LSM9DS1 iNEMO inertial module: 3D accelerometer, 3D gyroscope, 3D magnetometer Datasheet - production data Applications • Indoor navigation • Smart user interfaces • Advanced gesture recognition • Gaming and virtual reality input devices LGA-24L (3.5x3x1.0 mm) • Display/map orientation and browsing Description Features • 3 acceleration channels, 3 angular rate channels, 3 magnetic field channels • ±2/±4/±8/±16 g linear acceleration full scale • ±4/±8/±12/±16 gauss magnetic full scale • ±245/±500/±2000 dps angular rate full scale • 16-bit data output • SPI / I2C serial interfaces • Analog supply voltage 1.9 V to 3.6 V • “Always-on” eco power mode down to 1.9 mA • Programmable interrupt generators • Embedded temperature sensor The LSM9DS1 is a system-in-package featuring a 3D digital linear acceleration sensor, a 3D digital angular rate sensor, and a 3D digital magnetic sensor. The LSM9DS1 has a linear acceleration full scale of ±2g/±4g/±8/±16 g, a magnetic field full scale of ±4/±8/±12/±16 gauss and an angular rate of ±245/±500/±2000 dps. The LSM9DS1 includes an I2C serial bus interface supporting standard and fast mode (100 kHz and 400 kHz) and an SPI serial standard interface. Magnetic, accelerometer and gyroscope sensing can be enabled or set in power-down mode separately for smart power management. • Embedded FIFO • Position and motion detection functions • Click/double-click recognition • Intelligent power saving for handheld devices • ECOPACK®, RoHS and “Green” compliant The LSM9DS1 is available in a plastic land grid array package (LGA) and it is guaranteed to operate over an extended temperature range from -40 °C to +85 °C. Table 1. Device summary Part number Temperature range [°C] Package Packing LSM9DS1 -40 to +85 LGA-24L Tray LSM9DS1TR -40 to +85 LGA-24L Tape and reel March 2015 This is information on a product in full production. DocID025715 Rev 3 1/72 www.st.com Contents LSM9DS1 Contents 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Module specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 3 4 2.3 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.1 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.2 I2C - inter-IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.6 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6.2 Zero-g, zero-rate and zero-gauss level . . . . . . . . . . . . . . . . . . . . . . . . . 18 LSM9DS1 functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Gyroscope power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Accelerometer and gyroscope multiple reads (burst) . . . . . . . . . . . . . . . . 21 3.4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5 Accelerometer and gyroscope FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.5.1 Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.5.2 FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.5.3 Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.5.4 Continuous-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5.5 Bypass-to-Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1 5 External capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1.1 2/72 Recommended power-up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 DocID025715 Rev 3 LSM9DS1 Contents 5.2 5.3 Accelerometer and gyroscope SPI bus interface . . . . . . . . . . . . . . . . . . . 31 5.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Magnetic sensor SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.3.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.3.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.3.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7 Accelerometer and gyroscope register description . . . . . . . . . . . . . . 41 7.1 ACT_THS (04h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 7.2 ACT_DUR (05h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 7.3 INT_GEN_CFG_XL (06h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 7.4 INT_GEN_THS_X_XL (07h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7.5 INT_GEN_THS_Y_XL (08h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7.6 INT_GEN_THS_Z_XL (09h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.7 INT_GEN_DUR_XL (0Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.8 REFERENCE_G (0Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.9 INT1_CTRL (0Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.10 INT2_CTRL (0Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 7.11 WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 7.12 CTRL_REG1_G (10h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 7.13 CTRL_REG2_G (11h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.14 CTRL_REG3_G (12h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.15 ORIENT_CFG_G (13h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7.16 INT_GEN_SRC_G (14h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7.17 OUT_TEMP_L (15h), OUT_TEMP_H (16h) . . . . . . . . . . . . . . . . . . . . . . . 49 7.18 STATUS_REG (17h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.19 OUT_X_G (18h - 19h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.20 OUT_Y_G (1Ah - 1Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.21 OUT_Z_G (1Ch - 1Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.22 CTRL_REG4 (1Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 DocID025715 Rev 3 3/72 72 Contents 8 4/72 LSM9DS1 7.23 CTRL_REG5_XL (1Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.24 CTRL_REG6_XL (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.25 CTRL_REG7_XL (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7.26 CTRL_REG8 (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 7.27 CTRL_REG9 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7.28 CTRL_REG10 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7.29 INT_GEN_SRC_XL (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7.30 STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 7.31 OUT_X_XL (28h - 29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.32 OUT_Y_XL (2Ah - 2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.33 OUT_Z_XL (2Ch - 2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.34 FIFO_CTRL (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.35 FIFO_SRC (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.36 INT_GEN_CFG_G (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.37 INT_GEN_THS_X_G (31h - 32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 7.38 INT_GEN_THS_Y_G (33h - 34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7.39 INT_GEN_THS_Z_G (35h - 36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7.40 INT_GEN_DUR_G (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Magnetometer register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 8.1 OFFSET_X_REG_L_M (05h), OFFSET_X_REG_H_M (06h) . . . . . . . . . 62 8.2 OFFSET_Y_REG_L_M (07h), OFFSET_Y_REG_H_M (08h) . . . . . . . . . 62 8.3 OFFSET_Z_REG_L_M (09h), OFFSET_Z_REG_H_M (0Ah) . . . . . . . . . 62 8.4 WHO_AM_I_M (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 8.5 CTRL_REG1_M (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 8.6 CTRL_REG2_M (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 8.7 CTRL_REG3_M (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 8.8 CTRL_REG4_M (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 8.9 CTRL_REG5_M (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 8.10 STATUS_REG_M (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 8.11 OUT_X_L_M (28h), OUT_X_H_M(29h) . . . . . . . . . . . . . . . . . . . . . . . . . . 66 8.12 OUT_Y_L_M (2Ah), OUT_Y_H_M (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . 66 8.13 OUT_Z_L_M (2Ch), OUT_Z_H_M (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . 66 DocID025715 Rev 3 LSM9DS1 9 10 Contents 8.14 INT_CFG_M (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 8.15 INT_SRC_M (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 8.16 INT_THS_L(32h), INT_THS_H(33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 9.1 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 9.2 LGA package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 DocID025715 Rev 3 5/72 72 List of tables LSM9DS1 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. 6/72 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Gyroscope operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Operating mode current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Accelerometer turn-on time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Gyroscope turn-on time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 I2C terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 29 Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 29 Accelerometer and gyroscope SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . 30 Magnetic sensor SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Accelerometer and gyroscope register address map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Magnetic sensor register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ACT_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ACT_THS register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ACT_DUR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ACT_DUR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 INT_GEN_CFG_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 INT_GEN_CFG_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 INT_GEN_THS_X_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 INT_GEN_THS_X_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 INT_GEN_THS_Y_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 INT_GEN_THS_Y_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 INT_GEN_THS_Z_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 INT_GEN_THS_Z_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 INT_GEN_DUR_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 INT_GEN_DUR_XL register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 REFERENCE_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 REFERENCE_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 INT1_CTRL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 INT1_CTRL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 INT2_CTRL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 INT2_CTRL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 CTRL_REG1_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 CTRL_REG1_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ODR and BW configuration setting (after LPF1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ODR and BW configuration setting (after LPF2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 CTRL_REG2_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 DocID025715 Rev 3 LSM9DS1 List of tables Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. CTRL_REG2_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 CTRL_REG3_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 CTRL_REG3_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Gyroscope high-pass filter cutoff frequency configuration [Hz]. . . . . . . . . . . . . . . . . . . . . . 48 ORIENT_CFG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ORIENT_CFG_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 INT_GEN_SRC_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 INT_GEN_SRC_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 OUT_TEMP_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 OUT_TEMP_H register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 OUT_TEMP register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 STATUS_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 STATUS_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 CTRL_REG4 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 CTRL_REG5_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 CTRL_REG5_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 CTRL_REG6_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 CTRL_REG6_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ODR register setting (accelerometer only mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 CTRL_REG7_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 CTRL_REG7_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Low pass cutoff frequency in high resolution mode (HR = 1) . . . . . . . . . . . . . . . . . . . . . . . 53 CTRL_REG8 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 CTRL_REG8 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 CTRL_REG9 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 CTRL_REG9 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 CTRL_REG10 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 CTRL_REG10 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 INT_GEN_SRC_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 INT_GEN_SRC_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 STATUS_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 STATUS_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 FIFO_CTRL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 FIFO_CTRL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 FIFO mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 FIFO_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 FIFO_SRC register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 FIFO_SRC example: OVR/FSS details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 INT_GEN_CFG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 INT_GEN_CFG_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 INT_GEN_THS_XH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 INT_GEN_THS_XL_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 INT_GEN_THS_X_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 INT_GEN_THS_YH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 INT_GEN_THS_YL_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 INT_GEN_THS_Y_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 INT_GEN_THS_ZH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 INT_GEN_THS_ZL_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 INT_GEN_THS_Z_G register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 INT_GEN_DUR_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 INT_GEN_DUR_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 DocID025715 Rev 3 7/72 72 List of tables Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. Table 108. Table 109. Table 110. Table 111. Table 112. Table 113. Table 114. Table 115. Table 116. Table 117. Table 118. Table 119. Table 120. Table 121. Table 122. Table 123. Table 124. Table 125. Table 126. Table 127. Table 128. Table 129. Table 130. Table 131. Table 132. 8/72 LSM9DS1 OFFSET_X_REG_L_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 OFFSET_X_REG_H_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 OFFSET_Y_REG_L_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 OFFSET_Y_REG_H_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 OFFSET_Z_REG_L_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 OFFSET_Z_REG_H_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 WHO_AM_I_M register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 CTRL_REG1_M register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 CTRL_REG1_M register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 X and Y axes operative mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Output data rate configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 CTRL_REG2_M register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 CTRL_REG2_M register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Full-scale selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 CTRL_REG3_M register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 CTRL_REG3_M register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 System operating mode selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 CTRL_REG4_M register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 CTRL_REG4_M register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Z-axis operative mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 CTRL_REG5_M register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 CTRL_REG5_M register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 STATUS_REG_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 STATUS_REG_M register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 INT_CFG_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 INT_CFG_M register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 INT_SRC_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 INT_SRC_M register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 INT_THS_L_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 INT_THS_H_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 LGA (3.5x3x1 mm) 24-lead package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 DocID025715 Rev 3 LSM9DS1 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Recommended power-up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 I2C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Switching operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Multiple reads: accelerometer only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Multiple reads: accelerometer and gyroscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Accelerometer and gyroscope digital block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Magnetometer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Continuous-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Bypass-to-Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 LSM9DS1 electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Accelerometer and gyroscope read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Accelerometer and gyroscope SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Multiple byte SPI read protocol (2-byte example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Accelerometer and gyroscope SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Multiple byte SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Accelerometer and gyroscope SPI read protocol in 3-wire mode. . . . . . . . . . . . . . . . . . . . 33 Magnetic sensor read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Magnetic sensor SPI read protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Multiple byte SPI read protocol (2-byte example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Magnetic sensor SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Multiple byte SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 INT_SEL and OUT_SEL configuration gyroscope block diagram . . . . . . . . . . . . . . . . . . . 47 Wait bit disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Wait bit enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 LGA (3.5x3x1 mm) 24-lead package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 DocID025715 Rev 3 9/72 72 Pin description 1 LSM9DS1 Pin description Figure 1. Pin connections = 7239,(: ; < 7 *1' *1' &$3 9'' 9'' & 9'',2 5(6 ',5(&7,2162)7+( '(7(&7$%/( $&&(/(5$7,216 = 5(6 ; 5(6 7239,(: ',5(&7,2162)7+( '(7(&7$%/( 0$*1(7,&),(/'6 10/72 DocID025715 Rev 3 '5'<B0 ,17B$* ,17B0 '(1B$* < ,17B$* 7 6&/63& 9'',2 6'$6',6'2 6'2B$* %27720 9,(: 5(6 5(6 &6B0 &6B$* 6'2B0 7 7239,(: ',5(&7,2162)7+( '(7(&7$%/( $1*8/$55$7(6 LSM9DS1 Pin description Table 2. Pin description Pin # Name 1 VDDIO(1) Power supply for I/O pins 2 SCL/SPC I2C serial clock (SCL) / SPI serial port clock (SPC) 3 VDDIO(2) Power supply for I/O pins 4 Function I2C serial data (SDA) SDA/SDI/SDO SPI serial data input (SDI) 3-wire interface serial data output (SDO) 5 SDO_A/G SPI serial data output (SDO) for the accelerometer and gyroscope I2C least significant bit of the device address (SA0) for the accelerometer and gyroscope 6 SDO_M SPI serial data output (SDO) for the magnetometer I2C least significant bit of the device address (SA0) for the magnetometer CS_A/G SPI enable I2C/SPI mode selection for the accelerometer and gyroscope (1: SPI idle mode / I2C communication enabled; 0: SPI communication mode / I2C disabled) 7 SPI enable I2C/SPI mode selection for the magnetometer (1: SPI idle mode / I2C communication enabled; 0: SPI communication mode / I2C disabled) 8 CS_M 9 DRDY_M 10 INT_M 11 INT1_A/G Accelerometer and gyroscope interrupt 1 12 INT2_A/G Accelerometer and gyroscope interrupt 2 13 DEN_A/G Accelerometer and gyroscope data enable 14 RES Reserved. Connected to GND. 15 RES Reserved. Connected to GND. 16 RES Reserved. Connected to GND. 17 RES Reserved. Connected to GND. 18 RES Reserved. Connected to GND. 19 GND 0 V supply 20 GND 0 V supply 21 CAP Connected to GND with ceramic capacitor(3) 22 VDD(4) Power supply 23 VDD(5) Power supply 24 C1 Magnetic sensor data ready Magnetic sensor interrupt Capacitor connection (C1 = 100 nF) 1. Recommended 100 nF filter capacitor. 2. Recommended 100 nF filter capacitor. 3. 10 nF (±10%), 16 V. 1 nF minimum value has to be guaranteed under 11 V bias condition. 4. Recommended 100 nF plus 10 µF capacitors. 5. Recommended 100 nF plus 10 µF capacitors. DocID025715 Rev 3 11/72 72 Module specifications LSM9DS1 2 Module specifications 2.1 Sensor characteristics @ Vdd = 2.2 V, T = 25 °C unless otherwise noted(a) Table 3. Sensor characteristics Symbol Parameter Test conditions Min. Typ.(1) Max. Unit ±2 LA_FS ±4 Linear acceleration measurement range g ±8 ±16 ±4 M_FS ±8 Magnetic measurement range gauss ±12 ±16 G_FS LA_So M_GN G_So ±245 Angular rate measurement range Linear acceleration sensitivity Magnetic sensitivity Angular rate sensitivity ±500 dps ±2000 Linear acceleration FS = ±2 g 0.061 Linear acceleration FS = ±4 g 0.122 Linear acceleration FS = ±8 g 0.244 Linear acceleration FS = ±16 g 0.732 Magnetic FS = ±4 gauss 0.14 Magnetic FS = ±8 gauss 0.29 Magnetic FS = ±12 gauss 0.43 Magnetic FS = ±16 gauss 0.58 Angular rate FS = ±245 dps 8.75 Angular rate FS = ±500 dps 17.50 Angular rate FS = ±2000 dps 70 mg/LSB mgauss/ LSB mdps/ LSB LA_TyOff Linear acceleration typical FS = ±8 g zero-g level offset accuracy(2) ±90 mg M_TyOff Zero-gauss level (3) FS = ±4 gauss ±1 gauss G_TyOff Angular rate typical zero-rate level (4) FS = ±2000 dps ±30 dps Magnetic disturbance field Zero-gauss offset starts to degrade M_DF Top Operating temperature range -40 50 gauss +85 °C 1. Typical specifications are not guaranteed 2. Typical zero-g level offset value after soldering 3. Typical zero-gauss level value after test and trimming 4. Typical zero rate level offset value after MSL3 preconditioning a. The product is factory calibrated at 2.2 V. The operational power supply range is from 1.9 V to 3.6 V. 12/72 DocID025715 Rev 3 LSM9DS1 2.2 Module specifications Electrical characteristics @ Vdd = 2.2 V, T = 25 °C unless otherwise noted(b) Table 4. Electrical characteristics Symbol Vdd Test conditions Parameter Min. Typ.(1) Max. Unit V Supply voltage 1.9 3.6 Vdd_IO Module power supply for I/O 1.71 Vdd+0.1 Idd_XM Current consumption of the accelerometer and magnetic sensor in normal mode (2) 600 µA Gyroscope current consumption in normal mode(3) 4.0 mA Idd_G Top Trise Twait Operating temperature range Time for power supply rising(4) Time delay between Vdd_IO and Vdd (4) -40 +85 °C 0.01 100 ms 0 10 ms 1. Typical specifications are not guaranteed 2. Magnetic sensor in high-resolution mode (ODR = 20 Hz), accelerometer sensor in normal mode, gyroscope in power-down mode 3. Accelerometer and magnetic sensor in power-down mode 4. Please refer to Section 2.2.1: Recommended power-up sequence for more details. b. LSM9DS1 is factory calibrated at 2.2 V. DocID025715 Rev 3 13/72 72 Module specifications 2.2.1 LSM9DS1 Recommended power-up sequence For the power-up sequence please refer to the following figure, where: • Trise is the time for the power supply to rise from 10% to 90% of its final value • Twait is the delay between the end of the Vdd_IO ramp (90% of its final value) and the start of the Vdd ramp Figure 2. Recommended power-up sequence 7ULVH 9GGB,2 9 7ZDLW 9GG 9 7ULVH 2.3 Temperature sensor characteristics @ Vdd = 2.2 V, T = 25 °C unless otherwise noted (c) Table 5. Temperature sensor characteristics Symbol Parameter TODR Temperature refresh rate TSen Temperature sensitivity(3) Top Test condition Min. Gyro OFF(2) Typ.(1) Max. 50 Gyro ON Hz 59.5 16 Operating temperature range -40 LSB/°C +85 1. Typical specifications are not guaranteed. 2. When the accelerometer ODR is set to 10 Hz and the gyroscope part is turned off, the TODR value is 10 Hz. 3. The output of the temperature sensor is 0 (typ.) at 25 °C c. 14/72 The product is factory calibrated at 2.2 V. DocID025715 Rev 3 Unit °C LSM9DS1 Module specifications 2.4 Communication interface characteristics 2.4.1 SPI - serial peripheral interface Subject to general operating conditions for Vdd and Top. Table 6. SPI slave timing values Value(1) Symbol Parameter Unit Min tc(SPC) SPI clock cycle fc(SPC) SPI clock frequency tsu(CS) CS setup time 5 th(CS) CS hold time 20 tsu(SI) SDI input setup time 5 th(SI) SDI input hold time 15 tv(SO) SDO valid output time th(SO) SDO output hold time tdis(SO) SDO output disable time Max 100 ns 10 MHz ns 50 5 50 1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production Figure 3. SPI slave timing diagram Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports. DocID025715 Rev 3 15/72 72 Module specifications 2.4.2 LSM9DS1 I2C - inter-IC control interface Subject to general operating conditions for Vdd and Top. Table 7. I2C slave timing values Symbol f(SCL) I2C Standard mode(1) Parameter SCL clock frequency I2C Fast mode (1) Min Max Min Max 0 100 0 400 tw(SCLL) SCL clock low time 4.7 1.3 tw(SCLH) SCL clock high time 4.0 0.6 tsu(SDA) SDA setup time 250 100 th(SDA) SDA data hold time 0 th(ST) START condition hold time 4 0.6 tsu(SR) Repeated START condition setup time 4.7 0.6 tsu(SP) STOP condition setup time 4 0.6 4.7 1.3 tw(SP:SR) Bus free time between STOP and START condition 3.45 ns 0.9 Figure 4. I2C slave timing diagram 5(3($7(' 67$57 67$57 WVX65 WZ6365 6&/ Note: 16/72 WZ6&// 67$57 WK6'$ WVX63 WK67 WZ6&/+ Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports DocID025715 Rev 3 µs µs 1. Data based on standard I2C protocol requirement, not tested in production. WVX6'$ kHz µs 0 6'$ Unit 6723 LSM9DS1 2.5 Module specifications Absolute maximum ratings Stresses above those listed as “Absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 8. Absolute maximum ratings Symbol Vdd Vdd_IO Vin Note: Ratings Maximum value Unit Supply voltage -0.3 to 4.8 V I/O pins supply voltage -0.3 to 4.8 V 0.3 to Vdd_IO +0.3 V 3,000 for 0.5 ms g 10,000 for 0.1 ms g 1000 gauss 2 kV -40 to +125 °C Input voltage on any control pin (including CS_A/G, CS_M, SCL/SPC, SDA/SDI/SDO, SDO_A/G, SDO_M) AUNP Acceleration (any axis) MEF Maximum exposed field ESD Electrostatic discharge protection (HBM) TSTG Storage temperature range Supply voltage on any pin should never exceed 4.8 V. This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part. This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part. DocID025715 Rev 3 17/72 72 Module specifications 2.6 Terminology 2.6.1 Sensitivity LSM9DS1 Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration to the device. Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors. An angular rate gyroscope is device that produces a positive-going digital output for counterclockwise rotation around the axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time. Magnetic sensor sensitivity describes the gain of the sensor and can be determined, for example, by applying a magnetic field of 1 gauss to it. 2.6.2 Zero-g, zero-rate and zero-gauss level Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g on both the X-axis and Y-axis, whereas the Z-axis will measure 1 g. Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as two’s complement number). A deviation from the ideal value in this case is called zero-g offset. Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see “Linear acceleration zero-g level change vs. temperature” in Table 3. The zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors. Zero-rate level describes the actual output signal if there is no angular rate present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore the zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time. Zero-gauss level offset (M_TyOff) describes the deviation of an actual output signal from the ideal output if no magnetic field is present. 18/72 DocID025715 Rev 3 LSM9DS1 LSM9DS1 functionality 3 LSM9DS1 functionality 3.1 Operating modes In the LSM9DS1 the accelerometer and gyroscope have two operating modes available: only accelerometer active and gyroscope in power down or both accelerometer and gyroscope sensors active at the same ODR. Switching from one mode to the other requires one write operation: writing to CTRL_REG6_XL (20h), the accelerometer operates in normal mode and the gyroscope is powered down, writing to CTRL_REG1_G (10h) both accelerometer and gyroscope are activated at the same ODR. Figure 5 depicts both modes of operation from power down. Figure 5. Switching operating modes :ULWH&75/B5(*B;/ $FFHOHURPHWHU 2QO\ 3RZHU'RZQ :ULWH&75/B5(*B* :LWK&75/B5(*B;/ 3' :ULWH&75/B5(*B* $FFHOHURPHWHU *\UR The magnetic sensor has three operating modes available: power-down (default), continuous-conversion mode and single-conversion mode. Switching from power-down to the other modes requires one write operation to CTRL_REG3_M (22h), setting values in the MD[1:0] bits. For the output of the magnetic data compensated by temperature, the TEMP_COMP bit in CTRL_REG1_M (20h) must be set to ‘1’. 3.2 Gyroscope power modes In the LSM9DS1, the gyroscope can be configured in three different operating modes: power-down, low-power and normal mode. Low-power mode is available for lower ODR (14.9, 59.5, 119 Hz) while for greater ODR (238, 476, 952 Hz) the device is automatically in normal mode. Table summarizes the ODR configuration (ODR_G[2:0] bits set in CTRL_REG1_G (10h)) and corresponding power modes. To enable low-power mode, the LP_mode bit in CTRL_REG3_G (12h) has to be set to ‘1’. Low-power mode allows reaching low power consumption while maintaining the device always on, refer to Table 10. DocID025715 Rev 3 19/72 72 LSM9DS1 functionality LSM9DS1 Table 9. Gyroscope operating modes ODR_G [2:0] ODR [Hz] Power mode 000 Power down Power-down 001 14.9 Low-power/Normal mode 010 59.5 Low-power/Normal mode 011 119 Low-power/Normal mode 100 238 Normal mode 101 476 Normal mode 110 952 Normal mode Table 10. Operating mode current consumption ODR [Hz] Current consumption(1) Power mode [mA] 14.9 Low-power 1.9 59.5 Low-power 2.4 119 Low-power 3.1 238 Normal mode 4.3 476 Normal mode 4.3 952 Normal mode 4.3 1. Typical values of gyroscope and accelerometer current consumption are based on characterization data. Table 11. Accelerometer turn-on time BW = 400 Hz(1) ODR [Hz] BW = 200 Hz(1) BW = 100 Hz(1) BW = 50 Hz(1) 14.9 0 0 0 0 59.5 0 0 0 0 119 1 1 1 2 238 1 1 2 4 476 1 2 4 7 952 2 4 7 14 1. The table contains the number of samples to be discarded after switching between power-down mode and normal mode. 20/72 DocID025715 Rev 3 LSM9DS1 LSM9DS1 functionality Table 12. Gyroscope turn-on time LPF1 only(1) ODR [Hz] LPF1 and LPF2(1) 14.9 2 LPF2 not available 59.5 or 119 3 13 238 4 14 476 5 15 952 8 18 1. The table contains the number of samples to be discarded after switching between low-power mode and normal mode. 3.3 Accelerometer and gyroscope multiple reads (burst) When only accelerometer is activated and the gyroscope is in power down, starting from OUT_X_XL (28h - 29h) multiple reads can be performed. Once OUT_Z_XL (2Ch - 2Dh) is read, the system automatically restarts from OUT_X_XL (28h - 29h) (see Figure 6). Figure 6. Multiple reads: accelerometer only 5HDG 5HDGQ [\] 287B7(03 287B;B;/ 287B<B;/ 287B=B;/ $% &' [\] 287B;B;/ 287B<B;/ 287B=B;/ $% &' When both accelerometer and gyroscope sensors are activated at the same ODR, starting from OUT_X_G (18h - 19h) multiple reads can be performed. Once OUT_Z_XL (2Ch - 2Dh) is read, the system automatically restarts from OUT_X_G (18h - 19h) (see Figure 7). Figure 7. Multiple reads: accelerometer and gyroscope 5HDG 5HDGQ [\] 287B7(03 287B;B* 287B<B* 287B=B* 287B;B;/ 287B<B;/ 287B=B;/ $% $% &' &' [\] 287B;B* 287B<B* 287B=B* 287B;B;/ 287B<B;/287B=B;/ $% $% &' &' DocID025715 Rev 3 21/72 72 LSM9DS1 functionality 3.4 LSM9DS1 Block diagram Figure 8. Accelerometer and gyroscope digital block diagram +5 +3,6 /3) ;/ ,QWHUUXSW *HQHUDWRU ;/ /3) ;/ $'& ;/ +3) ;/ )'6 287B6(/ 'DWD5HJ ),)2 $'& *\UR /3) *\UR +3) *\UR ,&63, ;/*\UR /3) *\UR 65&5HJLVWHUV &)*5HJLVWHUV +3B(1 ,QWHUUXSW *HQHUDWRU *\UR ,17B6(/ Figure 9. Magnetometer block diagram ; < &+$5*( $03/,),(5 = ,0 $' &219(57(5 08; &21752/ /2*,& = < ; 75,00,1* &,5&8,76 22/72 &/2&. &21752//2*,& DocID025715 Rev 3 ,17(55837 *(1(5$725 ,&63, IRUPDJRQO\ LSM9DS1 3.5 LSM9DS1 functionality Accelerometer and gyroscope FIFO The LSM9DS1 embeds 32 slots of 16-bit data FIFO for each of the gyroscope’s three output channels, yaw, pitch and roll, and 16-bit data FIFO for each of the accelerometer’s three output channels, X, Y and Z. This allows consistent power saving for the system since the host processor does not need to continuously poll data from the sensor, but it can wake up only when needed and burst the significant data out from the FIFO. This buffer can work accordingly to five different modes: Bypass mode, FIFO-mode, Continuous mode, Continuous-to-FIFO mode and Bypass-to-Continuous. Each mode is selected by the FMODE [2:0] bits in the FIFO_CTRL (2Eh) register. Programmable FIFO threshold status, FIFO overrun events and the number of unread samples stored are available in the FIFO_SRC (2Fh) register and can be set to generate dedicated interrupts on the INT1_A/G pin in the INT1_CTRL (0Ch) register and on the INT2_A/G pin in the INT2_CTRL (0Dh) register. FIFO_SRC (2Fh)(FTH) goes to '1' when the number of unread samples (FIFO_SRC (2Fh) (FSS5:0)) is greater than or equal to FTH [4:0] in FIFO_CTRL (2Eh). If FIFO_CTRL (2Eh) (FTH[4:0]) is equal to 0, FIFO_SRC (2Fh)(FTH) goes to ‘0’. FIFO_SRC (2Fh)(OVRN) is equal to '1' if a FIFO slot is overwritten. FIFO_SRC (2Fh)(FSS [5:0]) contains stored data levels of unread samples. When FSS [5:0] is equal to ‘000000’ FIFO is empty, when FSS [5:0] is equal to ‘100000’ FIFO is full and the unread samples are 32. The FIFO feature is enabled by writing '1' in CTRL_REG9 (23h) (FIFO_EN). To guarantee the correct acquisition of data during the switching into and out of FIFO mode, the first sample acquired must be discarded. 3.5.1 Bypass mode In Bypass mode (FIFO_CTRL (2Eh)(FMODE [2:0]= 000), the FIFO is not operational and it remains empty. Bypass mode is also used to reset the FIFO when in FIFO mode. As described in Figure 10, for each channel only the first address is used. When new data is available the old data is overwritten. Figure 10. Bypass mode xi,yi,zi empty x0 y0 z0 x1 y1 z1 x2 y2 z2 x31 y31 z31 DocID025715 Rev 3 23/72 72 LSM9DS1 functionality 3.5.2 LSM9DS1 FIFO mode In FIFO mode (FIFO_CTRL (2Eh) (FMODE [2:0] = 001) data from the output channels are stored in the FIFO until it is overwritten. To reset FIFO content, Bypass mode should be selected by writing FIFO_CTRL (2Eh) (FMODE [2:0]) to '000'. After this reset command, it is possible to restart FIFO mode by writing FIFO_CTRL (2Eh) (FMODE [2:0]) to '001'. The FIFO buffer memorizes 32 levels of data but the depth of the FIFO can be resized by setting the STOP_ON_FTH bit in CTRL_REG9 (23h). If the STOP_ON_FTH bit is set to '1', FIFO depth is limited to FIFO_CTRL (2Eh)(FTH [4:0]) + 1 data. A FIFO threshold interrupt can be enabled (INT_OVR bit in INT1_CTRL (0Ch) ) in order to be raised when the FIFO is filled to the level specified by the FTH[4:0] bits of FIFO_CTRL (2Eh). When a FIFO threshold interrupt occurs, the first data has been overwritten and the FIFO stops collecting data from the input channels. Figure 11. FIFO mode [L\L]L 3.5.3 [ \ ] [ \ ] [ \ ] [ \ ] Continuous mode Continuous mode (FIFO_CTRL (2Eh)(FMODE[2:0] = 110) provides continuous FIFO update: as new data arrives the older is discarded. A FIFO threshold flag FIFO_SRC (2Fh)(FTH) is asserted when the number of unread samples in FIFO is greater than or equal to FIFO_CTRL (2Eh)(FTH4:0). It is possible to route FIFO_SRC (2Fh)(FTH) to the INT1_A/G pin by writing in register INT1_CTRL (0Ch) (INT1_FTH) = '1', or to the INT2_A/G pin by writing in register INT2_CTRL (0Dh) (INT2_FTH) = '1'. A full-flag interrupt can be enabled, (INT1_CTRL (0Ch) (INT_ FSS5)= '1’) when the FIFO becomes saturated and in order to read the contents all at once. If an overrun occurs, the oldest sample in FIFO is overwritten and the OVRN flag in FIFO_SRC (2Fh) is asserted. In order to empty the FIFO before it is full it is also possible to pull from FIFO the number of unread samples available in FIFO_SRC (2Fh) (FSS[5:0]). 