MAXIM MAX1544EVKIT|MAX1545EVKIT

MAXIM
19-2870; Rev 0; 04/03
MAX1544/MAX1545
MAX1544/MAX1545 Evaluation Kits
Pentium is a registered trademark of Intel Corp.
Hammer is a trademark of Advanced Micro Devices, Inc.
QuickPWM is a trademark of Maxim Integrated Products, Inc.
Features
_________________________________________________________________________________________
♦
Quad-Phase Quick-PWM
♦
Mobile and Desktop P4 or AMD Hammer
Compatible
♦
Active Voltage Positioning with Adjustable Gain,
Offset and Remote Sensing
♦
High Speed, Accuracy and Efficiency
♦
Low Bulk Output Capacitor Count
♦
♦
Multiphase Fast-Response Quick-PWM
Architecture
MAX1544/MAX1545 Dual-Phase Controller
Two MAX1980 Slave Controllers
7V to 24V Input Voltage Range
♦
5-Bit On-Board DAC
TM
EV Kit
Mobile P4: 0.60V to 1.75V Output Range
Desktop P4: 1.10V to 1.85V Output Range
AMD Hammer: 0.675V to 1.55V Output Range
♦
68A Load-Current Capability (17A Each Phase)
♦
300kHz Switching Frequency
♦
MAX6509 Temperature Sensor
♦
40-Pin Thin QFN Package (MAX1544/MAX1545)
♦
20-Pin Thin QFN Package (MAX1980)
♦
Fully Assembled and Tested
Ordering Information
___________________________________
PART
MAX1544EVKIT
MAX1545EVKIT
TEMP RANGE
IC PACKAGE
0°C to +70°C
40 QFN (MAX154_)
20 QFN (MAX1980)
Component List
___________________________________________________________________________________________________________________________________
DESIGNATION
QTY
C1-C4, C7, C20,
C25, C26, C33,
C35, C62, C64
0
Not Installed (0603)
4
100pF 5% 50V C0G ceramic
capacitor (0603)
C5, C24, C36,
C49
C6, C21, C23,
C38, C39, C51,
C60
MAXIM
DESCRIPTION
DESIGNATION
QTY
C8-C12, C31,
C32, C47
8
or
or
C8-C12, C31,
C32, C47
8
330µF, 2V 7mΩ Low-ESR specialty
polymer capacitor (D case)
Panasonic EEFSD0D331XR
C13
0
Not installed (E case)
C14, C29, C58,
C59
4
1000pF 10% 50V C0G ceramic
capacitor (0603)
Murata GRM188R71H102K
Murata GRM1885C1H101J
7
0.22µF 16V X5R ceramic capacitor
(0805)
Taiyo Yuden EMK212BJ224KG
DESCRIPTION
330µF, 2.5V 9mΩ Low-ESR
polymer capacitor (D case)
Sanyo 2R5TPE330M9
Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
Evaluates: MAX1544/MAX1545
General Description
________________________________________________________
The MAX1544/MAX1545 evaluation kits (EV kits)
demonstrate the high-power, dynamically adjustable
multiphase notebook CPU application circuit. This DC-DC
converter steps down high-voltage batteries and/or AC
adapters, generating a precision, low-voltage CPU core
VCC rail. The MAX1544 EV kit meets the mobile and
desktop AMD Hammer CPU transient voltage
specification. The MAX1545 EV kit meets the desktop and
mobile Pentium 4 (P4) CPUs transient voltage
specification. The MAX1544/MAX1545 kits consist of the
MAX1544 or MAX1545 Dual-Phase Quick-PWM™ stepdown controller, two MAX1980 slave controllers and the
MAX6590 temperature sensor. The MAX1544/MAX1545
kits include active voltage positioning with adjustable gain
and offset, reducing power dissipation and bulk output
capacitance requirements. The kit features independent
four-level logic inputs for setting the suspend voltage
(S0/S1).
The MAX1980 provides additional gate drive circuitry,
phase synchronization, current limit, and current
balancing. Precision slew-rate control provides “just-in
time” arrival at the new DAC setting, minimizing surge
currents to and from the battery.
This fully assembled and tested circuit board provides a 5bit digitally adjustable output voltage from a 7V to 24V
battery input range. The EV kit operates at 300kHz
switching frequency and has superior line- and loadtransient response.
