LSM9DS1 - STMicroelectronics

LSM9DS1
iNEMO inertial module:
3D accelerometer, 3D gyroscope, 3D magnetometer
Datasheet - production data
Applications
• Indoor navigation
• Smart user interfaces
• Advanced gesture recognition
• Gaming and virtual reality input devices
LGA-24L (3.5x3x1.0 mm)
• Display/map orientation and browsing
Description
Features
• 3 acceleration channels, 3 angular rate
channels, 3 magnetic field channels
• ±2/±4/±8/±16 g linear acceleration full scale
• ±4/±8/±12/±16 gauss magnetic full scale
• ±245/±500/±2000 dps angular rate full scale
• 16-bit data output
• SPI / I2C serial interfaces
• Analog supply voltage 1.9 V to 3.6 V
• “Always-on” eco power mode down to 1.9 mA
• Programmable interrupt generators
• Embedded temperature sensor
The LSM9DS1 is a system-in-package featuring a
3D digital linear acceleration sensor, a 3D digital
angular rate sensor, and a 3D digital magnetic
sensor.
The LSM9DS1 has a linear acceleration full scale
of ±2g/±4g/±8/±16 g, a magnetic field full scale of
±4/±8/±12/±16 gauss and an angular rate of
±245/±500/±2000 dps.
The LSM9DS1 includes an I2C serial bus
interface supporting standard and fast mode
(100 kHz and 400 kHz) and an SPI serial
standard interface.
Magnetic, accelerometer and gyroscope sensing
can be enabled or set in power-down mode
separately for smart power management.
• Embedded FIFO
• Position and motion detection functions
• Click/double-click recognition
• Intelligent power saving for handheld devices
• ECOPACK®, RoHS and “Green” compliant
The LSM9DS1 is available in a plastic land grid
array package (LGA) and it is guaranteed to
operate over an extended temperature range
from -40 °C to +85 °C.
Table 1. Device summary
Part number
Temperature range [°C]
Package
Packing
LSM9DS1
-40 to +85
LGA-24L
Tray
LSM9DS1TR
-40 to +85
LGA-24L
Tape and reel
March 2015
This is information on a product in full production.
DocID025715 Rev 3
1/72
www.st.com
Contents
LSM9DS1
Contents
1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2
Module specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1
Sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1
3
4
2.3
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4
Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1
SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2
I2C - inter-IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.1
Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.2
Zero-g, zero-rate and zero-gauss level . . . . . . . . . . . . . . . . . . . . . . . . . 18
LSM9DS1 functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1
Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2
Gyroscope power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3
Accelerometer and gyroscope multiple reads (burst) . . . . . . . . . . . . . . . . 21
3.4
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5
Accelerometer and gyroscope FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5.1
Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5.2
FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.3
Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.4
Continuous-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.5
Bypass-to-Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1
5
External capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1
I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.1
2/72
Recommended power-up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
DocID025715 Rev 3
LSM9DS1
Contents
5.2
5.3
Accelerometer and gyroscope SPI bus interface . . . . . . . . . . . . . . . . . . . 31
5.2.1
SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2
SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.3
SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Magnetic sensor SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.1
SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.2
SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.3
SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6
Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7
Accelerometer and gyroscope register description . . . . . . . . . . . . . . 41
7.1
ACT_THS (04h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2
ACT_DUR (05h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.3
INT_GEN_CFG_XL (06h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.4
INT_GEN_THS_X_XL (07h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.5
INT_GEN_THS_Y_XL (08h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.6
INT_GEN_THS_Z_XL (09h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.7
INT_GEN_DUR_XL (0Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.8
REFERENCE_G (0Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.9
INT1_CTRL (0Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.10
INT2_CTRL (0Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.11
WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.12
CTRL_REG1_G (10h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.13
CTRL_REG2_G (11h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.14
CTRL_REG3_G (12h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.15
ORIENT_CFG_G (13h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.16
INT_GEN_SRC_G (14h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.17
OUT_TEMP_L (15h), OUT_TEMP_H (16h) . . . . . . . . . . . . . . . . . . . . . . . 49
7.18
STATUS_REG (17h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.19
OUT_X_G (18h - 19h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.20
OUT_Y_G (1Ah - 1Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.21
OUT_Z_G (1Ch - 1Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.22
CTRL_REG4 (1Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DocID025715 Rev 3
3/72
72
Contents
8
4/72
LSM9DS1
7.23
CTRL_REG5_XL (1Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.24
CTRL_REG6_XL (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.25
CTRL_REG7_XL (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.26
CTRL_REG8 (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.27
CTRL_REG9 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.28
CTRL_REG10 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.29
INT_GEN_SRC_XL (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.30
STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.31
OUT_X_XL (28h - 29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.32
OUT_Y_XL (2Ah - 2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.33
OUT_Z_XL (2Ch - 2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.34
FIFO_CTRL (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.35
FIFO_SRC (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.36
INT_GEN_CFG_G (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.37
INT_GEN_THS_X_G (31h - 32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.38
INT_GEN_THS_Y_G (33h - 34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.39
INT_GEN_THS_Z_G (35h - 36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.40
INT_GEN_DUR_G (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Magnetometer register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.1
OFFSET_X_REG_L_M (05h), OFFSET_X_REG_H_M (06h) . . . . . . . . . 62
8.2
OFFSET_Y_REG_L_M (07h), OFFSET_Y_REG_H_M (08h) . . . . . . . . . 62
8.3
OFFSET_Z_REG_L_M (09h), OFFSET_Z_REG_H_M (0Ah) . . . . . . . . . 62
8.4
WHO_AM_I_M (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.5
CTRL_REG1_M (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.6
CTRL_REG2_M (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.7
CTRL_REG3_M (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.8
CTRL_REG4_M (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.9
CTRL_REG5_M (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.10
STATUS_REG_M (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.11
OUT_X_L_M (28h), OUT_X_H_M(29h) . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.12
OUT_Y_L_M (2Ah), OUT_Y_H_M (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.13
OUT_Z_L_M (2Ch), OUT_Z_H_M (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . 66
DocID025715 Rev 3
LSM9DS1
9
10
Contents
8.14
INT_CFG_M (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.15
INT_SRC_M (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.16
INT_THS_L(32h), INT_THS_H(33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.1
Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.2
LGA package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
DocID025715 Rev 3
5/72
72
List of tables
LSM9DS1
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
6/72
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Gyroscope operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Operating mode current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Accelerometer turn-on time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Gyroscope turn-on time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
I2C terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 29
Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 29
Accelerometer and gyroscope SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . 30
Magnetic sensor SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Accelerometer and gyroscope register address map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Magnetic sensor register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
ACT_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
ACT_THS register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
ACT_DUR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
ACT_DUR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
INT_GEN_CFG_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
INT_GEN_CFG_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
INT_GEN_THS_X_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
INT_GEN_THS_X_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
INT_GEN_THS_Y_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
INT_GEN_THS_Y_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
INT_GEN_THS_Z_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
INT_GEN_THS_Z_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
INT_GEN_DUR_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
INT_GEN_DUR_XL register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
REFERENCE_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
REFERENCE_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
INT1_CTRL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
INT1_CTRL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
INT2_CTRL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
INT2_CTRL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
CTRL_REG1_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
CTRL_REG1_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
ODR and BW configuration setting (after LPF1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
ODR and BW configuration setting (after LPF2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
CTRL_REG2_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
DocID025715 Rev 3
LSM9DS1
List of tables
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.
CTRL_REG2_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
CTRL_REG3_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
CTRL_REG3_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Gyroscope high-pass filter cutoff frequency configuration [Hz]. . . . . . . . . . . . . . . . . . . . . . 48
ORIENT_CFG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
ORIENT_CFG_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
INT_GEN_SRC_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
INT_GEN_SRC_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
OUT_TEMP_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
OUT_TEMP_H register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
OUT_TEMP register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
STATUS_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
STATUS_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
CTRL_REG4 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
CTRL_REG5_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
CTRL_REG5_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
CTRL_REG6_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
CTRL_REG6_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
ODR register setting (accelerometer only mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
CTRL_REG7_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
CTRL_REG7_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Low pass cutoff frequency in high resolution mode (HR = 1) . . . . . . . . . . . . . . . . . . . . . . . 53
CTRL_REG8 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
CTRL_REG8 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
CTRL_REG9 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
CTRL_REG9 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
CTRL_REG10 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
CTRL_REG10 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
INT_GEN_SRC_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
INT_GEN_SRC_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
STATUS_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
STATUS_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
FIFO_CTRL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
FIFO_CTRL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
FIFO mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
FIFO_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
FIFO_SRC register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
FIFO_SRC example: OVR/FSS details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
INT_GEN_CFG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
INT_GEN_CFG_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
INT_GEN_THS_XH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
INT_GEN_THS_XL_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
INT_GEN_THS_X_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
INT_GEN_THS_YH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
INT_GEN_THS_YL_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
INT_GEN_THS_Y_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
INT_GEN_THS_ZH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
INT_GEN_THS_ZL_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
INT_GEN_THS_Z_G register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
INT_GEN_DUR_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
INT_GEN_DUR_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
DocID025715 Rev 3
7/72
72
List of tables
Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.
Table 107.
Table 108.
Table 109.
Table 110.
Table 111.
Table 112.
Table 113.
Table 114.
Table 115.
Table 116.
Table 117.
Table 118.
Table 119.
Table 120.
Table 121.
Table 122.
Table 123.
Table 124.
Table 125.
Table 126.
Table 127.
Table 128.
Table 129.
Table 130.
Table 131.
Table 132.
8/72
LSM9DS1
OFFSET_X_REG_L_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
OFFSET_X_REG_H_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
OFFSET_Y_REG_L_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
OFFSET_Y_REG_H_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
OFFSET_Z_REG_L_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
OFFSET_Z_REG_H_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
WHO_AM_I_M register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
CTRL_REG1_M register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
CTRL_REG1_M register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
X and Y axes operative mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Output data rate configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
CTRL_REG2_M register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
CTRL_REG2_M register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Full-scale selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
CTRL_REG3_M register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
CTRL_REG3_M register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
System operating mode selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
CTRL_REG4_M register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
CTRL_REG4_M register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Z-axis operative mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
CTRL_REG5_M register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
CTRL_REG5_M register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
STATUS_REG_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
STATUS_REG_M register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
INT_CFG_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
INT_CFG_M register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
INT_SRC_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
INT_SRC_M register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
INT_THS_L_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
INT_THS_H_M register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
LGA (3.5x3x1 mm) 24-lead package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
DocID025715 Rev 3
LSM9DS1
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Recommended power-up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
I2C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Switching operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Multiple reads: accelerometer only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Multiple reads: accelerometer and gyroscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Accelerometer and gyroscope digital block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Magnetometer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Continuous-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Bypass-to-Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
LSM9DS1 electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Accelerometer and gyroscope read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Accelerometer and gyroscope SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Multiple byte SPI read protocol (2-byte example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Accelerometer and gyroscope SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Multiple byte SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Accelerometer and gyroscope SPI read protocol in 3-wire mode. . . . . . . . . . . . . . . . . . . . 33
Magnetic sensor read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Magnetic sensor SPI read protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Multiple byte SPI read protocol (2-byte example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Magnetic sensor SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Multiple byte SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
INT_SEL and OUT_SEL configuration gyroscope block diagram . . . . . . . . . . . . . . . . . . . 47
Wait bit disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Wait bit enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
LGA (3.5x3x1 mm) 24-lead package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
DocID025715 Rev 3
9/72
72
Pin description
1
LSM9DS1
Pin description
Figure 1. Pin connections
=
7239,(:
;
<
7
*1'
*1'
&$3
9''
9''
&
9'',2
5(6
',5(&7,2162)7+(
'(7(&7$%/(
$&&(/(5$7,216
=
5(6 ;
5(6 7239,(:
',5(&7,2162)7+(
'(7(&7$%/(
0$*1(7,&),(/'6
10/72
DocID025715 Rev 3
'5'<B0
,17B$*
,17B0
'(1B$*
<
,17B$*
7
6&/63&
9'',2
6'$6',6'2
6'2B$*
%27720
9,(:
5(6
5(6
&6B0
&6B$*
6'2B0
7
7239,(:
',5(&7,2162)7+(
'(7(&7$%/(
$1*8/$55$7(6
LSM9DS1
Pin description
Table 2. Pin description
Pin #
Name
1
VDDIO(1)
Power supply for I/O pins
2
SCL/SPC
I2C serial clock (SCL) / SPI serial port clock (SPC)
3
VDDIO(2)
Power supply for I/O pins
4
Function
I2C serial data (SDA)
SDA/SDI/SDO SPI serial data input (SDI)
3-wire interface serial data output (SDO)
5
SDO_A/G
SPI serial data output (SDO) for the accelerometer and gyroscope
I2C least significant bit of the device address (SA0) for the accelerometer
and gyroscope
6
SDO_M
SPI serial data output (SDO) for the magnetometer
I2C least significant bit of the device address (SA0) for the magnetometer
CS_A/G
SPI enable
I2C/SPI mode selection for the accelerometer and gyroscope
(1: SPI idle mode / I2C communication enabled;
0: SPI communication mode / I2C disabled)
7
SPI enable
I2C/SPI mode selection for the magnetometer
(1: SPI idle mode / I2C communication enabled;
0: SPI communication mode / I2C disabled)
8
CS_M
9
DRDY_M
10
INT_M
11
INT1_A/G
Accelerometer and gyroscope interrupt 1
12
INT2_A/G
Accelerometer and gyroscope interrupt 2
13
DEN_A/G
Accelerometer and gyroscope data enable
14
RES
Reserved. Connected to GND.
