austriamicrosystems AG is now ams AG The technical content of this austriamicrosystems datasheet is still valid. Contact information: Headquarters: ams AG Tobelbaderstrasse 30 8141 Unterpremstaetten, Austria Tel: +43 (0) 3136 500 0 e-Mail: [email protected] Please visit our website at www.ams.com Datasheet AS3677 Triple Channel Lighting Management Unit with DCDC step/up, ALS, 2xDLS(=DBC) and RGB Driver 2 Key Features The AS3677 incorporates one Step Up DC/DC Converter for white backlight LEDs one Analog-to-Digital Converter, six current sinks, LED in-circuit function test, 2 an I C serial interface, and control logic all onto a single device. It includes a charge pump to control e.g. an RGB together with an internal pattern generator for smooth blinking effects. am lc s on A te G nt st il It supports ambient light sensor processing and two Dynamic Luminance Scaling (DLS) (also called Dynamic Backlight Control - DBC) input. High-Efficiency Step Up DC/DC Converter - Up to 25V, up to 50mA for White LEDs - Programmable Over voltage Protection (10V, 16V or 25V) 50mA Charge Pump - 1:1 and 1:2 Mode with automatic Up Switching - Only 2 External Capacitors Required 6 Current Sinks - Fully Programmable (8-bit) from: 0.1mA to 25.5mA - 3xHigh Voltage capable (up to 25V) - 3xLow voltage for use with the CP (up to 5.5V) - Selectively Enable/Disable Current Sinks - Dual Dynamic Luminance Scaling (DLS) support to improve backlight operating time (can adjust any current source) - Light Sensor input with internal hardware processing to control backlight according to ambient light using 3 groups Internal PWM Generation - 8 Bit resolution - Autonomous Logarithmic up/down dimming Led Pattern Generator - Autonomous driving of Fun RGB or indicator LEDs 10-bit Successive Approximation ADC - 27µs Conversion Time - Selectable Inputs: VANA, DLS1, DLS2, ALS/ GPIO1, GPIO2, CURR1, CURR2, CURR6, VBAT, RGB1, RGB2 and RGB3 - Internal Temp. Measurement - Light Sensor input with Java support (JSR-256): read ADC processed value Support for automatic LED testing (open and shorted LEDs can be identified) Programmable LDO - 1.8 to 3.35V, 10mA - Programmable via Serial Interface Wide Battery Supply Range: 3.0V to 5.5V 2 I C Serial Interface Control with address control pin Over current and Thermal Protection Package WL-CSP25, 2.2x2.2x0.6mm, 0.4mm pitch al id The AS3677 is a highly-integrated CMOS Power and Lighting Management Unit for mobile telephones, and other Li+ battery powered devices. lv 1 General Description Internally the PWM signal for DLS can be used to change the analog current through the current sources (two channels can be used simultaneously). This avoids noise in the system as the changes of backlight control happen continuously without using the PWM modulation scheme. Output voltages and output currents are fully programmable. The AS3677 is part of the austriamicrosystems AS3675, AS3687/87XM, AS3688 and AS3689 lighting management unit family. It is software compatible to AS3675, AS3676, AS3687/87XM, AS3688 and AS3689. The AS3677 is available in a space-saving WL-CSP package measuring only 2.2x2.2x0.6mm and operates over the -30ºC to +85ºC temperature range. ca Figure 1. Function Diagram ni AS3677 Te ch 3 Applications Lighting Management Unit for mobile phones, smartphones, PMP or PND www.austriamicrosystems.com/AS3677 (ptr) 1v3-1 1 - 67 AS3677 Datasheet - A p p l i c a t i o n s The application circuit including all external components is shown in Figure 2: al id Figure 2. Application Circuit AS3677 ..' ..' ..' $0 C)C< 91 "% 2% %'5 -4 . "2 "2 $0"" $: 7891 - , ,'5 % .."!" , $0"" $ ( % ) . . , "2.% 5 "2.% 5 =-4>2 ? =-4>2 ? -4 %"5 $ 1 lv &5 . 0: " am lc s on A te G nt st il 0 7 781 91 2 9# $ #$ %& 2" ;$ " " "; " "6 "A "7 "8 " 6 D 25& .% 5 .2 : $""0 !1 . ! " ca @ " $ " 23 " $ $ Te ch AS3677 23 ' (% ) * + " ,% - . ''%<$< ""01< < . 2B" ni 2! / www.austriamicrosystems.com/AS3677 1v3-1 2 - 67 AS3677 Datasheet - P i n o u t 4 Pinout 4.1 Pin Assignments Figure 3. Pin Assignments (Top View) ! ! ! ! " " " # " "! am lc s on A te G nt st il lv al id AS3677 4.2 Pin Description Table 1. Pin Description Pin Number A1 A2 Charge pump output capacitor VSS_DCDC SW C1_N ALS/GPIO1 ch B2 CPOUT ni B1 C1_P VBAT_CP A4 A5 Description Charge pump flying capacitor Charge pump supply voltage ca A3 Pin Name DCDC and charge pump power ground pad - make a short connection to capacitor C1 and C2 (and C5) Power pad - DCDC switch transistor output Charge pump flying capacitor Ambient Light Sensor input and General Purpose Input Output 1 VBAT Positive supply pad - Connect to battery. B4 VSS ground pad B5 VSS ground pad C1 VANA C2 INT interrupt output - open drain active low C3 ADR I C address select input C4 RGB2 Analog current sink input C5 RGB1 Analog current sink input Te B3 LDO Output pad 2 www.austriamicrosystems.com/AS3677 1v3-1 3 - 67 AS3677 Datasheet - P i n o u t Table 1. Pin Description Pin Number Pin Name Description D1 GPIO3 D2 CLK Digital input - Clock input for serial interface. D3 DLS2 Digital Luminance Scaling PWM input2 (or General Input) D4 RGB3 Analog current sink input D5 CURR1 Analog current sink input E1 GPIO2 General Purpose Input Output 2 E2 DATA Digital input/output - Serial interface data E3 DLS1 Digital Luminance Scaling PWM input1 (or General Input) E4 CURR6 Analog current sink input E5 CURR2 Analog current sink input Te ch ni ca am lc s on A te G nt st il lv al id General Purpose Input Output 3 www.austriamicrosystems.com/AS3677 1v3-1 4 - 67 AS3677 Datasheet - A b s o l u t e M a x i m u m R a t i n g s 5 Absolute Maximum Ratings Stresses beyond those listed in Table 2 may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in Table 3, “General Operating Conditions; typical values are at VBAT=3.7V and 25ºC,” on page 5 is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 2. Absolute Maximum Ratings Parameter Min Max Units Comments VIN_HV 26V Pins -0.3 26 V Applicable for high-voltage current sink pins CURR1, CURR2, CURR6, SW al id Symbol 5V Pins -0.3 7.0 V VIN_LV 3.3V Pins -0.3 5.0 V Applicable for 3.3V pins ALS/GPIO1, GPIO2, GPIO3, DLS1, DLS2, VANA GND pins 0.0 0.0 V 2xVSS, VSS_DCDC Input Pin Current without causing latchup -25 +25 mA At 25ºC, Norm: EIA/JESD78 Tstrg Storage Temperature Range -55 125 ºC IIN Humidity 5 85 % Non-condensing HBM -2000 2000 V Norm: JESD22-A114F CDM -500 500 V Norm: JEDEC JESD 22C101E MM -100 100 V Norm: JEDEC JESD 22A115-B Total Power Dissipation 0.75 W TA = 70 ºC, Tjunc_max = 125ºC; RTHJU=73 K/W Peak Body Temperature 260 ºC T = 20 to 40s, in accordance with IPC/JEDEC J-STD 020. am lc s on A te G nt st il lv VIN_MV Applicable for 5V pins VBAT, VBAT_CP, CLK, DATA, ADR, RGB1, RGB2, RGB3, CPOUT, C1_P, C1_N, INT VESD Pt TBODY Moisture sensitivity level 1 Represents a max. floor life time of unlimited ca MSL 6 Electrical Characteristics Symbol ni Table 3. General Operating Conditions; typical values are at VBAT=3.7V and 25ºC Parameter Condition Min High Voltage Applicable for high-voltage current sink pins CURR1, CURR2 and CURR6. 0.0 VBAT Battery Voltage Pin VBAT, VBAT_CP 3.0 VPERI Periphery Supply Voltage For serial interface pins. 1.5 TAMB Operating Temperature Range IACTIVE Battery current Normal Operating current (see Operating Modes on page 58) 110 ISTANDBY Standby Mode Current Current consumption in standby mode. Interface active 10 Te ch VHV www.austriamicrosystems.com/AS3677 -30 1v3-1 Typ 3.7 25 Max Unit 26.0 V 5.5 V 5.5 V 85 ºC µA 15 µA 5 - 67 AS3677 Datasheet - E l e c t r i c a l C h a r a c t e r i s t i c s Table 3. General Operating Conditions; typical values are at VBAT=3.7V and 25ºC Parameter Condition ISHUTDOWN Shutdown Mode Current interface inactive (CLK and DATA set to 0V) Min Typ Max Unit 0.1 3 µA Te ch ni ca am lc s on A te G nt st il lv al id Symbol www.austriamicrosystems.com/AS3677 1v3-1 6 - 67 AS3677 Datasheet - Ty p i c a l O p e r a t i n g C h a r a c t e r i s t i c s 7 Typical Operating Characteristics Measured at VBAT=3.7V and TAMB=25ºC unless otherwise specified. 85 80 80 75 70 65 60 60 50 40 30 Vout: 25V, L=NRH3012 55 70 lv DCDC Efficiency (%) 90 al id Figure 5. Charge Pump: Efficiency vs. VBAT 90 Iload=50mA am lc s on A te G nt st il DCDC Efficiency (%) Figure 4. DCDC Efficiency vs. Load Current Vout: 15V, L=NRH3012 50 Iload=20mA 20 0 10 20 30 40 50 2,8 60 3 3,2 3,4 IOUT (mA) Figure 6. Charge Pump: Battery current vs. VBAT 100 80 4,2 Figure 7. Current Sink CURR1 vs. V(CURRx) Code=255 Code=128 Code=32 ICURR (mA) 20 70 60 15 50 40 10 30 20 5 Iload=50mA 10 Iload=20mA 0 2,8 3 3,2 ca IBAT (mA) 4 25 90 3,4 3,6 VBAT [V] 3,8 4 0 4,2 0 ch 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 VCURR [V] 2 Figure 9. LDO Output Voltage VANA vs. Code ni Figure 8. Current Sink RGB1 vs. V(CURRx) 3,4 3,2 3 20 Te ICURR (mA) Code=255 Code=128 Code=32 VANA [V] 25 3,8 30 110 30 3,6 VBAT [V] 15 2,8 2,6 2,4 2,2 10 2 5 1,8 1,6 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 VCURR [V] www.austriamicrosystems.com/AS3677 2 0 5 10 15 20 25 30 binary code 1v3-1 7 - 67 AS3677 Datasheet - Ty p i c a l O p e r a t i n g C h a r a c t e r i s t i c s Figure 10. LDO Output Voltage VANA vs. Load Figure 11. Charge Pump input and output ripple 50mA Load 2,79 1 2 3 4 5 6 ILOAD [mA] 7 8 9 10 Te ch ni ca am lc s on A te G nt st il 0 al id 1:2 Mode 2,8 lv VANA [V] 2,81 www.austriamicrosystems.com/AS3677 1v3-1 8 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n 8 Detailed Description 8.1 LDO The LDO is a general purpose LDO and the output pin connected to VANA and intended to power an external light sensor. Stability is guaranteed with ceramic output capacitors of 100nF ±20% (X5R). The LDO is off by default after start-up. al id Figure 12. LDO Block Diagram lv am lc s on A te G nt st il AS3677 Table 4. Electrical Characteristics Parameter ILOAD Output current RON On Resistance VDROPOUT Dropout Voltage ION Supply Current tstart Start-up Time Vout_tol Output Voltage Tolerance VOUT Output Voltage 8.1.1 Condition Min Typ 0 10 Without load Max Unit 10 mA 25 Ω 250 mV 19 µA 200 µs -3 +3 % VBAT > 3.0V 1.8 2.75 V Full Programmable Range 1.8 3.35 V ca Symbol LDO Registers ni Table 5. Reg control Register ch Addr: 00 Bit Name 0 ldo_on This register enables/disables the LDOs, Charge Pumps, Charge Pump LEDs, current sinks, the Step Up DC/DC Converter, and low-power mode. Default Access Te Bit Reg control www.austriamicrosystems.com/AS3677 0 R/W Description 0 LDO is switched off 1 LDO is switched on 1v3-1 9 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 6. LDO Voltage Register LDO Voltage Addr: 07h Bit This register sets the output voltage (VANA) for the LDO. Bit Name Default Access Description ldo_voltage 4:0 8.2 00000b R/W 00000b 1.8V ... LSB=50mV 11111b 3.35V Step Up DC/DC Converter al id Controls LDO voltage selection. lv The Step Up DC/DC Converter is a high-efficiency current mode PWM regulator, providing output voltage up to e.g. 25V/50mA. A constant switching-frequency results in a low noise on the supply and output voltages. Figure 13. Step Up DCDC Converter Internal Block Diagram am lc s on A te G nt st il (9 ($ ( !" #$ 78 # 7 ! % & ) ( "* * & '( 5678 4 ca ni +( ,-..//01 & & &4 &: &0 &; &5 &6 & -.. -.. Te ch -..0 AS3677 -..2+ 23 Table 7. Step Up DC/DC Converter Parameters Symbol Parameter Condition IVDD Quiescent Current Pulse skipping mode. www.austriamicrosystems.com/AS3677 1v3-1 Min Typ 200 Max Unit µA 10 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 7. Step Up DC/DC Converter Parameters (Continued) Symbol Parameter Condition Min Typ Max Unit VFB Feedback Voltage for Current Sink Regulation on CURR1, CURR2 or CURR6 in regulation. 0.4 0.5 0.6 V Coil current limit 1200 step_up_lowcur=1 750 For fixed startup time of 500us step_up_lowcur=0 600 330 Switch Resistance ON-resistance of external switching transistor. 0.42 ILOAD Load Current At 25V output voltage 0 fIN Switching Frequency Internally trimmed 0.9 1 COUT Output Capacitor Ceramic, ±20%. Use nominal 4.7µF capacitors to obtain at least 0.7µF under all conditions (voltage dependence of capacitors) 0.7 4.7 L Inductor tMIN_ON Vripple Ω 50 mA 1.1 MHz µF am lc s on A te G nt st il MDC 1.0 lv step_up_lowcur=1 RSW mA al id ICOIL_MAX step_up_lowcur=0 Use inductors with small Cparasitic (<100pF) to get high efficiency. 