Evaluates: MAX1544/MAX1545
MAX1544/
MAX1544/MAX1545
MAX1545 Evaluation Kits
________________________________________________________________________________________________________
DESIGNATION
QTY
C15, C22, C34,
C45
4
C16
1
C17, C18, C19,
C41, C42, C43,
C53, C54, C65
9
C27, C40, C52
3
C28
1
C30, C37, C50,
C56, C63
5
C44, C48, C55,
C57
4
C61
1
C67, C69, C70,
C83, C84, C85,
C87, C97-C101
12
C71-C78, C80C82, C88-C92
16
D1
1
D2, D3, D4, D12
4
D5, D13
2
D6, D11
D7, D10
2
2
0
J2
1
JUA0-JUA5
JU1, JU3, JU4
JU13
6
3
0
DESCRIPTION
4700pF 10% 50V X7R ceramic
capacitor (0603)
Murata GRM188R71H472K
(Not installed when using
Si7442DP)
2.2µF 10V X5R ceramic capacitor
(0612)
TDK C1632X5R1A225KTB09N
15µF 20% 25V X5R ceramic
capacitor (1812)
TDK C4532X5R1E156M
1µF 20% 10V X5R ceramic
capacitor (0805)
Taiyo Yuden LMK212BJ105KG or
TDK C2012X7R1C105MKT
47pF 5% 50V C0G ceramic
capacitor (0603)
Murata GRM1885C1H470J
470pF 10% 50V X7R ceramic
capacitor (0603)
Murata GRM188R71H471K
1µF 10% 25V X7R ceramic
capacitor (0805)
TDK C2012X7R1E105K
0.1µF 10% 50V X7R ceramic
capacitor (0805)
Murata GRM21BR71H104K
10µF 20% 6.3V X5R ceramic
capacitor (0805)
TDK C2012X5R0J106M or
Taiyo Yuden AMK212BJ106MG
22µF 6.3V X5R ceramic capacitor
(1206)
TDK C3216X5R0J226MT
100mA, 30V Dual Schottky Diode
Central Semiconductor
CMPSH-3A
5A Schottky Diode
Central Semiconductor
CMSH5-40
100mA, 30V Schottky Diode
Central Semiconductor
CMPSH-3
200mA Switching Diode
Central Semiconductor CMPD2838
Not Installed
100mA, 30V Dual Schottky Diode
Central Semiconductor
CMPSH-3C
4-pin header
Molex 39-29-3046
2-pin header
4-pin header
2-pin header
Component List (continued)
DESIGNATION
JU2
QTY
1
L1-L4
4
N1, N2, N5, N6,
N7, N10, N15,
N16
8
or
N2, N7, N10,
N16
or
4
N3, N4, N8, N9,
N11, N12, N13,
N14
8
Q1, Q2
2
R1, R8, R11,
R14, R15, R17,
R20, R37, R50,
R52, R63, R64,
R78, R98, R102
R2, R9, R39,
R45
R3, R33-R35,
R40, R44, R46,
R48, R49, R107
R5, R6, R18,
R24
R7
R10
R12
R16, R83, R84
R19, R21, R27,
R30, R36, R51,
R53, R61, R62,
R65-R67, R74,
R75, R81, R87,
R92, R99-R101,
R103-R106,
R108, R109
R26, R28, R73,
R76, R77, R79,
R80
DESCRIPTION
3-pin header
0.6µH 26A 0.9mΩ Power Inductors
Panasonic ETQP1H0R6BFA or
Sumida CDEP134H-0R6
N-channel MOSFET (SO-8)
International Rectifier IRF7811W
or
Fairchild FDS6694
Vishay/Siliconix Si7886DP
(Power PAK)
N-channel MOSFET (SO-8)
International Rectifier IRF7822 or
Fairchild FDS6688 or
Vishay/Siliconix Si7442DP
(Power PAK)
N-channel MOSFET
Central Semiconductor 2N7002
0
Not Installed, (short PC trace)
(0603)
4
0.001Ω ±1% 1W resistor (2512)
Panasonic ERJM1WTF1M0U
10
100Ω ±5% resistor (0603)
4
1kΩ ±1% resistor (0603)
1
1
1
3
60.4kΩ ±1% resistor (0603)
100kΩ ±1% resistor (0603)
20kΩ ±1% resistor (0603)
10Ω ±5% resistor (0603)
0
Not Installed (0603)
7
0Ω ±5% resistor (0603)
R29, R31
2
30.1kΩ ±1% resistor (0603)
R32, R42
2
150kΩ ±1% resistor (0603)
R41, R47
2
20Ω ±5% resistor (0603)
R43, R38
R54-R59, R70,
R95-R97, R110
2
10kΩ ±5% resistor (0603)
11
100kΩ ±5% resistor (0603)
1
1
2
11kΩ ±1% resistor (0603)
R60
R82
U2, U3
1MΩ ±5% resistor (0603)
MAX1980ETP (20-TQFN)
MAXIM
MAX1544/MAX1545
MAX1544/MAX1545 Evaluation Kits
DESIGNATION
U4
U5
None
None
QTY
1
0
10
1
_____________________________
DESIGNATION
R4, R23
R22
R25
U1
U8
DESCRIPTION
MAX6509HAUK-T (5-SOT23)
MAX6509HAUK-T (5-SOT23)
Shunts
MAX1544/MAX1545 PC Board
MAX1544 EV Kit
Additional Components
QTY
2
1
1
1
1
DESCRIPTION
2.61kΩ ±1% resistor (0603)
24.9kΩ ±1% resistor (0603)
100kΩ ±1% resistor (0603)
MAX1544ETL (40-TQFN)
Socket 754
DESIGNATION
QTY
None
1
None
None
None
1
1
1
__________________________
DESCRIPTION
MAX1544/MAX1545 EV kit data
sheet
MAX1544/MAX1545 data sheet
MAX1980 data sheet
MAX6509 data sheet
MAX1545 EV Kit
Additional Components*
DESIGNATION
QTY
DESCRIPTION
R4, R23
2
3.01kΩ ±1% resistor (0603)
R22
1
182kΩ ±1% resistor (0603)
R25
1
20kΩ ±1% resistor (0603)
U1
1
MAX1545ETL (40-TQFN)
U8
1
None
*Contact Intel for the Mobile P4 specifications and contact
Maxim for a reference schematic.