15
RES
Reserved. Connected to GND.
16
RES
Reserved. Connected to GND.
17
RES
Reserved. Connected to GND.
18
RES
Reserved. Connected to GND.
19
GND
0 V supply
20
GND
0 V supply
21
CAP
Connected to GND with ceramic capacitor(3)
22
VDD(4)
Power supply
23
VDD(5)
Power supply
24
C1
Magnetic sensor data ready
Magnetic sensor interrupt
Capacitor connection (C1 = 100 nF)
1. Recommended 100 nF filter capacitor.
2. Recommended 100 nF filter capacitor.
3. 10 nF (±10%), 16 V. 1 nF minimum value has to be guaranteed under 11 V bias condition.
4. Recommended 100 nF plus 10 µF capacitors.
5. Recommended 100 nF plus 10 µF capacitors.
DocID025715 Rev 3
11/72
72
Module specifications
LSM9DS1
2
Module specifications
2.1
Sensor characteristics
@ Vdd = 2.2 V, T = 25 °C unless otherwise noted(a)
Table 3. Sensor characteristics
Symbol
Parameter
Test conditions
Min.
Typ.(1)
Max.
Unit
±2
LA_FS
±4
Linear acceleration
measurement range
g
±8
±16
±4
M_FS
±8
Magnetic
measurement range
gauss
±12
±16
G_FS
LA_So
M_GN
G_So
±245
Angular rate
measurement range
Linear acceleration sensitivity
Magnetic sensitivity
Angular rate sensitivity
±500
dps
±2000
Linear acceleration FS = ±2 g
0.061
Linear acceleration FS = ±4 g
0.122
Linear acceleration FS = ±8 g
0.244
Linear acceleration FS = ±16 g
0.732
Magnetic FS = ±4 gauss
0.14
Magnetic FS = ±8 gauss
0.29
Magnetic FS = ±12 gauss
0.43
Magnetic FS = ±16 gauss
0.58
Angular rate FS = ±245 dps
8.75
Angular rate FS = ±500 dps
17.50
Angular rate FS = ±2000 dps
70
mg/LSB
mgauss/
LSB
mdps/
LSB
LA_TyOff
Linear acceleration typical
FS = ±8 g
zero-g level offset accuracy(2)
±90
mg
M_TyOff
Zero-gauss level (3)
FS = ±4 gauss
±1
gauss
G_TyOff
Angular rate
typical zero-rate level (4)
FS = ±2000 dps
±30
dps
Magnetic disturbance field
Zero-gauss offset starts to degrade
M_DF
Top
Operating temperature range
-40
50
gauss
+85
°C
1. Typical specifications are not guaranteed
2. Typical zero-g level offset value after soldering
3. Typical zero-gauss level value after test and trimming
4. Typical zero rate level offset value after MSL3 preconditioning
a. The product is factory calibrated at 2.2 V. The operational power supply range is from 1.9 V to 3.6 V.
12/72
DocID025715 Rev 3
LSM9DS1
2.2
Module specifications
Electrical characteristics
@ Vdd = 2.2 V, T = 25 °C unless otherwise noted(b)
Table 4. Electrical characteristics
Symbol
Vdd
Test
conditions
Parameter
Min.
Typ.(1)
Max.
Unit
V
Supply voltage
1.9
3.6
Vdd_IO
Module power supply for I/O
1.71
Vdd+0.1
Idd_XM
Current consumption of the
accelerometer and magnetic sensor in
normal mode (2)
600
µA
Gyroscope current consumption in
normal mode(3)
4.0
mA
Idd_G
Top
Trise
Twait
Operating temperature range
Time for power supply
rising(4)
Time delay between Vdd_IO and Vdd
(4)
-40
+85
°C
0.01
100
ms
0
10
ms
1. Typical specifications are not guaranteed
2. Magnetic sensor in high-resolution mode (ODR = 20 Hz), accelerometer sensor in normal mode, gyroscope in power-down
mode
3. Accelerometer and magnetic sensor in power-down mode
4. Please refer to Section 2.2.1: Recommended power-up sequence for more details.
b. LSM9DS1 is factory calibrated at 2.2 V.
DocID025715 Rev 3
13/72
72
Module specifications
2.2.1
LSM9DS1
Recommended power-up sequence
For the power-up sequence please refer to the following figure, where:
•
Trise is the time for the power supply to rise from 10% to 90% of its final value
•
Twait is the delay between the end of the Vdd_IO ramp (90% of its final value) and the
start of the Vdd ramp
Figure 2. Recommended power-up sequence
7ULVH
9GGB,2
9
7ZDLW
9GG
9
7ULVH
2.3
Temperature sensor characteristics
@ Vdd = 2.2 V, T = 25 °C unless otherwise noted (c)
Table 5.
Temperature sensor characteristics
Symbol
Parameter
TODR
Temperature refresh rate
TSen
Temperature sensitivity(3)
Top
Test condition
Min.
Gyro OFF(2)
Typ.(1)
Max.
50
Gyro ON
Hz
59.5
16
Operating temperature range
-40
LSB/°C
+85
1. Typical specifications are not guaranteed.
2. When the accelerometer ODR is set to 10 Hz and the gyroscope part is turned off, the TODR value is 10 Hz.
3. The output of the temperature sensor is 0 (typ.) at 25 °C
c.
14/72
The product is factory calibrated at 2.2 V.
DocID025715 Rev 3
Unit
°C
LSM9DS1
Module specifications
2.4
Communication interface characteristics
2.4.1
SPI - serial peripheral interface
Subject to general operating conditions for Vdd and Top.
Table 6. SPI slave timing values
Value(1)
Symbol
Parameter
Unit
Min
tc(SPC)
SPI clock cycle
fc(SPC)
SPI clock frequency
tsu(CS)
CS setup time
5
th(CS)
CS hold time
20
tsu(SI)
SDI input setup time
5
th(SI)
SDI input hold time
15
tv(SO)
SDO valid output time
th(SO)
SDO output hold time
tdis(SO)
SDO output disable time
Max
100
ns
10
MHz
ns
50
5
50
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not
tested in production
Figure 3. SPI slave timing diagram
Note:
Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output
ports.
DocID025715 Rev 3
15/72
72
Module specifications
2.4.2
LSM9DS1
I2C - inter-IC control interface
Subject to general operating conditions for Vdd and Top.
Table 7. I2C slave timing values
Symbol
f(SCL)
I2C Standard mode(1)
Parameter
SCL clock frequency
I2C Fast mode (1)
Min
Max
Min
Max
0
100
0
400
tw(SCLL)
SCL clock low time
4.7
1.3
tw(SCLH)
SCL clock high time
4.0
0.6
tsu(SDA)
SDA setup time
250
100
th(SDA)
SDA data hold time
0
th(ST)
START condition hold time
4
0.6
tsu(SR)
Repeated START condition
setup time
4.7
0.6
tsu(SP)
STOP condition setup time
4
0.6
4.7
1.3
tw(SP:SR)
Bus free time between STOP
and START condition
3.45
ns
0.9
Figure 4. I2C slave timing diagram
5(3($7('
67$57
67$57
WVX65
WZ6365
6&/
Note:
16/72
WZ6&//
67$57
WK6'$
WVX63
WK67
WZ6&/+
Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports
DocID025715 Rev 3
µs
µs
1. Data based on standard I2C protocol requirement, not tested in production.
WVX6'$
kHz
µs
0
6'$
Unit
6723
LSM9DS1
2.5
Module specifications
Absolute maximum ratings
Stresses above those listed as “Absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 8. Absolute maximum ratings
Symbol
Vdd
Vdd_IO
Vin
Note:
Ratings
Maximum value
Unit
Supply voltage
-0.3 to 4.8
V
I/O pins supply voltage
-0.3 to 4.8
V
0.3 to Vdd_IO +0.3
V
3,000 for 0.5 ms
g
10,000 for 0.1 ms
g
1000
gauss
2
kV
-40 to +125
°C
Input voltage on any control pin
(including CS_A/G, CS_M, SCL/SPC, SDA/SDI/SDO,
SDO_A/G, SDO_M)
AUNP
Acceleration (any axis)
MEF
Maximum exposed field
ESD
Electrostatic discharge protection (HBM)
TSTG
Storage temperature range
Supply voltage on any pin should never exceed 4.8 V.
This device is sensitive to mechanical shock, improper handling can cause
permanent damage to the part.
This device is sensitive to electrostatic discharge (ESD), improper handling can
cause permanent damage to the part.
DocID025715 Rev 3
17/72
72
Module specifications
2.6
Terminology
2.6.1
Sensitivity
LSM9DS1
Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration
to the device. Because the sensor can measure DC accelerations, this can be done easily
by pointing the selected axis towards the ground, noting the output value, rotating the
sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing
so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the
smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This
value changes very little over temperature and over time. The sensitivity tolerance describes
the range of sensitivities of a large number of sensors.
An angular rate gyroscope is device that produces a positive-going digital output for
counterclockwise rotation around the axis considered. Sensitivity describes the gain of the
sensor and can be determined by applying a defined angular velocity to it. This value
changes very little over temperature and time.
Magnetic sensor sensitivity describes the gain of the sensor and can be determined, for
example, by applying a magnetic field of 1 gauss to it.
2.6.2
Zero-g, zero-rate and zero-gauss level
Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output
signal from the ideal output signal if no acceleration is present. A sensor in a steady state on
a horizontal surface will measure 0 g on both the X-axis and Y-axis, whereas the Z-axis will
measure 1 g. Ideally, the output is in the middle of the dynamic range of the sensor (content
of OUT registers 00h, data expressed as two’s complement number). A deviation from the
ideal value in this case is called zero-g offset.
Offset is to some extent a result of stress to MEMS sensor and therefore the offset can
slightly change after mounting the sensor onto a printed circuit board or exposing it to
extensive mechanical stress. Offset changes little over temperature, see “Linear
acceleration zero-g level change vs. temperature” in Table 3. The zero-g level tolerance
(TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors.
Zero-rate level describes the actual output signal if there is no angular rate present. The
zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor
and therefore the zero-rate level can slightly change after mounting the sensor onto a
printed circuit board or after exposing it to extensive mechanical stress. This value changes
very little over temperature and time.
Zero-gauss level offset (M_TyOff) describes the deviation of an actual output signal from the
ideal output if no magnetic field is present.
18/72
DocID025715 Rev 3
LSM9DS1
LSM9DS1 functionality
3
LSM9DS1 functionality
3.1
Operating modes
In the LSM9DS1 the accelerometer and gyroscope have two operating modes available:
only accelerometer active and gyroscope in power down or both accelerometer and
gyroscope sensors active at the same ODR. Switching from one mode to the other requires
one write operation: writing to CTRL_REG6_XL (20h), the accelerometer operates in
normal mode and the gyroscope is powered down, writing to CTRL_REG1_G (10h) both
accelerometer and gyroscope are activated at the same ODR.
Figure 5 depicts both modes of operation from power down.
Figure 5. Switching operating modes
:ULWH&75/B5(*B;/
$FFHOHURPHWHU
2QO\
3RZHU'RZQ
:ULWH&75/B5(*B*
:LWK&75/B5(*B;/ 3'
:ULWH&75/B5(*B*
$FFHOHURPHWHU
*\UR
The magnetic sensor has three operating modes available: power-down (default),
continuous-conversion mode and single-conversion mode. Switching from power-down to
the other modes requires one write operation to CTRL_REG3_M (22h), setting values in the
MD[1:0] bits. For the output of the magnetic data compensated by temperature, the
TEMP_COMP bit in CTRL_REG1_M (20h) must be set to ‘1’.
3.2
Gyroscope power modes
In the LSM9DS1, the gyroscope can be configured in three different operating modes:
power-down, low-power and normal mode.
Low-power mode is available for lower ODR (14.9, 59.5, 119 Hz) while for greater ODR
(238, 476, 952 Hz) the device is automatically in normal mode. Table summarizes the ODR
configuration (ODR_G[2:0] bits set in CTRL_REG1_G (10h)) and corresponding power
modes.
To enable low-power mode, the LP_mode bit in CTRL_REG3_G (12h) has to be set to ‘1’.
Low-power mode allows reaching low power consumption while maintaining the device
always on, refer to Table 10.
DocID025715 Rev 3
19/72
72
LSM9DS1 functionality
LSM9DS1
Table 9. Gyroscope operating modes
ODR_G [2:0]
ODR [Hz]
Power mode
000
Power down
Power-down
001
14.9
Low-power/Normal mode
010
59.5
Low-power/Normal mode
011
119
Low-power/Normal mode
100
238
Normal mode
101
476
Normal mode
110
952
Normal mode
Table 10. Operating mode current consumption
ODR [Hz]
Current consumption(1)
Power mode
[mA]
14.9
Low-power
1.9
59.5
Low-power
2.4
119
Low-power
3.1
238
Normal mode
4.3
476
Normal mode
4.3
952
Normal mode
4.3
1. Typical values of gyroscope and accelerometer current consumption are based on characterization data.
Table 11. Accelerometer turn-on time
BW = 400 Hz(1)
ODR [Hz]
BW = 200 Hz(1)
BW = 100 Hz(1)
BW = 50 Hz(1)
14.9
0
0
0
0
59.5
0
0
0
0
119
1
1
1
2
238
1
1
2
4
476
1
2
4
7
952
2
4
7
14
1. The table contains the number of samples to be discarded after switching between power-down mode
and normal mode.