7 10 13 µH Minimum on Time 90 140 190 ns Maximum Duty Cycle 90 160 mV 40 mV Voltage ripple >20kHz Voltage ripple <20kHz Efficiency Cout=4.7µF,Iout=0..45mA, VBAT=3.0...4.2V Efficiency Iout=20mA,Vout=17V,VBAT=3.8V % 85 % To ensure soft startup of the dcdc converter, the over current limits are reduced for a fixed time after enabling the dcdc converter. The total startup time for an output voltage of e.g. 26V is less than 2ms. 8.2.1 Feedback Selection Register DCDC control1 and DCDC control2 selects the type of feedback for the Step Up DC/DC Converter. The feedback for the DC/DC converter can be selected to any of the current sinks (CURR1, CURR2, CURR6). If the register bit step_up_fb_auto is set, the feedback path is automatically selected between CURR1, CURR2 and CURR6 1 ca (the lowest voltage of these current sinks is used) . The Step Up DC/DC Converter is regulated such that the required current at the feedback path can be supported. Note: Always choose the path with the highest voltage drop as feedback to guarantee adequate supply for the other (unregulated) paths or enable the register bit step_up_fb_auto. Over voltage Protection ni 8.2.2 ch The over voltage protection is controlled by the register step_up_vmax (can be programmed to 10V, 16V or 25V) to protect the external components (especially the output capacitor C1. If the voltage on the pin SW exceeds this voltage, the DCDC is immediately disabled and the register bit step_up_ov is set. To re-enable the DCDC set step_up_on=0 and afterwards step_up_on=1. 2 The voltage rating of the external components must be chosen to fit to the software setting of step_up_vmax . Te Note: The voltage on CURR1, CURR2 and CURR6 must not exceed 26V (see page 20) 1. It is recommended to leave step_up_fb_auto=1 (default) all the times. 2. If the voltage is the DCDC overvoltage protection is chosen above the voltage ratings of the external components, permanent damage might result. www.austriamicrosystems.com/AS3677 1v3-1 11 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n 8.2.3 PCB Layout Hints To ensure good EMC performance of the DCDC converter, keep its external power components C1, L1, D1 and C2 close together. Connect the ground of C1, C2 locally together and connect this with a short path to AS3677 VSS. This ensures that local high-frequency currents will not flow to the battery. 8.2.4 Step up Registers Reg control Addr: 00 Bit al id Table 8. Reg control Register This register enables/disables the Charge Pump and the Step Up DC/DC Converter. Bit Name Default Access Description step_up_on 0 R/W 0b Disable the Step Up DC/DC Converter 1b Enable the Step Up DC/DC Converter am lc s on A te G nt st il 3 lv Enable the step up converter Table 9. DCDC control1 Register Addr: 21h Bit DCDC control1 This register controls the Step Up DC/DC Converter. Bit Name Default Access Description Defines the clock frequency of the Step Up DC/DC Converter. step_up_frequ 0 0 R/W 0 1MHz 1 500kHz Controls the feedback source if step_up_fb_auto = 0 step_up_fb 2:1 01 R/W 00 no feedback selected - don’t use 01 CURR1 feedback enabled (default) 10 CURR2 feedback enabled 11 CURR6 feedback enabled ca Overvoltage protection for the DCDC step up step_up_vmax 00 R/W ni 4:3 00 16V 01 10V 10 25V 11 don’t use (15.5V) ch Table 10. DCDC control2 Register Te Addr: 22h Bit 1 Bit Name DCDC control2 This register controls the Step Up DC/DC Converter and low-voltage current sinks CURR3x. Default Access Description Step Up DC/DC Converter output voltage at low loads, when pulse skipping is active skip_fast www.austriamicrosystems.com/AS3677 0 R/W 0 Accurate output voltage, more ripple 1 Elevated output voltage, less ripple 1v3-1 12 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 10. DCDC control2 Register (Continued) DCDC control2 Addr: 22h This register controls the Step Up DC/DC Converter and low-voltage current sinks CURR3x. Bit Bit Name 3 step_up_lowcur Default Access Description Step Up DC/DC Converter coil current limit R/W 0 Normal current limit 1 Current limit reduced by approx. 33% al id 1 Step Up DC/DC overvoltage triggered R No overvoltage triggered 1 Overvoltage triggered; this bit is automatically reset by step_up_on=0 0 step_up_fb select the feedback of the DCDC converter am lc s on A te G nt st il 0 step_up_fb_auto 7 1 R/W 1 8.3 lv step_up_ov 4 0 The feedback is automatically chosen within the current sinks CURR1, CURR2 and CURR6 (never DCDC_FB). Only those are used for this selection, which are enabled (currX_mode must not be 00) and not connected to the charge pump (currX_on_cp must be 0). Charge Pump The Charge Pump uses the external flying capacitor C4 to generate output voltages higher than the battery voltage. There are two different operating modes of the charge pump itself: 1:1 Bypass Mode - Battery input and output are connected by a low-impedance switch - battery current = output current. 1:2 Mode - The output voltage is up to 2 times the battery voltage (without load), but is limited to VCPOUTmax all the time - battery current = 2 times output current As the battery voltage decreases, the Charge Pump must be switched from 1:1 mode to 1:2 mode in order to provide enough supply for the current sinks. Depending on the actual current the mode with best overall efficiency can be automatically or manually selected: ca The charge pump mode switching can be done manually or automatically with the following possible software settings: ch ni Automatic - Start with 1:1 mode - Switch up automatically to 1:2 mode Manual - Set modes 1:1 and 1:2 by software The Charge Pump requires the external components listed in the following table: Table 11. Charge Pump External Components Parameter Condition C4 External Flying Capacitor Ceramic low-ESR capacitor between pins C1_P and C1_N 470 nF C5 External Storage Capacitor Ceramic low-ESR capacitor between pins CPOUT and VSS, pins CPOUT and VSS_CP 1.0 µF Te Symbol Min Typ Max Unit Note: The connections of the external capacitors C4 and C5 should be kept as short as possible. www.austriamicrosystems.com/AS3677 1v3-1 13 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n The maximum voltage on the flying capacitor C4 is VBAT. Table 12. Charge Pump Characteristics Condition Min ICPOUT Output Current Continuous Depending on PCB layout 0.0 VCPOUTmax Output Voltage Internally limited, Including output ripple η Efficiency Including current sink loss; ICPOUT < 50mA. 80 ICP1_2 Power Consumption without Load, fclk = 1 MHz 1:2 Mode 2.15 1:1 Mode; VBAT = 3V 8.8 Rcp1_1 Effective Charge Pump Output Resistance (Open Loop, fclk = 1MHz) Rcp1_2 Accuracy of Clock Frequency currhv_switch CURR1, 2, 6 minimum voltage currlv_switch RGB1-3 minimum voltage tdeb CP automatic upswitching debounce time 8.3.1 Max Unit 50 mA 5.6 V % mA Ω 31 -10 10 % 0.45 V 0.2 V am lc s on A te G nt st il fclk Accuracy 1:1.2 Mode; VBAT = 3V Typ al id Parameter lv Symbol If the voltage drops below this threshold, the charge pump will use the next available mode (1:1 -> 1:2) cp_start_debounce=0 240 µsec After switching on CP (cp_on set to 1), if cp_start_debounce=1 2000 µsec Charge Pump Mode Switching If automatic mode switching is enabled (cp_mode_switching (see page 16) = 00 or cp_mode_switching = 01) the charge pump monitors the current sinks, which are connected via a led to the output CPOUT. To identify these current sources (sinks), the registers CP mode Switch1 and CP mode Switch2 (register bits rgb1_on_cp … rgb3_on_cp, curr1_on_cp, curr2_on_cp and curr6_on_cp) should be setup before starting the charge pump (cp_on (see page 16) = 1). If any of the voltage on these current sources drops below the threshold (currlv_switch, currhv_switch), the next higher mode is selected after the debounce time. Te ch ni ca If the currX_on_cp=0 and the according current sink is connected to the charge pump, the current sink will be functional, but there is no up switching of the charge pump, if the voltage compliance is too low for the current sink to supply the specified current. www.austriamicrosystems.com/AS3677 1v3-1 14 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Figure 14. Automatic Mode Switching -*. !(%' *$" , %+% lv !"#$ " %"&'"% al id -/ ## am lc s on A te G nt st il $ 0- $ 0- $1 0-1 2 AS3677 8.3.2 Soft Start ) ca ) ni An implemented soft start mechanism reduces the inrush current. Battery current is smoothed when switching the charge pump on and also at each switching condition. This precaution reduces electromagnetic radiation significantly. ch 8.3.3 Unused Charge Pump Te If the charge pump is not used, capacitors C4 and C5 (not C2) can be removed. The pins C1_P, C1_N and CPOUT should be left open and keep register cp_on and cp_auto_on at 0 (default value). www.austriamicrosystems.com/AS3677 1v3-1 15 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n 8.3.4 Charge Pump Registers Table 13. Reg control Register Reg control Addr: 00h This register controls the Charge Pump. Bit Name 2 cp_on Default Access 0 R/W Description 0 Set Charge Pump into 1:1 mode (off state) unless cp_auto_on is set 1 Enable manual or automatic mode switching al id Bit Table 14. CP control Register This register enables/disables the Charge Pump and the Step Up DC/DC Converter. Bit Name Default Access Description am lc s on A te G nt st il Bit lv CP control Addr: 23h Clock frequency selection. cp_clk 0 0 R/W 0 1 MHz 1 500 kHz Charge Pump mode (in manual mode sets this mode, in automatic mode reports the actual mode used) 00 cp_mode 2:1 00b R/W 1:1 mode 01 10 1:2 mode 11 Set the mode switching algorithm 00 4:3 cp_mode_switching 00b R/W Automatic Mode switching 01 cp_auto_on 0 1 R/W R/W 11 Manual Mode switching; register cp_mode defines the actual charge pump mode used 0 Mode switching debounce timer is always 240µs 1 Upon startup (cp_on set to 1) the mode switching debounce time is first started with 2ms then reduced to 240µs 0 Charge Pump is switched on/off with cp_on 1 Charge Pump is automatically switched on if a current sink, which is connected to the charge pump (defined by registers CP Mode Switch 1 & 2) is switched on Te ch 6 cp_start_debounce ni 5 ca 10 www.austriamicrosystems.com/AS3677 1v3-1 16 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 15. CP mode Switch1 Register CP mode Switch1 Setup which current sinks are connected (via leds) to the charge pump; if set to ‘1’ the correspond current source (sink) is used for automatic mode selection of the charge pump Bit Name 4 rgb1_on_cp Default Access 1 rgb2_on_cp 5 1 rgb3_on_cp 1 R/W R/W 0 current Sink RGB1 is not connected to charge pump 1 current sink RGB1 is connected to charge pump 0 current Sink RGB2 is not connected to charge pump 1 current sink RGB2 is connected to charge pump 0 current Sink RGB3 is not connected to charge pump 1 current sink RGB3 is connected to charge pump am lc s on A te G nt st il 6 R/W Description al id Bit lv Addr: 24h Table 16. CP mode Switch2 Register CP mode Switch2 Addr: 25h Bit Bit Name 0 curr1_on_cp Setup which current sinks are connected (via LEDs) to the charge pump; if set to ‘1’ the correspond current source (sink) is used for automatic mode selection of the charge pump Default Access 0 curr2_on_cp 1 0 curr6_on_cp 7 0 R/W R/W R/W Description 0 current Sink CURR1is not connected to charge pump 1 current sink CURR1 is connected to charge pump 0 current Sink CURR2 is not connected to charge pump 1 current sink CURR2 is connected to charge pump 0 current Sink CURR6 is not connected to charge pump 1 current sink CURR6 is connected to charge pump ca Table 17. Curr low voltage status1 Register Indicates the low voltage status of the current sinks. If the currX_low_v bit is set, the voltage on the current sink is too low, to drive the selected output current ni Addr: 2Ah Bit Name Default Access ch Bit Curr low voltage status1 rgb1_low_v NA R 5 rgb2_low_v NA R 6 rgb3_low_v NA R 7 curr6_low_v NA R Te 4 www.austriamicrosystems.com/AS3677 Description 0 voltage of current Sink RGB1 >currlv_switch 1 voltage of current Sink RGB1 <currlv_switch 0 voltage of current Sink RGB2 >currlv_switch 1 voltage of current Sink RGB2 <currlv_switch 0 voltage of current Sink RGB3 >currlv_switch 1 voltage of current Sink RGB31 <currlv_switch 0 voltage of current Sink CURR6 >currlv_switch 1 voltage of current Sink CURR6 <currlv_switch 1v3-1 17 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 18. Curr low voltage status2 Register Curr low voltage status2 Indicates the low voltage status of the current sinks. If the currX_low_v bit is set, the voltage on the current sink is too low, to drive the selected output current Addr: 2Bh Bit Name 0 curr1_low_v NA curr2_low_v 1 NA Description 0 R R voltage of current Sink CURR1 >currhv_switch 1 voltage of current Sink CURR1 <currhv_switch 0 voltage of current Sink CURR2 >currhv_switch 1 voltage of current Sink CURR2 <currhv_switch Current Sinks lv 8.4 Default Access al id Bit The AS3677 contains three general purpose current sinks intended to control backlight LEDs. am lc s on A te G nt st il CURR1, CURR2 and CURR6 are used as feedback for the Step Up DC/DC Converter (regulated to 0.5V in this configuration) see Feedback Selection on page 11. Table 19. Current Sink Function Overview Current Sink RGB1 RGB2 RGB3 CURR1 CURR2 CURR6 Max. Voltage (V) Max. Current (mA) Resolution (Bits) (mA) Software Current Control Hardware On/Off Control 5.5 25.5 8 0.1 Separate Internal PWM; external PWM at DLS1, Pattern generator Internal PWM; external PWM at DLS1, Pattern generator 26.0 25.5 8 0.1 Separate Internal PWM; external PWM at DLS1 or DLS2, Pattern generator Te ch ni ca The processing inside the AS3677 is shown in Figure 15 (shown for one current source only): www.austriamicrosystems.com/AS3677 1v3-1 18 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Figure 15. Internal processing of the different signals am lc s on A te G nt st il ( lv #$"!