Component Suppliers
_______________________________________________________________________________________________________________________
SUPPLIER
PHONE
FAX
WEBSITE
Central Semiconductor
516-435-1110
516-435-1824
www.centralsemi.com
Fairchild Semiconductor
408-721-2181
408-721-1635
www.fairchildsemi.com
International Rectifier
310-322-3331
310-322-3332
www.irf.com
Panasonic
714-373-7939
714-373-7183
www.panasonic.com
Sumida
708-956-0666
708-956-0702
www.sumida.com
Taiyo Yuden
408-573-4150
408-573-4159
www.t-yuden.com
TDK
847-390-4373
847-390-4428
www.component.tdk.com
Vishay/Siliconix
203-268-6261
203-268-6296
www.vishay.com
Note: Please indicate that you are using the MAX1544 and MAX1545 when contacting these component suppliers.
Quick Start
________________________________________________________________________________
•
•
•
•
•
Recommended Equipment
7V to 24V, >100W power supply, battery, or notebook
AC adapter
DC bias power supply, 5V at 1A
One or more dummy loads capable of sinking 68A total
Digital multimeter (DMM)
100MHz dual-trace oscilloscope
Procedure
1) Ensure that the circuit is connected correctly to the
supplies and dummy load prior to applying any power.
2) Verify that the shunts are across JU1 pins 1 and 3 (S0)
and JU3 pins 1 and 4 (S1), JU2 pins 1 and 2 (SHDN)
and JU4 pins 1 and 3 (TON). The DAC code settings
(D4–D0) are set for 1.50V output through installed
jumpers JUA3 and JUA1. A fixed +50mV offset fsets the
final no load output voltage at 1.55V for the MAX1544
EV kit. A fixed -25mV offset sets the final no load output
voltage at 1.45V for the MAX5145 EV kit.
MAXIM
3) Turn on the battery power before turning on the +5V bias
power; otherwise, the output UVLO timer times out and
the FAULT latch is set, disabling the regulator until +5V
power is cycled or shutdown is toggled.
4) Observe the output voltage with the DMM and/or
oscilloscope. Look at the LX switching nodes and
MOSFET gate-drive signals while varying the load
current.
Detailed Description
_____________________________________________________
This 68A multiphase buck-regulator design is optimized for a
300kHz frequency and output voltage settings from 1.0V to
1.5V. At VOUT=1.5V and VIN=12V, the inductor ripple is
approximately 30% (LIR=0.3). The MAX1544/MAX1545
controller shares the current between its two phases that
operate 180° out-of-phase, supplying 17A per phase. Each
MAX1980 slave is triggered by one side of the
MAX1544/MAX1545 low-side gate driver, supplying another
17A per slave.
3
Evaluates: MAX1544/MAX1545
Component List (continued)
__________________________________________________________________________________________________________
Evaluates: MAX1544/MAX1545
MAX1544/
MAX1544/MAX1545
MAX1545 Evaluation Kits
Setting the Output Voltage
The MAX1544/MAX1545 has two unique internal VID input
multiplexers that can select one of three different VID DAC
code settings for different processor states. On startup, the
controller selects the DAC code from the D0–D4 input
decoder when SUS=GND. A second multiplexer selects the
lower S0-S1 DAC code when SUS is high (SUS=3.3V or
VCC), or the higher S0-S1 DAC code when SUS=REF. The
output voltage can be digitally set by the D0-D4 pins (Table
1) or the S0-S1 pins (Table 2).
There are five different ways of setting the output voltage:
1) Drive the external VID0–VID4 inputs (no jumpers
installed): The output voltage can be set by driving
VID0–VID4 with open-drain drivers (pullup resistors are
included on the board) or 3V/5V CMOS output logic
levels (DPSLPVR = GND).
2) Install jumpers JUA0–JUA4: SUS=low. When JUA0–
JUA4 are not installed, the MAX1544/MAX1545’s D0–
3)
4)
5)
D4 inputs are at logic 1 (connected to VID_VCC). When
JUA0–JUA4 are installed, D0–D4 inputs are at logic 0
(connected to GND). The output voltage can be
changed during operation by installing and removing
jumpers JUA0–JUA4. As shipped, the EV kit is
configured with jumpers JUA0–JUA4 set for 1.50V
output (Table 1). Refer to the MAX1544 and MAX1545
data sheets for more information.
Drive DPSLPVR (suspend mode configuration): As
shipped, the EV kit is configured for operation in the
suspend mode S0-S1 set for 1.000V output (Table 2).
Drive DPSLP:
DPSLP DPSLP can be driven by an external
driver to introduce offsets to the output voltage (Table
2).
Drive header J1 for full system control: VID0-VID4,
DPSLP, DPRSLPVR, VRON, and VROK are all
available directly on header connections J1 (Figure 1c).
Do not install jumper JU2 in this mode.
Table 1. MAX1544/MAX1545 Output Voltage Adjustment Settings (SUS=GND)
MAX1545
D4
4
D3
D2
D1
D0
MAX1544
VOUT (V)
MAX1545
CODE=VCC CODE=GND
VOUT (V)
VOUT (V)
MAX1545
D4
D3
D2
D1
D0
MAX1544
VOUT (V)
MAX1545
CODE=VCC CODE=GND
VOUT (V)
VOUT (V)
0
0
0
0
0
1.550
1.750
1.850
1
0
0
0
0
1.150
0.975
1.450
0
0
0
0
1
1.525
1.700
1.825
1
0
0
0
1
1.125
0.950
1.425
0
0
0
1
0
1.500
1.650
1.800
1
0
0
1
0
1.100
0.925
1.400
0
0
0
1
1
1.475
1.600
1.775
1
0
0
1
1
1.075
0.900
1.375
1.550
1.750
1
0
1
0
0
1.050
0.875
1.350
1
0
1
0
1
1.025
0.850
1.325
0.825
1.300
0
0
1
0
0
1.450
0
0
1
0
1
1.425
1.500
1.725
1.450
1.700
1
0
1
1
0
1.000
0
0
1
1
0
1.400
0
0
1
1
1
1.375
1.400
1.675
1
0
1
1
1
0.975
0.800
1.275
0
1
0
0
0
1.350
1.350
1.650
1
1
0
0
0
0.950
0.775
1.250
0
1
0
0
1
1.325
1.300
1.625
1
1
0
0
1
0.925
0.750
1.225
0
1
0
1
0
1.300
1.250
1.600
1
1
0
1
0
0.900
0.725
1.200
1.200
1.575
1
1
0
1
1
0.875
0.700
1.175
1
1
1
0
0
0.850
0.675
1.150
0.650
1.125
0
1
0
1
1
1.275
0
1
1
0
0
1.250
1.150
1.550
1.100
1.525
1
1
1
0
1
0.825
0
1
1
0
1
1.225
0
1
1
1
0
1.200
1.050
1.500
1
1
1
1
0
0.800
0.625
1.100
0
1
1
1
1
1.175
1.000
1.475
1
1
1
1
1
OFF
0.600
OFF
MAXIM
MAX1544/MAX1545
MAX1544/MAX1545 Evaluation Kits
LOWER SUSPEND CODES
SUS*
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
S1
GND
GND
GND
GND
REF
REF
REF
REF
OPEN
OPEN
OPEN
OPEN
VCC
VCC
VCC
VCC
S0
GND
REF
OPEN
VCC
GND
REF
OPEN
VCC
GND
REF
OPEN
VCC
GND
REF
OPEN
VCC
MAX1544/MAX1545
Evaluates: MAX1544/MAX1545
Table 2. MAX1544/MAX1545 Output Voltage Adjustment Settings (SUS=High or REF)
UPPER SUSPEND CODES
VOUT (V)
0.675
0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000
1.025
1.050
SUS*
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
REF
S1
GND
GND
GND
GND
REF
REF
REF
REF
OPEN
OPEN
OPEN
OPEN
VCC
VCC
VCC
VCC
S0
GND
REF
OPEN
VCC
GND
REF
OPEN
VCC
GND
REF
OPEN
VCC
GND
REF
OPEN
VCC
VOUT (V)
1.075
1.100
1.125
1.150
1.175
1.200
1.225
1.250
1.275
1.300
1.325
1.350
1.375
1.400
1.425
1.450
*Note: Connect the 3-level SUS input to a 2.7V or greater supply (3.3V or VCC) for an input logic level high.
Table 3. MAX1544/MAX1545 Operating Mode Truth Table
SHDN
SUS
SKIP
OFS
OUTPUT
VOLTAGE
GND
x
x
x
GND
VCC
GND
VCC
GND or REF
D0-D4
(No offset)
OPERATING MODE
Low-Power Shutdown Mode. DL_ is forced high, DH_ is forced low,
and the PWM controller is disabled. The supply current drops to 1µA
(typ).
Normal Operation. The no load output voltage is determined by the
selected VID DAC code (D0-D4, Table 1).
Dual-Phase Pulse Skipping Operation. When SKIP is set to 2V, the
MAX1544/MAX1545 immediately enters dual-phase pulse skipping
operation allowing automatic PWM/PFM switchover under light loads.
Both MAX1980 slaves are disabled. The VROK upper threshold is
blanked.
Single-Phase Pulse Skipping Operation. When SKIP is pulled to GND,
the MAX1544/MAX1545 immediately enters single-phase pulse
skipping operation allowing automatic PWM/PFM switchover under
light loads. Both MAX1980 slaves are disabled. The VROK upper
threshold is blanked.
VCC
x
REF
GND or REF
D0-D4
(No offset)
VCC
x
GND
GND or REF
D0-D4
(No offset)
VCC
GND
x
0 to 0.8V
or
1.2V to 2.0V
D0-D4
(Plus offset)
Deep Sleep Mode. The no load output voltage is determined by the
selected VID DAC code (D0-D4, Table 1) plus the offset voltage set by
OFS.
VCC
REF
or
High
x
x
SUS, S0-S1
(Offset
disabled)
Suspend Mode. The no load output voltage is determined by the
selected suspend code (SUS, S0-S1, Table 2), overriding all other
active modes of operation.
VCC
x
x
x
GND
Fault Mode. The fault latch has been set by either UVP, OVP (if
enabled), or thermal shutdown. The controller will remain in FAULT
mode until VCC power is cycled or SHDN toggled.
MAXIM
5
Evaluates: MAX1544/MAX1545
MAX1544/
MAX1544/MAX1545
MAX1545 Evaluation Kits
Reduced Power Dissipation
Voltage Positioning
The MAX1544/MAX1545 EV kit uses voltage positioning to
decrease the size of the output capacitor and to reduce
power dissipation at heavy loads. Current-sense resistors (R2
and R9=1mΩ) are used to sense the inductor current and
adjust the output voltage. The current-sense resistors
dissipate some power but the net power savings are
substantial. This EV kit further improves efficiency by using
an internal op-amp gain stage to allow a reduction in the
sense resistor value.
The MAX1544 op amp is configured for a gain of 2.5 (only 2
phases sensed) providing a -1.25mV/A voltage-positioning
slope at the output when all four phases are active. The
MAX1545 op amp is configured for a gain of 3 providing a
slope of -1.5mV/A. Remote output and ground sensing
eliminate any additional PC board voltage drops.
Dynamic Output Voltage
Transition Experiment
Observe the output voltage transition between 1.00V and
1.50V by setting jumpers JUA0–JUA4 to 1.50V and toggling
the SUS input between GND and VCC, respectively. This is
the worst-case transition and should complete within 100µs.
This EV kit is set to transition the output voltage at 1-LSB per
2µs. The speed of the transition can be altered by changing
resistor R7 (60.4kΩ).
During the voltage transition, watch the inductor current by
looking across R2 and/or R9 with a differential scope probe or
by inserting a current probe in series with the inductor.
Observe the low, well-controlled inductor current that
accompanies the voltage transition. The same slew rate and
controlled inductor current are used during shutdown and
startup, resulting in well-controlled currents into and out of the
battery (input source).
There are two other methods to create an output voltage
transition. Select D0–D4 (JUA0–JUA4). Then either manually
change the JUA0–JUA4 jumpers to a new VID code setting
(Table 1), or remove all jumpers and drive the VID0–VID4 PC
board test points externally to the desired code settings.
Load-Transient Experiment
One interesting experiment is to subject the output to large,
fast load transients and observe the output with an
oscilloscope. This necessitates careful instrumentation of the
output, using the supplied scope-probe jack. Accurate
measurement of output ripple and load-transient response
invariably requires that ground clip leads be completely
avoided and that the probe must be removed to expose the
GND shield, so the probe can be plugged directly into the
jack. Otherwise, EMI and noise pickup corrupt the
waveforms.
Most benchtop electronic loads intended for power supply
testing lack the ability to subject the DC-DC converter to ultrafast load transients. Emulating the supply current di/dt at the
CPU VCORE pins requires at least 10A/µs load transients.
One easy method for generating such an abusive load
transient is to solder a power MOSFET directly across the
scope-probe jack. Then drive its gate with a strong pulse
generator at a low duty cycle (< 5%) to minimize heat stress
in the MOSFET. Vary the high-level output voltage of the
pulse generator to vary the load current.
To determine the load current, you might expect to insert a
meter in the load path, but this method is prohibited here by
the need for low resistance and inductance in the path of the
dummy load MOSFET. There are two easy alternative
methods of determining how much load current a particular
pulse-generator amplitude is causing. The easiest method is
to observe the currents through inductors L1 and L2 with a
calibrated AC current probe, such as a Tektronix AM503, or
by looking across R2 and R9 with a differential probe. In the
buck topology, the load current is approximately equal to the
average value of the inductor currents.
TON Settings
Jumper JU4 selects the MAX1544/MAX1545 switching
frequency.
Note: Always set the MAX1980 slaves to the same switching
frequency as the MAX1544/MAX1545.
Note: When changing the switching frequency, recalculate
the inductor and output capacitor values using the equations
in the MAX1544/MAX1545 and MAX1980 datasheets.
Table 4. Jumper JU4 Function (TON Setting)
SHUNT POSITION
1 and 2
1 and 3 (Default)
1 and 4
Not installed
TON PIN
Connected to GND
Connected to REF
Connected to VCC
VR_ON driven by
external signal
MAX1544/MAX1545 SWITCHING FREQUENCY
550kHz. Short R104 and R108 to set the MAX1980s to 550kHz.
300kHz.
200kHz. Short R105 and R109 to set the MAX1980s to 200kHz.
100kHz. Not supported by MAX1980. Disable MAX1980 when setting
MAX1544/MAX1545 at 100kHz for highest suspend mode efficiency.
Table 5. PIN19 Function and Setting
PIN 19
High
Low
6
MAX1544 (OVP PIN)
Overvoltage Protection Enabled
Overvoltage Protection Disabled
MAX1545 (CODE PIN)
Selects Mobile P4 VID code set
Selects Desktop P4 VID code set
MAXIM
MAXIM
REF
VR_ON
2
JU4
3
R73
0Ω
3
JU2
R70
100kΩ
R76
0Ω
VCC
Q2
2N7002
R77
0Ω
C23
0.22µF
C28
47pF
C5
100pF
8
12
1
3
5
4
21
20
23
22
19
24
11
13
25
6
C56
470pF
18
SKIP
2
9
C24
100pF
R7
60.4kΩ 1%
VID4
VID2
VID3
VID0
VID1
PIN 19
R3
100Ω
C20
OPEN
R97
100kΩ
R12
20kΩ 1%
VROK
REF
1
4
OVP
CODE
2
JU3
3
R10
100kΩ 1%
1
GND_SENSE
2
1
VCC
1
4
VCC
DISABLE
DPRSLPVR
REF
VCC=100kHz
OPEN=200kHz
REF=300kHz
GND=550kHz
DPRSLPVR
REF
JU1
3
2
4
VCC
MAX1544
MAX1545
C27
1µF
10V
GND
GNDS
VROK
SHDN
SKIP
TON
REF
ILIM
CCV
TIME
SUS
S0
S1
D4
D2
D3
D0
D1
PIN 19
R16
10Ω
VDD
30
VDD
MAX1544
U1*
(BACKSIDE PAD IS
CONNECTED TO GND)
VCC
10
VCC
OFS
CCI
FB
OAIN-
OAIN+
CSP
CSN
CMN
CMP
PGND
DLS
LXS
DHS
BSTS
DLM
LXM
DHM
BSTM
V+
4
4
1
3
2
3
2
R25*
20kΩ
1%
R20
SHORT
(PC TRACE)
C7
OPEN
R23*
2.49kΩ 1%
1
4
6 7 8
6 7 8
CM+
R15
SHORT (PC TRACE)
CM-
5
N9
N8
1
N7
3
6 7 8 2
N6
3
2
5
1
4
3
6 7 8 2
5
8 7 6
5
8 7 6
C21
0.22µF
BSTS
1
3
2
5
N4
3
2
N2
N1
N3
1
5
5
8 7 6
3
2
5
8 7 6
4
BSTS
D1
CMPSH-3A
R82
1MΩ
R24
1kΩ 1%
R18
1kΩ 1%
R21
OPEN
Q1
2N7002
R19
OPEN
DLS
4
DLM
4
R22*
182kΩ 1%
CS-
CM-
CSR11
SHORT (PC TRACE)
CS+
R14
SHORT (PC TRACE)
C25
OPEN
C30
470pF
2
C6
0.22µF
4
1
3
VBIAS
R17
SHORT (PC TRACE)
C26
OPEN
C22
4700pF
DLS
DHS
R8
SHORT
(PC TRACE)
C15
4700pF
DLM
DHM
(PC TRACE)
R1
SHORT
C63
470pF
7
14
15
16
17
40
39
38
37
31
32
34
33
35
29
27
28
26
36
C16
2.2µF
10V
+5V
R53
OPEN
LM2
C8
330µF
2.5V
CS-
R50
SHORT
(PC TRACE)
R84
10Ω
R83
10Ω
C12
330µF
2.5V
GND_SENSE
R78
SHORT
(PC TRACE)
GND_SENSE
VOUT
C19
15µF
25V
VBATT
AGND2
VOUT
GND
VOUT
GND
C13
OPEN
VOUT
7V TO 24V
C11
330µF
2.5V
VOUT_SENSE
VOUT_SENSE
VOUT_SENSE
CS+
CM+
R9
0.001Ω
C2
OPEN
CS+
C18
15µF
25V
VOUT
C65
15µF
25V
CM-
C10
330µF
2.5V
C17
15µF
25V
* See MAX1545 EV Kit Additional Components for Desktop P4 Solution.
DPSLP#
VOUT
REF
R6
1kΩ 1%
R5
1kΩ 1%
R81
OPEN
L2
0.6µH
C57
1µF
25V
LM1
C1
OPEN
R2
0.001Ω
CM+
AGND1
L1
0.6µH
C48
1µF
25V
VBATT
R4*
2.49kΩ 1%
D2
DHS
C55
1µF
25V
D3
DHM
C44
1µF
25V
VBATT
Evaluates: MAX1544/MAX1545
PIN 19
MAX1544/MAX1545
MAX1544/MAX1545 Evaluation Kits
Figure 1a. MAX1544 EV Kit Schematic (Sheet 1 of 3)
7
8
2
1
DLS
D10
BAT54A
OPEN
DLM
2
1
VCC=200kHz
OPEN=300kHz
GND=550kHz
DISABLE
DLS
D7
BAT54A
OPEN
DLM
VCC=200kHz
OPEN=300kHz
GND=550kHz
DISABLE
R27
OPEN
R26
0Ω
3
R28
0Ω
R30
OPEN
AGND2
R108
OPEN
R109
OPEN
VCC2
R80 0Ω
3
AGND1
R104
OPEN
R105
OPEN
VCC1
R79 00Ω
AGND2
R99
OPEN
C37
470pF
C50
470pF
AGND2
AGND2
R31
30.1kΩ
1%
VDD
C35
OPEN
R65
OPEN
R38
10kΩ
19
3
6
18
13
17
20
7
20
7
C49
100pF
8
C33
OPEN
AGND2
19
3
6
18
13
17
C36
100pF
8
R62
OPEN
C60
0.22µF
VDD
R43
10kΩ
D11
CMPD2838
VBATT
AGND1
AGND1
R29
30.1kΩ
1%
R32
150kΩ 1%
VCC2
R98
SHORT
(PC TRACE)
REF
CS+
AGND2
R51
OPEN
R106
OPEN
VCC2
AGND1
R103
OPEN
AGND1
C38
0.22µF
D6
CMPD2838
VBATT
R42
150kΩ 1%
VCC1
R102
SHORT
(PC TRACE)
REF
CM+
AGND1
R36
OPEN
R100
OPEN
VCC1
TRIG
POL
GND
ILIM
TON
COMP
LIMIT
DD
VDD
DL
LX
DH
BST
11
VDD
MAX1980
R41 20Ω
VDD
DL
LX
DH
BST
11
VDD
CM-
CM+
CS-
CS+
CM-
CM+
CS-
CS+
U3
(BACKSIDE PGND
PAD IS
CONNECTED
TO AGND2)
12
VCC
V+
MAX1980
R47 20Ω
U2
(BACKSIDE PGND
PAD IS
CONNECTED
TO AGND1)
VCC2
TRIG
POL
GND
ILIM
TON
COMP
LIMIT
DD
V+
VCC
12
VCC1
2
1
4
5
9
10
15
14
16
2
1
4
5
9
10
15
14
16
C58
1000pF
C59
1000pF
1
1
R44 100Ω
R40 100Ω
R48 100Ω
R49 100Ω
4
8 7 6
4
C51
0.22µF
1
3
2
5
N5
5
8 7 6
3
2
3
2
5
3
2
3
2
N13 N14
5
1
CM-
5
4
CS-
CS+
CS2-
CS2+
1
4
3
6 7 8 2
N16
CM+