20/72
DocID025715 Rev 3
LSM9DS1
LSM9DS1 functionality
Table 12. Gyroscope turn-on time
LPF1 only(1)
ODR [Hz]
LPF1 and LPF2(1)
14.9
2
LPF2 not available
59.5 or 119
3
13
238
4
14
476
5
15
952
8
18
1. The table contains the number of samples to be discarded after switching between low-power mode and
normal mode.
3.3
Accelerometer and gyroscope multiple reads (burst)
When only accelerometer is activated and the gyroscope is in power down, starting from
OUT_X_XL (28h - 29h) multiple reads can be performed. Once OUT_Z_XL (2Ch - 2Dh) is
read, the system automatically restarts from OUT_X_XL (28h - 29h) (see Figure 6).
Figure 6. Multiple reads: accelerometer only
5HDG
5HDGQ
[\]
287B7(03
287B;B;/ 287B<B;/ 287B=B;/
$%
&'
[\]
287B;B;/ 287B<B;/ 287B=B;/
$%
&'
When both accelerometer and gyroscope sensors are activated at the same ODR, starting
from OUT_X_G (18h - 19h) multiple reads can be performed. Once OUT_Z_XL (2Ch - 2Dh)
is read, the system automatically restarts from OUT_X_G (18h - 19h) (see Figure 7).
Figure 7. Multiple reads: accelerometer and gyroscope
5HDG
5HDGQ
[\]
287B7(03
287B;B* 287B<B* 287B=B* 287B;B;/ 287B<B;/ 287B=B;/
$%
$%
&' &'
[\]
287B;B* 287B<B* 287B=B* 287B;B;/ 287B<B;/287B=B;/
$%
$%
&' &'
DocID025715 Rev 3
21/72
72
LSM9DS1 functionality
3.4
LSM9DS1
Block diagram
Figure 8. Accelerometer and gyroscope digital block diagram
+5
+3,6
/3)
;/
,QWHUUXSW
*HQHUDWRU
;/
/3)
;/
$'&
;/
+3)
;/
)'6
287B6(/
'DWD5HJ
),)2
$'&
*\UR
/3)
*\UR
+3)
*\UR
,&63,
;/*\UR
/3)
*\UR
65&5HJLVWHUV
&)*5HJLVWHUV
+3B(1
,QWHUUXSW
*HQHUDWRU
*\UR
,17B6(/
Figure 9. Magnetometer block diagram
;
<
&+$5*(
$03/,),(5
=
,0
$' &219(57(5
08;
&21752/
/2*,&
=
<
;
75,00,1*
&,5&8,76
22/72
&/2&.
&21752//2*,&
DocID025715 Rev 3
,17(55837
*(1(5$725
,&63,
IRUPDJRQO\
LSM9DS1
3.5
LSM9DS1 functionality
Accelerometer and gyroscope FIFO
The LSM9DS1 embeds 32 slots of 16-bit data FIFO for each of the gyroscope’s three output
channels, yaw, pitch and roll, and 16-bit data FIFO for each of the accelerometer’s three
output channels, X, Y and Z. This allows consistent power saving for the system since the
host processor does not need to continuously poll data from the sensor, but it can wake up
only when needed and burst the significant data out from the FIFO. This buffer can work
accordingly to five different modes: Bypass mode, FIFO-mode, Continuous mode,
Continuous-to-FIFO mode and Bypass-to-Continuous. Each mode is selected by the
FMODE [2:0] bits in the FIFO_CTRL (2Eh) register. Programmable FIFO threshold status,
FIFO overrun events and the number of unread samples stored are available in the
FIFO_SRC (2Fh) register and can be set to generate dedicated interrupts on the INT1_A/G
pin in the INT1_CTRL (0Ch) register and on the INT2_A/G pin in the INT2_CTRL (0Dh)
register.
FIFO_SRC (2Fh)(FTH) goes to '1' when the number of unread samples (FIFO_SRC (2Fh)
(FSS5:0)) is greater than or equal to FTH [4:0] in FIFO_CTRL (2Eh). If FIFO_CTRL (2Eh)
(FTH[4:0]) is equal to 0, FIFO_SRC (2Fh)(FTH) goes to ‘0’.
FIFO_SRC (2Fh)(OVRN) is equal to '1' if a FIFO slot is overwritten.
FIFO_SRC (2Fh)(FSS [5:0]) contains stored data levels of unread samples. When FSS [5:0]
is equal to ‘000000’ FIFO is empty, when FSS [5:0] is equal to ‘100000’ FIFO is full and the
unread samples are 32.
The FIFO feature is enabled by writing '1' in CTRL_REG9 (23h) (FIFO_EN).
To guarantee the correct acquisition of data during the switching into and out of FIFO mode,
the first sample acquired must be discarded.
3.5.1
Bypass mode
In Bypass mode (FIFO_CTRL (2Eh)(FMODE [2:0]= 000), the FIFO is not operational and it
remains empty.
Bypass mode is also used to reset the FIFO when in FIFO mode.
As described in Figure 10, for each channel only the first address is used. When new data is
available the old data is overwritten.
Figure 10. Bypass mode
xi,yi,zi
empty
x0
y0
z0
x1
y1
z1
x2
y2
z2
x31
y31
z31
DocID025715 Rev 3
23/72
72
LSM9DS1 functionality
3.5.2
LSM9DS1
FIFO mode
In FIFO mode (FIFO_CTRL (2Eh) (FMODE [2:0] = 001) data from the output channels are
stored in the FIFO until it is overwritten.
To reset FIFO content, Bypass mode should be selected by writing FIFO_CTRL (2Eh)
(FMODE [2:0]) to '000'. After this reset command, it is possible to restart FIFO mode by
writing FIFO_CTRL (2Eh) (FMODE [2:0]) to '001'.
The FIFO buffer memorizes 32 levels of data but the depth of the FIFO can be resized by
setting the STOP_ON_FTH bit in CTRL_REG9 (23h). If the STOP_ON_FTH bit is set to '1',
FIFO depth is limited to FIFO_CTRL (2Eh)(FTH [4:0]) + 1 data.
A FIFO threshold interrupt can be enabled (INT_OVR bit in INT1_CTRL (0Ch) ) in order to
be raised when the FIFO is filled to the level specified by the FTH[4:0] bits of FIFO_CTRL
(2Eh). When a FIFO threshold interrupt occurs, the first data has been overwritten and the
FIFO stops collecting data from the input channels.
Figure 11. FIFO mode
[L\L]L
3.5.3
[
\
]
[
\
]
[
\
]
[
\
]
Continuous mode
Continuous mode (FIFO_CTRL (2Eh)(FMODE[2:0] = 110) provides continuous FIFO
update: as new data arrives the older is discarded.
A FIFO threshold flag FIFO_SRC (2Fh)(FTH) is asserted when the number of unread
samples in FIFO is greater than or equal to FIFO_CTRL (2Eh)(FTH4:0).
It is possible to route FIFO_SRC (2Fh)(FTH) to the INT1_A/G pin by writing in register
INT1_CTRL (0Ch) (INT1_FTH) = '1', or to the INT2_A/G pin by writing in register
INT2_CTRL (0Dh) (INT2_FTH) = '1'.
A full-flag interrupt can be enabled, (INT1_CTRL (0Ch) (INT_ FSS5)= '1’) when the FIFO
becomes saturated and in order to read the contents all at once.
If an overrun occurs, the oldest sample in FIFO is overwritten and the OVRN flag in
FIFO_SRC (2Fh) is asserted.
In order to empty the FIFO before it is full it is also possible to pull from FIFO the number of
unread samples available in FIFO_SRC (2Fh) (FSS[5:0]).
24/72
DocID025715 Rev 3
LSM9DS1
LSM9DS1 functionality
Figure 12. Continuous mode
xi,yi,zi
3.5.4
x0
y0
z0
x1
y1
z1
x2
y2
z2
x30
y30
z30
x31
y31
z31
Continuous-to-FIFO mode
In Continuous-to-FIFO mode (FIFO_CTRL (2Eh)(FMODE [2:0] = 011), FIFO behavior
changes according to the INT_GEN_SRC_XL (26h)(IA_XL) bit. When the
INT_GEN_SRC_XL (26h)(IA_XL) bit is equal to '1', FIFO operates in FIFO-mode, when the
INT_GEN_SRC_XL (26h)(IA_XL) bit is equal to '0', FIFO operates in Continuous mode.
The interrupt generator should be set to the desired configuration by means of
INT_GEN_CFG_XL (06h), INT_GEN_THS_X_XL (07h), INT_GEN_THS_Y_XL (08h) and
INT_GEN_THS_Z_XL (09h).
The CTRL_REG4 (1Eh)(LIR_XL) bit should be set to '1' in order to have latched interrupt.
Figure 13. Continuous-to-FIFO mode
xi,yi,zi
x0
y0
z0
x1
y1
z1
x2
y2
z2
x30
y30
z30
x31
y31
z31
xi,yi,zi
Continuous Mode
x0
y0
z0
x1
y1
z1
x2
y2
z2
x31
y31
z31
FIFO Mode
Trigger event
DocID025715 Rev 3
25/72
72
LSM9DS1 functionality
3.5.5
LSM9DS1
Bypass-to-Continuous mode
In Bypass-to-Continuous mode (FIFO_CTRL (2Eh)(FMODE[2:0] = '100'), data
measurement storage inside FIFO operates in Continuous mode when INT_GEN_SRC_XL
(26h)(IA_XL) is equal to '1', otherwise FIFO content is reset (Bypass mode).
The interrupt generator should be set to the desired configuration by means of
INT_GEN_CFG_XL (06h), INT_GEN_THS_X_XL (07h), INT_GEN_THS_Y_XL (08h) and
INT_GEN_THS_Z_XL (09h).
The CTRL_REG4 (1Eh)(LIR_XL) bit should be set to '1' in order to have latched interrupt.
Figure 14. Bypass-to-Continuous mode
xi,yi,zi
empty
x0
y0i
z0
x1
y1
z1
x2
y2
z2
x31
y31
xi,yi,zi
y0
z0
x1
y1
z1
x2
y2
z2
x30
y30
z30
x31
y31
z31
z31
Bypass Mode
Continuous Mode
Trigger event
26/72
x0
DocID025715 Rev 3
LSM9DS1
4
Application hints
Application hints
Figure 15. LSM9DS1 electrical connections
9GG
&
&
Q)
*1'
ȝ)
*1'
&
Q)9
&
9GGB,2
Q)
*1'
*1'
&
5(6
*1'
*1'
&$3
9''
&
*1'
9''
9''B,2
Q)
5(6
6&/63&
9''B,2
5(6
7239,(:
6'$6',6'2
5(6
5(6
6'2B$*
'(1B$*
,17B$*
,17B$*
,17B0
&6B0
'5'<B0
&6B$*
6'2B0
*1'
&PXVWJXDUDQWHHQ)YDOXHXQGHU
9ELDVFRQGLWLRQ
4.1
External capacitors
The device core is supplied through the Vdd line. Power supply decoupling capacitors (C2,
C3 = 100 nF ceramic, C4 = 10 µF Al) should be placed as near as possible to the supply pin
of the device (common design practice). Capacitor C1 (100 nF) should be a capacitor with
low ESR value and should be placed as near as possible to the C1 pin.
All voltage and ground supplies must be present at the same time to achieve proper
behavior of the IC (refer to Figure 15).
DocID025715 Rev 3
27/72
72
Digital interfaces
5
LSM9DS1
Digital interfaces
The registers embedded inside the LSM9DS1 may be accessed through both the I2C and
SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire
interface mode.
The serial interfaces are mapped onto the same pins. To select/exploit the I2C interface, the
CS line must be tied high (i.e connected to Vdd_IO).
Table 13. Serial interface pin description
Pin name
Pin description
CS_A/G, CS_M
SPI enable
I2C/SPI mode selection (1: SPI idle mode / I2C communication enabled; 0: SPI
communication mode / I2C disabled)
SCL/SPC
SDA/SDI/SDO
SDO_A/G, SDO_M
5.1
I2C Serial Clock (SCL)
SPI Serial Port Clock (SPC)
I2C Serial Data (SDA)
SPI Serial Data Input (SDI)
3-wire Interface Serial Data Output (SDO)
SPI Serial Data Output (SDO)
I2C less significant bit of the device address
I2C serial interface
The LSM9DS1 I2C is a bus slave. The I2C is employed to write the data to the registers,
whose content can also be read back.
The relevant I2C terminology is provided in the table below.
Table 14. I2C terminology
Term
Transmitter
Receiver
Description
The device which sends data to the bus
The device which receives data from the bus
Master
The device which initiates a transfer, generates clock signals and terminates a
transfer
Slave
The device addressed by the master
There are two signals associated with the I2C bus: the serial clock line (SCL) and the Serial
DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data
to/from the interface. Both the lines must be connected to Vdd_IO through an external pullup resistor. When the bus is free, both the lines are high.
The I2C interface is implemented with fast mode (400 kHz) I2C standards as well as with the
standard mode.
In order to disable the I2C block for accelerometer and gyroscope the I2C_DISABLE bit
must be written to ‘1’ in CTRL_REG9 (23h), while for magnetometer the I2C_DISABLE bit
must be written to ‘1’ in CTRL_REG3_M (22h).
28/72
DocID025715 Rev 3
LSM9DS1
Digital interfaces
I2C operation
5.1.1
The transaction on the bus is started through a START (ST) signal. A START condition is
defined as a high-to-low transition on the data line while the SCL line is held high. After this
has been transmitted by the master, the bus is considered busy. The next byte of data
transmitted after the start condition contains the address of the slave in the first 7 bits and
the eighth bit tells whether the master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first seven bits
after a start condition with its address. If they match, the device considers itself addressed
by the master.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line low so that it
remains stable low during the high period of the acknowledge clock pulse. A receiver which
has been addressed is obliged to generate an acknowledge after each byte of data
received.
The I2C embedded inside the LSM9DS1 behaves like a slave device and the following
protocol must be adhered to. In the I2C of the accelerometer and gyroscope sensor, after
the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been
returned, an 8-bit sub-address (SUB) is transmitted. The 7 LSb represent the actual register
address while the CTRL_REG8 (22h) (IF_ADD_INC) bit defines the address increment. In
the I2C of the magnetometer sensor, after the START condition (ST) a slave address is sent,
once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is
transmitted. The 7 LSb represent the actual register address while the MSB enables the
address auto increment. The SUB (register address) is automatically increased to allow
multiple data read/write.
Table 15. Transfer when master is writing one byte to slave
Master
ST
SAD + W
SUB
Slave
DATA
SAK
SP
SAK
SAK
Table 16. Transfer when master is writing multiple bytes to slave
Master
ST
SAD + W
SUB
Slave
SAK
DATA
DATA
SAK
SAK
SP
SAK
Table 17. Transfer when master is receiving (reading) one byte of data from slave
Master
ST
SAD + W
Slave
SUB
SAK
SR
SAD + R
SAK
NMAK
SAK
SP
DATA
Table 18. Transfer when master is receiving (reading) multiple bytes of data from slave
Master ST SAD+W
Slave
SUB
SAK
SR SAD+R
SAK
MAK
SAK DATA
MAK
DATA
NMAK SP
DATA
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number
of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit
(MSb) first. If a receiver can’t receive another complete byte of data until it has performed
DocID025715 Rev 3
29/72
72
Digital interfaces
LSM9DS1
some other function, it can hold the clock line, SCL low to force the transmitter into a wait
state. Data transfer only continues when the receiver is ready for another byte and releases
the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to
receive because it is performing some real-time function) the data line must be left high by
the slave. The master can then abort the transfer. A low-to-high transition on the SDA line
while the SCL line is high is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
In the presented communication format MAK is Master acknowledge and NMAK is No
Master Acknowledge.
Default address:
The slave address is completed with a Read/Write bit. If the bit was ‘1’ (Read), a repeated
START (SR) condition must be issued after the two sub-address bytes. If the bit is ‘0’ (Write)
the master will transmit to the slave with direction unchanged. Table 19 and Table 20
explain how the SAD+Read/Write bit pattern is composed, listing all the possible
configurations.
Table 19. Accelerometer and gyroscope SAD+Read/Write patterns
Command
SAD[6:1]
SAD[0] = SA0
R/W
SAD+R/W
Read
110101
0
1
11010101 (D5h)
Write
110101
0
0
11010100 (D4h)
Read
110101
1
1
11010111 (D7h)
Write
110101
1
0
11010110 (D6h)
Table 20. Magnetic sensor SAD+Read/Write patterns
30/72
Command
SAD[6:2]
SAD[1] = SDO/SA1
SAD[0]
R/W
Read
00111
0
0
1
00111001 (39h)
Write
00111
0
0
0
00111000 (38h)
Read
00111
1
0
1
00111101 (3Dh)
Write
00111
1
0
0
00111100 (3Ch)
DocID025715 Rev 3
SAD+R/W
LSM9DS1
5.2
Digital interfaces
Accelerometer and gyroscope SPI bus interface
The LSM9DS1 accelerometer and gyroscope SPI is a bus slave. The SPI allows to write
and read the registers of the device.
The Serial Interface connects to applications using 4 wires: CS_A/G, SPC, SDI and
SDO_A/G.
Figure 16. Accelerometer and gyroscope read and write protocol
&6B$*
&6
63&
6',
', ', ', ', ', ', ', ',
5:
$' $' $' $' $' $' $'
6'2B$*
6'2
'2 '2 '2 '2 '2 '2 '2 '2
CS_A/G is the serial port enable and it is controlled by the SPI master. It goes low at the
start of the transmission and goes back high at the end. SPC is the serial port clock and it is
controlled by the SPI master. It is stopped high when CS_A/G is high (no transmission). SDI
and SDO_A/G are respectively the serial port data input and output. Those lines are driven
at the falling edge of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses or in
multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling
edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge
of CS_A/G while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just
before the rising edge of CS_A/G.
bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0)
from the device is read. In latter case, the chip will drive SDO_A/G at the start of bit 8.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
In multiple read/write commands further blocks of 8 clock periods will be added. When the
CTRL_REG8 (22h) (IF_ADD_INC) bit is ‘0’ the address used to read/write data remains the
same for every block. When the CTRL_REG8 (22h)(IF_ADD_INC) bit is ‘1’, the address
used to read/write data is increased at every block.
The function and the behavior of SDI and SDO_A/G remain unchanged.
DocID025715 Rev 3
31/72
72
Digital interfaces
5.2.1
LSM9DS1
SPI read
Figure 17. Accelerometer and gyroscope SPI read protocol
&6B$*
&6
63&
6',
5:
6'2B$*
6'2
$' $' $' $' $' $' $'
'2 '2 '2 '2 '2 '2 '2 '2
The SPI read command is performed with 16 clock pulses. A multiple byte read command is
performed by adding blocks of 8 clock pulses to the previous one.
bit 0: READ bit. The value is 1.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb
first).
bit 16-... : data DO(...-8). Further data in multiple byte reads.
Figure 18. Multiple byte SPI read protocol (2-byte example)
&6
&6B$*
63&
6',
5:
6'2B$*
$' $' $' $' $' $' $'
6'2
'2 '2 '2 '2 '2 '2 '2 '2 '2'2'2'2'2'2'2 '2
32/72
DocID025715 Rev 3
LSM9DS1
5.2.2
Digital interfaces
SPI write
Figure 19. Accelerometer and gyroscope SPI write protocol
&6B$*
&6
63&
6',
', ', ', ', ', ', ', ',
5:
$' $' $' $' $' $' $'
The SPI write command is performed with 16 clock pulses. A multiple byte write command
is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: WRITE bit. The value is 0.
bit 1 -7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb
first).
bit 16-... : data DI(...-8). Further data in multiple byte writes.
Figure 20. Multiple byte SPI write protocol (2-byte example)
&6B$*
&6
63&
6',
', ', ', ', ', ', ', ', ',',',',',',', ',
5:
$' $' $' $' $' $' $'
5.2.3
SPI read in 3-wire mode
3-wire mode is entered by setting the CTRL_REG8 (22h)(SIM) bit equal to ‘1’ (SPI serial
interface mode selection).
Figure 21. Accelerometer and gyroscope SPI read protocol in 3-wire mode
&6B$*
&6
63&
6',2
'2 '2 '2 '2 '2 '2 '2 '2
5:
$' $' $' $' $' $' $'
The SPI read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
A multiple read command is also available in 3-wire mode.
DocID025715 Rev 3
33/72
72
Digital interfaces
5.3
LSM9DS1
Magnetic sensor SPI bus interface
The LSM9DS1 magnetic sensor SPI is a bus slave. The SPI allows writing and reading the
registers of the device.
The serial interface connects to applications using 4 wires: CS_M, SPC, SDI and SDO_M.
Figure 22. Magnetic sensor read and write protocol
&6B0
&6
63&
6',
5:
', ', ', ', ', ', ', ',
06 $' $' $' $' $' $'
6'2B0
6'2
'2 '2 '2 '2 '2 '2 '2 '2
CS_M is the serial port enable and it is controlled by the SPI master. It goes low at the start
of the transmission and goes back high at the end. SPC is the serial port clock and it is
controlled by the SPI master. It is stopped high when CS_M is high (no transmission). SDI
and SDO_M are respectively the serial port data input and output. Those lines are driven at
the falling edge of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses or in
multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling
edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge
of CS_M while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before
the rising edge of CS_M.
bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0)
from the device is read. In latter case, the chip will drive SDO_M at the start of bit 8.
bit 1: MS bit. When 0, the address will remain unchanged in multiple read/write commands.
When 1, the address is auto-incremented in multiple read/write commands.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
In multiple read/write commands further blocks of 8 clock periods will be added. When the
MS bit is ‘0’, the address used to read/write data remains the same for every block. When
the MS bit is ‘1’, the address used to read/write data is increased at every block.
The function and the behavior of SDI and SDO_M remain unchanged.
34/72
DocID025715 Rev 3
LSM9DS1
5.3.1
Digital interfaces
SPI read
Figure 23. Magnetic sensor SPI read protocol
&6B0
&6
63&
6',
5:
06 $' $' $' $' $' $'
6'2B0
6'2
'2 '2 '2 '2 '2 '2 '2 '2
The SPI read command is performed with 16 clock pulses. A multiple byte read command is
performed by adding blocks of 8 clock pulses to the previous one.
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, does not increment the address; when 1, increments the address in
multiple reads.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb
first).
bit 16-... : data DO(...-8). Further data in multiple byte reads.
Figure 24. Multiple byte SPI read protocol (2-byte example)
CS_M
CS
SPC
SDI
RW
SDO_M
M S A D5 A D4 AD 3 A D2 A D1 A D0
SD O
DO 7 DO 6 DO 5 DO 4 DO 3 DO 2 DO 1 DO 0
DocID025715 Rev 3
DO 15 DO 14 DO 13 DO 12 DO 11 DO 10 D O9 D O8
35/72
72
Digital interfaces
5.3.2
LSM9DS1
SPI write
Figure 25. Magnetic sensor SPI write protocol
CS_M
CS
SPC
SDI
D I7 D I6 D I5 D I4 DI3 DI2 DI1 DI0
RW
MS AD5 AD 4 AD 3 AD2 AD 1 AD0
The SPI write command is performed with 16 clock pulses. A multiple byte write command
is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: WRITE bit. The value is 0.
bit 1: MS bit. When 0, does not increment the address; when 1, increments the address in
multiple writes.
bit 2 -7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb
first).
bit 16-... : data DI(...-8). Further data in multiple byte writes.
Figure 26. Multiple byte SPI write protocol (2-byte example)
CS_M
CS
SPC
SPC
SDI
SDI
DI7 D I6 DI5 D I4 DI3 DI2 DI1 DI0 DI15 D I1 4
RW
MS AD5 AD4 AD3 AD2 AD1 AD 0
36/72
DocID025715 Rev 3
DI13 D I1 2 DI11 DI10 DI9 DI8
LSM9DS1
5.3.3
Digital interfaces
SPI read in 3-wire mode
3-wire mode is entered by setting the SIM bit to ‘1’ (SPI serial interface mode selection) in
CTRL_REG3_M (22h).
When 3-wire mode is used, the SDO_M pin has to be connected to GND or Vdd_IO.
Figure 27. SPI read protocol in 3-wire mode
CS_M
CS
SPC
SDI/O
D O7 D O6 D O5 DO4 DO3 DO2 DO1 DO0
RW
MS
AD5 AD 4 AD 3 AD2 AD1 AD 0
The SPI read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, does not increment the address; when 1, increments the address in
multiple reads.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
A multiple read command is also available in 3-wire mode.
DocID025715 Rev 3
37/72
72
Register mapping
6
LSM9DS1
Register mapping
The table given below provides a list of the 8/16-bit registers embedded in the device and
the corresponding addresses.
Table 21. Accelerometer and gyroscope register address map
Register address
Name
38/72
Type
Default
Hex
Binary
Reserved
--
00-03
--
--
ACT_THS
r/w
04
00000100
00000000
ACT_DUR
r/w
05
00000101
00000000
INT_GEN_CFG_XL
r/w
06
00000110
00000000
INT_GEN_THS_X_XL
r/w
07
00000111
00000000
INT_GEN_THS_Y_XL
r/w
08
00001000
00000000
INT_GEN_THS_Z_XL
r/w
09
00001001
00000000
INT_GEN_DUR_XL
r/w
0A
00001010
00000000
REFERENCE_G
r/w
0B
00001011
00000000
INT1_CTRL
r/w
0C
00001100
00000000
INT2_CTRL
r/w
0D
00001101
00000000
Reserved
--
0E
--
--
WHO_AM_I
r
0F
00001111
01101000
CTRL_REG1_G
r/w
10
00010000
00000000
CTRL_REG2_G
r/w
11
00010001
00000000
CTRL_REG3_G
r/w
12
00010010
00000000
ORIENT_CFG_G
r/w
13
00010011
00000000
INT_GEN_SRC_G
r
14
00010100
output
OUT_TEMP_L
r
15
00010101
output
OUT_TEMP_H
r
16
00010110
output
STATUS_REG
r
17
00010111
output
OUT_X_L_G
r
18
00011000
output
OUT_X_H_G
r
19
00011001
output
OUT_Y_L_G
r
1A
00011010
output
OUT_Y_H_G
r
1B
00011011
output
OUT_Z_L_G
r
1C
00011100
output
OUT_Z_H_G
r
1D
00011101
output
CTRL_REG4
r/w
1E
00011110
00111000
CTRL_REG5_XL
r/w
1F
00011111
00111000
DocID025715 Rev 3
Note
Reserved
Reserved
LSM9DS1
Register mapping
Table 21. Accelerometer and gyroscope register address map (continued)
Register address
Name
Type
Default
Hex
Binary
CTRL_REG6_XL
r/w
20
00100000
00000000
CTRL_REG7_XL
r/w
21
00100001
00000000
CTRL_REG8
r/w
22
00100010
00000100
CTRL_REG9
r/w
23
00100011
00000000
CTRL_REG10
r/w
24
00100100
00000000
Reserved
--
25
--
--
INT_GEN_SRC_XL
r
26
00100110
output
STATUS_REG
r
27
00100111
output
OUT_X_L_XL
r
28
00101000
output
OUT_X_H_XL
r
29
00101001
output
OUT_Y_L_XL
r
2A
00101010
output
OUT_Y_H_XL
r
2B
00101011
output
OUT_Z_L_XL
r
2C
00101100
output
OUT_Z_H_XL
r
2D
00101101
output
FIFO_CTRL
r/w
2E
00101110
00000000
FIFO_SRC
r
2F
00101111
output
INT_GEN_CFG_G
r/w
30
00110000
00000000
INT_GEN_THS_XH_G
r/w
31
00110001
00000000
INT_GEN_THS_XL_G
r/w
32
00110010
00000000
INT_GEN_THS_YH_G
r/w
33
00110011
00000000
INT_GEN_THS_YL_G
r/w
34
00110100
00000000
INT_GEN_THS_ZH_G
r/w
35
00110101
00000000
INT_GEN_THS_ZL_G
r/w
36
00110110
00000000
INT_GEN_DUR_G
r/w
37
00110111
00000000
r
38-7F
--
--
Reserved
DocID025715 Rev 3
Note
Reserved
Reserved
39/72
72
Register mapping
LSM9DS1
Table 22. Magnetic sensor register address map
Name
Type
Reserved
Register address
Hex
Binary
00 - 04
--
Default
--
OFFSET_X_REG_L_M
r/w
05
00000000
OFFSET_X_REG_H_M
r/w
06
00000000
OFFSET_Y_REG_L_M
r/w
07
00000000
OFFSET_Y_REG_H_M
r/w
08
00000000
OFFSET_Z_REG_L_M
r/w
09
00000000
OFFSET_Z_REG_H_M
r/w
0A
00000000
Reserved
WHO_AM_I_M
r
Reserved
0B - 0E
--
--
0F
0000 1111
00111101
10 - 1F
--
--
CTRL_REG1_M
r/w
20
0010 0000
00010000
CTRL_REG2_M
r/w
21
0010 0001
00000000
CTRL_REG3_M
r/w
22
0010 0010
00000011
CTRL_REG4_M
r/w
23
0010 0011
00000000
CTRL_REG5_M
r/w
24
0010 0100
00000000
25 - 26
--
--
27
0010 0111
Output
Reserved
STATUS_REG_M
r
Comment
Reserved
Offset in order to compensate
environmental effects
Reserved
Magnetic Who I am ID
Reserved
Magnetic control registers
Reserved
OUT_X_L_M
r
28
0010 1000
Output
OUT_X_H_M
r
29
0010 1001
Output
OUT_Y_L_M
r
2A
0010 1010
Output
OUT_Y_H_M
r
2B
0010 1011
Output
OUT_Z_L_M
r
2C
0010 1100
Output
OUT_Z_H_M
r
2D
0010 1101
Output
Reserved
r
2E-2F
--
--
INT_CFG_M
rw
30
00110000
00001000
Magnetic interrupt configuration
register
INT_SRC_M
r
31
00110001
00000000
Magnetic interrupt generator
status register
INT_THS_L_M
r
32
00110010
00000000
INT_THS_H_M
r
33
00110011
00000000
Magnetic output registers
Reserved
Magnetic interrupt generator
threshold
Registers marked as Reserved must not be changed. Writing to those registers may cause
permanent damage to the device.
To guarantee proper behavior of the device, all registers addresses not listed in the above
table must not be accessed and the content stored on those registers must not be changed.
The content of the registers that are loaded at boot should not be changed. They contain the
factory calibration values. Their content is automatically restored when the device is
powered up.
40/72
DocID025715 Rev 3
LSM9DS1
7
Accelerometer and gyroscope register description
Accelerometer and gyroscope register description
The device contains a set of registers which are used to control its behavior and to retrieve
linear acceleration, angular rate and temperature data. The register addresses, made up of
7 bits, are used to identify them and to write the data through the serial interface.
7.1
ACT_THS (04h)
Activity threshold register.
Table 23. ACT_THS register
SLEEP_ON ACT_THS ACT_THS
_INACT_EN
6
5
ACT_THS ACT_THS ACT_THS
4
3
2
ACT_TH
S1
ACT_THS
0
Table 24. ACT_THS register description
7.2
SLEEP_ON_
INACT_EN
Gyroscope operating mode during inactivity. Default value: 0
ACT_THS [6:0]
Inactivity threshold. Default value: 000 0000
(0: gyroscope in power-down; 1: gyroscope in sleep mode)
ACT_DUR (05h)
Inactivity duration register.
Table 25. ACT_DUR register
ACT_DUR ACT_DUR ACT_DUR ACT_DUR ACT_DUR ACT_DUR ACT_DUR ACT_DUR
7
6
5
4
3
2
1
0
Table 26.
ACT_DUR register description
ACT_DUR [7:0]
7.3
Inactivity duration. Default value: 0000 0000
INT_GEN_CFG_XL (06h)
Linear acceleration sensor interrupt generator configuration register.
Table 27. INT_GEN_CFG_XL register
AOI_XL
6D
ZHIE_XL
ZLIE_XL
YHIE_XL
DocID025715 Rev 3
YLIE_XL
XHIE_XL
XLIE_XL
41/72
72
Accelerometer and gyroscope register description
LSM9DS1
Table 28. INT_GEN_CFG_XL register description
AOI_XL
AND/OR combination of accelerometer’s interrupt events. Default value: 0
(0: OR combination; 1: AND combination)
6D
6-direction detection function for interrupt. Default value: 0
(0: disabled; 1: enabled)
ZHIE_XL
Enable interrupt generation on accelerometer’s Z-axis high event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured acceleration value
higher than preset threshold)
ZLIE_XL
Enable interrupt generation on accelerometer’s Z-axis low event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured acceleration value
lower than preset threshold)
YHIE_XL
Enable interrupt generation on accelerometer’s Y-axis high event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured acceleration value
higher than preset threshold)
YLIE_XL
Enable interrupt generation on accelerometer’s Y-axis low event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured acceleration value
lower than preset threshold)
XHIE_XL
Enable interrupt generation on accelerometer’s X-axis high event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured acceleration value
higher than preset threshold)
XLIE_XL
Enable interrupt generation on accelerometer’s X-axis low event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured acceleration value
lower than preset threshold)
7.4
INT_GEN_THS_X_XL (07h)
Linear acceleration sensor interrupt threshold register.
Table 29. INT_GEN_THS_X_XL register
THS_XL_
X7
THS_XL_
X6
THS_XL_
X5
THS_XL_
X4
THS_XL_
X3
THS_XL_
X2
THS_XL_
X1
THS_XL_
X0
Table 30. INT_GEN_THS_X_XL register description
THS_XL_X [7:0]
7.5
X-axis interrupt threshold. Default value: 0000 0000
INT_GEN_THS_Y_XL (08h)
Linear acceleration sensor interrupt threshold register.
Table 31. INT_GEN_THS_Y_XL register
THS_XL_
Y7
THS_XL_
Y6
THS_XL_
Y5
THS_XL_
Y4
THS_XL_
Y3
THS_XL_
Y2
THS_XL_
Y1
Table 32. INT_GEN_THS_Y_XL register description
THS_XL_Y [7:0]
42/72
Y-axis interrupt threshold. Default value: 0000 0000
DocID025715 Rev 3
THS_XL_
Y0
LSM9DS1
7.6
Accelerometer and gyroscope register description
INT_GEN_THS_Z_XL (09h)
Linear acceleration sensor interrupt threshold register.
Table 33. INT_GEN_THS_Z_XL register
THS_XL_Z THS_XL_Z THS_XL_Z THS_XL_Z THS_XL_Z THS_XL_Z THS_XL_Z THS_XL_Z
7
6
5
4
3
2
1
0
Table 34. INT_GEN_THS_Z_XL register description
THS_XL_Z [7:0]
7.7
Z-axis interrupt threshold. Default value: 0000 0000
INT_GEN_DUR_XL (0Ah)
Linear acceleration sensor interrupt duration register.
Table 35. INT_GEN_DUR_XL register
WAIT_XL
DUR_XL6
DUR_XL5
DUR_XL4
DUR_XL3
DUR_XL2
DUR_XL1
DUR_XL0
Table 36. INT_GEN_DUR_XL register description
7.8
WAIT_XL
Wait function enabled on duration counter. Default value: 0
(0: wait function off; 1: wait for DUR_XL [6:0] samples before exiting interrupt)
DUR_XL [6:0]
Enter/exit interrupt duration value. Default value: 000 0000
REFERENCE_G (0Bh)
Angular rate sensor reference value register for digital high-pass filter (r/w).
Table 37. REFERENCE_G register
REF7_G
REF6_G
REF5_G
REF4_G
REF3_G
REF2_G
REF1_G
REF0_G
Table 38. REFERENCE_G register description
REF_G [7:0]
7.9
Reference value for gyroscope’s digital high-pass filter (r/w).
Default value: 0000 0000
INT1_CTRL (0Ch)
INT1_A/G pin control register.
Table 39. INT1_CTRL register
INT1_IG INT1_IG_
_G
XL
INT1_
FSS5
INT1_OVR
INT1_FTH
DocID025715 Rev 3
INT1_ Boot
INT1_
DRDY_G
INT1_
DRDY_XL
43/72
72
Accelerometer and gyroscope register description
LSM9DS1
Table 40. INT1_CTRL register description
Gyroscope interrupt enable on INT 1_A/G pin. Default value: 0
INT1_IG_G
(0: disabled; 1: enabled)
Accelerometer interrupt generator on INT 1_A/G pin. Default value: 0
INT_ IG_XL
(0: disabled; 1: enabled)
FSS5 interrupt enable on INT 1_A/G pin. Default value: 0
INT_ FSS5
(0: disabled; 1: enabled)
Overrun interrupt on INT 1_A/G pin. Default value: 0
(0: disabled; 1: enabled)
INT_OVR
FIFO threshold interrupt on INT 1_A/G pin. Default value: 0
INT_FTH
(0: disabled; 1: enabled)
Boot status available on INT 1_A/G pin. Default value: 0
INT_ Boot
(0: disabled; 1: enabled)
Gyroscope data ready on INT 1_A/G pin. Default value: 0
INT_DRDY_G
(0: disabled; 1: enabled)
Accelerometer data ready on INT 1_A/G pin. Default value: 0
INT_DRDY_XL
7.10
(0: disabled; 1: enabled)
INT2_CTRL (0Dh)
INT2_A/G pin control register.
Table 41. INT2_CTRL register
INT2_IN
ACT
0
INT2_
FSS5
INT2_OVR
INT2_FTH
INT2_
DRDY_
TEMP
INT2_
DRDY_G
INT2_
DRDY_XL
Table 42. INT2_CTRL register description
INT2_INACT
INT2_ FSS5
INT2_OVR
INT2_FTH
INT2_
DRDY_TEMP
INT2_DRDY_G
INT2_DRDY_XL
44/72
Inactivity interrupt output signal. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupt events have been
generated)
FSS5 interrupt enable on INT2_A/G pin. Default value: 0
(0: disabled; 1: enabled)
Overrun interrupt on INT2_A/G pin. Default value: 0
(0: disabled; 1: enabled)
FIFO threshold interrupt on INT2_A/G pin. Default value: 0
(0: disabled; 1: enabled)
Temperature data ready on INT2_A/G pin. Default value: 0
(0: disabled; 1: enabled)
Gyroscope data ready on INT2_A/G pin. Default value: 0
(0: disabled; 1: enabled)
Accelerometer data ready on INT2_A/G pin. Default value: 0
(0: disabled; 1: enabled)
DocID025715 Rev 3
LSM9DS1
7.11
Accelerometer and gyroscope register description
WHO_AM_I (0Fh)
Who_AM_I register.
Table 43. WHO_AM_I register
0
7.12
1
1
0
1
0
0
0
BW_G1
BW_G0
CTRL_REG1_G (10h)
Angular rate sensor Control Register 1.
Table 44. CTRL_REG1_G register
ODR_G2
ODR_G1
ODR_G0
FS_G1
FS_G0
0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 45. CTRL_REG1_G register description
Gyroscope output data rate selection. Default value: 000
ODR_G [2:0]
(Refer to Table 46 and Table 47)
FS_G [1:0]
Gyroscope full-scale selection. Default value: 00
(00: 245 dps; 01: 500 dps; 10: Not Available; 11: 2000 dps)
BW_G [1:0]
Gyroscope bandwidth selection. Default value: 00
ODR_G [2:0] are used to set ODR selection when both the accelerometer and gyroscope
are activated. BW_G [1:0] are used to set gyroscope bandwidth selection.
The following table summarizes all frequencies available for each combination of the
ODR_G / BW_G bits after LPF1 (see Table 46) and LPF2 (see Table 47) when both the
accelerometer and gyroscope are activated. For more details regarding signal processing
please refer to Figure 28.
Table 46. ODR and BW configuration setting (after LPF1)
ODR_G2
ODR_G1
ODR_G0
Cutoff [Hz](1)
ODR [Hz]
0
0
0
Power-down
n.a.
0
0
1
14.9
5
0
1
0
59.5
19
0
1
1
119
38
1
0
0
238
76
1
0
1
476
100
1
1
0
952
100
1
1
1
n.a.
n.a.
1. Values in the table are indicative and can vary proportionally with the specific ODR value.
DocID025715 Rev 3
45/72
72
Accelerometer and gyroscope register description
LSM9DS1
Table 47. ODR and BW configuration setting (after LPF2)
ODR_G [2:0]
BW_G [1:0]
Cutoff [Hz](1)
ODR [Hz]
000
00
Power-down
n.a.
000
01
Power-down
n.a.
000
10
Power-down
n.a.
000
11
Power-down
n.a.
001
00
14.9
n.a.
001
01
14.9
n.a.
001
10
14.9
n.a.
001
11
14.9
n.a.
010
00
59.5
16
010
01
59.5
16
010
10
59.5
16
010
11
59.5
16
011
00
119
14
011
01
119
31
011
10
119
31
011
11
119
31
100
00
238
14
100
01
238
29
100
10
238
63
100
11
238
78
101
00
476
21
101
01
476
28
101
10
476
57
101
11
476
100
110
00
952
33
110
01
952
40
110
10
952
58
110
11
952
100
111
00
n.a.
n.a.
111
01
n.a.
n.a.
111
10
n.a.
n.a.
111
11
n.a.
n.a.
1. Values in the table are indicative and can vary proportionally with the specific ODR value.
46/72
DocID025715 Rev 3
LSM9DS1
7.13
Accelerometer and gyroscope register description
CTRL_REG2_G (11h)
Angular rate sensor Control Register 2.
Table 48. CTRL_REG2_G register
(1)
(1)
0
0(1)
0
0(1)
INT_SEL1
INT_SEL0
OUT_SEL1
OUT_SEL0
1. These bits must be set to ‘0’ for the correct operation of the device
Table 49. CTRL_REG2_G register description
INT_SEL [1:0]
INT selection configuration. Default value: 00
(Refer to Figure 28)
OUT_SEL [1:0]
Out selection configuration. Default value: 00
(Refer to Figure 28)
Figure 28. INT_SEL and OUT_SEL configuration gyroscope block diagram
'DWD5HJ
),)2
/3)
$'&
/3)
+3)
,QWHUUXSW
JHQHUDWRU
7.14
CTRL_REG3_G (12h)
Angular rate sensor Control Register 3.
Table 50. CTRL_REG3_G register
LP_mode
HP_EN
0(1)
0(1)
HPCF3_G
HPCF2_G
HPCF1_G
HPCF0_G
1. These bits must be set to ‘0’ for the correct operation of the device
Table 51. CTRL_REG3_G register description
LP_mode
Low-power mode enable. Default value: 0
(0: Low-power disabled; 1: Low-power enabled)
HP_EN
High-pass filter enable. Default value: 0
(0: HPF disabled; 1: HPF enabled, refer to Figure 28)
HPCF_G [3:0]
Gyroscope high-pass filter cutoff frequency selection. Default value: 0000
Refer to Table 52.
DocID025715 Rev 3
47/72
72
Accelerometer and gyroscope register description
LSM9DS1
Table 52. Gyroscope high-pass filter cutoff frequency configuration [Hz](1)
ODR= 14.9 ODR= 59.5
Hz
Hz
ODR= 119
Hz
ODR= 238
Hz
ODR= 476
Hz
ODR= 952
Hz
0000
1
4
8
15
30
57
0001
0.5
2
4
8
15
30
0010
0.2
1
2
4
8
15
0011
0.1
0.5
1
2
4
8
0100
0.05
0.2
0.5
1
2
4
0101
0.02
0.1
0.2
0.5
1
2
0110
0.01
0.05
0.1
0.2
0.5
1
0111
0.005
0.02
0.05
0.1
0.2
0.5
1000
0.002
0.01
0.02
0.05
0.1
0.2
1001
0.001
0.005
0.01
0.02
0.05
0.1
HPCF_G [3:0]
1. Values in the table are indicative and can vary proportionally with the specific ODR value.
7.15
ORIENT_CFG_G (13h)
Angular rate sensor sign and orientation register.
Table 53. ORIENT_CFG_G register
0(1)
0(1)
SignX_G
SignY_G
SignZ_G
Orient_2
Orient_1
Orient_0
1. These bits must be set to ‘0’ for the correct operation of the device.
Table 54. ORIENT_CFG_G register description
7.16
SignX_G
Pitch axis (X) angular rate sign. Default value: 0
(0: positive sign; 1: negative sign)
SignY_G
Roll axis (Y) angular rate sign. Default value: 0
(0: positive sign; 1: negative sign)
SignZ_G
Yaw axis (Z) angular rate sign. Default value: 0
(0: positive sign; 1: negative sign)
Orient [2:0]
Directional user orientation selection. Default value: 000
INT_GEN_SRC_G (14h)
Angular rate sensor interrupt source register.
Table 55. INT_GEN_SRC_G register
0
48/72
IA_G
ZH_G
ZL_G
DocID025715 Rev 3
YH_G
YL_G
XH_G
XL_G
LSM9DS1
Accelerometer and gyroscope register description
Table 56. INT_GEN_SRC_G register description
7.17
IA_G
Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH_G
Yaw (Z) high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL_G
Yaw (Z) low. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH_G
Roll (Y) high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL_G
Roll (Y) low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH_G
Pitch (X) high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL_G
Pitch (X) low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
OUT_TEMP_L (15h), OUT_TEMP_H (16h)
Temperature data output register. L and H registers together express a 16-bit word in two’s
complement right-justified.
Table 57. OUT_TEMP_L register
Temp7
Temp6
Temp5
Temp4
Temp3
Temp2
Temp1
Temp0
Temp9
Temp8
Table 58. OUT_TEMP_H register
Temp11
Temp11
Temp11
Temp11
Temp11
Temp10
Table 59. OUT_TEMP register description
Temp [11:0]
7.18
Temperature sensor output data.
The value is expressed as two’s complement sign extended on the MSB.
STATUS_REG (17h)
Status register.
Table 60. STATUS_REG register
0
IG_XL
IG_G
INACT
BOOT_
STATUS
DocID025715 Rev 3
TDA
GDA
XLDA
49/72
72
Accelerometer and gyroscope register description
LSM9DS1
Table 61. STATUS_REG register description
7.19
IG_XL
Accelerometer interrupt output signal. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupt events have been generated)
IG_G
Gyroscope interrupt output signal. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupt events have been generated)
INACT
Inactivity interrupt output signal. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupt events have been generated)
BOOT_
STATUS
Boot running flag signal. Default value: 0
(0: no boot running; 1: boot running)
TDA
Temperature sensor new data available. Default value: 0
(0: new data is not yet available; 1: new data is available)
GDA
Gyroscope new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
XLDA
Accelerometer new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
OUT_X_G (18h - 19h)
Angular rate sensor pitch axis (X) angular rate output register. The value is expressed as a
16-bit word in two’s complement.
7.20
OUT_Y_G (1Ah - 1Bh)
Angular rate sensor roll axis (Y) angular rate output register. The value is expressed as a
16-bit word in two’s complement.
7.21
OUT_Z_G (1Ch - 1Dh)
Angular rate sensor Yaw axis (Z) angular rate output register. The value is expressed as a
16-bit word in two’s complement.
7.22
CTRL_REG4 (1Eh)
Control register 4.
Table 62. CTRL_REG4 register
0(1)
0(1)
Zen_G
Yen_G
Xen_G
1. These bits must be set to ‘0’ for the correct operation of the device.
50/72
DocID025715 Rev 3
0(1)
LIR_XL1
4D_XL1
LSM9DS1
Accelerometer and gyroscope register description
Table 63. CTRL_REG4 register description
7.23
Zen_G
Gyroscope’s Yaw axis (Z) output enable. Default value: 1
(0: Z-axis output disabled; 1: Z-axis output enabled)
Yen_G
Gyroscope’s roll axis (Y) output enable. Default value: 1
(0: Y-axis output disabled; 1: Y-axis output enabled)
Xen_G
Gyroscope’s pitch axis (X) output enable. Default value: 1
(0: X -xis output disabled; 1: X-axis output enabled)
LIR_XL1
Latched Interrupt. Default value: 0
(0: interrupt request not latched; 1: interrupt request latched)
4D_XL1
4D option enabled on Interrupt. Default value: 0
(0: interrupt generator uses 6D for position recognition; 1: interrupt generator uses
4D for position recognition)
CTRL_REG5_XL (1Fh)
Linear acceleration sensor Control Register 5.
Table 64. CTRL_REG5_XL register
DEC_1
DEC_0
Zen_XL
Yen_XL
Xen_XL
0(1)
0(1)
0(1)
1. These bits must be set to ‘0’ for the correct operation of the device.
Table 65. CTRL_REG5_XL register description
7.24
DEC_ [0:1]
Decimation of acceleration data on OUT REG and FIFO. Default value: 00
(00: no decimation;
01: update every 2 samples;
10: update every 4 samples;
11: update every 8 samples)
Zen_XL
Accelerometer’s Z-axis output enable. Default value: 1
(0: Z-axis output disabled; 1: Z-axis output enabled)
Yen_XL
Accelerometer’s Y-axis output enable. Default value: 1
(0: Y-axis output disabled; 1: Y-axis output enabled)
Xen_XL
Accelerometer’s X-axis output enable. Default value: 1
(0: X-axis output disabled; 1: X-axis output enabled)
CTRL_REG6_XL (20h)
Linear acceleration sensor Control Register 6.
Table 66. CTRL_REG6_XL register
ODR_XL2
ODR_XL1
ODR_XL0
FS1_XL
FS0_XL
DocID025715 Rev 3
BW_SCAL
_ODR
BW_XL1
BW_XL0
51/72
72
Accelerometer and gyroscope register description
LSM9DS1
Table 67. CTRL_REG6_XL register description
ODR_XL
[2:0]
Output data rate and power mode selection. default value: 000 (see Table 68)
FS_XL
[1:0]
Accelerometer full-scale selection. Default value: 00
(00: ±2g; 01: ±16 g; 10: ±4 g; 11: ±8 g)
BW_SCAL_
ODR
Bandwidth selection. Default value: 0
(0: bandwidth determined by ODR selection:
- BW = 408 Hz when ODR = 952 Hz, 50 Hz, 10 Hz;
- BW = 211 Hz when ODR = 476 Hz;
- BW = 105 Hz when ODR = 238 Hz;
- BW = 50 Hz when ODR = 119 Hz;
1: bandwidth selected according to BW_XL [2:1] selection)
BW_XL
[1:0]
Anti-aliasing filter bandwidth selection. Default value: 00
(00: 408 Hz; 01: 211 Hz; 10: 105 Hz; 11: 50 Hz)
ODR_XL [2:0] is used to set power mode and ODR selection. Table 68 indicates all the
frequencies available when only the accelerometer is activated.
Table 68. ODR register setting (accelerometer only mode)
7.25
ODR_XL2
ODR_XL1
ODR_XL0
ODR selection [Hz]
0
0
0
Power-down
0
0
1
10 Hz
0
1
0
50 Hz
0
1
1
119 Hz
1
0
0
238 Hz
1
0
1
476 Hz
1
1
0
952 Hz
1
1
1
n.a.
CTRL_REG7_XL (21h)
Linear acceleration sensor Control Register 7.
Table 69. CTRL_REG7_XL register
HR
DCF1
DCF0
0(1)
0(1)
1. These bits must be set to ‘0’ for the correct operation of the device
52/72
DocID025715 Rev 3
FDS
0(1)
HPIS1
LSM9DS1
Accelerometer and gyroscope register description
Table 70. CTRL_REG7_XL register description
High resolution mode for accelerometer enable. Default value: 0
(0: disabled; 1: enabled). Refer to Table 71
HR
DCF[1:0]
FDS
Accelerometer digital filter (high pass and low pass) cutoff frequency selection: the bandwidth of the high-pass filter depends on the selected ODR. Refer to Table 71
Filtered data selection. Default value: 0
(0: internal filter bypassed; 1: data from internal filter sent to output register and FIFO)
High-pass filter enabled for acceleration sensor interrupt function on Interrupt. Default
HPIS1
value: 0
(0: filter bypassed; 1: filter enabled)
Table 71. Low pass cutoff frequency in high resolution mode (HR = 1)
7.26
HR
CTRL_REG7 (DCF [1:0])
LP cutoff freq. [Hz]
1
00
ODR/50
1
01
ODR/100
1
10
ODR/9
1
11
ODR/400
CTRL_REG8 (22h)
Control register 8.