% al id %)#! &' !" ! #! *+ ,-."$"$"$/ !! % 8.4.1 Unused Current Sinks Te ch ni ca Unused current sinks can be left open or used as ADC inputs (see Analog-to-Digital Converter on page 50). www.austriamicrosystems.com/AS3677 1v3-1 19 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n 8.4.2 High Voltage Current Sinks CURR1, CURR2, CURR6 The high voltage current sinks have a resolution of 8 bits. Table 20. HV Current Sinks Characteristics Parameter Condition Min Typ IBIT7 Current sink if Bit7 = 1 12.8 IBIT6 Current sink if Bit6 = 1 6.4 IBIT5 Current sink if Bit5 = 1 3.2 IBIT4 Current sink if Bit4 = 1 IBIT3 Current sink if Bit3 = 1 IBIT2 Current sink if Bit2 = 1 0.4 IBIT1 Current sink if Bit1 = 1 0.2 IBIT0 Current sink if Bit0 = 1 Δm matching Accuracy Δ absolute Accuracy VCURR1,2,6x Voltage compliance IQCURR1,2,6 Quiescent current 1.6 For V(CURRx) > 0.45V Unit mA lv 0.8 Max al id Symbol +7 % am lc s on A te G nt st il 0.1 -7 % -15 CURR1,CURR2,CURR6 +15 0.45 25 165 V µA High Voltage Current Sinks CURR1, CURR2, CURR6 Registers Table 21. Curr1 current Register Addr: 09h Bit Bit Name Curr1 current This register controls the High voltage current sink current. Default Access Description Defines current into current sink curr1 curr1_current 7:0 0 R/W 00h 0 mA 01h 0.1 mA .... .... FFh 25.5 mA ca Table 22. Curr2 current Register Bit Name curr2_current Te 7:0 Curr2 current This register controls the High voltage current sink current. Default Access ch Bit ni Addr: 0Ah www.austriamicrosystems.com/AS3677 Description Defines current into current sink curr2 0 R/W 00h 0 mA 01h 0.1 mA .... .... FFh 25.5 mA 1v3-1 20 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 23. Curr6 current Register Curr6 current Addr: 2Fh Bit This register controls the High voltage current sink current. Bit Name Default Access Description 0 R/W 0 mA 01h 0.1 mA .... .... FFh 25.5 mA Table 24. curr12 control Register curr12 control Bit This register select the mode of the current sinks controls High voltage current sink current. am lc s on A te G nt st il Addr: 01h lv curr6_current 7:0 00h al id Defines current into current sink CURR6 Bit Name Default Access Description Select the mode of the current sink curr1 curr1_mode 1:0 0 R/W 00b off 01b on 10b PWM controlled 11b LED pattern controlled Select the mode of the current sink curr2 curr2_mode 3:2 0 R/W 00b off 01b on 10b PWM controlled 11b LED pattern controlled Table 25. curr rgb control Register Bit Name This register select the mode of the current sinks CURR6. Default Access ni Bit curr6_mode 0 Description Select the mode of the current sink CURR6 R/W 00b off 01b on 10b PWM controlled 11b LED pattern controlled Te ch 7:6 curr rgb control ca Addr: 02h www.austriamicrosystems.com/AS3677 1v3-1 21 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n 8.4.3 Current Sinks RGB1, RGB2, RGB3 These current sinks have a resolution of 8 bits and can sink up to 25.5mA. Table 26. Current Sinks RGB1, RGB2, RGB3 Parameters Parameter Condition Min Typ IBIT7 Current sink if Bit7 = 1 12.8 IBIT6 Current sink if Bit6 = 1 6.4 IBIT5 Current sink if Bit5 = 1 3.2 IBIT4 Current sink if Bit4 = 1 IBIT3 Current sink if Bit3 = 1 IBIT2 Current sink if Bit2 = 1 0.4 IBIT1 Current sink if Bit1 = 1 0.2 IBIT0 Current sink if Bit0 = 1 Δm matching Accuracy Δ absolute Accuracy 1.6 For V(RGBx) > 0.2V Unit mA lv 0.8 Max al id Symbol +10 % am lc s on A te G nt st il 0.1 VRGBX Voltage compliance IQRGB1,2,3 Quiescent current -10 RGB1, RGB2, RGB3 -15 +15 % 0.2 CPO UT V 165 µA RGB Current Sinks Registers Table 27. curr rgb control Register Addr: 02h Bit Bit Name curr rgb control This register select the mode of the current sinks RGB1, RGB2, RGB3 Default Access Description Select the mode of the current sink RGB1 rgb1_mode ni rgb2_mode ch 3:2 Te 5:4 0 ca 1:0 rgb3_mode www.austriamicrosystems.com/AS3677 0 R/W 00b off 01b on 10b PWM controlled 11b LED pattern controlled Select the mode of the current sink RGB2 R/W 00b off 01b on 10b PWM controlled 11b LED pattern controlled Select the mode of the current sink RGB3 0 R/W 00b off 01b on 10b PWM controlled 11b LED pattern controlled 1v3-1 22 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 28. Rgb1 current Register Rgb1 current Addr: 0Bh Bit Bit Name This register controls the RGB current sink current. Default Access Description rgb1_current 7:0 0 R/W 00h 0 mA 01h 0.1 mA .... .... FFh 25.5 mA Rgb2 current Addr: 0Ch Bit Name This register controls the RGB current sink current. Default Access Description am lc s on A te G nt st il Bit lv Table 29. Rgb2 current Register al id Defines current into Current sink RGB1 Defines current into Current sink RGB2 rgb2_current 7:0 0 R/W 00h 0 mA 01h 0.1 mA .... .... FFh 25.5 mA Table 30. Rgb3 current Register Rgb3 current Addr: 0Dh Bit Bit Name This register controls the RGB current sink current. Default Access Description Defines current into Current sink RGB3 rgb3_current 8.4.4 0 ca 7:0 R/W 00h 0 mA 01h 0.1 mA .... .... FFh 25.5 mA LED Pattern Generator ni The LED pattern generator is capable of producing a pattern with 32 bits length and 1 second duration (31.25ms for nd rd th 3 each bit). The pattern itself can be started every second, every 2 , 3 up to 7 second . ch With this pattern all current sinks can be controlled. The pattern itself switches the configured current sources between 0 and their programmed current. Te If everything else is switched off, the current consumption in this mode is IACTIVE. (excluding current through switched on current source) and the charge pump, if required. The charge pump can be automatically switched on/off depending on the pattern (set register cp_auto_on on page 16=1) to reduce the overall current consumption. 3. All times can be extended by a factor of 8 by setting pattern_slow=1 (this result in a delay of up to 56s) www.austriamicrosystems.com/AS3677 1v3-1 23 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Figure 16. LED Pattern Generator AS3677 for pattern_color = 0 $!! "# "% &" ' "% ()* !"# al id lv To select the different current sinks to be controlled by the LED pattern generator, see the ‘xxxx’_mode registers (where ‘xxxx’ stands for the to be controlled current sink, e.g. curr1_mode for CURR1 current sink). See also the description of the different current sinks. To allow the generator of a color patterns set the bit pattern_color to ‘1’. Then the pattern can be connected to CURRx as follows: am lc s on A te G nt st il Figure 17. LED Pattern Generator AS3677 for pattern_color = 1 %&'(')*+& ),)-& "# " # $ $ ! .)&(//////"/ /"/"/$ -'+& Only those current sinks will be controlled, where the ‘xxxx’_mode register is configured for LED pattern. If the register bit pattern_slow is set, all pattern times are increased by a factor of eight. (bit duration: 250ms if pattern_color=0 / 800ms if pattern_color=1, delays between pattern up to 56s). Soft Dimming for Pattern ca The internal pattern generator can be combined with the internal pwm dimming modulator to obtain as shown in the following figure: ch ni Figure 18. Soft dimming Architecture for the AS3677 (softdim_pattern=1 and pattern_color = 1) Te www.austriamicrosystems.com/AS3677 1v3-1 ! ! " # $%%&% ' ()*+, 24 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n With the AS3677 smooth fade-in and fade-out effects can be automatically generated. As there is only one dimming ramp generator and one pwm modulator following constraints have to be considered when setting up the pattern (applies only if pattern_color=1): Figure 19. Soft dimming example Waveform for CURR30-32 am lc s on A te G nt st il ! lv al id ! However using the identical dimming waveform for two channels is possible as shown in the following figure: Figure 20. Soft dimming example Waveform for CURR30-32 LED Pattern Registers Table 31. Pattern data0...Pattern data3 Registers Pattern data0, Pattern data1, Pattern data2, Pattern data3 ca Addr: 19h,1Ah,1Bh,1Ch Bit Bit Name 7:0 pattern_data_0 1 7:0 Description 0 R/W Pattern data0 pattern_data_1 0 R/W Pattern data1 pattern_data_2 0 R/W Pattern data2 0 R/W Pattern data3 ch 7:0 Default Access ni 7:0 This registers contains the pattern data for the current sinks. pattern_data_3 Te 1. Update any of the pattern register only if none of the current sources is connected to the pattern generator ('xxxx'_mode must not be 11b). The pattern generator is automatically started at the same time when any of the current sources is connected to the pattern generator www.austriamicrosystems.com/AS3677 1v3-1 25 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 32. Pattern control Register Pattern control Addr: 18h Bit This register controls the LED pattern Bit Name Default Access Description Defines the pattern type for the current sinks 0 pattern_delay 2:1 R/W 00b R/W 0b single 32 bit pattern (also set currX_mode = 11) 1b RGB pattern with each 10 bits (set all currX_mode = 11) al id pattern_color 0 Delay between pattern, details (see Table 35); together with pattern_delay2 sets the delay time between patterns softdim_pattern 0b R/W 0 Pattern generator directly control current sources 1 ‘Soft Dimming’ is performed (see page 24) am lc s on A te G nt st il 3 lv Enable the ‘soft’ dimming feature for the pattern generator Table 33. Gpio current Register Addr: 2Ch Bit Bit Name 4 pattern_delay2 Gpio current Default Access 0 R/W Description Delay between pattern (see Table 35 on page 26); together with pattern_delay sets the delay time between patterns Pattern timing control pattern_slow 6 0 R/W 0b normal mode 1b slow mode (all pattern times are increased by a factor of eight) Table 34. Pattern End Register Addr: 54h Bit Pattern End Bit Name Default Access pattern_end 0 R ca 0 Description pattern_end is toggled from 0 to 1 (or from 1 to 0) at each end of the pattern just before restarting of the internal pattern generator at the first bit of the pattern data (can be used to synchronize the baseband software to the 1 pattern generator) ni 1. pattern_end toggles whenever the AS3677 is in active mode (see Section 8.11 Operating Modes on page 58) even if no pattern data has been setup. ch Table 35. LED Pattern timing pattern_delay2 Te pattern_slow pattern_delay[1..0] delay between patterns bit duration [ms] pattern [s] delay [s] duration cycle between (total time: pattern_color=0 pattern_color=1 patterns pattern + delay) 0 0 00 31 100 0 1 1 0 0 01 31 100 1 2 0 0 10 31 100 2 3 0 0 11 31 100 3 4 www.austriamicrosystems.com/AS3677 1v3-1 26 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 35. LED Pattern timing pattern_delay2 pattern_slow pattern_delay[1..0] delay between patterns bit duration [ms] pattern [s] delay [s] duration cycle between (total time: pattern_color=0 pattern_color=1 patterns pattern + delay) 1 00 31 100 4 5 0 1 01 31 100 5 0 1 10 31 100 6 0 1 11 31 100 7 1 0 00 250 800 0 1 0 01 250 800 8 1 0 10 250 800 1 0 11 250 800 1 1 00 250 800 32 40 1 1 01 250 800 40 48 1 1 10 250 800 48 56 1 1 11 250 800 56 64 al id 0 6 7 8 8 lv 16 24 24 32 am lc s on A te G nt st il 16 1. Even by setting 000 for pattern delay, there is a small delay before the new patterns starts. 8.4.5 PWM Generator The PWM generator can be used for any current sink. The setting applies for all current sinks, which are controlled by the pwm generator (e.g. CURR1 is pwm controlled if curr1_mode = 10). The pwm modulated signal can switch on/off the current sinks and therefore depending on its duty cycle change the brightness of an attached LED. Internal PWM Generator The internal PWM generator uses the 2MHz internal clock as input frequency and its dimming range is 6 bits digital (2MHz / 2^6 = 31.3kHz pwm frequency) and 2 bits analog. Depending on the actual code in the register pwm_code the following algorithm is used: If pwm_code bit 7 = 1 ca Then the upper 6 bits (Bits 7:2) of pwm_code are used for the 6 bits PWM generation, which controls the selected currents sinks directly If pwm_code bit 7 =0 and bit 6 = 1 ni Then bits 6:1 of pwm_code are used for the 6 bits PWM generation. This signal controls the selected current sinks, but the analog current of these sinks is divided by 2 If pwm_code bit 7 and bit 6 = 0 Te ch Then bits 5:0 of pwm_code are used for the 6 bits PWM generation. This signal controls the selected current sinks, but the analog current of these sinks is divided by 4 www.austriamicrosystems.com/AS3677 1v3-1 27 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Figure 21. PWM Control ! "# ! "# al id lv Automatic Up/Down Dimming If the register pwm_dim_mode is set to 01 (up dimming) or 10 (down dimming) the value within the register pwm_code th th am lc s on A te G nt st il is increased (up dimming) or decreased (down dimming) every time and amount (either 1/4 or 1/8 ) defined by the register pwm_dim_speed. The maximum value of 255 (completely on) and the minimum value of 0 (off) is never exceeded. It is used to smoothly and automatically dim the brightness of the LEDs connected to any of the current sinks. The PWM code is readable all the time (also during up and down dimming). The waveform for up dimming looks as follows (cycles omitted for simplicity): Figure 22. PWM Dimming Waveform for up dimming (pwm_dim_mode = 01); currX_mode = PWM controlled (not all steps shown) The internal pwm modulator circuit controls the current sinks as shown in the following figure: ca Figure 23. PWM Control Circuit (currX_mode = 10b (PWM controlled)); X = any current sink )"! ch $ % ! & ni Te !!" # + " ' , )* AS3677 !&!'( ( The adder logic (available for all current sinks) is intended to allow dimming not only from 0% to 100% (or 100% to 0%) of currX_current, but also e.g. from 10% to 110% (or 110% to 10%) of currX_current. The starting current for up dimming is defined by 0 + currX_adder and the end current is defined by currX_current + currX_adder. www.austriamicrosystems.com/AS3677 1v3-1 28 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n An overflow of the internal bus (8 Bits wide to the IDAC) has to be avoided by the register settings (currX_current + currX_adder must not exceed 255). Note: The adder logic operates independent of the currX_mode setting, but its main purpose is to work together with the pwm modulator (improved up/down dimming) If the adder logic is not used anymore, set the bit currX_adder to 0. (Setting adder_currentX to 0 is not sufficient) al id At the end of up/down dimming, the pwm_code register keeps its final value (for up-dimming 255 and for downdimming 0). This can be used to identify the exact time, when up/down dimming is finished. Table 36. PWM Dimming Table Decrease by 1/4th every step Decrease by 1/8th every step Seconds Seconds Seconds Seconds 5msec/ Step 2.5msec/ Step 0,000s 0,000s 0,005s 0,003s %Dimming PWM %Dimming PWM 50msec/ Step 25msec/ Step 1 100,0 255 100,0 255 0,00s 0,00s 2 75,3 192 87,8 224 0,05s 0,03s 3 56,5 144 76,9 196 0,10s 0,05s 0,010s 0,005s 4 42,4 108 67,5 172 0,15s 0,08s 0,015s 0,008s 5 31,8 81 59,2 151 0,20s 0,10s 0,020s 0,010s 6 23,9 61 52,2 133 0,25s 0,13s 0,025s 0,013s 7 18,0 46 45,9 117 0,30s 0,15s 0,030s 0,015s 8 13,7 35 40,4 103 0,35s 0,18s 0,035s 0,018s 9 10,6 27 35,7 91 0,40s 0,20s 0,040s 0,020s 10 8,2 21 31,4 80 0,45s 0,23s 0,045s 0,023s 11 6,3 16 27,5 70 0,50s 0,25s 0,050s 0,025s 12 4,7 12 24,3 62 0,55s 0,28s 0,055s 0,028s 13 3,5 9 21,6 55 0,60s 0,30s 0,060s 0,030s 14 2,7 7 19,2 49 0,65s 0,33s 0,065s 0,033s 15 2,4 6 16,9 43 0,70s 0,35s 0,070s 0,035s 16 2,0 5 14,9 38 0,75s 0,38s 0,075s 0,038s 17 1,6 18 1,2 19 0,8 ca am lc s on A te G nt st il lv Step 13,3 34 0,80s 0,40s 0,080s 0,040s 3 11,8 30 0,85s 0,43s 0,085s 0,043s 2 10,6 27 0,90s 0,45s 0,090s 0,045s 0,4 1 9,4 24 0,95s 0,48s 0,095s 0,048s 0,0 0 8,2 21 1,00s 0,50s 0,100s 0,050s 22 7,5 19 1,05s 0,53s 0,105s 0,053s 23 6,7 17 1,10s 0,55s 0,110s 0,055s 24 5,9 15 1,15s 0,58s 0,115s 0,058s 25 5,5 14 1,20s 0,60s 0,120s 0,060s 26 5,1 13 1,25s 0,63s 0,125s 0,063s 27 4,7 12 1,30s 0,65s 0,130s 0,065s 28 4,3 11 1,35s 0,68s 0,135s 0,068s 29 3,9 10 1,40s 0,70s 0,140s 0,070s 20 Te ch 21 ni 4 www.austriamicrosystems.com/AS3677 1v3-1 29 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 36. PWM Dimming Table Decrease by 1/4th every step Decrease by 1/8th every step Seconds Seconds Seconds Seconds PWM 50msec/ Step 25msec/ Step 5msec/ Step 2.5msec/ Step 30 3,5 9 1,45s 0,73s 0,145s 0,073s 31 3,1 8 1,50s 0,75s 0,150s 0,075s 32 2,7 7 1,55s 0,78s 0,155s 0,078s 33 2,4 6 1,60s 0,80s 0,160s 0,080s 34 2,0 5 1,65s 0,83s 0,165s 0,083s 35 1,6 4 1,70s 0,85s 0,170s 0,085s 36 1,2 3 1,75s 0,88s 37 0,8 2 1,80s 0,90s 38 0,4 1 1,85s 0,93s 0,0 0 1,90s 0,95s 39 lv PWM 0,175s 0,088s 0,180s 0,090s 0,185s 0,093s 0,190s 0,095s am lc s on A te G nt st il %Dimming al id %Dimming Step PWM Generator Registers Table 37. Pwm control Register Addr: 16h Bit Bit Name Pwm control This register controls PWM generator Default Access Description Selects the dimming mode pwm_dim_mode 00b www.austriamicrosystems.com/AS3677 000b 01b logarithmic up dimming (codes are increased). Start value is actual pwm_code 10b logarithmic down dimming (codes are decreased). Start value is actual pwm_code; switch off the dimmed current source after dimming is finished to avoid unnecessary quiescent current 11b NA Defines dimming speed by increase/decrease pwm_code ni ch pwm_dim_speed Te 5:3 no dimming; actual content of register pwm_code is used for pwm generator R/W ca 2:1 00b R/W th 000b by 1/4 every 50 msec (total dim time 1.0s) 001b by 1/8 every 50 msec (total dim time 1.9s) 010b by 1/4 every 25 msec (total dim time 0.5s) 011b by 1/8 every 25 msec (total dim time 0.95s) 100b by 1/4 every 5 msec (total dim time 100ms) 101b by 1/8 every 5 msec (total dim time 190ms) 110b by 1/4 every 2.5 msec (total dim time 50ms) 111b by 1/8 every 2.5 msec (total dim time 95ms) 1v3-1 th th th th th th th 30 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 38. Pwm code Register Pwm code Addr: 17h Bit This register controls the Pwm code. Bit Name Default Access Description pwm_code 7:0 00b R/W 00h 0% duty cycle .... .... FFh 100% duty cycle Adder Current 1 Addr: 30h This register defines the current which can be added to CURR1, CURR30, CURR41, RGB1 Bit Name Default Access Description am lc s on A te G nt st il Bit lv Table 39. Adder Current 1 Register al id Selects the PWM code Selects the added current value – do not exceed together with currX_current the internal 8 Bit range (see text) adder_current1 7:0 00b R/W 00h 0 (represents 0mA) .... .... FFh 255 (represents 25.5mA) Table 40. Adder Current 2 Register Adder Current 2 Addr: 31h Bit Bit Name This register defines the current which can be added to CURR2, CURR31, CURR42, RGB2 Default Access Description Selects the added current value – do not exceed together with currX_current the internal 8 Bit range (see text) adder_current2 00b R/W ca 7:0 00h 0 (represents 0mA) .... .... FFh 255 (represents 25.5mA) ni Table 41. Adder Current 3 Register Addr: 32h Bit Name ch Bit Te 7:0 Adder Current 3 This register defines the current which can be added to CURR6, CURR32, CURR43, RGB3 Default Access adder_current3 www.austriamicrosystems.com/AS3677 Description Selects the added current value – do not exceed together with currX_current the internal 8 Bit range (see text) 00b R/W 00h 0 (represents 0mA) .... .... FFh 255 (represents 25.5mA) 1v3-1 31 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 42. Adder Enable 2 Register Adder Enable 2 Addr: 34h Bit Enables the adder circuit for the selected current sources Bit Name Default Access Description Enables adder circuit for current source CURR1 0 0 Normal Operation of the current source 1 adder_current1 gets added to the current source current; if curr1_amb_group is not 00, the adder current is multiplied by the ALS group selected by curr1_amb_group al id curr1_adder 0 R/W Enables adder circuit for current source CURR2 0 Normal Operation of the current source 1 adder_current2 gets added to the current source current; if curr2_amb_group is not 00, the adder current is multiplied by the ALS group selected by curr2_amb_group R/W am lc s on A te G nt st il 0 lv curr2_adder 1 Enables adder circuit for current source CURR6 curr6_adder 2 0 0 Normal Operation of the current source 1 adder_current3 gets added to the current source current; if curr6_amb_group is not 00, the adder current is multiplied by the ALS group selected by curr6_amb_group R/W Table 43. Adder Enable 1 Register Addr: 33h Bit Bit Name Adder Enable 1 Enables the adder circuit for the selected current sources Default Access Description Enables adder circuit for current source RGB1 rgb1_adder 0 0 R/W 0 Normal Operation of the current source 1 adder_current1 gets added to the current source current ca Enables adder circuit for current source RGB2 rgb2_adder rgb3_adder 0 0 Normal Operation of the current source 1 adder_current2 gets added to the current source current 0 R/W 0 Normal Operation of the current source 1 adder_current3 gets added to the current source current ALS - Ambient Light Sensing Te 8.4.6 R/W Enables adder circuit for current source RGB3 ch 2 ni 1 4 The ADC converts every 1ms the ambient light sensor signal from pin ALS/GPIO1 . This signal is pre-processed with a offset defined by amb_offset and a gain defined by amb_gain (1/4, 1/2, 1, 2). Then it is low-pass filtered with a programmable cut-off frequency going from 0.25Hz to 32Hz. Increasing signals and decreasing signal can have individual cut-off frequencies adjustable from 0.25Hz to 32Hz (amb_filter_up and amb_filter_down). This filtered signal can be readout from the register amb_result<7:0>. 4. adc_select=02h (select ALS/GPIO1 input) www.austriamicrosystems.com/AS3677 1v3-1 32 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Each of the available three channels (N=1 or 2) has six 8-bit registers: al id - groupN_y0: define current multiplier for values below groupN_X1 - groupN_y3: define current multiplier for high values (actual starting point defined by groupN_x1,groupN_k1 and groupN_x2,groupN_k2) - groupN_x1, groupN_k1: If ADC reading is > groupN_x1 then groupN_k1 divided by 32 defines the slope of the first ramp - groupN_x2, groupN_k2: If ADC reading is > groupN_x2 then groupN_k2 divided by 32 defines the slope of the second ramp Each current sources has a 2 bit register (currX_amb_group) to select None, Group1 or Group2 of ambient light sensing. The calculations are done every 1ms resulting in a flicker-free 1000Hz update rate of the current sources. Note: The ADC is switched off between conversion to save power. lv All groupN_k1 and groupN_k2 values are divided by 32 except group3_k1 (see page 39), which is divided by 1. This allows a step response to a small change in the input signal (e.g. for keyboard backlight). am lc s on A te G nt st il Table 44. ALS Parameters Symbol Parameter Condition excluding LDO supplying external ALS operating current averaged; sensor - see LDO on page 9 Typ 19 Max Unit µA Te ch ni ca IALSON Min www.austriamicrosystems.com/AS3677 1v3-1 33 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Figure 24. Ambient Light Sensor and Interrupt Logic internal circuit ! . 456 7563 %89:/#- %$& :/#- :/#-7 ! =44 =C . 456 7563 ,, #!B al id *!2 *! " =C ";<56 lv ) " ,, ! .**3 am lc s on A te G nt st il #@A ! .!*!3 ! #!8* !> ? != !? " " " !? !>7 9 5 9 5 9 5 ! ! !7 ++ , *!!* *!)! ca " *! &'(()*! " " -,!