24/72 DocID025715 Rev 3 LSM9DS1 LSM9DS1 functionality Figure 12. Continuous mode xi,yi,zi 3.5.4 x0 y0 z0 x1 y1 z1 x2 y2 z2 x30 y30 z30 x31 y31 z31 Continuous-to-FIFO mode In Continuous-to-FIFO mode (FIFO_CTRL (2Eh)(FMODE [2:0] = 011), FIFO behavior changes according to the INT_GEN_SRC_XL (26h)(IA_XL) bit. When the INT_GEN_SRC_XL (26h)(IA_XL) bit is equal to '1', FIFO operates in FIFO-mode, when the INT_GEN_SRC_XL (26h)(IA_XL) bit is equal to '0', FIFO operates in Continuous mode. The interrupt generator should be set to the desired configuration by means of INT_GEN_CFG_XL (06h), INT_GEN_THS_X_XL (07h), INT_GEN_THS_Y_XL (08h) and INT_GEN_THS_Z_XL (09h). The CTRL_REG4 (1Eh)(LIR_XL) bit should be set to '1' in order to have latched interrupt. Figure 13. Continuous-to-FIFO mode xi,yi,zi x0 y0 z0 x1 y1 z1 x2 y2 z2 x30 y30 z30 x31 y31 z31 xi,yi,zi Continuous Mode x0 y0 z0 x1 y1 z1 x2 y2 z2 x31 y31 z31 FIFO Mode Trigger event DocID025715 Rev 3 25/72 72 LSM9DS1 functionality 3.5.5 LSM9DS1 Bypass-to-Continuous mode In Bypass-to-Continuous mode (FIFO_CTRL (2Eh)(FMODE[2:0] = '100'), data measurement storage inside FIFO operates in Continuous mode when INT_GEN_SRC_XL (26h)(IA_XL) is equal to '1', otherwise FIFO content is reset (Bypass mode). The interrupt generator should be set to the desired configuration by means of INT_GEN_CFG_XL (06h), INT_GEN_THS_X_XL (07h), INT_GEN_THS_Y_XL (08h) and INT_GEN_THS_Z_XL (09h). The CTRL_REG4 (1Eh)(LIR_XL) bit should be set to '1' in order to have latched interrupt. Figure 14. Bypass-to-Continuous mode xi,yi,zi empty x0 y0i z0 x1 y1 z1 x2 y2 z2 x31 y31 xi,yi,zi y0 z0 x1 y1 z1 x2 y2 z2 x30 y30 z30 x31 y31 z31 z31 Bypass Mode Continuous Mode Trigger event 26/72 x0 DocID025715 Rev 3 LSM9DS1 4 Application hints Application hints Figure 15. LSM9DS1 electrical connections 9GG & & Q) *1' ȝ) *1' & Q)9 & 9GGB,2 Q) *1' *1' & 5(6 *1' *1' &$3 9'' & *1' 9'' 9''B,2 Q) 5(6 6&/63& 9''B,2 5(6 7239,(: 6'$6',6'2 5(6 5(6 6'2B$* '(1B$* ,17B$* ,17B$* ,17B0 &6B0 '5'<B0 &6B$* 6'2B0 *1' &PXVWJXDUDQWHHQ)YDOXHXQGHU 9ELDVFRQGLWLRQ 4.1 External capacitors The device core is supplied through the Vdd line. Power supply decoupling capacitors (C2, C3 = 100 nF ceramic, C4 = 10 µF Al) should be placed as near as possible to the supply pin of the device (common design practice). Capacitor C1 (100 nF) should be a capacitor with low ESR value and should be placed as near as possible to the C1 pin. All voltage and ground supplies must be present at the same time to achieve proper behavior of the IC (refer to Figure 15). DocID025715 Rev 3 27/72 72 Digital interfaces 5 LSM9DS1 Digital interfaces The registers embedded inside the LSM9DS1 may be accessed through both the I2C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. The serial interfaces are mapped onto the same pins. To select/exploit the I2C interface, the CS line must be tied high (i.e connected to Vdd_IO). Table 13. Serial interface pin description Pin name Pin description CS_A/G, CS_M SPI enable I2C/SPI mode selection (1: SPI idle mode / I2C communication enabled; 0: SPI communication mode / I2C disabled) SCL/SPC SDA/SDI/SDO SDO_A/G, SDO_M 5.1 I2C Serial Clock (SCL) SPI Serial Port Clock (SPC) I2C Serial Data (SDA) SPI Serial Data Input (SDI) 3-wire Interface Serial Data Output (SDO) SPI Serial Data Output (SDO) I2C less significant bit of the device address I2C serial interface The LSM9DS1 I2C is a bus slave. The I2C is employed to write the data to the registers, whose content can also be read back. The relevant I2C terminology is provided in the table below. Table 14. I2C terminology Term Transmitter Receiver Description The device which sends data to the bus The device which receives data from the bus Master The device which initiates a transfer, generates clock signals and terminates a transfer Slave The device addressed by the master There are two signals associated with the I2C bus: the serial clock line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be connected to Vdd_IO through an external pullup resistor. When the bus is free, both the lines are high. The I2C interface is implemented with fast mode (400 kHz) I2C standards as well as with the standard mode. In order to disable the I2C block for accelerometer and gyroscope the I2C_DISABLE bit must be written to ‘1’ in CTRL_REG9 (23h), while for magnetometer the I2C_DISABLE bit must be written to ‘1’ in CTRL_REG3_M (22h). 28/72 DocID025715 Rev 3 LSM9DS1 Digital interfaces I2C operation 5.1.1 The transaction on the bus is started through a START (ST) signal. A START condition is defined as a high-to-low transition on the data line while the SCL line is held high. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master. Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line low so that it remains stable low during the high period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received. The I2C embedded inside the LSM9DS1 behaves like a slave device and the following protocol must be adhered to. In the I2C of the accelerometer and gyroscope sensor, after the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted. The 7 LSb represent the actual register address while the CTRL_REG8 (22h) (IF_ADD_INC) bit defines the address increment. In the I2C of the magnetometer sensor, after the START condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted. The 7 LSb represent the actual register address while the MSB enables the address auto increment. The SUB (register address) is automatically increased to allow multiple data read/write. Table 15. Transfer when master is writing one byte to slave Master ST SAD + W SUB Slave DATA SAK SP SAK SAK Table 16. Transfer when master is writing multiple bytes to slave Master ST SAD + W SUB Slave SAK DATA DATA SAK SAK SP SAK Table 17. Transfer when master is receiving (reading) one byte of data from slave Master ST SAD + W Slave SUB SAK SR SAD + R SAK NMAK SAK SP DATA Table 18. Transfer when master is receiving (reading) multiple bytes of data from slave Master ST SAD+W Slave SUB SAK SR SAD+R SAK MAK SAK DATA MAK DATA NMAK SP DATA Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a receiver can’t receive another complete byte of data until it has performed DocID025715 Rev 3 29/72 72 Digital interfaces LSM9DS1 some other function, it can hold the clock line, SCL low to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left high by the slave. The master can then abort the transfer. A low-to-high transition on the SDA line while the SCL line is high is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition. In the presented communication format MAK is Master acknowledge and NMAK is No Master Acknowledge. Default address: The slave address is completed with a Read/Write bit. If the bit was ‘1’ (Read), a repeated START (SR) condition must be issued after the two sub-address bytes. If the bit is ‘0’ (Write) the master will transmit to the slave with direction unchanged. Table 19 and Table 20 explain how the SAD+Read/Write bit pattern is composed, listing all the possible configurations. Table 19. Accelerometer and gyroscope SAD+Read/Write patterns Command SAD[6:1] SAD[0] = SA0 R/W SAD+R/W Read 110101 0 1 11010101 (D5h) Write 110101 0 0 11010100 (D4h) Read 110101 1 1 11010111 (D7h) Write 110101 1 0 11010110 (D6h) Table 20. Magnetic sensor SAD+Read/Write patterns 30/72 Command SAD[6:2] SAD[1] = SDO/SA1 SAD[0] R/W Read 00111 0 0 1 00111001 (39h) Write 00111 0 0 0 00111000 (38h) Read 00111 1 0 1 00111101 (3Dh) Write 00111 1 0 0 00111100 (3Ch) DocID025715 Rev 3 SAD+R/W LSM9DS1 5.2 Digital interfaces Accelerometer and gyroscope SPI bus interface The LSM9DS1 accelerometer and gyroscope SPI is a bus slave. The SPI allows to write and read the registers of the device. The Serial Interface connects to applications using 4 wires: CS_A/G, SPC, SDI and SDO_A/G. Figure 16. Accelerometer and gyroscope read and write protocol &6B$* &6 63& 6', ', ', ', ', ', ', ', ', 5: $' $' $' $' $' $' $' 6'2B$* 6'2 '2 '2 '2 '2 '2 '2 '2 '2 CS_A/G is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. SPC is the serial port clock and it is controlled by the SPI master. It is stopped high when CS_A/G is high (no transmission). SDI and SDO_A/G are respectively the serial port data input and output. Those lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC. Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge of CS_A/G while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of CS_A/G. bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip will drive SDO_A/G at the start of bit 8. bit 1-7: address AD(6:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first). bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). In multiple read/write commands further blocks of 8 clock periods will be added. When the CTRL_REG8 (22h) (IF_ADD_INC) bit is ‘0’ the address used to read/write data remains the same for every block. When the CTRL_REG8 (22h)(IF_ADD_INC) bit is ‘1’, the address used to read/write data is increased at every block. The function and the behavior of SDI and SDO_A/G remain unchanged. DocID025715 Rev 3 31/72 72 Digital interfaces 5.2.1 LSM9DS1 SPI read Figure 17. Accelerometer and gyroscope SPI read protocol &6B$* &6 63& 6', 5: 6'2B$* 6'2 $' $' $' $' $' $' $' '2 '2 '2 '2 '2 '2 '2 '2 The SPI read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one. bit 0: READ bit. The value is 1. bit 1-7: address AD(6:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first). bit 16-... : data DO(...-8). Further data in multiple byte reads. Figure 18. Multiple byte SPI read protocol (2-byte example) &6 &6B$* 63& 6', 5: 6'2B$* $' $' $' $' $' $' $' 6'2 '2 '2 '2 '2 '2 '2 '2 '2 '2'2'2'2'2'2'2 '2 32/72 DocID025715 Rev 3 LSM9DS1 5.2.2 Digital interfaces SPI write Figure 19. Accelerometer and gyroscope SPI write protocol &6B$* &6 63& 6', ', ', ', ', ', ', ', ', 5: $' $' $' $' $' $' $' The SPI write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one. bit 0: WRITE bit. The value is 0. bit 1 -7: address AD(6:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first). bit 16-... : data DI(...-8). Further data in multiple byte writes. Figure 20. Multiple byte SPI write protocol (2-byte example) &6B$* &6 63& 6', ', ', ', ', ', ', ', ', ',',',',',',', ', 5: $' $' $' $' $' $' $' 5.2.3 SPI read in 3-wire mode 3-wire mode is entered by setting the CTRL_REG8 (22h)(SIM) bit equal to ‘1’ (SPI serial interface mode selection). Figure 21. Accelerometer and gyroscope SPI read protocol in 3-wire mode &6B$* &6 63& 6',2 '2 '2 '2 '2 '2 '2 '2 '2 5: $' $' $' $' $' $' $' The SPI read command is performed with 16 clock pulses: bit 0: READ bit. The value is 1. bit 1-7: address AD(6:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). A multiple read command is also available in 3-wire mode. DocID025715 Rev 3 33/72 72 Digital interfaces 5.3 LSM9DS1 Magnetic sensor SPI bus interface The LSM9DS1 magnetic sensor SPI is a bus slave. The SPI allows writing and reading the registers of the device. The serial interface connects to applications using 4 wires: CS_M, SPC, SDI and SDO_M. Figure 22. Magnetic sensor read and write protocol &6B0 &6 63& 6', 5: ', ', ', ', ', ', ', ', 06 $' $' $' $' $' $' 6'2B0 6'2 '2 '2 '2 '2 '2 '2 '2 '2 CS_M is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. SPC is the serial port clock and it is controlled by the SPI master. It is stopped high when CS_M is high (no transmission). SDI and SDO_M are respectively the serial port data input and output. Those lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC. Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge of CS_M while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of CS_M. bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip will drive SDO_M at the start of bit 8. bit 1: MS bit. When 0, the address will remain unchanged in multiple read/write commands. When 1, the address is auto-incremented in multiple read/write commands. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first). bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). In multiple read/write commands further blocks of 8 clock periods will be added. When the MS bit is ‘0’, the address used to read/write data remains the same for every block. When the MS bit is ‘1’, the address used to read/write data is increased at every block. The function and the behavior of SDI and SDO_M remain unchanged. 34/72 DocID025715 Rev 3 LSM9DS1 5.3.1 Digital interfaces SPI read Figure 23. Magnetic sensor SPI read protocol &6B0 &6 63& 6', 5: 06 $' $' $' $' $' $' 6'2B0 6'2 '2 '2 '2 '2 '2 '2 '2 '2 The SPI read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one. bit 0: READ bit. The value is 1. bit 1: MS bit. When 0, does not increment the address; when 1, increments the address in multiple reads. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first). bit 16-... : data DO(...-8). Further data in multiple byte reads. Figure 24. Multiple byte SPI read protocol (2-byte example) CS_M CS SPC SDI RW SDO_M M S A D5 A D4 AD 3 A D2 A D1 A D0 SD O DO 7 DO 6 DO 5 DO 4 DO 3 DO 2 DO 1 DO 0 DocID025715 Rev 3 DO 15 DO 14 DO 13 DO 12 DO 11 DO 10 D O9 D O8 35/72 72 Digital interfaces 5.3.2 LSM9DS1 SPI write Figure 25. Magnetic sensor SPI write protocol CS_M CS SPC SDI D I7 D I6 D I5 D I4 DI3 DI2 DI1 DI0 RW MS AD5 AD 4 AD 3 AD2 AD 1 AD0 The SPI write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one. bit 0: WRITE bit. The value is 0. bit 1: MS bit. When 0, does not increment the address; when 1, increments the address in multiple writes. bit 2 -7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first). bit 16-... : data DI(...-8). Further data in multiple byte writes. Figure 26. Multiple byte SPI write protocol (2-byte example) CS_M CS SPC SPC SDI SDI DI7 D I6 DI5 D I4 DI3 DI2 DI1 DI0 DI15 D I1 4 RW MS AD5 AD4 AD3 AD2 AD1 AD 0 36/72 DocID025715 Rev 3 DI13 D I1 2 DI11 DI10 DI9 DI8 LSM9DS1 5.3.3 Digital interfaces SPI read in 3-wire mode 3-wire mode is entered by setting the SIM bit to ‘1’ (SPI serial interface mode selection) in CTRL_REG3_M (22h). When 3-wire mode is used, the SDO_M pin has to be connected to GND or Vdd_IO. Figure 27. SPI read protocol in 3-wire mode CS_M CS SPC SDI/O D O7 D O6 D O5 DO4 DO3 DO2 DO1 DO0 RW MS AD5 AD 4 AD 3 AD2 AD1 AD 0 The SPI read command is performed with 16 clock pulses: bit 0: READ bit. The value is 1. bit 1: MS bit. When 0, does not increment the address; when 1, increments the address in multiple reads. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). A multiple read command is also available in 3-wire mode. DocID025715 Rev 3 37/72 72 Register mapping 6 LSM9DS1 Register mapping The table given below provides a list of the 8/16-bit registers embedded in the device and the corresponding addresses. Table 21. Accelerometer and gyroscope register address map Register address Name 38/72 Type Default Hex Binary Reserved -- 00-03 -- -- ACT_THS r/w 04 00000100 00000000 ACT_DUR r/w 05 00000101 00000000 INT_GEN_CFG_XL r/w 06 00000110 00000000 INT_GEN_THS_X_XL r/w 07 00000111 00000000 INT_GEN_THS_Y_XL r/w 08 00001000 00000000 INT_GEN_THS_Z_XL r/w 09 00001001 00000000 INT_GEN_DUR_XL r/w 0A 00001010 00000000 REFERENCE_G r/w 0B 00001011 00000000 INT1_CTRL r/w 0C 00001100 00000000 INT2_CTRL r/w 0D 00001101 00000000 Reserved -- 0E -- -- WHO_AM_I r 0F 00001111 01101000 CTRL_REG1_G r/w 10 00010000 00000000 CTRL_REG2_G r/w 11 00010001 00000000 CTRL_REG3_G r/w 12 00010010 00000000 ORIENT_CFG_G r/w 13 00010011 00000000 INT_GEN_SRC_G r 14 00010100 output OUT_TEMP_L r 15 00010101 output OUT_TEMP_H r 16 00010110 output STATUS_REG r 17 00010111 output OUT_X_L_G r 18 00011000 output OUT_X_H_G r 19 00011001 output OUT_Y_L_G r 1A 00011010 output OUT_Y_H_G r 1B 00011011 output OUT_Z_L_G r 1C 00011100 output OUT_Z_H_G r 1D 00011101 output CTRL_REG4 r/w 1E 00011110 00111000 CTRL_REG5_XL r/w 1F 00011111 00111000 DocID025715 Rev 3 Note Reserved Reserved LSM9DS1 Register mapping Table 21. Accelerometer and gyroscope register address map (continued) Register address Name Type Default Hex Binary CTRL_REG6_XL r/w 20 00100000 00000000 CTRL_REG7_XL r/w 21 00100001 00000000 CTRL_REG8 r/w 22 00100010 00000100 CTRL_REG9 r/w 23 00100011 00000000 CTRL_REG10 r/w 24 00100100 00000000 Reserved -- 25 -- -- INT_GEN_SRC_XL r 26 00100110 output STATUS_REG r 27 00100111 output OUT_X_L_XL r 28 00101000 output OUT_X_H_XL r 29 00101001 output OUT_Y_L_XL r 2A 00101010 output OUT_Y_H_XL r 2B 00101011 output OUT_Z_L_XL r 2C 00101100 output OUT_Z_H_XL r 2D 00101101 output FIFO_CTRL r/w 2E 00101110 00000000 FIFO_SRC r 2F 00101111 output INT_GEN_CFG_G r/w 30 00110000 00000000 INT_GEN_THS_XH_G r/w 31 00110001 00000000 INT_GEN_THS_XL_G r/w 32 00110010 00000000 INT_GEN_THS_YH_G r/w 33 00110011 00000000 INT_GEN_THS_YL_G r/w 34 00110100 00000000 INT_GEN_THS_ZH_G r/w 35 00110101 00000000 INT_GEN_THS_ZL_G r/w 36 00110110 00000000 INT_GEN_DUR_G r/w 37 00110111 00000000 r 38-7F -- -- Reserved DocID025715 Rev 3 Note Reserved Reserved 39/72 72 Register mapping LSM9DS1 Table 22. Magnetic sensor register address map Name Type Reserved Register address Hex Binary 00 - 04 -- Default -- OFFSET_X_REG_L_M r/w 05 00000000 OFFSET_X_REG_H_M r/w 06 00000000 OFFSET_Y_REG_L_M r/w 07 00000000 OFFSET_Y_REG_H_M r/w 08 00000000 OFFSET_Z_REG_L_M r/w 09 00000000 OFFSET_Z_REG_H_M r/w 0A 00000000 Reserved WHO_AM_I_M r Reserved 0B - 0E -- -- 0F 0000 1111 00111101 10 - 1F -- -- CTRL_REG1_M r/w 20 0010 0000 00010000 CTRL_REG2_M r/w 21 0010 0001 00000000 CTRL_REG3_M r/w 22 0010 0010 00000011 CTRL_REG4_M r/w 23 0010 0011 00000000 CTRL_REG5_M r/w 24 0010 0100 00000000 25 - 26 -- -- 27 0010 0111 Output Reserved STATUS_REG_M r Comment Reserved Offset in order to compensate environmental effects Reserved Magnetic Who I am ID Reserved Magnetic control registers Reserved OUT_X_L_M r 28 0010 1000 Output OUT_X_H_M r 29 0010 1001 Output OUT_Y_L_M r 2A 0010 1010 Output OUT_Y_H_M r 2B 0010 1011 Output OUT_Z_L_M r 2C 0010 1100 Output OUT_Z_H_M r 2D 0010 1101 Output Reserved r 2E-2F -- -- INT_CFG_M rw 30 00110000 00001000 Magnetic interrupt configuration register INT_SRC_M r 31 00110001 00000000 Magnetic interrupt generator status register INT_THS_L_M r 32 00110010 00000000 INT_THS_H_M r 33 00110011 00000000 Magnetic output registers Reserved Magnetic interrupt generator threshold Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to the device. To guarantee proper behavior of the device, all registers addresses not listed in the above table must not be accessed and the content stored on those registers must not be changed. The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up. 40/72 DocID025715 Rev 3 LSM9DS1 7 Accelerometer and gyroscope register description Accelerometer and gyroscope register description The device contains a set of registers which are used to control its behavior and to retrieve linear acceleration, angular rate and temperature data. The register addresses, made up of 7 bits, are used to identify them and to write the data through the serial interface. 7.1 ACT_THS (04h) Activity threshold register. Table 23. ACT_THS register SLEEP_ON ACT_THS ACT_THS _INACT_EN 6 5 ACT_THS ACT_THS ACT_THS 4 3 2 ACT_TH S1 ACT_THS 0 Table 24. ACT_THS register description 7.2 SLEEP_ON_ INACT_EN Gyroscope operating mode during inactivity. Default value: 0 ACT_THS [6:0] Inactivity threshold. Default value: 000 0000 (0: gyroscope in power-down; 1: gyroscope in sleep mode) ACT_DUR (05h) Inactivity duration register. Table 25. ACT_DUR register ACT_DUR ACT_DUR ACT_DUR ACT_DUR ACT_DUR ACT_DUR ACT_DUR ACT_DUR 7 6 5 4 3 2 1 0 Table 26. ACT_DUR register description ACT_DUR [7:0] 7.3 Inactivity duration. Default value: 0000 0000 INT_GEN_CFG_XL (06h) Linear acceleration sensor interrupt generator configuration register. Table 27. INT_GEN_CFG_XL register AOI_XL 6D ZHIE_XL ZLIE_XL YHIE_XL DocID025715 Rev 3 YLIE_XL XHIE_XL XLIE_XL 41/72 72 Accelerometer and gyroscope register description LSM9DS1 Table 28. INT_GEN_CFG_XL register description AOI_XL AND/OR combination of accelerometer’s interrupt events. Default value: 0 (0: OR combination; 1: AND combination) 6D 6-direction detection function for interrupt. Default value: 0 (0: disabled; 1: enabled) ZHIE_XL Enable interrupt generation on accelerometer’s Z-axis high event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured acceleration value higher than preset threshold) ZLIE_XL Enable interrupt generation on accelerometer’s Z-axis low event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured acceleration value lower than preset threshold) YHIE_XL Enable interrupt generation on accelerometer’s Y-axis high event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured acceleration value higher than preset threshold) YLIE_XL Enable interrupt generation on accelerometer’s Y-axis low event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured acceleration value lower than preset threshold) XHIE_XL Enable interrupt generation on accelerometer’s X-axis high event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured acceleration value higher than preset threshold) XLIE_XL Enable interrupt generation on accelerometer’s X-axis low event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured acceleration value lower than preset threshold) 7.4 INT_GEN_THS_X_XL (07h) Linear acceleration sensor interrupt threshold register. Table 29. INT_GEN_THS_X_XL register THS_XL_ X7 THS_XL_ X6 THS_XL_ X5 THS_XL_ X4 THS_XL_ X3 THS_XL_ X2 THS_XL_ X1 THS_XL_ X0 Table 30. INT_GEN_THS_X_XL register description THS_XL_X [7:0] 7.5 X-axis interrupt threshold. Default value: 0000 0000 INT_GEN_THS_Y_XL (08h) Linear acceleration sensor interrupt threshold register. Table 31. INT_GEN_THS_Y_XL register THS_XL_ Y7 THS_XL_ Y6 THS_XL_ Y5 THS_XL_ Y4 THS_XL_ Y3 THS_XL_ Y2 THS_XL_ Y1 Table 32. INT_GEN_THS_Y_XL register description THS_XL_Y [7:0] 42/72 Y-axis interrupt threshold. Default value: 0000 0000 DocID025715 Rev 3 THS_XL_ Y0 LSM9DS1 7.6 Accelerometer and gyroscope register description INT_GEN_THS_Z_XL (09h) Linear acceleration sensor interrupt threshold register. Table 33. INT_GEN_THS_Z_XL register THS_XL_Z THS_XL_Z THS_XL_Z THS_XL_Z THS_XL_Z THS_XL_Z THS_XL_Z THS_XL_Z 7 6 5 4 3 2 1 0 Table 34. INT_GEN_THS_Z_XL register description THS_XL_Z [7:0] 7.7 Z-axis interrupt threshold. Default value: 0000 0000 INT_GEN_DUR_XL (0Ah) Linear acceleration sensor interrupt duration register. Table 35. INT_GEN_DUR_XL register WAIT_XL DUR_XL6 DUR_XL5 DUR_XL4 DUR_XL3 DUR_XL2 DUR_XL1 DUR_XL0 Table 36. INT_GEN_DUR_XL register description 7.8 WAIT_XL Wait function enabled on duration counter. Default value: 0 (0: wait function off; 1: wait for DUR_XL [6:0] samples before exiting interrupt) DUR_XL [6:0] Enter/exit interrupt duration value. Default value: 000 0000 REFERENCE_G (0Bh) Angular rate sensor reference value register for digital high-pass filter (r/w). Table 37. REFERENCE_G register REF7_G REF6_G REF5_G REF4_G REF3_G REF2_G REF1_G REF0_G Table 38. REFERENCE_G register description REF_G [7:0] 7.9 Reference value for gyroscope’s digital high-pass filter (r/w). Default value: 0000 0000 INT1_CTRL (0Ch) INT1_A/G pin control register. Table 39. INT1_CTRL register INT1_IG INT1_IG_ _G XL INT1_ FSS5 INT1_OVR INT1_FTH DocID025715 Rev 3 INT1_ Boot INT1_ DRDY_G INT1_ DRDY_XL 43/72 72 Accelerometer and gyroscope register description LSM9DS1 Table 40. INT1_CTRL register description Gyroscope interrupt enable on INT 1_A/G pin. Default value: 0 INT1_IG_G (0: disabled; 1: enabled) Accelerometer interrupt generator on INT 1_A/G pin. Default value: 0 INT_ IG_XL (0: disabled; 1: enabled) FSS5 interrupt enable on INT 1_A/G pin. Default value: 0 INT_ FSS5 (0: disabled; 1: enabled) Overrun interrupt on INT 1_A/G pin. Default value: 0 (0: disabled; 1: enabled) INT_OVR FIFO threshold interrupt on INT 1_A/G pin. Default value: 0 INT_FTH (0: disabled; 1: enabled) Boot status available on INT 1_A/G pin. Default value: 0 INT_ Boot (0: disabled; 1: enabled) Gyroscope data ready on INT 1_A/G pin. Default value: 0 INT_DRDY_G (0: disabled; 1: enabled) Accelerometer data ready on INT 1_A/G pin. Default value: 0 INT_DRDY_XL 7.10 (0: disabled; 1: enabled) INT2_CTRL (0Dh) INT2_A/G pin control register. Table 41. INT2_CTRL register INT2_IN ACT 0 INT2_ FSS5 INT2_OVR INT2_FTH INT2_ DRDY_ TEMP INT2_ DRDY_G INT2_ DRDY_XL Table 42. INT2_CTRL register description INT2_INACT INT2_ FSS5 INT2_OVR INT2_FTH INT2_ DRDY_TEMP INT2_DRDY_G INT2_DRDY_XL 44/72 Inactivity interrupt output signal. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupt events have been generated) FSS5 interrupt enable on INT2_A/G pin. Default value: 0 (0: disabled; 1: enabled) Overrun interrupt on INT2_A/G pin. Default value: 0 (0: disabled; 1: enabled) FIFO threshold interrupt on INT2_A/G pin. Default value: 0 (0: disabled; 1: enabled) Temperature data ready on INT2_A/G pin. Default value: 0 (0: disabled; 1: enabled) Gyroscope data ready on INT2_A/G pin. Default value: 0 (0: disabled; 1: enabled) Accelerometer data ready on INT2_A/G pin. Default value: 0 (0: disabled; 1: enabled) DocID025715 Rev 3 LSM9DS1 7.11 Accelerometer and gyroscope register description WHO_AM_I (0Fh) Who_AM_I register. Table 43. WHO_AM_I register 0 7.12 1 1 0 1 0 0 0 BW_G1 BW_G0 CTRL_REG1_G (10h) Angular rate sensor Control Register 1. Table 44. CTRL_REG1_G register ODR_G2 ODR_G1 ODR_G0 FS_G1 FS_G0 0(1) 1. This bit must be set to ‘0’ for the correct operation of the device. Table 45. CTRL_REG1_G register description Gyroscope output data rate selection. Default value: 000 ODR_G [2:0] (Refer to Table 46 and Table 47) FS_G [1:0] Gyroscope full-scale selection. Default value: 00 (00: 245 dps; 01: 500 dps; 10: Not Available; 11: 2000 dps) BW_G [1:0] Gyroscope bandwidth selection. Default value: 00 ODR_G [2:0] are used to set ODR selection when both the accelerometer and gyroscope are activated. BW_G [1:0] are used to set gyroscope bandwidth selection. The following table summarizes all frequencies available for each combination of the ODR_G / BW_G bits after LPF1 (see Table 46) and LPF2 (see Table 47) when both the accelerometer and gyroscope are activated. For more details regarding signal processing please refer to Figure 28. Table 46. ODR and BW configuration setting (after LPF1) ODR_G2 ODR_G1 ODR_G0 Cutoff [Hz](1) ODR [Hz] 0 0 0 Power-down n.a. 0 0 1 14.9 5 0 1 0 59.5 19 0 1 1 119 38 1 0 0 238 76 1 0 1 476 100 1 1 0 952 100 1 1 1 n.a. n.a. 1. Values in the table are indicative and can vary proportionally with the specific ODR value. DocID025715 Rev 3 45/72 72 Accelerometer and gyroscope register description LSM9DS1 Table 47. ODR and BW configuration setting (after LPF2) ODR_G [2:0] BW_G [1:0] Cutoff [Hz](1) ODR [Hz] 000 00 Power-down n.a. 000 01 Power-down n.a. 000 10 Power-down n.a. 000 11 Power-down n.a. 001 00 14.9 n.a. 001 01 14.9 n.a. 001 10 14.9 n.a. 001 11 14.9 n.a. 010 00 59.5 16 010 01 59.5 16 010 10 59.5 16 010 11 59.5 16 011 00 119 14 011 01 119 31 011 10 119 31 011 11 119 31 100 00 238 14 100 01 238 29 100 10 238 63 100 11 238 78 101 00 476 21 101 01 476 28 101 10 476 57 101 11 476 100 110 00 952 33 110 01 952 40 110 10 952 58 110 11 952 100 111 00 n.a. n.a. 111 01 n.a. n.a. 111 10 n.a. n.a. 111 11 n.a. n.a. 1. Values in the table are indicative and can vary proportionally with the specific ODR value. 46/72 DocID025715 Rev 3 LSM9DS1 7.13 Accelerometer and gyroscope register description CTRL_REG2_G (11h) Angular rate sensor Control Register 2. Table 48. CTRL_REG2_G register (1) (1) 0 0(1) 0 0(1) INT_SEL1 INT_SEL0 OUT_SEL1 OUT_SEL0 1. These bits must be set to ‘0’ for the correct operation of the device Table 49. CTRL_REG2_G register description INT_SEL [1:0] INT selection configuration. Default value: 00 (Refer to Figure 28) OUT_SEL [1:0] Out selection configuration. Default value: 00 (Refer to Figure 28) Figure 28. INT_SEL and OUT_SEL configuration gyroscope block diagram 'DWD5HJ ),)2 /3) $'& /3) +3) ,QWHUUXSW JHQHUDWRU 7.14 CTRL_REG3_G (12h) Angular rate sensor Control Register 3. Table 50. CTRL_REG3_G register LP_mode HP_EN 0(1) 0(1) HPCF3_G HPCF2_G HPCF1_G HPCF0_G 1. These bits must be set to ‘0’ for the correct operation of the device Table 51. CTRL_REG3_G register description LP_mode Low-power mode enable. Default value: 0 (0: Low-power disabled; 1: Low-power enabled) HP_EN High-pass filter enable. Default value: 0 (0: HPF disabled; 1: HPF enabled, refer to Figure 28) HPCF_G [3:0] Gyroscope high-pass filter cutoff frequency selection. Default value: 0000 Refer to Table 52. DocID025715 Rev 3 47/72 72 Accelerometer and gyroscope register description LSM9DS1 Table 52. Gyroscope high-pass filter cutoff frequency configuration [Hz](1) ODR= 14.9 ODR= 59.5 Hz Hz ODR= 119 Hz ODR= 238 Hz ODR= 476 Hz ODR= 952 Hz 0000 1 4 8 15 30 57 0001 0.5 2 4 8 15 30 0010 0.2 1 2 4 8 15 0011 0.1 0.5 1 2 4 8 0100 0.05 0.2 0.5 1 2 4 0101 0.02 0.1 0.2 0.5 1 2 0110 0.01 0.05 0.1 0.2 0.5 1 0111 0.005 0.02 0.05 0.1 0.2 0.5 1000 0.002 0.01 0.02 0.05 0.1 0.2 1001 0.001 0.005 0.01 0.02 0.05 0.1 HPCF_G [3:0] 1. Values in the table are indicative and can vary proportionally with the specific ODR value. 7.15 ORIENT_CFG_G (13h) Angular rate sensor sign and orientation register. Table 53. ORIENT_CFG_G register 0(1) 0(1) SignX_G SignY_G SignZ_G Orient_2 Orient_1 Orient_0 1. These bits must be set to ‘0’ for the correct operation of the device. Table 54. ORIENT_CFG_G register description 7.16 SignX_G Pitch axis (X) angular rate sign. Default value: 0 (0: positive sign; 1: negative sign) SignY_G Roll axis (Y) angular rate sign. Default value: 0 (0: positive sign; 1: negative sign) SignZ_G Yaw axis (Z) angular rate sign. Default value: 0 (0: positive sign; 1: negative sign) Orient [2:0] Directional user orientation selection. Default value: 000 INT_GEN_SRC_G (14h) Angular rate sensor interrupt source register. Table 55. INT_GEN_SRC_G register 0 48/72 IA_G ZH_G ZL_G DocID025715 Rev 3 YH_G YL_G XH_G XL_G LSM9DS1 Accelerometer and gyroscope register description Table 56. INT_GEN_SRC_G register description 7.17 IA_G Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated) ZH_G Yaw (Z) high. Default value: 0 (0: no interrupt, 1: Z high event has occurred) ZL_G Yaw (Z) low. Default value: 0 (0: no interrupt; 1: Z low event has occurred) YH_G Roll (Y) high. Default value: 0 (0: no interrupt, 1: Y high event has occurred) YL_G Roll (Y) low. Default value: 0 (0: no interrupt, 1: Y low event has occurred) XH_G Pitch (X) high. Default value: 0 (0: no interrupt, 1: X high event has occurred) XL_G Pitch (X) low. Default value: 0 (0: no interrupt, 1: X low event has occurred) OUT_TEMP_L (15h), OUT_TEMP_H (16h) Temperature data output register. L and H registers together express a 16-bit word in two’s complement right-justified. Table 57. OUT_TEMP_L register Temp7 Temp6 Temp5 Temp4 Temp3 Temp2 Temp1 Temp0 Temp9 Temp8 Table 58. OUT_TEMP_H register Temp11 Temp11 Temp11 Temp11 Temp11 Temp10 Table 59. OUT_TEMP register description Temp [11:0] 7.18 Temperature sensor output data. The value is expressed as two’s complement sign extended on the MSB. STATUS_REG (17h) Status register. Table 60. STATUS_REG register 0 IG_XL IG_G INACT BOOT_ STATUS DocID025715 Rev 3 TDA GDA XLDA 49/72 72 Accelerometer and gyroscope register description LSM9DS1 Table 61. STATUS_REG register description 7.19 IG_XL Accelerometer interrupt output signal. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupt events have been generated) IG_G Gyroscope interrupt output signal. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupt events have been generated) INACT Inactivity interrupt output signal. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupt events have been generated) BOOT_ STATUS Boot running flag signal. Default value: 0 (0: no boot running; 1: boot running) TDA Temperature sensor new data available. Default value: 0 (0: new data is not yet available; 1: new data is available) GDA Gyroscope new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available) XLDA Accelerometer new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available) OUT_X_G (18h - 19h) Angular rate sensor pitch axis (X) angular rate output register. The value is expressed as a 16-bit word in two’s complement. 7.20 OUT_Y_G (1Ah - 1Bh) Angular rate sensor roll axis (Y) angular rate output register. The value is expressed as a 16-bit word in two’s complement. 7.21 OUT_Z_G (1Ch - 1Dh) Angular rate sensor Yaw axis (Z) angular rate output register. The value is expressed as a 16-bit word in two’s complement. 7.22 CTRL_REG4 (1Eh) Control register 4. Table 62. CTRL_REG4 register 0(1) 0(1) Zen_G Yen_G Xen_G 1. These bits must be set to ‘0’ for the correct operation of the device. 50/72 DocID025715 Rev 3 0(1) LIR_XL1 4D_XL1 LSM9DS1 Accelerometer and gyroscope register description Table 63. CTRL_REG4 register description 7.23 Zen_G Gyroscope’s Yaw axis (Z) output enable. Default value: 1 (0: Z-axis output disabled; 1: Z-axis output enabled) Yen_G Gyroscope’s roll axis (Y) output enable. Default value: 1 (0: Y-axis output disabled; 1: Y-axis output enabled) Xen_G Gyroscope’s pitch axis (X) output enable. Default value: 1 (0: X -xis output disabled; 1: X-axis output enabled) LIR_XL1 Latched Interrupt. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched) 4D_XL1 4D option enabled on Interrupt. Default value: 0 (0: interrupt generator uses 6D for position recognition; 1: interrupt generator uses 4D for position recognition) CTRL_REG5_XL (1Fh) Linear acceleration sensor Control Register 5. Table 64. CTRL_REG5_XL register DEC_1 DEC_0 Zen_XL Yen_XL Xen_XL 0(1) 0(1) 0(1) 1. These bits must be set to ‘0’ for the correct operation of the device. Table 65. CTRL_REG5_XL register description 7.24 DEC_ [0:1] Decimation of acceleration data on OUT REG and FIFO. Default value: 00 (00: no decimation; 01: update every 2 samples; 10: update every 4 samples; 11: update every 8 samples) Zen_XL Accelerometer’s Z-axis output enable. Default value: 1 (0: Z-axis output disabled; 1: Z-axis output enabled) Yen_XL Accelerometer’s Y-axis output enable. Default value: 1 (0: Y-axis output disabled; 1: Y-axis output enabled) Xen_XL Accelerometer’s X-axis output enable. Default value: 1 (0: X-axis output disabled; 1: X-axis output enabled) CTRL_REG6_XL (20h) Linear acceleration sensor Control Register 6. Table 66. CTRL_REG6_XL register ODR_XL2 ODR_XL1 ODR_XL0 FS1_XL FS0_XL DocID025715 Rev 3 BW_SCAL _ODR BW_XL1 BW_XL0 51/72 72 Accelerometer and gyroscope register description LSM9DS1 Table 67. CTRL_REG6_XL register description ODR_XL [2:0] Output data rate and power mode selection. default value: 000 (see Table 68) FS_XL [1:0] Accelerometer full-scale selection. Default value: 00 (00: ±2g; 01: ±16 g; 10: ±4 g; 11: ±8 g) BW_SCAL_ ODR Bandwidth selection. Default value: 0 (0: bandwidth determined by ODR selection: - BW = 408 Hz when ODR = 952 Hz, 50 Hz, 10 Hz; - BW = 211 Hz when ODR = 476 Hz; - BW = 105 Hz when ODR = 238 Hz; - BW = 50 Hz when ODR = 119 Hz; 1: bandwidth selected according to BW_XL [2:1] selection) BW_XL [1:0] Anti-aliasing filter bandwidth selection. Default value: 00 (00: 408 Hz; 01: 211 Hz; 10: 105 Hz; 11: 50 Hz) ODR_XL [2:0] is used to set power mode and ODR selection. Table 68 indicates all the frequencies available when only the accelerometer is activated. Table 68. ODR register setting (accelerometer only mode) 7.25 ODR_XL2 ODR_XL1 ODR_XL0 ODR selection [Hz] 0 0 0 Power-down 0 0 1 10 Hz 0 1 0 50 Hz 0 1 1 119 Hz 