Table 72. CTRL_REG8 register
BOOT
BDU
H_LACTIVE
PP_OD
SIM
IF_ADD_INC
BLE
SW_RESET
Table 73. CTRL_REG8 register description
BOOT
Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content(1))
BDU
Block data update. Default value: 0
(0: continuous update; 1: output registers not updated until MSB and LSB read)
H_LACTIVE
Interrupt activation level. Default value: 0
(0: interrupt output pins active high; 1: interrupt output pins active low)
PP_OD
Push-pull/open-drain selection on the INT1_A/G pin and INT2_A/G pin.
Default value: 0
(0: push-pull mode; 1: open-drain mode)
SIM
SPI serial interface mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface).
IF_ADD_INC
Register address automatically incremented during a multiple byte access with a
serial interface (I2C or SPI). Default value: 1
(0: disabled; 1: enabled)
BLE
Big/Little Endian data selection. Default value 0
(0: data LSB @ lower address; 1: data MSB @ lower address)
SW_RESET
Software reset. Default value: 0
(0: normal mode; 1: reset device)
This bit is cleared by hardware after next flash boot.
1. Boot request is executed as soon as internal oscillator is turned-on. It is possible to set bit while in powerdown mode, in this case it will be served at the next normal mode or sleep mode.
DocID025715 Rev 3
53/72
72
Accelerometer and gyroscope register description
7.27
LSM9DS1
CTRL_REG9 (23h)
Control register 9.
Table 74. CTRL_REG9 register
0(1)
SLEEP_G
FIFO_
TEMP_EN
0(1)
DRDY_
mask_bit
I2C_DISAB
STOP_ON
FIFO_EN
LE
_FTH
1. These bits must be set to ‘0’ for the correct operation of the device
Table 75. CTRL_REG9 register description
SLEEP_G
Gyroscope sleep mode enable. Default value: 0
(0: disabled; 1: enabled)
FIFO_TEMP_EN Temperature data storage in FIFO enable. Default value: 0
(0: temperature data not stored in FIFO; 1: temperature data stored in FIFO)
DRDY_mask_bit
Data available enable bit. Default value: 0
(0: DA timer disabled; 1: DA timer enabled)
I2C_DISABLE
Disable I2C interface. Default value: 0
(0: both I2C and SPI enabled; 1: I2C disabled, SPI only)
FIFO_EN
FIFO memory enable. Default value: 0
(0: disabled; 1: enabled)
STOP_ON_FTH
Enable FIFO threshold level use. Default value: 0
(0: FIFO depth is not limited; 1: FIFO depth is limited to threshold level)
7.28
CTRL_REG10 (24h)
Control register 10.
Table 76. CTRL_REG10 register
0(1)
0(1)
0(1)
0(1)
0(1)
0(1)
ST_XL
XH_XL
XL_XL
ST_G
1. These bits must be set to ‘0’ for the correct operation of the device
Table 77. CTRL_REG10 register description
7.29
ST_G
Angular rate sensor self-test enable. Default value: 0
(0: Self-test disabled; 1: Self-test enabled)
ST_XL
Linear acceleration sensor self-test enable. Default value: 0
(0: Self-test disabled; 1: Self-test enabled)
INT_GEN_SRC_XL (26h)
Linear acceleration sensor interrupt source register.
Table 78. INT_GEN_SRC_XL register
0
54/72
IA_XL
ZH_XL
ZL_XL
YH_XL
DocID025715 Rev 3
YL_XL
LSM9DS1
Accelerometer and gyroscope register description
Table 79. INT_GEN_SRC_XL register description
7.30
IA_XL
Interrupt active. Default value: 0.
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH_XL
Accelerometer’s Z high event. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL_XL
Accelerometer’s Z low event. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH_XL
Accelerometer’s Y high event. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL_XL
Accelerometer’s Y low event. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH_XL
Accelerometer’s X high event. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL_XL
Accelerometer’s X low. event. Default value: 0
(0: no interrupt, 1: X low event has occurred)
STATUS_REG (27h)
Status register.
Table 80. STATUS_REG register
0
IG_XL
IG_G
INACT
BOOT_
STATUS
TDA
GDA
XLDA
Table 81. STATUS_REG register description
IG_XL
Accelerometer interrupt output signal. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupt events have been generated)
IG_G
Gyroscope interrupt output signal. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupt events have been generated)
INACT
Inactivity interrupt output signal. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupt events have been generated)
BOOT_
STATUS
Boot running flag signal. Default value: 0
(0: no boot running; 1: boot running)
TDA
Temperature sensor new data available. Default value: 0
(0: a new data is not yet available; 1: a new data is available)
GDA
Gyroscope new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
XLDA
Accelerometer new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
DocID025715 Rev 3
55/72
72
Accelerometer and gyroscope register description
7.31
LSM9DS1
OUT_X_XL (28h - 29h)
Linear acceleration sensor X-axis output register. The value is expressed as a 16-bit word in
two’s complement.
7.32
OUT_Y_XL (2Ah - 2Bh)
Linear acceleration sensor Y-axis output register. The value is expressed as a 16-bit word in
two’s complement.
7.33
OUT_Z_XL (2Ch - 2Dh)
Linear acceleration sensor Z-axis output register. The value is expressed as a 16-bit word in
two’s complement.
7.34
FIFO_CTRL (2Eh)
FIFO control register.
Table 82. FIFO_CTRL register
FMODE2
FMODE1
FMODE0
FTH4
FTH3
FTH2
FTH1
FTH0
Table 83. FIFO_CTRL register description
FMODE [2:0]
FIFO mode selection bits. Default value: 000
For further details refer to Table 84.
FTH [4:0]
FIFO threshold level setting. Default value: 0 0000
Table 84. FIFO mode selection
56/72
FMODE2
FMODE1
FMODE0
Mode
0
0
0
Bypass mode. FIFO turned off
0
0
1
FIFO mode. Stops collecting data when FIFO is full.
0
1
0
Reserved
0
1
1
Continuous mode until trigger is deasserted, then FIFO
mode.
1
0
0
Bypass mode until trigger is deasserted, then Continuous
mode.
1
1
0
Continuous mode. If the FIFO is full, the new sample overwrites the older sample.
DocID025715 Rev 3
LSM9DS1
7.35
Accelerometer and gyroscope register description
FIFO_SRC (2Fh)
FIFO status control register.
Table 85. FIFO_SRC register
FTH
OVRN
FSS5
FSS4
FSS3
FSS2
FSS1
FSS0
Table 86. FIFO_SRC register description
FTH
FIFO threshold status.
(0: FIFO filling is lower than threshold level; 1: FIFO filling is equal or higher than
threshold level
OVRN
FIFO overrun status.
(0: FIFO is not completely filled; 1: FIFO is completely filled and at least one samples
has been overwritten)
For further details refer to Table 87.
FSS [5:0]
Number of unread samples stored into FIFO.
(000000: FIFO empty; 100000: FIFO full, 32 unread samples)
For further details refer to Table 87.
Table 87. FIFO_SRC example: OVR/FSS details
FTH
OVRN
FSS5
FSS4
FSS3
FSS2
FSS1
FSS0
Description
0
0
0
0
0
0
0
0
FIFO empty
--(1)
0
0
0
0
0
0
1
1 unread sample
--(1)
0
1
0
0
0
0
0
32 unread samples
1
1
1
0
0
0
0
0
At least one sample has
been overwritten
...
1. When the number of unread samples in FIFO is greater than the threshold level set in register FIFO_CTRL
(2Eh), FTH value is ‘1’.
7.36
INT_GEN_CFG_G (30h)
Angular rate sensor interrupt generator configuration register.
Table 88. INT_GEN_CFG_G register
AOI_G
LIR_G
ZHIE_G
ZLIE_G
YHIE_G
DocID025715 Rev 3
YLIE_G
XHIE_G
XLIE_G
57/72
72
Accelerometer and gyroscope register description
LSM9DS1
Table 89. INT_GEN_CFG_G register description
7.37
AOI_G
AND/OR combination of gyroscope’s interrupt events. Default value: 0
(0: OR combination; 1: AND combination)
LIR_G
Latch Gyroscope interrupt request. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
ZHIE_G
Enable interrupt generation on gyroscope’s yaw (Z) axis high event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured angular rate value
higher than preset threshold)
ZLIE_G
Enable interrupt generation on gyroscope’s yaw (Z) axis low event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured angular rate value
lowerthan preset threshold)
YHIE_G
Enable interrupt generation on gyroscope’s roll (Y) axis high event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured angular rate value
higher than preset threshold)
YLIE_G
Enable interrupt generation on gyroscope’s roll (Y) axis low event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured angular rate value lower
than preset threshold)
XHIE_G
Enable interrupt generation on gyroscope’s pitch (X) axis high event. Default value: 0
(0: disable interrupt request; 1: interrupt request on measured angular rate value
higher than preset threshold)
XLIE_G
Enable interrupt generation on gyroscope’s pitch (X) axis low event. Default value: 0.
(0: disable interrupt request; 1: interrupt request on measured angular rate value lower
than preset threshold)
INT_GEN_THS_X_G (31h - 32h)
Angular rate sensor interrupt generator threshold registers. The value is expressed as a 15bit word in two’s complement.
Table 90. INT_GEN_THS_XH_G register
DCRM_G
THS_G_
X14
THS_G_
X13
THS_G_
X12
THS_G_
X11
THS_G_
X10
THS_G_
X9
THS_G_
X8
THS_G_
X1
THS_G_
X0
Table 91. INT_GEN_THS_XL_G register
THS_G_
X7
THS_G_
X6
THS_G_
X5
THS_G_
X4
THS_G_
X3
THS_G_
X2
Table 92. INT_GEN_THS_X_G register description
DCRM_G
THS_G_X [14:0]
58/72
Decrement or reset counter mode selection. Default value: 0
(0: Reset; 1: Decrement, as per counter behavior in Figure 29 and Figure 30)
Angular rate sensor interrupt threshold on pitch (X) axis.
Default value: 0000000 00000000
DocID025715 Rev 3
LSM9DS1
7.38
Accelerometer and gyroscope register description
INT_GEN_THS_Y_G (33h - 34h)
Angular rate sensor interrupt generator threshold registers. The value is expressed as a
15-bit word in two’s complement.
Table 93. INT_GEN_THS_YH_G register
0(1)
THS_G_
Y14
THS_G_
Y13
THS_G_
Y12
THS_G_
Y11
THS_G_
Y10
THS_G_
Y9
THS_G_
Y8
THS_G_
Y1
THS_G_
Y0
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 94. INT_GEN_THS_YL_G register
THS_G_
Y7
THS_G_
Y6
THS_G_
Y5
THS_G_
Y4
THS_G_
Y3
THS_G_
Y2
Table 95. INT_GEN_THS_Y_G register description
THS_G_Y [14:0]
7.39
Angular rate sensor interrupt threshold on roll (Y) axis.
Default value: 0000000 00000000.
INT_GEN_THS_Z_G (35h - 36h)
Angular rate sensor interrupt generator threshold registers. The value is expressed as a
15-bit word in two’s complement.
Table 96. INT_GEN_THS_ZH_G register
0(1)
THS_G_
Z14
THS_G_
Z13
THS_G_
Z12
THS_G_
Z11
THS_G_
Z10
THS_G_
Z9
THS_G_
Z8
THS_G_
Z1
THS_G_
Z0
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 97. INT_GEN_THS_ZL_G register
THS_G_
Z7
THS_G_
Z6
THS_G_
Z5
THS_G_
Z4
THS_G_
Z3
THS_G_
Z2
Table 98. INT_GEN_THS_Z_G register description
THS_G_Z [14:0]
7.40
Angular rate sensor interrupt thresholds on yaw (Z) axis.
Default value: 0000000 00000000.
INT_GEN_DUR_G (37h)
Angular rate sensor interrupt generator duration register.
Table 99. INT_GEN_DUR_G register
WAIT_G
DUR_G6
DUR_G5
DUR_G4
DUR_G3
DocID025715 Rev 3
DUR_G2
DUR_G1
DUR_G0
59/72
72
Accelerometer and gyroscope register description
LSM9DS1
Table 100. INT_GEN_DUR_G register description
WAIT_G
Exit from interrupt wait function enable. Default value: 0
(0: wait function off; 1: wait for DUR_G [6:0] samples before exiting interrupt)
DUR_G [6:0]
Enter/exit interrupt duration value. Default Value: 000 0000
The DUR_G [6:0] bits set the minimum duration of the interrupt event to be recognized.
Duration steps and maximum values depend on the ODR chosen.
The WAIT_G bit has the following meaning:
‘0’: the interrupt falls immediately if the signal crosses the selected threshold
‘1’: if the signal crosses the selected threshold, the interrupt falls after a number of samples
equal to the value of the duration counter register.
For further details refer to Figure 29 and Figure 30.
