
0 to 70
TVP5157
TVP5157PNPR
NRND
HTQFP
PNP
128
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
0 to 70
TVP5157
TVP5158IPNP
NRND
HTQFP
PNP
128
90
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
TVP5158I
TVP5158IPNPR
NRND
HTQFP
PNP
128
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
-40 to 85
TVP5158I
TVP5158PNP
NRND
HTQFP
PNP
128
90
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
0 to 70
TVP5158
TVP5158PNPR
NRND
HTQFP
PNP
128
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
0 to 70
TVP5158
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
30-Aug-2013
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
12-May-2015
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
TVP5157PNPR
HTQFP
PNP
128
1000
330.0
24.4
17.0
17.0
1.5
20.0
24.0
Q1
TVP5158IPNPR
HTQFP
PNP
128
1000
330.0
24.4
17.0
17.0
1.5
20.0
24.0
Q1
TVP5158PNPR
HTQFP
PNP
128
1000
330.0
24.4
17.0
17.0
1.5
20.0
24.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
12-May-2015
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
TVP5157PNPR
HTQFP
PNP
128
1000
367.0
367.0
55.0
TVP5158IPNPR
HTQFP
PNP
128
1000
367.0
367.0
55.0
TVP5158PNPR
HTQFP
PNP
128
1000
367.0
367.0
55.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated