3mm Photodiode,T-1 PD204-6C/L3 Features •Fast response time •High photo sensitivity •Small junction capacitance •Pb free •This product itself will remain within RoHS compliant version. Description PD204-6C/L3 is a high speed and high sensitive PIN photodiode in a standard 3Φ plastic package. Due to its water clear epoxy the device is sensitive to visible and infrared radiation. Applications ․Automatic door sensor ․Camera ․Game machine ․High speed photo detector 1 Copyright Revision :3 © LifecyclePhase: 2010, Everlight All Rights Reserved. Release Date : MAY.27.2013. Issue Release No: DPD-0000152 Date:2013-05-29 17:49:08.0 www.everlight.com Expired Period: Forever DATASHEET 3mm Phototransistor ,T-1 PD204-6C/L3 Device Selection Guide Chip Lens Color Materials Silicon Water clear Absolute Maximum Ratings (Ta=25℃) Parameter Symbol Rating Unit Reverse Voltage VR 32 V Operating Temperature Topr -40 ~ +85 ℃ Tstg -40 ~ +100 ℃ Tsol 260 ℃ Pc 150 mW Storage Temperature Soldering Temperature Power Dissipation at (or below) 25℃Free Air Temperature Notes: *1:Soldering time≦5 seconds. 2 Copyright Revision :3 © LifecyclePhase: Date:2013-05-29 17:49:08.0 2010, Everlight All Rights Reserved. Release Date : MAY.27.2013. Issue Release No: DPD-0000152 www.everlight.com Expired Period: Forever DATASHEET 3mm Phototransistor ,T-1 PD204-6C/L3 Electro-Optical Characteristics (Ta=25℃) Parameter Symbol Min. Typ. Max. Unit Condition Range Of Spectral Bandwidth λ0.5 400 --- 1100 nm ----- Wavelength Of Peak Sensitivity λP --- 940 --- nm ----- Open-Circuit Voltage VOC --- 0.44 --- V Ee=5mW/cm λp=940nm Short- Circuit Current ISC --- 10 --- μA Ee=1mW/cm λp=940nm 2 2 2 Reverse Light Current IL --- 10 --- μA Ee=1mW/cm λp=940nm VR=5V Reverse Dark Current ID --- --- 10 nA Ee=0mW/cm VR=10V VBR 32 170 --- V Ee=0mW/cm IR=100μA 2 2 Reverse Breakdown Voltage 2 Total Capacitance Rise Time/ Fall Time View Angle 3 Copyright Revision :3 © LifecyclePhase: Ct --- 10 --- pF Ee=0mW/cm VR=5V f=1MHz tr/ / tf ----- 10 ----- ns VR=10V RL=100Ω 2θ1/2 ----- 45 ----- deg IF=20mA Date:2013-05-29 17:49:08.0 2010, Everlight All Rights Reserved. Release Date : MAY.27.2013. Issue Release No: DPD-0000152 www.everlight.com Expired Period: Forever DATASHEET 3mm Phototransistor ,T-1 PD204-6C/L3 Typical Electro-Optical Characteristics Curves Power Dissipation vs. Ambient Temperature Spectral Sensitivity 200 1.0 O Ta=25 C 150 0.8 0.6 100 0.4 50 0 0.2 0 -25 25 0 50 100 300 500 700 900 1100 1300 75 85 100 Reverse Dark Current vs. Ambient Temperature Reverse Light Current vs. Ee 20 1000 15 100 10 10 5 VR=5V VR=10V 1 20 40 60 80 100 0 0.5 1.0 1.5 3.0 2 4 Copyright Revision :3 © LifecyclePhase: Date:2013-05-29 17:49:08.0 2010, Everlight All Rights Reserved. Release Date : MAY.27.2013. Issue Release No: DPD-0000152 www.everlight.com Expired Period: Forever DATASHEET 3mm Phototransistor ,T-1 PD204-6C/L3 Terminal Capacitance vs. Reverse Voltage 1 40 t Response Time vs. Load Resistance f=1MHZ VR=5V 2 10 VR=10V O Ta=25 C 0 30 10 20 10 10 10 0 10 -1 -2 -3 0.1 1 10 100 Relative Reverse Light Current vs. Ambient Temperature 2 3 -20 0.8 20 40 60 80 5 10 -10 0 10 20 30 1.0 1.0 40 0.9 50 0.8 0.7 60 70 80 100 0.6 0.4 0.2 0 LifecyclePhase: 10 VR=5V λ=940nm 1.2 5 Copyright Revision :3 © 4 10 10 Sensitivity Diagram 1.4 0.6 0 1 10 0.2 0.4 0.6 Date:2013-05-29 17:49:08.0 2010, Everlight All Rights Reserved. Release Date : MAY.27.2013. Issue Release No: DPD-0000152 www.everlight.com Expired Period: Forever DATASHEET 3mm Phototransistor ,T-1 PD204-6C/L3 Package Dimension Note: Tolerances unless dimensions ±0.25mm 6 Copyright Revision :3 © LifecyclePhase: Date:2013-05-29 17:49:08.0 2010, Everlight All Rights Reserved. Release Date : MAY.27.2013. Issue Release No: DPD-0000152 www.everlight.com Expired Period: Forever DATASHEET 3mm Phototransistor ,T-1 PD204-6C/L3 Label Form Specification Pb EVERLIGHT CPN : P N : XXXXXXXXXXXXX RoHS XXXXXXXXXXXXX QTY : XXX CAT : XXX HUE : XXX REF : XXX ‧CPN: Customer’s Product Number ‧P/N: Product Number ‧QTY: Packing Quantity ‧CAT: Luminous Intensity Rank ‧HUE: Dom. Wavelength Rank ‧REF: Forward Voltage Rank ‧LOT No: Lot Number ‧X: Month ‧Reference: Identify Label Number LOT NO : XXXXXXXXXX Reference : XXXXXXXX Packing Specification ■ Anti-electrostatic bag ■ Inner Carton ■ Outside Carton ■ Packing Quantity 1. 1000 PCS/1 Bag, 4 Bags/1 Inner Carton 2. 10 Inner Cartons/1 Outside Carton 7 Copyright Revision :3 © LifecyclePhase: Date:2013-05-29 17:49:08.0 2010, Everlight All Rights Reserved. Release Date : MAY.27.2013. Issue Release No: DPD-0000152 www.everlight.com Expired Period: Forever DATASHEET 3mm Phototransistor ,T-1 PD204-6C/L3 Notes 1. Lead Forming During lead formation, the leads should be bent at a point at least 3mm from the base of the epoxy bulb. Lead forming should be done before soldering. Avoid stressing the LED package during leads forming. The stress to the base may damage the LED’s characteristics or it may break the LEDs. Cut the LED lead frames at room temperature. Cutting the lead frames at high temperatures may cause failure of the LEDs. When mounting the LEDs onto a PCB, the PCB holes must be aligned exactly with the lead position of the LED. If the LEDs are mounted with stress at the leads, it causes deterioration of the epoxy resin and this will degrade the LEDs. 2. Storage The LEDs should be stored at 30°C or less and 70%RH or less after being shipped from Everlight and the storage life limits are 3 months. If the LEDs are stored for 3 months or more, they can be stored for a year in a sealed container with a nitrogen atmosphere and moisture absorbent material. Please avoid rapid transitions in ambient temperature, especially, in high humidity environments where condensation can occur. 3. Soldering Careful attention should be paid during soldering. When soldering, leave more then 3mm from solder joint to epoxy bulb, and soldering beyond the base of the tie bar is recommended. Recommended soldering conditions: Hand Soldering 300℃ Max. (30W Max.) Temp. at tip of iron Soldering time 3 sec Max. Distance 3mm Min.(From solder joint to epoxy bulb) Recommended soldering profile Preheat temp. Bath temp. & time Distance DIP Soldering 100℃ Max. (60 sec Max.) 260 Max., 5 sec Max 3mm Min. (From solder joint to epoxy bulb) laminar wave Fluxing Prehead Avoiding applying any stress to the lead frame while the LEDs are at high temperature particularly when soldering. Dip and hand soldering should not be done more than one time After soldering the LEDs, the epoxy bulb should be protected from mechanical shock or vibration until the LEDs return to room temperature. 8 Copyright Revision :3 © LifecyclePhase: Date:2013-05-29 17:49:08.0 2010, Everlight All Rights Reserved. Release Date : MAY.27.2013. Issue Release No: DPD-0000152 www.everlight.com Expired Period: Forever DATASHEET 3mm Phototransistor ,T-1 PD204-6C/L3 A rapid-rate process is not recommended for cooling the LEDs down from the peak temperature. Although the recommended soldering conditions are specified in the above table, dip or hand soldering at the lowest possible temperature is desirable for the LEDs. Wave soldering parameter must be set and maintain according to recommended temperature and dwell time in the solder wave. 4. Cleaning When necessary, cleaning should occur only with isopropyl alcohol at room temperature for a duration of no more than one minute. Dry at room temperature before use. Do not clean the LEDs by the ultrasonic. When it is absolutely necessary, the influence of ultrasonic cleaning on the LEDs depends on factors such as ultrasonic power and the assembled condition. Ultrasonic cleaning shall be pre-qualified to ensure this will not cause damage to the LED 5. Heat Management Heat management of LEDs must be taken into consideration during the design stage of LED application. The current should be de-rated appropriately by referring to the de-rating curve found in each product specification. The temperature surrounding the LED in the application should be controlled. Please refer to the data sheet de-rating curve. 6. ESD (Electrostatic Discharge) Electrostatic discharge (ESD) or surge current (EOS) can damage LEDs. An ESD wrist strap, ESD shoe strap or antistatic gloves must be worn whenever handling LEDs. All devices, equipment and machinery must be properly grounded. Use ion blower to neutralize the static charge which might have built up on surface of the LEDs plastic lens as a result of friction between LEDs during storage and handing. 7. Other Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets. These specification sheets include materials protected under copyright of EVERLIGHT corporation. Please don’t reproduce or cause anyone to reproduce them without EVERLIGHT’s consent. 9 Copyright Revision :3 © LifecyclePhase: Date:2013-05-29 17:49:08.0 2010, Everlight All Rights Reserved. Release Date : MAY.27.2013. Issue Release No: DPD-0000152 www.everlight.com Expired Period: Forever