1 0 0 238 Hz 1 0 1 476 Hz 1 1 0 952 Hz 1 1 1 n.a. CTRL_REG7_XL (21h) Linear acceleration sensor Control Register 7. Table 69. CTRL_REG7_XL register HR DCF1 DCF0 0(1) 0(1) 1. These bits must be set to ‘0’ for the correct operation of the device 52/72 DocID025715 Rev 3 FDS 0(1) HPIS1 LSM9DS1 Accelerometer and gyroscope register description Table 70. CTRL_REG7_XL register description High resolution mode for accelerometer enable. Default value: 0 (0: disabled; 1: enabled). Refer to Table 71 HR DCF[1:0] FDS Accelerometer digital filter (high pass and low pass) cutoff frequency selection: the bandwidth of the high-pass filter depends on the selected ODR. Refer to Table 71 Filtered data selection. Default value: 0 (0: internal filter bypassed; 1: data from internal filter sent to output register and FIFO) High-pass filter enabled for acceleration sensor interrupt function on Interrupt. Default HPIS1 value: 0 (0: filter bypassed; 1: filter enabled) Table 71. Low pass cutoff frequency in high resolution mode (HR = 1) 7.26 HR CTRL_REG7 (DCF [1:0]) LP cutoff freq. [Hz] 1 00 ODR/50 1 01 ODR/100 1 10 ODR/9 1 11 ODR/400 CTRL_REG8 (22h) Control register 8. Table 72. CTRL_REG8 register BOOT BDU H_LACTIVE PP_OD SIM IF_ADD_INC BLE SW_RESET Table 73. CTRL_REG8 register description BOOT Reboot memory content. Default value: 0 (0: normal mode; 1: reboot memory content(1)) BDU Block data update. Default value: 0 (0: continuous update; 1: output registers not updated until MSB and LSB read) H_LACTIVE Interrupt activation level. Default value: 0 (0: interrupt output pins active high; 1: interrupt output pins active low) PP_OD Push-pull/open-drain selection on the INT1_A/G pin and INT2_A/G pin. Default value: 0 (0: push-pull mode; 1: open-drain mode) SIM SPI serial interface mode selection. Default value: 0 (0: 4-wire interface; 1: 3-wire interface). IF_ADD_INC Register address automatically incremented during a multiple byte access with a serial interface (I2C or SPI). Default value: 1 (0: disabled; 1: enabled) BLE Big/Little Endian data selection. Default value 0 (0: data LSB @ lower address; 1: data MSB @ lower address) SW_RESET Software reset. Default value: 0 (0: normal mode; 1: reset device) This bit is cleared by hardware after next flash boot. 1. Boot request is executed as soon as internal oscillator is turned-on. It is possible to set bit while in powerdown mode, in this case it will be served at the next normal mode or sleep mode. DocID025715 Rev 3 53/72 72 Accelerometer and gyroscope register description 7.27 LSM9DS1 CTRL_REG9 (23h) Control register 9. Table 74. CTRL_REG9 register 0(1) SLEEP_G FIFO_ TEMP_EN 0(1) DRDY_ mask_bit I2C_DISAB STOP_ON FIFO_EN LE _FTH 1. These bits must be set to ‘0’ for the correct operation of the device Table 75. CTRL_REG9 register description SLEEP_G Gyroscope sleep mode enable. Default value: 0 (0: disabled; 1: enabled) FIFO_TEMP_EN Temperature data storage in FIFO enable. Default value: 0 (0: temperature data not stored in FIFO; 1: temperature data stored in FIFO) DRDY_mask_bit Data available enable bit. Default value: 0 (0: DA timer disabled; 1: DA timer enabled) I2C_DISABLE Disable I2C interface. Default value: 0 (0: both I2C and SPI enabled; 1: I2C disabled, SPI only) FIFO_EN FIFO memory enable. Default value: 0 (0: disabled; 1: enabled) STOP_ON_FTH Enable FIFO threshold level use. Default value: 0 (0: FIFO depth is not limited; 1: FIFO depth is limited to threshold level) 7.28 CTRL_REG10 (24h) Control register 10. Table 76. CTRL_REG10 register 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) ST_XL XH_XL XL_XL ST_G 1. These bits must be set to ‘0’ for the correct operation of the device Table 77. CTRL_REG10 register description 7.29 ST_G Angular rate sensor self-test enable. Default value: 0 (0: Self-test disabled; 1: Self-test enabled) ST_XL Linear acceleration sensor self-test enable. Default value: 0 (0: Self-test disabled; 1: Self-test enabled) INT_GEN_SRC_XL (26h) Linear acceleration sensor interrupt source register. Table 78. INT_GEN_SRC_XL register 0 54/72 IA_XL ZH_XL ZL_XL YH_XL DocID025715 Rev 3 YL_XL LSM9DS1 Accelerometer and gyroscope register description Table 79. INT_GEN_SRC_XL register description 7.30 IA_XL Interrupt active. Default value: 0. (0: no interrupt has been generated; 1: one or more interrupts have been generated) ZH_XL Accelerometer’s Z high event. Default value: 0 (0: no interrupt, 1: Z high event has occurred) ZL_XL Accelerometer’s Z low event. Default value: 0 (0: no interrupt; 1: Z low event has occurred) YH_XL Accelerometer’s Y high event. Default value: 0 (0: no interrupt, 1: Y high event has occurred) YL_XL Accelerometer’s Y low event. Default value: 0 (0: no interrupt, 1: Y low event has occurred) XH_XL Accelerometer’s X high event. Default value: 0 (0: no interrupt, 1: X high event has occurred) XL_XL Accelerometer’s X low. event. Default value: 0 (0: no interrupt, 1: X low event has occurred) STATUS_REG (27h) Status register. Table 80. STATUS_REG register 0 IG_XL IG_G INACT BOOT_ STATUS TDA GDA XLDA Table 81. STATUS_REG register description IG_XL Accelerometer interrupt output signal. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupt events have been generated) IG_G Gyroscope interrupt output signal. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupt events have been generated) INACT Inactivity interrupt output signal. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupt events have been generated) BOOT_ STATUS Boot running flag signal. Default value: 0 (0: no boot running; 1: boot running) TDA Temperature sensor new data available. Default value: 0 (0: a new data is not yet available; 1: a new data is available) GDA Gyroscope new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available) XLDA Accelerometer new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available) DocID025715 Rev 3 55/72 72 Accelerometer and gyroscope register description 7.31 LSM9DS1 OUT_X_XL (28h - 29h) Linear acceleration sensor X-axis output register. The value is expressed as a 16-bit word in two’s complement. 7.32 OUT_Y_XL (2Ah - 2Bh) Linear acceleration sensor Y-axis output register. The value is expressed as a 16-bit word in two’s complement. 7.33 OUT_Z_XL (2Ch - 2Dh) Linear acceleration sensor Z-axis output register. The value is expressed as a 16-bit word in two’s complement. 7.34 FIFO_CTRL (2Eh) FIFO control register. Table 82. FIFO_CTRL register FMODE2 FMODE1 FMODE0 FTH4 FTH3 FTH2 FTH1 FTH0 Table 83. FIFO_CTRL register description FMODE [2:0] FIFO mode selection bits. Default value: 000 For further details refer to Table 84. FTH [4:0] FIFO threshold level setting. Default value: 0 0000 Table 84. FIFO mode selection 56/72 FMODE2 FMODE1 FMODE0 Mode 0 0 0 Bypass mode. FIFO turned off 0 0 1 FIFO mode. Stops collecting data when FIFO is full. 0 1 0 Reserved 0 1 1 Continuous mode until trigger is deasserted, then FIFO mode. 1 0 0 Bypass mode until trigger is deasserted, then Continuous mode. 1 1 0 Continuous mode. If the FIFO is full, the new sample overwrites the older sample. DocID025715 Rev 3 LSM9DS1 7.35 Accelerometer and gyroscope register description FIFO_SRC (2Fh) FIFO status control register. Table 85. FIFO_SRC register FTH OVRN FSS5 FSS4 FSS3 FSS2 FSS1 FSS0 Table 86. FIFO_SRC register description FTH FIFO threshold status. (0: FIFO filling is lower than threshold level; 1: FIFO filling is equal or higher than threshold level OVRN FIFO overrun status. (0: FIFO is not completely filled; 1: FIFO is completely filled and at least one samples has been overwritten) For further details refer to Table 87. FSS [5:0] Number of unread samples stored into FIFO. (000000: FIFO empty; 100000: FIFO full, 32 unread samples) For further details refer to Table 87. Table 87. FIFO_SRC example: OVR/FSS details FTH OVRN FSS5 FSS4 FSS3 FSS2 FSS1 FSS0 Description 0 0 0 0 0 0 0 0 FIFO empty --(1) 0 0 0 0 0 0 1 1 unread sample --(1) 0 1 0 0 0 0 0 32 unread samples 1 1 1 0 0 0 0 0 At least one sample has been overwritten ... 1. When the number of unread samples in FIFO is greater than the threshold level set in register FIFO_CTRL (2Eh), FTH value is ‘1’. 7.36 INT_GEN_CFG_G (30h) Angular rate sensor interrupt generator configuration register. Table 88. INT_GEN_CFG_G register AOI_G LIR_G ZHIE_G ZLIE_G YHIE_G DocID025715 Rev 3 YLIE_G XHIE_G XLIE_G 57/72 72 Accelerometer and gyroscope register description LSM9DS1 Table 89. INT_GEN_CFG_G register description 7.37 AOI_G AND/OR combination of gyroscope’s interrupt events. Default value: 0 (0: OR combination; 1: AND combination) LIR_G Latch Gyroscope interrupt request. Default value: 0. (0: interrupt request not latched; 1: interrupt request latched) ZHIE_G Enable interrupt generation on gyroscope’s yaw (Z) axis high event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured angular rate value higher than preset threshold) ZLIE_G Enable interrupt generation on gyroscope’s yaw (Z) axis low event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured angular rate value lowerthan preset threshold) YHIE_G Enable interrupt generation on gyroscope’s roll (Y) axis high event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured angular rate value higher than preset threshold) YLIE_G Enable interrupt generation on gyroscope’s roll (Y) axis low event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured angular rate value lower than preset threshold) XHIE_G Enable interrupt generation on gyroscope’s pitch (X) axis high event. Default value: 0 (0: disable interrupt request; 1: interrupt request on measured angular rate value higher than preset threshold) XLIE_G Enable interrupt generation on gyroscope’s pitch (X) axis low event. Default value: 0. (0: disable interrupt request; 1: interrupt request on measured angular rate value lower than preset threshold) INT_GEN_THS_X_G (31h - 32h) Angular rate sensor interrupt generator threshold registers. The value is expressed as a 15bit word in two’s complement. Table 90. INT_GEN_THS_XH_G register DCRM_G THS_G_ X14 THS_G_ X13 THS_G_ X12 THS_G_ X11 THS_G_ X10 THS_G_ X9 THS_G_ X8 THS_G_ X1 THS_G_ X0 Table 91. INT_GEN_THS_XL_G register THS_G_ X7 THS_G_ X6 THS_G_ X5 THS_G_ X4 THS_G_ X3 THS_G_ X2 Table 92. INT_GEN_THS_X_G register description DCRM_G THS_G_X [14:0] 58/72 Decrement or reset counter mode selection. Default value: 0 (0: Reset; 1: Decrement, as per counter behavior in Figure 29 and Figure 30) Angular rate sensor interrupt threshold on pitch (X) axis. Default value: 0000000 00000000 DocID025715 Rev 3 LSM9DS1 7.38 Accelerometer and gyroscope register description INT_GEN_THS_Y_G (33h - 34h) Angular rate sensor interrupt generator threshold registers. The value is expressed as a 15-bit word in two’s complement. Table 93. INT_GEN_THS_YH_G register 0(1) THS_G_ Y14 THS_G_ Y13 THS_G_ Y12 THS_G_ Y11 THS_G_ Y10 THS_G_ Y9 THS_G_ Y8 THS_G_ Y1 THS_G_ Y0 1. This bit must be set to ‘0’ for the correct operation of the device. Table 94. INT_GEN_THS_YL_G register THS_G_ Y7 THS_G_ Y6 THS_G_ Y5 THS_G_ Y4 THS_G_ Y3 THS_G_ Y2 Table 95. INT_GEN_THS_Y_G register description THS_G_Y [14:0] 7.39 Angular rate sensor interrupt threshold on roll (Y) axis. Default value: 0000000 00000000. INT_GEN_THS_Z_G (35h - 36h) Angular rate sensor interrupt generator threshold registers. The value is expressed as a 15-bit word in two’s complement. Table 96. INT_GEN_THS_ZH_G register 0(1) THS_G_ Z14 THS_G_ Z13 THS_G_ Z12 THS_G_ Z11 THS_G_ Z10 THS_G_ Z9 THS_G_ Z8 THS_G_ Z1 THS_G_ Z0 1. This bit must be set to ‘0’ for the correct operation of the device. Table 97. INT_GEN_THS_ZL_G register THS_G_ Z7 THS_G_ Z6 THS_G_ Z5 THS_G_ Z4 THS_G_ Z3 THS_G_ Z2 Table 98. INT_GEN_THS_Z_G register description THS_G_Z [14:0] 7.40 Angular rate sensor interrupt thresholds on yaw (Z) axis. Default value: 0000000 00000000. INT_GEN_DUR_G (37h) Angular rate sensor interrupt generator duration register. Table 99. INT_GEN_DUR_G register WAIT_G DUR_G6 DUR_G5 DUR_G4 DUR_G3 DocID025715 Rev 3 DUR_G2 DUR_G1 DUR_G0 59/72 72 Accelerometer and gyroscope register description LSM9DS1 Table 