* ./012 3 #$%& &'(() ni AS3677 ! ! !7 != Ambient Light Sensor Registers ch Table 45. ALS control Register ALS control Addr: 90h Te Bit 0 Bit Name control ambient light sensing Default Access Description Enables the ambient light sensing feature amb_on www.austriamicrosystems.com/AS3677 0 R/W 0 ambient light sensor disabled 1 ambient light sensor enabled 1v3-1 34 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 45. ALS control Register (Continued) ALS control Addr: 90h Bit control ambient light sensing Bit Name Default Access Description amb_gain 2:1 0 R/W 00 gain = 1/4 01 gain = 1/2 10 gain = 1 11 gain = 2 al id Control Ambient Light Sensor preprocessing gain amb_keep 0 R/W 0 Group output is enabled (S/H = sampling) 1 Groups outputs on hold (S/H = hold) am lc s on A te G nt st il 3 lv Enable S/H of group tables output - see Figure 24 on page 34 Table 46. ALS filter Register Addr: 91h Bit Bit Name ALS filter control for ambient light sensor filtering Default Access Description Controls the filter cut off (-3dB) frequency (increasing) amb_filter_up 2:0 000 R/W 000 0.25Hz 001 0.5Hz 010 1Hz 011 2Hz 100 4Hz 101 8Hz 110 16Hz 111 32Hz amb_filter_down 000 R/W Te ch 6:4 ni ca Controls the filter cut off (-3dB) frequency (decreasing) 000 0.25Hz 001 0.5Hz 010 1Hz 011 2Hz 100 4Hz 101 8Hz 110 16Hz 111 32Hz Table 47. ALS offset Register Addr: 92h Bit Bit Name 7:0 amb_offset ALS offset Default Access www.austriamicrosystems.com/AS3677 00h R/W Description Controls the offset of the ambient light sensor 1v3-1 35 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 48. ALS result Register Addr: 93h ALS result Bit Name 7:0 amb_result Default Access 00h Description R Filtered result of the ambient light sensor value W Pre-set the value of the ALS filter (especially useful when doing gain switching of the ALS sensor) Table 49. ALS curr12 group Register ALS curr12 group Addr: 94h controls the group mapping for CURR1 and CURR2 Bit Name Default Access Description lv Bit al id Bit CURR1 is mapped to ambient light sensor group curr1_amb_group 00 R/W None - no ambient light sensor control 01 Group 1 10 Group 2 11 Group 3 am lc s on A te G nt st il 1:0 00 CURR2 is mapped to ambient light sensor group 3:2 curr2_amb_group 00 R/W 00 None - no ambient light sensor control 01 Group 1 10 Group 2 11 Group 3 Table 50. ALS rgb group Register Addr: 95h Bit Bit Name ALS rgb group controls the group mapping for RGB1, RGB2, RGB3 and CURR6 Default Access Description RGB1 is mapped to ambient light sensor group Te 5:4 00 ca rgb2_amb_group ch 3:2 rgb1_amb_group ni 1:0 rgb3_amb_group www.austriamicrosystems.com/AS3677 00 R/W 00 None - no ambient light sensor control 01 Group 1 10 Group 2 11 Group 3 RGB2 is mapped to ambient light sensor group R/W 00 None - no ambient light sensor control 01 Group 1 10 Group 2 11 Group 3 RGB3 is mapped to ambient light sensor group 00 R/W 00 None - no ambient light sensor control 01 Group 1 10 Group 2 11 Group 3 1v3-1 36 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 50. ALS rgb group Register (Continued) ALS rgb group Addr: 95h Bit controls the group mapping for RGB1, RGB2, RGB3 and CURR6 Bit Name Default Access Description CURR6 is mapped to ambient light sensor group 00 R/W 01 Group 1 10 Group 2 11 Group 3 Group1 Table 51. ALS group 1 Y0 Register ALS group 1 Y0 am lc s on A te G nt st il Addr: 98h al id curr6_amb_group None - no ambient light sensor control lv 7:6 00 Bit Bit Name 7:0 group1_y0 Default Access 00h Description R/W Group 1 y0 value - divided by 256 Table 52. ALS group 1 Y3 Register Addr: 99h Bit Bit Name 7:0 group1_y3 ALS group 1 Y3 Default Access 00h Description R/W Group 1 y3 value - divided by 256 Table 53. ALS group 1 X1 Register Addr: 9Ah Bit Bit Name 7:0 group1_x1 ALS group 1 X1 Default Access 00h Description R/W Group 1 x1 value Table 54. ALS group 1 K1 Register Addr: 9Bh Bit Name 7:0 group1_k1 Default Access ca Bit ALS group 1 K1 00h R/W Description Group 1 k1 value - divided by 32 defines first slope ni Table 55. ALS group 1 X2 Register Addr: 9Ch Bit Default Access group1_x2 00h ch 7:0 Bit Name ALS group 1 X2 Description R/W Group 1 x2 value Table 56. ALS group 1 K2 Register Te Addr: 9Dh Bit Bit Name 7:0 group1_k2 ALS group 1 K2 Default Access www.austriamicrosystems.com/AS3677 00h R/W Description Group 1 k2 value- value divided by 32 defines second slope 1v3-1 37 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Group2 Table 57. ALS group 2 Y0 Register Addr: 9Eh Bit Name 7:0 group2_y0 Default Access 00h Description R/W Group 2 y0 value - divided by 256 Table 58. ALS group 2 Y3 Register Addr: 9Fh Bit Name 7:0 group2_y3 Default Access 00h Description R/W Group 2 y3 value - divided by 256 Table 59. ALS group 2 X1 Register Addr: A0h Bit Name 7:0 group2_x1 Default Access Description am lc s on A te G nt st il Bit ALS group 2 X1 lv Bit ALS group 2 Y3 al id Bit ALS group 2 Y0 00h R/W Group 2 x1 value Table 60. ALS group 2 K1 Register Addr: A1h Bit Bit Name 7:0 group2_k1 ALS group 2 K1 Default Access 00h R/W Description Group 2 k1 value - divided by 32 defines first slope Table 61. ALS group 2 X2 Register Addr: A2h Bit Bit Name 7:0 group2_x2 ALS group 2 X2 Default Access 00h Description R/W Group 2 x2 value Table 62. ALS group 2 K2 Register Addr: A3h Bit Name 7:0 group2_k2 Default Access 00h ca Bit ALS group 2 K2 Group3 R/W Description Group 2 k2 value- value divided by 32 defines second slope ni Table 63. ALS group 3 Y0 Register Addr: A4h Bit Name ch Bit ALS group 3 Y0 Default Access group3_y0 7:0 00h Description R/W Group 3 y0 value - divided by 256 Te Table 64. ALS group 3 Y3 Register Addr: A5h Bit Bit Name 7:0 group3_y3 ALS group 3 Y3 Default Access www.austriamicrosystems.com/AS3677 00h Description R/W Group 3 y3 value - divided by 256 1v3-1 38 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 65. ALS group 3 X1 Register Addr: A6h Bit Bit Name 7:0 group3_x1 ALS group 3 X1 Default Access 00h Description R/W Group 3 x1 value Addr: A7h Bit Bit Name 7:0 group3_k1 ALS group 3 K1 Default Access 00h R/W Description Group 3 k1 value - divided by 1 defines first slope Addr: A8h 7:0 group3_x2 Default Access 00h Description R/W Group 3 x2 value am lc s on A te G nt st il Bit Name ALS group 3 X2 lv Table 67. ALS group 3 X2 Register Bit al id Table 66. ALS group 3 K1 Register Table 68. ALS group 3 K2 Register Addr: A9h Bit Bit Name 7:0 group3_k2 ALS group 3 K2 Default Access 00h R/W Description Group 3 k2 value- value divided by 32 defines second slope The output of the group selection circuit (after the S/H circuit) can be observed with following registers: Table 69. ALS group output 1 Register Addr: AAh Bit Bit Name 7:0 amb_group1 ALS group output 1 Default Access 00h R Description Ambient Light Sensor Group 1 output register Table 70. ALS group output 2 Register Addr: ABh Bit Name 7:0 amb_group2 Default Access 00h ca Bit ALS group output 2 R Description Ambient Light Sensor Group 2 output register Table 71. ALS group output 3 Register Bit Bit Name ALS group output 3 Default Access amb_group3 00h ch 7:0 ni Addr: ACh R Description Ambient Light Sensor Group 3 output register Te The range selection interrupt threshold and interrupt enable is defined by following registers amb_range_int_high and amb_range_int_low: Table 72. ALS range high interrupt threshold Register Addr: ADh Bit Bit Name 7:0 amb_range_int_high ALS range high interrupt threshold Default Access www.austriamicrosystems.com/AS3677 00h R/W Description If the filter output amb_result >= amb_range_int_high then an amb_too_high interrupt is asserted If amb_range_int_high=0, the interrupt is disabled 1v3-1 39 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 73. ALS range low interrupt threshold Register Addr: AEh Bit Bit Name 7:0 amb_range_int_low ALS range low interrupt threshold Default Access 00h R/W Description If the filter output amb_result <= amb_range_int_low then an amb_too_low interrupt is asserted If amb_range_int_low=0, the interrupt is disabled Table 74. Interrupt Status Register Addr: AFh Bit Name Default Access Description lv Bit Interrupt Status al id The range selection generates an interrupt by pulling the pin INT low (if any of the register bit of Interrupt Status are set, INT is pulled low(. When the register Interrupt Status is readout, the interrupt is automatically cleared: Comparator for amb_result >= amb_range_int_high amb_too_high 0 R/sC 0 not triggered 1 triggered am lc s on A te G nt st il 0 1 Comparator for amb_result <= amb_range_int_low amb_too_low 1 0 1 R/sC 0 not triggered 1 triggered 1. Read - self clear. The register automatically clears it content after readout. This avoids any lost interrupts. 8.4.7 DLS(=DBC) - Dynamic Luminance Scaling Input The pins DLS1 and DLS2 can be used for dynamic backlight scaling input. Dynamic backlight scaling is used to reduce the power of the backlight especially when showing dark picture contents on the display. The control unit to operate DLS is the display processor sending a PWM signal to the AS3677 and in parallel changing the display content to compensate for a reduced brightness backlight. The AS3677 can use the DLS (Dynamic Luminance Scaling) (also called DBC = Dynamic Backlight Control) in two different operating modes: Te ch ni ca 1. Digital DLS Mode - selected by dls_analog=0: The input signal from pins DLS1 and DLS2 are controlling the current source directly. A logic ‘L’ switches off the selected current source and a logic ‘H’ enables the current source with the configured current. This operating mode is compatible to the AS3676 processing of DLS. 2. Analog DLS Mode - selected by dls_analog=1: In this operating mode, the input signals form DLS1 and DLS2 are digitally filtered (two parallel filters are possible!) and smoothly controls the current through the selected www.austriamicrosystems.com/AS3677 1v3-1 40 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n current source(s). Therefore the output signal does not show any PWM signal and therefore reduces the noise in noise sensitive systems - especially if the connection to the LED used long wires. Note: For any current source, do not use DLS and the internal PWM generator (see PWM Generator on page 27) at the same time. Table 75. DLS Input Parameters DLS input frequency range fDLS_FILTER DLS internal filter 3dB cutoff frequency VIHDLS High Level Input Voltage VILDLS Low Level Input Voltage ILEAK Input Leakage Current 1. For duty cycles >5% pins DLS1 and DLS2 if used for DLS (any bit set: curr1_on_dls, curr2_on_dls or curr6_on_dls); pin DLS1 if used for RGB1, RGB2 and RGB3 (only ‘digital’ DLS) Min dls_analog=0 25 dls_analog=1 300 Typ Max Unit 1000 kHz 1 25000 dls_analog=1, low pass filter 4th order 1.38 pins DLS1 and DLS2 to VBAT or VSS 1 2 Hz kHz VBAT am lc s on A te G nt st il fDLS Condition al id Parameter lv Symbol -5 V 0.52 V 5 µA Note: If using dls_analog=1, the minimum PWM ratio is limited by the LED performance. If the analog current is reduced too much, it might result in unevenness of the display backlight (as the LEDs are usually not specified at very low current operation). RGB1, RGB2 and RGB3 can only use ‘digital’ DLS - the register dls_analog does have no influence. The analog processing of the DLS signal works as follows (dls_analog=1): ca 1. The input signal from pins DLS1 and DLS2 are feed into the digital filter. A logic ‘L’ is converted into ‘0.000’ and a logic ‘H’ is converted into ‘1.000’. 2. The digital filter processes this signal. The filter itself is implemented as a 4th order low pass filter with fixed coefficients. Its 3dB cut-off frequency is set to fDLS_FILTER. 3. The output signal (fixed comma binary 8 bit signal) is multiplied by the individual current setting. 4. From this 8 x 8 multiplication (16bit result), the 8 MSBs are used. This value is converted with a current DAC into a current, which controls the LED. 8.4.8 Unused DLS Input Pins ni The pins DLS1 and DLS2 should be connected to VSS if not used. 8.4.9 DLS Internal Processing Te ch The internal processing is shown in Figure 25: www.austriamicrosystems.com/AS3677 1v3-1 41 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Figure 25. DLS (Dynamic Luminance Scaling) internal circuit shown for a single current sink 12 &% /0% !"#% %&'()**+ al id ,-&! %0) . %/00) am lc s on A te G nt st il lv ) 12 % 0) 3 4")&# )0 %0) 3 ) 12 5)12 % 0) ni ca AS3677 )12 &% ch Table 76. DLS mode control1 Register DLS mode control1 Te Addr: 56h Bit Bit Name 4 rgb1_on_dls Setup which current sinks are connected to the DLS; if set to '1' the correspond current source (sink) is combined with the DLS input Default Access Description 0 0 R/W 1 1 www.austriamicrosystems.com/AS3677 1v3-1 RGB1 current sink is not combined with DLS RGB1 current sink is combined with DLS (only ‘digital’ DLS with input pin DLS1) 42 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 76. DLS mode control1 Register (Continued) DLS mode control1 Addr: 56h Setup which current sinks are connected to the DLS; if set to '1' the correspond current source (sink) is combined with the DLS input 5 rgb2_on_dls1 Default Access Description 0 0 rgb3_on_dls 6 0 dls_analog R/W 0 RGB2 current sink is not combined with DLS 1 RGB2 current sink is combined with DLS (only ‘digital’ DLS with input pin DLS1) 0 RGB3 current sink is not combined with DLS 1 1 RGB3 current sink is combined with DLS (only ‘digital’ DLS with input pin DLS1) 0 ‘digital’ DLS for all current sinks 1 ‘analog’ DLS for CURR1, CURR2 and CURR6 if enabled 1 R/W am lc s on A te G nt st il 7 R/W al id Bit Name lv Bit 1. When this bit is set, do not use the internal PWM generator for this current source at the same time. Table 77. DLS mode control2 Register DLS mode control2 Addr: 57h Bit Bit Name 0 curr1_on_dls Setup which current sinks are connected to the DLS; if set to '1' the correspond current source (sink) is combined with the DLS input Default Access curr2_on_dls 1 Description 0 0 0 R/W R/W curr2_dls2 0 R/W 6 curr6_dls2 0 R/W 7 curr6_on_dls ca 5 R/W CURR1 current sink is not combined with DLS 1 CURR1 current sink is combined with DLS 0 CURR2 current sink is not combined with DLS 1 1 CURR2 current sink is combined with DLS 0 CURR2 uses DLS1 as input 1 CURR2 uses DLS2 as input 0 CURR6 uses DLS1 as input 1 CURR6 uses DLS2 as input 0 CURR6 current sink is not combined with DLS 1 1 CURR6 current sink is combined with DLS ni 0 1 Te ch 1. When this bit is set, do not use the internal PWM generator for this current source at the same time. www.austriamicrosystems.com/AS3677 1v3-1 43 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n 8.5 General Purpose Input / Output The pin DLS1, DLS2 are digital input, INT is an open drain output and ALS/GPIO1, GPIO2 and GPIO3 are a highlyconfigurable general purpose input/output pins which can be used for the following functionality: al id DLS1 and DLS2 primary function is a DLS input - see DLS(=DBC) - Dynamic Luminance Scaling Input on page 40 ALS/GPIO1 primary function is ALS input - see ALS - Ambient Light Sensing on page 32 Digital Schmitt Trigger Input Digital Output with 4mA Driving Capability at 2.8V Supply (VANA) Tristate Output Analog Input to the ADC Default Mode for ALS/GPIO1 is ADC input (as required for the ALS function), GPIO2 and GPIO3 is Input with PullDown lv Table 78. GPIO Pin Function Summary GPIO3 Pin Configuration Additional Function ALS/GPIO1 Digital Input, Totem-Pole Output (Push/Pull), Open Drain (PMOS or NMOS), High-Z, PullDown or Pull-Up Resistor ADC Input, ALS - light sensor input (see page 32) DLS1, DLS2 Digital Input ADC Input, PWM Input, DLS input (see page 40) Open Drain Output ADC Input Te ch ni ca INT ADC Input am lc s on A te G nt st il GPIO2, GPIO3 www.austriamicrosystems.com/AS3677 1v3-1 44 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Figure 26. GPIOs and VANA Blockdiagram !"$ &' !"('$) &' !" ##$% !"$ &' !"('$) &' !" ##$% lv !" ## !"! !"#+"+)) al id AS3677 !" ##$ am lc s on A te G nt st il !" ##$% !,"$ &' !,"('$) &' !," ##$% !," ## !,"! !,"#+"+)) , !,"$ &' !,"('$) &' !," ##$% !," ##$ !," ##$% !"$ &' !"('$) &' !" ##$% !" ## !"! !"#+"+)) !"$ &' !"('$) &' !" ##$% !" ##$ !" ##$% ni ca 8.5.1 Unused GPIO and digital Input Pins ch If the pins ALS/GPIO1, GPIO2 or GPIO3 are not used, they can be left open (an internal pulldown, which is enabled by default, will pull them to GND, ALS/GPIO1 is configured as ADC input). The pins DLS1 and DLS2 should be connected to VSS, INT can be left open. Te 8.5.2 GPIO and Digital Inputs Characteristics Table 79. GPIO and digital inputs DC Characteristics Symbol Parameter Condition Min Rpull Pull up/Pull down Resistance enabled by gpio1_pulls, gpio2_pulls and gpio3_pulls VGPIO Supply Voltage =VANA www.austriamicrosystems.com/AS3677 1v3-1 Typ Max Unit 30 75 kΩ 1.8 3.35 V 45 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 79. GPIO and digital inputs DC Characteristics Symbol Parameter VIHGPIO High Level Input Voltage VILGPIO Low Level Input Voltage VHYS Hysteresis ILEAK Input Leakage Current VOHGPIO High Level Output Voltage Low Level Output voltage CLOAD Unit VANA V 0.52 V 0.1 to VANA or VSS -5 V 5 0.8·VANA 0.2· VANA 0.2 Pin INT at 4mA VANA = 2.8V, gpio1_low_curr or gpio2_low_curr or gpio3_low_curr= 1 4 VANA = 2.8V, gpio1_low_curr or gpio2_low_curr or gpio3_low_curr= 0 10 µA V at Iout Driving Capability IOUT 1.38 Max al id VOLINT pins ALS/GPIO1, GPIO2 and GPIO3 Typ V lv Low Level Output Voltage Min am lc s on A te G nt st il VOLGPIO Condition V mA 1 Capacitive Load 50 pF 1. Limited by LDO driving capability - see LDO on page 9 8.5.3 GPIO Registers Table 80. GPIO output 2 Register Addr: 50h Bit Name 0 gpio1_out 1 gpio2_out 2 gpio3_out This register controls GPIO3 outputs. Default Access Description R/W Writes a logic signal to pin ALS/GPIO1; this is independent of any other bit setting e.g., gpio1_mode Table 82. 0 R/W Writes a logic signal to pin GPIO2; this is independent of any other bit setting e.g., gpio2_mode Table 82 0 R/W Writes a logic signal to pin GPIO3; this is independent of any other bit setting e.g., gpio3_mode Table 83 0 ni ca Bit GPIO output 2 ch Table 81. GPIO signal 2 Register GPIO signal 2 Addr: 51h Bit Bit Name This register controls GPIO3 outputs. Default Access Description gpio1_in N/A R Reads a logic signal from pin ALS/GPIO1; this is independent of any other setting e.g.,Table 82 except gpio1_pulls=11 1 gpio2_ in N/A R Reads a logic signal from pin GPIO2; this is independent of any other setting e.g.,Table 82 except gpio2_pulls=11 2 gpio3_ in N/A R Reads a logic signal from pin GPIO3; this is independent of any other setting e.g.,Table 83 except gpio3_pulls=11 Te 0 www.austriamicrosystems.com/AS3677 1v3-1 46 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 82. GPIO control Register GPIO control Addr: 1Eh Bit Bit Name This register controls GPIO3 and GPIO31 pin functions. Default Access Description Defines the direction for pin ALS/GPIO1 R/W 01 Output (push and pull) 10 Output (open drain, only push; only NMOS is active) 11 Output (open drain, only pull; only PMOS is active) al id 00 Input only lv gpio1_mode 1:0 00 Adds the following pullup/pulldown to pin ALS/GPIO1; this is independent of setting of bits gpio1_mode None am lc s on A te G nt st il 00 gpio1_pulls 3:2 11 R/W 01 Pulldown 10 Pullup 11 ADC input (gpio1_mode = XX); recommended for analog signals Defines the direction for pin GPIO2 gpio2_mode 5:4 00 R/W 00 Input only 01 Output (push and pull) 10 Output (open drain, only push; only NMOS is active) 11 Output (open drain, only pull; only PMOS is active) Adds the following pullup/pulldown to pin GPIO2; this is independent of setting of bits gpio2_mode gpio2_pulls 01 R/W ca 7:6 00 None 01 Pulldown 10 Pullup 11 ADC input (gpio2_mode = XX); recommended for analog signals ni Table 83. GPIO control 3 Register GPIO control 3 ch Addr: 1Fh Te Bit 1:0 Bit Name This register enables low current mode for GPIO3s. Default Access gpio3_mode www.austriamicrosystems.com/AS3677 Description Defines the direction for pin GPIO3 00 R/W 00 Input only 01 Output (push and pull) 10 Output (open drain, only push; only NMOS is active) 11 Output (open drain, only pull; only PMOS is active) 1v3-1 47 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 83. GPIO control 3 Register (Continued) GPIO control 3 Addr: 1Fh Bit Bit Name This register enables low current mode for GPIO3s. Default Access Description Adds the following pullup/pulldown to pin GPIO3; this is independent of setting of bits gpio3_mode R/W 01 Pulldown 10 Pullup 11 ADC input (gpio3_mode = XX); recommended for analog signals Table 84. GPIO driving cap Register Bit GPIO driving cap am lc s on A te G nt st il Addr: 20h al id 01 None lv gpio3_pulls 3:2 00 Bit Name This register enables low current mode for GPIO3s. Default Access Description Defines the driving capability of pin ALS/GPIO1 gpio1_low_curr 0 0 R/W 0 Iout 1 Iout /4 Defines the driving capability of pin GPIO2 gpio2_low_curr 1 0 R/W 0 Iout 1 Iout /4 Defines the driving capability of pin GPIO3 gpio3_low_curr 0 R/W 0 Iout 1 Iout /4 Te ch ni ca 2 www.austriamicrosystems.com/AS3677 1v3-1 48 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n 8.6 LED Test Figure 27. LED Function Testing # # # &' " " " al id &'4 "4 ! %3 ' $ % ! + (2" (2+ , - 0 * / . "1 am lc s on A te G nt st il (2! lv "45 )& ((" ((! ((* AS3677 ca The AS3677 supports the verification of the functionality of all the connected LEDs (open and shorted LEDs and short to VSS can be detected). This feature is especially useful in production test to verify the correct assembly of the LEDs, all its connectors and cables. It can also be used in the field to verify if any of the LEDs is damaged. A damaged LED can then be disabled (to avoid unnecessary currents). The current sources, dcdc converter, charge pump and the internal ADC are used to verify correct operation of each LED string. Function Testing for single LEDs connected to the Charge Pump ni 8.6.1 ch For any current source connected to the charge pump (CURR30-33) where only one LED is connected between the charge pump and the current sink (see Figure 27) use: Table 85. Function Testing for LEDs connected to the Charge Pump Action Example Code 1 Switch on the charge pump and set it into manual 1:2 mode (to avoid automatic mode switching during measurements) Reg 23h ≤ 14h (cp_mode = 1:2, manual) Reg 00h ≤ 04h (cp_on = 1) 2 Switch on the current sink for the LED to be tested e.g. for register CURR31set to 9mA use Reg 0Dh ≤ 5Ah (rgb1_current = 9mA) Reg 02h ≤ 01h (rgb1_mode = on) 3 Measure with the ADC the voltage on CPOUT Reg 26h ≤ 95h (adc_select=CPOUT,start ADC) Fetch the ADC result from Reg 27h and 28h Te Step www.austriamicrosystems.com/AS3677 1v3-1 49 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 85. Function Testing for LEDs connected to the Charge Pump Action Example Code 4 Measure with the ADC the voltage on the switched on current sink Reg 26h ≤ 85h (adc_select=RGB1,start ADC) Fetch the ADC result from Reg 27h and 28h 5 Switch off the current sink for the LED to be tested Reg 02h ≤ 00h (rgb1_mode = off) 6 Compare the difference between the ADC measurements (which is the actual voltage across the tested LED) against the specification limits of the tested LED Calculation performed in baseband uProcessor 7 Do the same procedure for the next LED starting from point 2 Jump to 2. If not all the LEDs have been tested 8 Switch off the charge pump set charge pump automatic mode Reg 00h ≤ 00h (cp_on = 0) Reg 23h ≤ 00h Function Testing example for LEDs connected to the DCDC am lc s on A te G nt st il Use following procedure as an example: lv 8.6.2 al id Step Table 86. Function Testing procedure for LEDs connected to the DCDC Action Example Code 1 Switch on one current sink (only one!) for the LED string to be tested (CURR1,2 or 6) - this example uses CURR1 e.g. Test LEDs on CURR1: Reg 01h ≤ 01h (curr1_mode=on) Reg 09h ≤ 3ch (curr1_current = 9mA) 2 Select the feedback path for the LED string to be tested (e.g. step_up_fb = 01 for LED string on CURR1) and disable automatic feedback Reg 21h ≤ 02h (step_up_fb=CURR1) Reg 22h <- 04h (step_up_fb_auto=off) 3 Set step_up_vmax to fit the external components used (e.g. max 16V) Reg 21h <- 00h (for 16V maximum output voltage) 4 Switch on the DCDC converter Reg 00h ≤ 08h 5 Wait 2ms (dcdc startup time and some margin) 6 Measure the voltage on CURR1 Reg 26h ≤ 98h (adc_select=CURR1, start ADC; Fetch the ADC result from Reg 27h and 28h) 7 If the voltage on CURR1 is below 1.0V but above 0.1V, this LED string is working fine (typical value will be at 0.5V) For a proper working LED result must be below <199h (1.0V) and above >29h (0.1V) 8 Switch off current sink CURR1 Reg 01h ≤ 00h (curr1_mode=off) 9 ca Step Repeat whole procedure for each used LED string (replace CURR1 with CURR2 or CURR6) 8.7 ni Note: With the above described procedures electrically open and shorted LEDs can be automatically detected Analog-to-Digital Converter Te ch The AS3677 has a built-in 10-bit successive approximation analog-to-digital converter (ADC). It is internally supplied which is also the full-scale input range (0V defines the ADC zero-code). For input signals exceeding 2.5V a resistor divider with a gain of 0.5 (Ratioprescaler) is used to scale the input of the ADC converter. Consequently the resolution is: Table 87. ADC Input Ranges, Compliances and Resolution Channels (Pins) Input Range VLSB Note ALS/GPIO1, GPIO2, GPIO3 and VANA, DLS1, DLS2 0V-2.5V 2.44mV VLSB=2.5/1024 ADCTEMP_CODE -30°C to 125°C 1 / ADCTC junction temperature www.austriamicrosystems.com/AS3677 1v3-1 50 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 87. ADC Input Ranges, Compliances and Resolution Channels (Pins) Input Range VLSB Note VBAT, CPOUT, RGB1, RGB2, RGB3 0V-5V 4.88mV VLSB=(2.5/1024)/0.4; internal resistor divider used CURR1, CURR2, CURR6 0V-1.0V 2.44mV VLSB=2.5/1024 Symbol Parameter Condition Min Resolution Typ 10 Max Unit Bit see Table 87 VIN Input Voltage Range VSS DNL Differential NonLinearity INL Integral Non-Linearity Vos Input Offset Voltage Rin Input Impedance Cin Input Capacitance VSUPPLY Power Supply Range ± 2%, internally trimmed. 