Figure 29. Wait bit disabled
‡ :DLW ELW µ¶Æ
Æ ,QWHUUXSWGLVDEOHGDVVRRQDVFRQGLWLRQ
LVQRORQJHUYDOLGH[5DWHYDOXHEHORZWKUHVKROG
5DWH
GSV
WQ
5DWH
7KUHVKROG
&RXQWHU
'XUDWLRQ
9DOXH
WQ
,QWHUUXSW
WQ
60/72
DocID025715 Rev 3
³:DLW´
'LVDEOHG
LSM9DS1
Accelerometer and gyroscope register description
Figure 30. Wait bit enabled
‡ :DLW ELW µ¶Æ
Æ ,QWHUUXSWGLVDEOHGDIWHUGXUDWLRQ
VDPSOHVRUWRIK\VWHUHVLV
5DWH
GSV
WQ
5DWH
7KUHVKROG
&RXQWHU
'XUDWLRQ
9DOXH
WQ
,QWHUUXSW
³:DLW´
(QDEOHG
WQ
'XUDWLRQYDOXHLVWKHVDPHXVHGWRYDOLGDWHLQWHUUXSW
DocID025715 Rev 3
61/72
72
Magnetometer register description
LSM9DS1
8
Magnetometer register description
8.1
OFFSET_X_REG_L_M (05h), OFFSET_X_REG_H_M (06h)
This register is a 16-bit register and represents the X offset used to compensate
environmental effects (data is expressed as two’s complement). This value acts on the
magnetic output data value in order to subtract the environmental offset.
Default value: 0
Table 101. OFFSET_X_REG_L_M register
OFXM7
OFXM6
OFXM5
OFXM15
OFXM14
OFXM13
OFXM4
OFXM3
OFXM2
OFXM1
OFXM0
OFXM9
OFXM8
Table 102. OFFSET_X_REG_H_M register
8.2
OFXM12
OFXM11
OFXM10
OFFSET_Y_REG_L_M (07h), OFFSET_Y_REG_H_M (08h)
This register is a 16-bit register and represents the Y offset used to compensate
environmental effects (data is expressed as two’s complement). This value acts on the
magnetic output data value in order to subtract the environmental offset.
Default value: 0
Table 103. OFFSET_Y_REG_L_M register
OFYM7
OFYM6
OFYM5
OFYM15
OFYM14
OFYM13
OFYM4
OFYM3
OFYM2
OFYM1
OFYM0
OFYM9
OFYM8
Table 104. OFFSET_Y_REG_H_M register
8.3
OFYM12
OFYM11
OFYM10
OFFSET_Z_REG_L_M (09h), OFFSET_Z_REG_H_M (0Ah)
This register is a 16-bit register and represents the Z offset used to compensate
environmental effects (data is expressed as two’s complement). This value acts on the
magnetic output data value in order to subtract the environmental offset.
Default value: 0.
Table 105. OFFSET_Z_REG_L_M register
OFZM7
OFZM6
OFZM5
OFZM4
OFZM3
OFZM2
OFZM1
OFZM0
OFZM9
OFZM8
Table 106. OFFSET_Z_REG_H_M register
OFZM15
62/72
OFZM14
OFZM13
OFZM12
OFZM11
DocID025715 Rev 3
OFZM10
LSM9DS1
8.4
Magnetometer register description
WHO_AM_I_M (0Fh)
Device identification register.
Table 107. WHO_AM_I_M register
0
8.5
0
1
1
1
1
0
1
CTRL_REG1_M (20h)
Table 108. CTRL_REG1_M register
TEMP_
COMP
OM1
OM0
DO2
DO1
DO0
FAST_ODR
ST
Table 109. CTRL_REG1_M register description
TEMP_COMP
Temperature compensation enable. Default value: 0
(0: temperature compensation disabled; 1: temperature compensation enabled)
OM[1:0]
X and Y axes operative mode selection. Default value: 00
(Refer to Table 110)
DO[2:0]
Output data rate selection. Default value: 100
(Refer to Table 111)
FAST_ODR
FAST_ODR enables data rates higher than 80 Hz. Default value: 0
(0: Fast_ODR disabled; 1: FAST_ODR enabled)
ST
Self-test enable. Default value: 0
(0: self-test disabled; 1: self-test enabled)
Table 110. X and Y axes operative mode selection
OM1
OM0
Operative mode for X and Y axes
0
0
Low-power mode
0
1
Medium-performance mode
1
0
High-performance mode
1
1
Ultra-high performance mode
Table 111. Output data rate configuration
DO2
DO1
DO0
ODR [Hz]
0
0
0
0.625
0
0
1
1.25
0
1
0
2.5
0
1
1
5
1
0
0
10
1
0
1
20
1
1
0
40
1
1
1
80
DocID025715 Rev 3
63/72
72
Magnetometer register description
8.6
LSM9DS1
CTRL_REG2_M (21h)
Table 112. CTRL_REG2_M register
0
(1)
FS1
FS0
0(1)
REBOOT
SOFT_RST
0(1)
0(1)
1. These bits must be set to ‘0’ for the correct operation of the device.
Table 113. CTRL_REG2_M register description
FS[1:0]
Full-scale configuration. Default value: 00
Refer to Table 114
REBOOT
Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content)
SOFT_RST
Configuration registers and user register reset function.
(0: default value; 1: reset operation)
Table 114. Full-scale selection
8.7
FS1
FS0
Full scale
0
0
± 4 gauss
0
1
± 8 gauss
1
0
± 12 gauss
1
1
± 16 gauss
CTRL_REG3_M (22h)
Table 115. CTRL_REG3_M register
I2C_
DISABLE
0(1)
LP
0(1)
0(1)
SIM
MD1
MD0
1. These bits must be set to ‘0’ for the correct operation of the device.
Table 116. CTRL_REG3_M register description
64/72
I2C_DISABLE
Disable I2C interface. Default value 0. (0: I2C enable; 1: I2C disable)
LP
Low-power mode configuration. Default value: 0
If this bit is ‘1’, the DO[2:0] is set to 0.625 Hz and the system performs, for each
channel, the minimum number of averages. Once the bit is set to ‘0’, the magnetic
data rate is configured by the DO bits in the CTRL_REG1_M (20h) register.
SIM
SPI Serial Interface mode selection. Default value: 0
(0: SPI only write operations enabled; 1: SPI read and write operations enable).
MD[1:0]
Operating mode selection. Default value: 11
Refer to Table 117.
DocID025715 Rev 3
LSM9DS1
Magnetometer register description
Table 117. System operating mode selection
8.8
MD1
MD0
Mode
0
0
Continuous-conversion mode
0
1
Single-conversion mode
1
0
Power-down mode
1
1
Power-down mode
CTRL_REG4_M (23h)
Table 118. CTRL_REG4_M register
0(1)
0(1)
0(1)
0(1)
OMZ1
OMZ0
BLE
0(1)
1. These bits must be set to ‘0’ for the correct operation of the device
Table 119. CTRL_REG4_M register description
OMZ[1:0]
Z-axis operative mode selection.
Default value: 00. Refer to Table 120.
BLE
Big/Little Endian data selection. Default value: 0
(0: data LSb at lower address; 1: data MSb at lower address)
Table 120. Z-axis operative mode selection
OMZ1
8.9
OMZ0
Operative mode for Z-axis
0
0
Low-power mode
0
1
Medium-performance mode
1
0
High-performance mode
1
1
Ultra-high performance mode
CTRL_REG5_M (24h)
Table 121. CTRL_REG5_M register
FAST_READ
BDU
0(1)
0(1)
0(1)
0(1)
0(1)
0(1)
1. These bits must be set to ‘0’ for the correct operation of the device.
Table 122. CTRL_REG5_M register description
FAST_READ
FAST_READ allows reading the high part of DATA OUT only in order to increase
reading efficiency. Default value: 0
(0: FAST_READ disabled; 1: FAST_READ enabled)
BDU
Block data update for magnetic data. Default value: 0
(0: continuous update; 1: output registers not updated until MSB and LSB have
been read)
DocID025715 Rev 3
65/72
72
Magnetometer register description
8.10
LSM9DS1
STATUS_REG_M (27h)
Table 123. STATUS_REG_M register
ZYXOR
ZOR
YOR
XOR
ZYXDA
ZDA
ZYXOR
X, Y and Z-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: a new set of data has overwritten the previous set)
ZOR
Z-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data for the Z-axis has overwritten the previous data)
YOR
Y-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data for the Y-axis has overwritten the previous data)
XOR
X-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data for the X-axis has overwritten the previous data)
ZYXDA
X, Y and Z-axis new data available. Default value: 0
(0: a new set of data is not yet available;
1: a new set of data is available)
ZDA
Z-axis new data available. Default value: 0
(0: new data for the Z-axis is not yet available;
1: new data for the Z-axis is available)
YDA
Y-axis new data available. Default value: 0
(0: new data for the Y-axis is not yet available;
1: new data for the Y-axis is available)
XDA
X-axis new data available. Default value: 0
(0: a new data for the X-axis is not yet available;
1: a new data for the X-axis is available)
YDA
XDA
Table 124. STATUS_REG_M register description
8.11
OUT_X_L_M (28h), OUT_X_H_M(29h)
Magnetometer X-axis data output. The value of the magnetic field is expressed as two’s
complement.
8.12
OUT_Y_L_M (2Ah), OUT_Y_H_M (2Bh)
Magnetometer Y-axis data output. The value of the magnetic field is expressed as two’s
complement.
8.13
OUT_Z_L_M (2Ch), OUT_Z_H_M (2Dh)
Magnetometer Z-axis data output. The value of the magnetic field is expressed as two’s
complement.
66/72
DocID025715 Rev 3
LSM9DS1
8.14
Magnetometer register description
INT_CFG_M (30h)
Table 125. INT_CFG_M register
XIEN
YIEN
0(1)
ZIEN
0(1)
IEA
IEL
IEN
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 126. INT_CFG_M register description
8.15
XIEN
Enable interrupt generation on X-axis. Default value: 0
0: disable interrupt request; 1: enable interrupt request
YIEN
Enable interrupt generation on Y-axis. Default value: 0
0: disable interrupt request; 1: enable interrupt request
ZIEN
Enable interrupt generation on Z-axis. Default value: 0
0: disable interrupt request; 1: enable interrupt request
IEA
Interrupt active configuration on INT_MAG. Default value: 0
0: low; 1: high
IEL
Latch interrupt request. Default value: 0
0: interrupt request latched; 1: interrupt request not latched)
Once latched, the INT_M pin remains in the same state until INT_SRC_M (31h)) is
read.
IEN
Interrupt enable on the INT_M pin. Default value: 0
0: disable; 1: enable
INT_SRC_M (31h)
Table 127. INT_SRC_M register
PTH_X
PTH_Y
PTH_Z
NTH_X
NTH_Y
NTH_Z
MROI(1)
INT
1. This functionality can be enabled only if the IEN bit in INT_CFG_M (30h) is enabled.
Table 128. INT_SRC_M register description
PTH_X
Value on X-axis exceeds the threshold on the positive side.
Default value: 0
PTH_Y
Value on Y-axis exceeds the threshold on the positive side.
Default value: 0
PTH_Z
Value on Z-axis exceeds the threshold on the positive side.
Default value: 0
NTH_X
Value on X-axis exceeds the threshold on the negative side.
Default value: 0
NTH_Y
Value on Y-axis exceeds the threshold on the negative side.
Default value: 0
NTH_Z
Value on Z-axis exceeds the threshold on the negative side.
Default value: 0
MROI
Internal measurement range overflow on magnetic value.
Default value: 0
INT
This bit signals when the interrupt event occurs.
DocID025715 Rev 3
67/72
72
Magnetometer register description
8.16
LSM9DS1
INT_THS_L(32h), INT_THS_H(33h)
Interrupt threshold. Default value: 0.
The value is expressed in 15-bit unsigned.
Even if the threshold is expressed in absolute value, the device detects both positive and
negative thresholds.
Table 129. INT_THS_L_M register
THS7
THS6
THS5
THS4
THS3
THS2
THS1
THS0
THS9
THS8
Table 130. INT_THS_H_M register
0(1)
THS14
THS13
THS12
THS11
1. This bit must be set to ‘0’ for the correct operation of the device.
68/72
DocID025715 Rev 3
THS10
LSM9DS1
9
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
9.1
Soldering information
The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020.
Leave “Pin 1 Indicator” unconnected during soldering.
Land pattern and soldering recommendations are available at www.st.com/mems.
9.2
LGA package information
Figure 31. LGA (3.5x3x1 mm) 24-lead package outline
@#
DocID025715 Rev 3
69/72
72
Package information
LSM9DS1
Table 131. LGA (3.5x3x1 mm) 24-lead package mechanical data
mm
Dim.
Min.
Typ.
Max.
A1
1.000
1.027
A3
0.130
D1
2.850
3.000
3.150
E1
3.350
3.500
3.650
L1
2.960
3.010
3.060
L2
1.240
1.290
1.340
N1
0.165
0.215
0.265
P2
0.200
0.250
0.300
a
70/72
45°
T1
0.300
0.350
0.400
T2
0.180
0.230
0.280
K
0.050
M
0.100
DocID025715 Rev 3
LSM9DS1
10
Revision history
Revision history
Table 132. Document revision history
Date
Revision
Changes
18-Dec-2013
1
Initial release
05-Nov-2014
2
Datasheet status promoted from preliminary to production data
Added ±16 g linear acceleration full scale throughout datasheet
Corrected typo in footnote 3, 4 and 5 of Table 2: Pin description
Updated Figure 15: LSM9DS1 electrical connections and
Section 4.1: External capacitors
Updated Table 117: System operating mode selection
12-Mar-2015
3
Added FAST_ODR bit to CTRL_REG1_M (20h)
Added FAST_READ bit to CTRL_REG5_M (24h)
DocID025715 Rev 3
71/72
72
LSM9DS1
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
72/72
DocID025715 Rev 3