100. INT_GEN_DUR_G register description WAIT_G Exit from interrupt wait function enable. Default value: 0 (0: wait function off; 1: wait for DUR_G [6:0] samples before exiting interrupt) DUR_G [6:0] Enter/exit interrupt duration value. Default Value: 000 0000 The DUR_G [6:0] bits set the minimum duration of the interrupt event to be recognized. Duration steps and maximum values depend on the ODR chosen. The WAIT_G bit has the following meaning: ‘0’: the interrupt falls immediately if the signal crosses the selected threshold ‘1’: if the signal crosses the selected threshold, the interrupt falls after a number of samples equal to the value of the duration counter register. For further details refer to Figure 29 and Figure 30. Figure 29. Wait bit disabled :DLW ELW µ¶Æ Æ ,QWHUUXSWGLVDEOHGDVVRRQDVFRQGLWLRQ LVQRORQJHUYDOLGH[5DWHYDOXHEHORZWKUHVKROG 5DWH GSV WQ 5DWH 7KUHVKROG &RXQWHU 'XUDWLRQ 9DOXH WQ ,QWHUUXSW WQ 60/72 DocID025715 Rev 3 ³:DLW´ 'LVDEOHG LSM9DS1 Accelerometer and gyroscope register description Figure 30. Wait bit enabled :DLW ELW µ¶Æ Æ ,QWHUUXSWGLVDEOHGDIWHUGXUDWLRQ VDPSOHVRUWRIK\VWHUHVLV 5DWH GSV WQ 5DWH 7KUHVKROG &RXQWHU 'XUDWLRQ 9DOXH WQ ,QWHUUXSW ³:DLW´ (QDEOHG WQ 'XUDWLRQYDOXHLVWKHVDPHXVHGWRYDOLGDWHLQWHUUXSW DocID025715 Rev 3 61/72 72 Magnetometer register description LSM9DS1 8 Magnetometer register description 8.1 OFFSET_X_REG_L_M (05h), OFFSET_X_REG_H_M (06h) This register is a 16-bit register and represents the X offset used to compensate environmental effects (data is expressed as two’s complement). This value acts on the magnetic output data value in order to subtract the environmental offset. Default value: 0 Table 101. OFFSET_X_REG_L_M register OFXM7 OFXM6 OFXM5 OFXM15 OFXM14 OFXM13 OFXM4 OFXM3 OFXM2 OFXM1 OFXM0 OFXM9 OFXM8 Table 102. OFFSET_X_REG_H_M register 8.2 OFXM12 OFXM11 OFXM10 OFFSET_Y_REG_L_M (07h), OFFSET_Y_REG_H_M (08h) This register is a 16-bit register and represents the Y offset used to compensate environmental effects (data is expressed as two’s complement). This value acts on the magnetic output data value in order to subtract the environmental offset. Default value: 0 Table 103. OFFSET_Y_REG_L_M register OFYM7 OFYM6 OFYM5 OFYM15 OFYM14 OFYM13 OFYM4 OFYM3 OFYM2 OFYM1 OFYM0 OFYM9 OFYM8 Table 104. OFFSET_Y_REG_H_M register 8.3 OFYM12 OFYM11 OFYM10 OFFSET_Z_REG_L_M (09h), OFFSET_Z_REG_H_M (0Ah) This register is a 16-bit register and represents the Z offset used to compensate environmental effects (data is expressed as two’s complement). This value acts on the magnetic output data value in order to subtract the environmental offset. Default value: 0. Table 105. OFFSET_Z_REG_L_M register OFZM7 OFZM6 OFZM5 OFZM4 OFZM3 OFZM2 OFZM1 OFZM0 OFZM9 OFZM8 Table 106. OFFSET_Z_REG_H_M register OFZM15 62/72 OFZM14 OFZM13 OFZM12 OFZM11 DocID025715 Rev 3 OFZM10 LSM9DS1 8.4 Magnetometer register description WHO_AM_I_M (0Fh) Device identification register. Table 107. WHO_AM_I_M register 0 8.5 0 1 1 1 1 0 1 CTRL_REG1_M (20h) Table 108. CTRL_REG1_M register TEMP_ COMP OM1 OM0 DO2 DO1 DO0 FAST_ODR ST Table 109. CTRL_REG1_M register description TEMP_COMP Temperature compensation enable. Default value: 0 (0: temperature compensation disabled; 1: temperature compensation enabled) OM[1:0] X and Y axes operative mode selection. Default value: 00 (Refer to Table 110) DO[2:0] Output data rate selection. Default value: 100 (Refer to Table 111) FAST_ODR FAST_ODR enables data rates higher than 80 Hz. Default value: 0 (0: Fast_ODR disabled; 1: FAST_ODR enabled) ST Self-test enable. Default value: 0 (0: self-test disabled; 1: self-test enabled) Table 110. X and Y axes operative mode selection OM1 OM0 Operative mode for X and Y axes 0 0 Low-power mode 0 1 Medium-performance mode 1 0 High-performance mode 1 1 Ultra-high performance mode Table 111. Output data rate configuration DO2 DO1 DO0 ODR [Hz] 0 0 0 0.625 0 0 1 1.25 0 1 0 2.5 0 1 1 5 1 0 0 10 1 0 1 20 1 1 0 40 1 1 1 80 DocID025715 Rev 3 63/72 72 Magnetometer register description 8.6 LSM9DS1 CTRL_REG2_M (21h) Table 112. CTRL_REG2_M register 0 (1) FS1 FS0 0(1) REBOOT SOFT_RST 0(1) 0(1) 1. These bits must be set to ‘0’ for the correct operation of the device. Table 113. CTRL_REG2_M register description FS[1:0] Full-scale configuration. Default value: 00 Refer to Table 114 REBOOT Reboot memory content. Default value: 0 (0: normal mode; 1: reboot memory content) SOFT_RST Configuration registers and user register reset function. (0: default value; 1: reset operation) Table 114. Full-scale selection 8.7 FS1 FS0 Full scale 0 0 ± 4 gauss 0 1 ± 8 gauss 1 0 ± 12 gauss 1 1 ± 16 gauss CTRL_REG3_M (22h) Table 115. CTRL_REG3_M register I2C_ DISABLE 0(1) LP 0(1) 0(1) SIM MD1 MD0 1. These bits must be set to ‘0’ for the correct operation of the device. Table 116. CTRL_REG3_M register description 64/72 I2C_DISABLE Disable I2C interface. Default value 0. (0: I2C enable; 1: I2C disable) LP Low-power mode configuration. Default value: 0 If this bit is ‘1’, the DO[2:0] is set to 0.625 Hz and the system performs, for each channel, the minimum number of averages. Once the bit is set to ‘0’, the magnetic data rate is configured by the DO bits in the CTRL_REG1_M (20h) register. SIM SPI Serial Interface mode selection. Default value: 0 (0: SPI only write operations enabled; 1: SPI read and write operations enable). MD[1:0] Operating mode selection. Default value: 11 Refer to Table 117. DocID025715 Rev 3 LSM9DS1 Magnetometer register description Table 117. System operating mode selection 8.8 MD1 MD0 Mode 0 0 Continuous-conversion mode 0 1 Single-conversion mode 1 0 Power-down mode 1 1 Power-down mode CTRL_REG4_M (23h) Table 118. CTRL_REG4_M register 0(1) 0(1) 0(1) 0(1) OMZ1 OMZ0 BLE 0(1) 1. These bits must be set to ‘0’ for the correct operation of the device Table 119. CTRL_REG4_M register description OMZ[1:0] Z-axis operative mode selection. Default value: 00. Refer to Table 120. BLE Big/Little Endian data selection. Default value: 0 (0: data LSb at lower address; 1: data MSb at lower address) Table 120. Z-axis operative mode selection OMZ1 8.9 OMZ0 Operative mode for Z-axis 0 0 Low-power mode 0 1 Medium-performance mode 1 0 High-performance mode 1 1 Ultra-high performance mode CTRL_REG5_M (24h) Table 121. CTRL_REG5_M register FAST_READ BDU 0(1) 0(1) 0(1) 0(1) 0(1) 0(1) 1. These bits must be set to ‘0’ for the correct operation of the device. Table 122. CTRL_REG5_M register description FAST_READ FAST_READ allows reading the high part of DATA OUT only in order to increase reading efficiency. Default value: 0 (0: FAST_READ disabled; 1: FAST_READ enabled) BDU Block data update for magnetic data. Default value: 0 (0: continuous update; 1: output registers not updated until MSB and LSB have been read) DocID025715 Rev 3 65/72 72 Magnetometer register description 8.10 LSM9DS1 STATUS_REG_M (27h) Table 123. STATUS_REG_M register ZYXOR ZOR YOR XOR ZYXDA ZDA ZYXOR X, Y and Z-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: a new set of data has overwritten the previous set) ZOR Z-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Z-axis has overwritten the previous data) YOR Y-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Y-axis has overwritten the previous data) XOR X-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the X-axis has overwritten the previous data) ZYXDA X, Y and Z-axis new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available) ZDA Z-axis new data available. Default value: 0 (0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available) YDA Y-axis new data available. Default value: 0 (0: new data for the Y-axis is not yet available; 1: new data for the Y-axis is available) XDA X-axis new data available. Default value: 0 (0: a new data for the X-axis is not yet available; 1: a new data for the X-axis is available) YDA XDA Table 124. STATUS_REG_M register description 8.11 OUT_X_L_M (28h), OUT_X_H_M(29h) Magnetometer X-axis data output. The value of the magnetic field is expressed as two’s complement. 8.12 OUT_Y_L_M (2Ah), OUT_Y_H_M (2Bh) Magnetometer Y-axis data output. The value of the magnetic field is expressed as two’s complement. 8.13 OUT_Z_L_M (2Ch), OUT_Z_H_M (2Dh) Magnetometer Z-axis data output. The value of the magnetic field is expressed as two’s complement. 66/72 DocID025715 Rev 3 LSM9DS1 8.14 Magnetometer register description INT_CFG_M (30h) Table 125. INT_CFG_M register XIEN YIEN 0(1) ZIEN 0(1) IEA IEL IEN 1. This bit must be set to ‘0’ for the correct operation of the device. Table 126. INT_CFG_M register description 8.15 XIEN Enable interrupt generation on X-axis. Default value: 0 0: disable interrupt request; 1: enable interrupt request YIEN Enable interrupt generation on Y-axis. Default value: 0 0: disable interrupt request; 1: enable interrupt request ZIEN Enable interrupt generation on Z-axis. Default value: 0 0: disable interrupt request; 1: enable interrupt request IEA Interrupt active configuration on INT_MAG. Default value: 0 0: low; 1: high IEL Latch interrupt request. Default value: 0 0: interrupt request latched; 1: interrupt request not latched) Once latched, the INT_M pin remains in the same state until INT_SRC_M (31h)) is read. IEN Interrupt enable on the INT_M pin. Default value: 0 0: disable; 1: enable INT_SRC_M (31h) Table 127. INT_SRC_M register PTH_X PTH_Y PTH_Z NTH_X NTH_Y NTH_Z MROI(1) INT 1. This functionality can be enabled only if the IEN bit in INT_CFG_M (30h) is enabled. Table 128. INT_SRC_M register description PTH_X Value on X-axis exceeds the threshold on the positive side. Default value: 0 PTH_Y Value on Y-axis exceeds the threshold on the positive side. Default value: 0 PTH_Z Value on Z-axis exceeds the threshold on the positive side. Default value: 0 NTH_X Value on X-axis exceeds the threshold on the negative side. Default value: 0 NTH_Y Value on Y-axis exceeds the threshold on the negative side. Default value: 0 NTH_Z Value on Z-axis exceeds the threshold on the negative side. Default value: 0 MROI Internal measurement range overflow on magnetic value. Default value: 0 INT This bit signals when the interrupt event occurs. DocID025715 Rev 3 67/72 72 Magnetometer register description 8.16 LSM9DS1 INT_THS_L(32h), INT_THS_H(33h) Interrupt threshold. Default value: 0. The value is expressed in 15-bit unsigned. Even if the threshold is expressed in absolute value, the device detects both positive and negative thresholds. Table 129. INT_THS_L_M register THS7 THS6 THS5 THS4 THS3 THS2 THS1 THS0 THS9 THS8 Table 130. INT_THS_H_M register 0(1) THS14 THS13 THS12 THS11 1. This bit must be set to ‘0’ for the correct operation of the device. 68/72 DocID025715 Rev 3 THS10 LSM9DS1 9 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 9.1 Soldering information The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020. Leave “Pin 1 Indicator” unconnected during soldering. Land pattern and soldering recommendations are available at www.st.com/mems. 9.2 LGA package information Figure 31. LGA (3.5x3x1 mm) 24-lead package outline @# DocID025715 Rev 3 69/72 72 Package information LSM9DS1 Table 131. LGA (3.5x3x1 mm) 24-lead package mechanical data mm Dim. Min. Typ. Max. A1 1.000 1.027 A3 0.130 D1 2.850 3.000 3.150 E1 3.350 3.500 3.650 L1 2.960 3.010 3.060 L2 1.240 1.290 1.340 N1 0.165 0.215 0.265 P2 0.200 0.250 0.300 a 70/72 45° T1 0.300 0.350 0.400 T2 0.180 0.230 0.280 K 0.050 M 0.100 DocID025715 Rev 3 LSM9DS1 10 Revision history Revision history Table 132. Document revision history Date Revision Changes 18-Dec-2013 1 Initial release 05-Nov-2014 2 Datasheet status promoted from preliminary to production data Added ±16 g linear acceleration full scale throughout datasheet Corrected typo in footnote 3, 4 and 5 of Table 2: Pin description Updated Figure 15: LSM9DS1 electrical connections and Section 4.1: External capacitors Updated Table 117: System operating mode selection 12-Mar-2015 3 Added FAST_ODR bit to CTRL_REG1_M (20h) Added FAST_READ bit to CTRL_REG5_M (24h) DocID025715 Rev 3 71/72 72 LSM9DS1 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved 72/72 DocID025715 Rev 3