2.5 V Idd Power Supply Current During conversion only. 286 µA TTOL Temperature Sensor Accuracy @ 25 °C ADCTOFFSET ADC temperature measurement offset value ADCTC Code temperature coefficient RatioPRESCALE Ratio of Prescaler ± 0.25 LSB ± 0.5 LSB ± 0.25 LSB am lc s on A te G nt st il R V lv VSUPPLY = 2.5V al id Table 88. ADC Parameters 100 9 -10 +10 MΩ pF °C 375 °C Temperature change per ADC LSB 1.293 9 °C/ Code For all low voltage current sinks, CPOUT and VBAT 0.4 Transient Parameters (2.5V, 25 ºC) Tc Conversion Time Clock Frequency ts Settling Time of S&H ca fc All signals are internally generated and triggered by start_conversion 27 µs 1.0 MHz 16 µs ni The junction temperature (TJUNCTION) can be calculated with the following formula (ADCTEMP_CODE is the adc conversion result for channel 17h selected by register adc_select = 010111): TJUNCTION [°C] = ADCTOFFSET - ADCTC · ADCTEMP_CODE (EQ 1) ch ADC Registers Table 89. ADC_MSB result Register Te Addr: 27h Bit Bit Name 6:0 adc_result_msb ADC_MSB result Together with Register 27h, this register contains the results (MSB) of an ADC cycle. Default Access www.austriamicrosystems.com/AS3677 N/A Description R ADC results register. 1v3-1 51 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Table 89. ADC_MSB result Register (Continued) ADC_MSB result Addr: 27h Bit Together with Register 27h, this register contains the results (MSB) of an ADC cycle. Bit Name Default Access Description Indicates end of ADC conversion cycle N/A R 0 Result is ready 1 Conversion is running Table 90. ADC_LSB result Register lv ADC_LSB result Addr: 28h al id result_not_ready 7 Together with Register 28h, this register contains the results (LSB) of an ADC cycle Bit Name 2:0 adc_result_lsb Default Access Description am lc s on A te G nt st il Bit N/A R ADC result register Table 91. ADC_control Register Addr: 26h Bit ADC_control This register input source selection and initialization of ADC Bit Name Default Access Description Selects input source as ADC input 1 5:0 02h R/W Te ch ni ca adc_select 7 start_conversion N/A W 000000 (00h) GPIO2 000001 (01h) VANA 000010 (02h) ALS/GPIO1 000100 (04h) GPIO3 000101 (05h) RGB1 000110 (06h) RGB2 000111 (07h) RGB3 001000 (08h) CURR1 001001 (09h) CURR2 010001 (11h) DLS1 010010(12h) DLS2 010011 (13h) CURR6 010100 (14h) VBAT 010101 (15h) CPOUT 010111 (17h) ADCTEMP_CODE (junction temperature) other codes reserved Writing a 1 into this bit starts one ADC conversion cycle. 1. See Table Table 87 for ADC ranges and resolution. www.austriamicrosystems.com/AS3677 1v3-1 52 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Figure 28. ADC Circuit '()*+, )*+, )*+,. ' ' / #$ /0 ! ! 8.8 "" " am lc s on A te G nt st il %& *,/& )% )% )%- al id lv / AS3677 Power-On Reset The internal reset is controlled by two sources: VBAT Supply Serial interface state (CLK, DATA) The internal reset is forced if VBAT is low or if both interface pins (CLK, DATA) are low for more than tPOR_DEB (typ. 5 100ms) . Then device enters shutdown mode. For details see section Operating Modes on page 58. Te ch ni ca The reset levels control the state of all registers. As long as VBAT and CLK/DATA are below their reset thresholds, the register contents are set to default. Access by serial interface is possible once the reset thresholds are exceeded. 5. Only if shutdwn_enab=1 www.austriamicrosystems.com/AS3677 1v3-1 53 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Figure 29. Zero Power Device Wakeup block diagram AS3677 %! '), - '($))'* - ''($)! & ., ., ., am lc s on A te G nt st il )*$ + +'+' lv al id ! "#$% - - Table 92. Power On Reset Parameters Symbol Parameter Condition VPOR_VBAT Overall Power-On Reset Monitor voltage on VBAT; power-on reset for all internal functions. 2.0 V VPOR_PERI Reset Level for pins CLK, DATA Monitor voltage on pins CLK, DATA 1.0 V tPOR_DEB Reset debounce time for pins CLK, DATA 100 ms tstart Interface Startup Time 6 ms 8.8.1 Min Typ Max Unit Reset control register ca Table 93. Overtemp control Register Addr: 29h ni Bit Name shutdwn_enab Description Enable Shutdown mode and serial interface reset. 1 R/W 0 Serial Interface reset disabled. Device does not enter Shutdown mode 1 Serial Interface reset enabled, device enters shutdown when SCL and SDA remain low for min. 100ms Te 4 This register reads and resets the overtemperature flag. Default Access ch Bit Overtemp control 8.9 Temperature Supervision An integrated temperature sensor provides over-temperature protection for the AS3677. This sensor generates a flag if the device temperature reaches the overtemperature threshold of 140º. The threshold has a hysteresis to prevent oscillation effects. If the device temperature exceeds the T140 threshold all current sources, the charge pump and the dcdc converter is disabled and the ov_temp flag is set. After decreasing the temperature by THYST operation is resumed. www.austriamicrosystems.com/AS3677 1v3-1 54 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n The ov_temp flag can only be reset by first writing a 1 and then a 0 to the register bit rst_ov_temp. Bit ov_temp_on = 1 activates temperature supervision Table 95. It is recommend to leave this bit set (default state). Table 94. Overtemperature Detection Parameter T140 ov_temp Rising Threshold Condition Min 140 ºC THYST ov_temp Hysteresis 5 ºC Table 95. Overtemp control Register Overtemp control Addr: 29h Max Unit This register reads and resets the overtemperature flag. Bit Name Description Default Access lv Bit Typ al id Symbol Activates/deactivates device temperature supervision. Default: Off - all other bits are only valid if this bit is set to 1 0 Temperature supervision is disabled. No reset will be generated if the device temperature exceeds 140ºC 1 Temperature supervision is enabled 1 Indicates that the overtemperature threshold has been reached; this flag is not cleared by an overtemperature reset. It has to be cleared using rst_ov_temp am lc s on A te G nt st il ov_temp_on 0 1 W 1 ov_temp N/A R 2 rst_ov_temp 0 R/W 8.10 Serial Interface The ov_temp flag is cleared by first setting this bit to 1, and then setting this bit to 0. The AS3677 is controlled using serial interface pins CLK and DATA: Figure 30. Serial interface block diagram ca Te ch ni AS3677 www.austriamicrosystems.com/AS3677 1v3-1 55 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n The clock line CLK is never held low by the AS3677 (as the AS3677 does not use clock stretching of the bus). Table 96. Serial Interface Voltages and Timings Parameter VIHI/F High Level Input Voltage VILI/F Low Level Input Voltage Condition Min Max Unit 1.38 VBAT V 0.0 0.52 V Pins DATA and CLK VHYSTI/F Hysteresis tRISE Rise Time 0 tFALL Fall Time 0 VOL Low Level Output voltage tCLK_FILTER Spike Filter on CLK tDATA_FILTER Spike Filter on DATA Typ 0.1 V 1000 ns 300 ns 0.2 V lv Pin DATA at 4mA al id Symbol ns 300 ns am lc s on A te G nt st il 100 The AS3677 is compatible to the NXP two wire specification http://www.nxp.com/acrobat_download/literature/9398/ 39340011.pdf, Version 2.1, January 2000 for standard and fast mode (no high speed mode). 8.10.1 Serial Interface Features Fast Mode Capability (Maximum Clock Frequency is 400 kHz) 7-bit Addressing Mode Write Formats - Single-Byte Write - Page-Write Read Formats - Current-Address Read - Random-Read - Sequential-Read DATA Input Delay and CLK spike filtering by integrated RC components 8.10.2 Device Address Selection The serial interface address of the AS3677 has the following address: ca If ADR is connected to VSS: 80h – Write Commands, 81h – Read Commands If ADR is connected to VBAT: 82h – Write Commands, 83h – Read Commands ch DATA ni Figure 31. Complete Serial Data Transfer Te CLK S Start Condition 1-7 Address 8 9 R/W ACK 1-7 8 Data 9 ACK 1-7 Data 8 9 ACK P Stop Condition Serial Data Transfer Formats www.austriamicrosystems.com/AS3677 1v3-1 56 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Definitions used in the serial data transfer format diagrams are listed in the following table: Table 97. Serial Data Transfer Byte Definitions Definition R/W (AS3677 Slave) Note S Start Condition after Stop R 1 bit Sr Repeated Start R 1 bit DW Device Address for Write R 10000000b (80h) ADR=VSS 10000010b (82h) ADR=VBAT DR Device Address for Read R 10000001b (81h) ADR=VSS 10000011b (83h) ADR=VBAT WA Word Address R 8 bits A Acknowledge W 1 bit N Not Acknowledge R reg_data Register Data/Write R data (n) Register Data/read R Stop Condition R 8 bits Increment Word Address Internally R During Acknowledge WA++ lv 1 bit 8 bits 1 bit am lc s on A te G nt st il P al id Symbol Figure 32. Serial Interface Byte Write S DW A WA A reg_data A P Write Register WA++ AS3675 (= Slave) receives data AS3675 (= Slave) transmits data Figure 33. Serial Interface Page Write S DW A WA A reg_data 1 A reg_data 2 Write Register WA++ A … Write Register WA++ reg_datan A P Write Register WA++ ca AS3675 (= Slave) receives data AS3675 (= Slave) transmits data Byte Write and Page Write formats are used to write data to the slave. ni The transmission begins with the START condition, which is generated by the master when the bus is in IDLE state (the bus is free). The device-write address is followed by the word address. After the word address any number of data bytes can be sent to the slave. The word address is incremented internally, in order to write subsequent data bytes on subsequent address locations. Te ch For reading data from the slave device, the master has to change the transfer direction. This can be done either with a repeated START condition followed by the device-read address, or simply with a new transmission START followed by the device-read address, when the bus is in IDLE state. The device-read address is always followed by the 1st register byte transmitted from the slave. In Read Mode any number of subsequent register bytes can be read from the slave. The word address is incremented internally. The following diagrams show the serial read formats supported by the AS3677. www.austriamicrosystems.com/AS3677 1v3-1 57 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n Figure 34. Serial Interface Random Read S DW A WA A Sr DR A data N P Read Register WA++ AS3675 (= slave) receives data AS3675 (= slave) transmits data al id Random Read and Sequential Read are combined formats. The repeated START condition is used to change the direction after the data transfer from the master. The word address transfer is initiated with a START condition issued by the master while the bus is idle. The START condition is followed by the device-write address and the word address. lv In order to change the data direction a repeated START condition is issued on the 1st CLKpulse after the ACKNOWLEDGE bit of the word address transfer. After the reception of the device-read address, the slave becomes the transmitter. In this state the slave transmits register data located by the previous received word address vector. The master responds to the data byte with a NOT ACKNOWLEDGE, and issues a STOP condition on the bus. S DW A am lc s on A te G nt st il Figure 35. Serial Interface Sequential Read WA A Sr DR A data 1 A data 2 ... data n A N P Read Register WA++ AS3675 (= slave) receives data AS3675 (= slave) transmits data Sequential Read is the extended form of Random Read, as multiple register-data bytes are subsequently transferred. In contrast to the Random Read, in a sequential read the transferred register-data bytes are responded by an acknowledge from the master. The number of data bytes transferred in one sequence is unlimited (consider the behavior of the word-address counter). To terminate the transmission the master has to send a NOT ACKNOWLEDGE following the last data byte and subsequently generate the STOP condition. Figure 36. Serial Interface Current Address Read S DR A data 1 Read Register WA++ A data 2 Read Register WA++ … A data n N P Read Register WA++ ca AS3675 (= slave) receives data AS3675 (= slave) transmits data ni To keep the access time as small as possible, this format allows a read access without the word address transfer in advance to the data transfer. The bus is idle and the master issues a START condition followed by the Device-Read address. ch Analogous to Random Read, a single byte transfer is terminated with a NOT ACKNOWLEDGE after the 1st register byte. Analogous to Sequential Read an unlimited number of data bytes can be transferred, where the data bytes must be responded to with an ACKNOWLEDGE from the master. Te For termination of the transmission the master sends a NOT ACKNOWLEDGE following the last data byte and a subsequent STOP condition. 8.11 Operating Modes If the voltages on CLK and DATA is less than VPOR_PERI for > tPOR_DEB (see Table 92 on page 54), the AS3677 is in shutdown mode and its current consumption is minimized (IBAT = ISHUTDOWN) and all internal registers are reset to their default values. If the voltage at CLK or DATA rises above VPOR_PERI, the AS3677 serial interface is enabled and the AS3677 and the standby mode is selected. The AS3677 is switched automatically from standby mode (IBAT = ISTANBY) into active mode (IBAT = IACTIVE) and back, if one of the following blocks are activated: www.austriamicrosystems.com/AS3677 1v3-1 58 - 67 AS3677 Datasheet - D e t a i l e d D e s c r i p t i o n al id Charge pump Step up regulator Any current sink ADC conversion started PWM active Pattern mode active. If any of these blocks are already switched on the internal oscillator is running and a write instruction to the registers is directly evaluated within 1 internal CLK cycle (typ. 1µs) If all these blocks are disabled, a write instruction to enable these blocks is delayed by 64 CLK cycles (oscillator will startup, within max 200µs). The mode switching is shown in Figure 37: lv Figure 37. Startup and Operating Mode Selection am lc s on A te G nt st il ! 23 !"# "$785, 23 + + $$%&'& "( ! !)*)+ !!!! !)*.99/0 1) 2 1 ! 13)* 1)4 156)4 12)4 Te ch ni ca "$,- !! !)*.,/0 1) 2 1 ! 13)* 1)4 156)4 12)4 www.austriamicrosystems.com/AS3677 1v3-1 59 - 67 AS3677 Datasheet - R e g i s t e r M a p 9 Register Map Table 98. Registermap Addr Default Reg control 00h 00 curr12 control 01h 00h curr rgb control 02h 00h LDO Voltage 07h 00h Curr1 current 09h 00h curr1_current Curr2 current 0Ah 00h curr2_current Rgb1 current 0Bh 00h rgb1_current Rgb2 current 0Ch 00h rgb2_current Rgb3 current 0Dh 00h rgb3_current Pwm control 16h 00h Pwm code 17h 00h Pattern control 18h 00h Pattern data0 19h 00h pattern_data_0 Pattern data1 1Ah 00h pattern_data_1 Pattern data2 1Bh 00h pattern_data_2 Pattern data3 1Ch 00h pattern_data_3 GPIO control 1Eh 4Ch GPIO control 3 1Fh 04h GPIO driving cap 20h 00h DCDC control1 21h 02h DCDC control2 22h 88h CP control 23h 40h cp_start cp_mode_switchin cp_auto _deboun _on g ce CP mode Switch1 24h 70h rgb3_on rgb2_on rgb1_on _cp _cp _cp b6 curr6_mode b5 b4 b2 step_up _on cp_on rgb3_mode b1 b0 ldo_on curr2_mode curr1_mode rgb2_mode rgb1_mode ldo_voltage am lc s on A te G nt st il pwm_dim_speed pwm_dim_mode pwm_code softdim_ pattern gpio2_pulls gpio2_mode pattern_delay pattern_ color gpio1_pulls gpio1_mode gpio3_pulls gpio3_mode gpio3_lo gpio2_lo gpio1_lo w_curr w_curr w_curr ca step_up_vmax step_up _fb_auto ch step_up _ov CP mode Switch2 25h 00h curr6_on _cp ADC_control 26h 02h start_co nversion ADC_MSB result 27h NA result_n ot_ready ADC_LSB result 28h NA Overtemp control 29h 11h shutdwn _enab Curr low voltage status1 2Ah NA curr6_lo rgb3_low rgb2_low rgb1_low w_v _v _v _v Te b3 al id b7 ni Name Content lv Register Definition step_up_fb step_up _lowcur step_up _frequ skip_fast cp_mode cp_clk curr2_on curr1_on _cp _cp adc_select adc_result_msb adc_result_lsb www.austriamicrosystems.com/AS3677 1v3-1 rst_ov_t ov_temp ov_temp emp _on 60 - 67 AS3677 Datasheet - R e g i s t e r M a p Table 98. Registermap Addr Default Register Definition Curr low voltage status2 2Bh NA Gpio current 2Ch 80h Curr6 current 2Fh 00h curr6_current Adder Current 1 30h 00h adder_current1 (can be enabled for CURR1) Adder Current 2 31h 00h adder_current2 (can be enabled for CURR2) Adder Current 3 32h 00h adder_current3 (can be enabled for CURR6) Adder Enable 1 33h 00h rgb3_ad rgb2_ad rgb1_ad der der der Adder Enable 2 34h 00h curr6_ad curr2_ad curr1_ad der der der ASIC ID1 3Eh A6h 1 0 1 0 ASIC ID2 3Fh 5Xh 0 1 0 1 GPIO output 2 50h 00h gpio3_o ut GPIO signal 2 51h 00h gpio3_ in gpio2_ in gpio1_in Pattern End 54h 00h pattern_ end DLS mode control1 56h 00h dls_anal rgb3_on rgb2_on rgb1_on og _dls _dls1 _dls DLS mode control2 57h 00h curr6_on curr6_dl _dls s2 ALS control 90h 00h ALS filter 91h 00h ALS offset 92h 00h amb_offset ALS result 93h 00h amb_result ALS curr12 group 94h 00h b5 b4 b1 b0 curr2_lo w_v curr1_lo w_v pattern_ delay2 0 1 ca gpio1_o ut amb_on amb_filter_up rgb3_amb_group curr2_amb_group curr1_amb_group rgb2_amb_group rgb1_amb_group 00h ALS group 1 Y0 98h 00h group1_y0 ch 95h ALS group 1 Y3 99h 00h group1_y3 ALS group 1 X1 9Ah 00h group1_x1 ALS group 1 K1 9Bh 00h group1_k1 ALS group 1 X2 9Ch 00h group1_x2 ALS group 1 K2 9Dh 00h group1_k2 ALS group 2 Y0 9Eh 00h group2_y0 ALS group 2 Y3 9Fh 00h group2_y3 ALS group 2 X1 A0h 00h group2_x1 1v3-1 gpio2_o ut amb_gain amb_filter_down www.austriamicrosystems.com/AS3677 0 curr2_on curr1_on _dls _dls curr2_dl s2 amb_ke ep curr6_amb_group 1 revision ALS rgb group Te b2 am lc s on A te G nt st il pattern_ slow b3 al id b6 lv b7 ni Name Content 61 - 67 AS3677 Datasheet - R e g i s t e r M a p Table 98. Registermap Addr Default ALS group 2 K1 A1h 00h group2_k1 ALS group 2 X2 A2h 00h group2_x2 ALS group 2 K2 A3h 00h group2_k2 ALS group 3 Y0 A4h 00h group3_y0 ALS group 3 Y3 A5h 00h group3_y3 ALS group 3 X1 A6h 00h group3_x1 ALS group 3 K1 A7h 00h group3_k1 ALS group 3 X2 A8h 00h group3_x2 ALS group 3 K2 A9h 00h group3_k2 ALS group output 1 AAh 00h amb_group1 ALS group output 2 ABh 00h amb_group2 ALS group output 3 ACh 00h amb_group3 ALS range high interrupt threshold ADh 00h amb_range_int_high ALS range low interrupt threshold AEh 00h amb_range_int_low Interrupt Status b6 b5 b4 b3 b2 b1 b0 al id b7 am lc s on A te G nt st il Name Content lv Register Definition AFh amb_too amb_too _low _high 00h Note: If writing to register, write 0 to unused bits Write to read only bits will be ignored Te ch ni ca yellow color = read only www.austriamicrosystems.com/AS3677 1v3-1 62 - 67 AS3677 Datasheet - A p p l i c a t i o n I n f o r m a t i o n 10 Application Information 10.1 External Components Table 99. External Components List Value Typ Min C1 Max 2.2µF tol. (min.) ±20% Package 1 (min.) Rating (max) Notes 6.3V Ceramic, X5R (Vana1 output) (e.g. Taiyo Yuden JMK107BJ225MA-T or LMK107BJ225MA) only required if LDO is used 0603 1206 (0805) 3.2x1.6x0. 85mm al id Part Number 4.7µF ±20% 25V C3 100nF ±20% 6.3V Ceramic, X5R (LDO output capacitor) (e.g. Taiyo Yuden JMK063BJ104KP-F) 0402 470nF ±20% 6.3V Ceramic, X5R (Charge Pump flying capacitor) (e.g. Taiyo Yuden JMK105BJ474KV-F) 0402 1µF ±20% 6.3V Ceramic, X5R (Charge Pump output) (e.g. Taiyo Yuden JMK105BJ105KV-F) 0402 DATA Pullup resistor – usually already inside master 0201 CLK Pullup resistor – usually already inside master 0201 Recommended Type: Murata LQH3NPN100NJ0 or Panasonic ELLSFG100MA or TDK VLF3012A or Taiyo Yuden NRH3012T100MN (7µH min. at 600mA) 3x3x 1.2mm (H is max) Schottky diode SOT666 1.6x1.6x0. 6mm Light Sensor e.g. Rohm BH1620FVC or Toshiba TPS856 1.6x1.6x 0.55mm LED As required by application am lc s on A te G nt st il lv C2 Ceramic, X5R, X7R (Step Up DCDC output) (e.g. Taiyo Yuden TMK316BJ475KD) C4 C5 R1 1-10kΩ R2 L1 10µH PMEG4010BEA ca D1 ±20% X1 ni D2:D10 1. in 1/100 inch (unless otherwise specified) Layout Recommendations ch 10.2 Te 1. GND Planes: Connect the VSS pins (B4, B5) to the low noise GND-plane. VSS_DCDC (A4) should be connected to a separated GND-plane. Connect also the charge pump output capacitor (C5) and the DCDC-caps (C1, C2) to this separated GND-plane. Connect all other blocking caps to the low noise GND-plane. Keep the area of the separated GND plane as small as possible and connect it to the star point of the low noise GND plane. Do not connect VSS (B4, B5) directly to VSS_DCDC (A4). 2. Supplies: The pins VBAT (B3) and VBAT_CP (A3) can be connected directly together. Put a blocking Cap close to VBAT_CP. 3. DCDC: Put L1, D1, C1 and C2 close together and also close to the pins SW (A5) and VSS_DCDC (A4). 4. LDO: Put C3 close to pin VANA (C1) www.austriamicrosystems.com/AS3677 1v3-1 63 - 67 AS3677 Datasheet - P a c k a g e D r a w i n g s a n d M a r k i n g s 11 Package Drawings and Markings Figure 38. WL-CSP25 2.2x2.2x0.6mm 5x5 Balls Package Drawing " " ! AS3677 <Code> ! " " ! am lc s on A te G nt st il lv Line 1: Line 2: Line 3: ! Note: al id austriamicrosystems logo AS3677 <Code> Encoded datecode 4 characters Figure 39. WL-CSP25 2.2x2.2x0.6mm 5x5 Balls Detail Dimensions #$% &$' % * * + + %) % % % % %) % % ) ) *) * * * * *) * * ( , ,) , ca + + + +) + + , , , ,) , , + ch , +) ni % !" ) Te The coplanarity of the balls is 40µm. www.austriamicrosystems.com/AS3677 1v3-1 64 - 67 12mm 8mm NOMINAL HUB WIDTH 24.8 16.8 12.8 8.8 1 -.4 38.2 30.2 22.2 18.2 14.2 al id lv 16mm 32.8 DECIMAL (EXCEPT AS NOTED) TOLERANCES am lc s on A te G nt st il MATTE FINISH THESE AREAS 330.0 REF 24mm 50.2 W 2 MAX 32mm 44.8 62.2 102.0 REF W1 (MEASURED AT HUB) NO. DESCRIPTION - All Dimensions in Millimeters - U.S. PATENT 4726534 W2 (MEASURED AT HUB) ca U.S. PAT. 4726534 + .6 44mm 56.8 ni LOCK FEATURE 6 PLACES LOKREEL MINNEAPOLIS, USA W 56mm 9/11/96 NONE DATE ASSEMBLED 330mm LOKREEL, 4" HUB SCALE DATE DRAWN BY CHK'D APP'D T.S. TRACED MATERIAL N/A DRAWING NO. A0911-96-1 BY 65 - 67 1v3-1 www.austriamicrosystems.com/AS3677 SEE DETAIL "A" Ø20.2 MIN 0.5 Ø13.0+-0.2 ± FRACTIONAL ch Tape & Reel Information 11.1 2.0±0.5 DETAIL "A" ± ANGULAR ± Te AS3677 Datasheet - P a c k a g e D r a w i n g s a n d M a r k i n g s Figure 40. Tape & Reel Dimensions AS3677 Datasheet - O r d e r i n g I n f o r m a t i o n 12 Ordering Information The devices are available as the standard products shown in Table 100. Table 100. Ordering Information Description Delivery Form Package AS3677-ZWLT AS3677 Wafer Level Chip Scale Package, size 2.2x2.2x0.6mm, 5x5 balls, 0.4mm pitch, Green, Pb-Free Tape & Reel 25pin WL-CSP (2.2x2.2x0.6mm) RoHS compliant / Pb-Free Te ch ni ca am lc s on A te G nt st il AS3677Z Temperature Range: -30ºC - 85ºC WL Package: Wafer Level Chip Scale Package (WL-CSP) 2.2x2.2x0.6mm T Delivery Form: Tape & Reel lv Note: AS3677-ZWLT al id Model www.austriamicrosystems.com/AS3677 1v3-1 66 - 67 AS3677 Datasheet - O r d e r i n g I n f o r m a t i o n Copyrights Copyright © 1997-2011, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. al id All products and companies mentioned are trademarks or registered trademarks of their respective companies. Disclaimer am lc s on A te G nt st il lv Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or lifesustaining equipment are specifically not recommended without additional processing by austriamicrosystems AG for each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard production flow, such as test flow or test location. ca The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of austriamicrosystems AG rendering of technical or other services. ni Contact Information ch Headquarters austriamicrosystems AG Te Tobelbaderstrasse 30 Schloss Premstaetten A-8141 Austria Tel: +43 (0) 3136 500 0 Fax: +43 (0) 3136 525 01 For Sales Offices, Distributors and Representatives, please visit: http://www.austriamicrosystems.com/contact www.austriamicrosystems.com/AS3677 1v3-1 67 - 67