CS1-
N15
5
8 7 6
1
CS1+
C52
1µF
10V
3
2
5
N10
3
6 7 8 2
C40
1µF
10V
N12 N11
5
D13
CMPSH-3
R33 100Ω
R46 100Ω
R34 100Ω
DLS2
C45
4700pF
4
8 7 6
4
C39
0.22µF
D5
CMPSH-3
R35 100Ω
DHS2
R52
SHORT
(PC TRACE)
C29
1000pF
C14
1000pF
C34
4700pF
DLS1
DHS1
R37
SHORT
(PC TRACE)
6 7 8
6 7 8
DLS2
4
DLS1
4
D12
DHS2
C53
15µF
25V
D4
DHS1
C41
15µF
25V
LS1
C3
OPEN
R45
0.001Ω
R92
OPEN
L4
0.6µH
LS2
C4
OPEN
R39
0.001Ω
C54
15µF
25V CS2+
VBATT
R87
OPEN
L3
0.6µH
C42
15µF
25V CS1+
VBATT
VOUT
C31
330µF
2.5V
CS2-
C9
330µF
2.5V
CS1-
VOUT
C47
330µF
2.5V
C32
330µF
2.5V
GND
VOUT
GND
VOUT
Evaluates: MAX1544/MAX1545
MAX1544/
MAX1544/MAX1545
MAX1545 Evaluation Kits
Figure 1b. MAX1544 EV Kit Schematic (Sheet 2 of 3)
MAXIM
MAXIM
VID_VCC
VDD
J2
1
4
2
3
PIN 19
JUA5
JUA4
JUA3
JUA2
JUA1
JUA0
C43
15µF
25V
VBATT
R59
100kΩ
VID4
R58
100kΩ
VID3
R57
100kΩ
VID2
R56
100kΩ
VID1
R55
100kΩ
VID0
R54
100kΩ
MAX1544
MAX1545
PIN 19
VID4
VID3
VID2
VID1
VID0
OVP
CODE
PIN 19
+5V
GND
VBIAS
VDD
DPRSLPVR
VR_ON
VROK
R96
100kΩ
VRHOT#
R95
100kΩ
DPSLP#
R110
100kΩ
R66
OPEN
R64
SHORT
(PC TRACE)
2
4
5
GND
OPEN
U5
1
3
DPRSLPVR
VR_ON
VROK
VRHOT#
DPSLP#
SET
MAX6509
HYST
OUT
VCC
R67
OPEN
C62
OPEN
VDD
C80
22µF
VOUT
C71
22µF
VOUT
VRHOT#
R101
OPEN
C81
22µF
C72
22µF
C97
10µF
VOUT
C69
10µF
VOUT
C82
22µF
C73
22µF
C98
10µF
C70
10µF
R61
OPEN
R63
SHORT
(PC TRACE)
C88
22µF
C74
22µF
C99
10µF
C83
10µF
2
4
5
GND
C89
22µF
C75
22µF
C100
10µF
C84
10µF
U4
C61
0.1µF
C90
22µF
C76
22µF
C101
10µF
C91
22µF
C77
22µF
R60
1 11kΩ 1%
3
C85
10µF
SET
MAX6509
HYST
OUT
VCC
VDD
C92
22µF
C78
22µF
VRHOT#
R107
100Ω
Evaluates: MAX1544/MAX1545
JU13
MAX1544/MAX1545
MAX1544/MAX1545 Evaluation Kits
Figure 1c. MAX1544 EV Kit Schematic (Sheet 3 of 3)
9
Evaluates: MAX1544/MAX1545
MAX1544/
MAX1544/MAX1545
MAX1545 Evaluation Kits
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
A
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
A
B
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
B
C
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
C
D
88
89
90
91
92
93
94
95
96
97
98
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
D
E
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
E
F
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
F
G
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
G
H
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
H
J
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
J
K
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
K
L
291 292 293 294 295 296 297 298 299 300
301 302 303 304 305 306 307 308 309 310
L
M
311 312 313 314 315 316 317 318 319 320
321 322 323 324 325 326 327 328 329 330
M
N
331 332 333 334 335 336 337 338 339 340
341 342 343 344 345 346 347 348 349 350
N
P
351 352 353 354 355 356 357 358 359 360
361 362 363 364 365 366 367 368 369 370
P
R
371 372 373 374 375 376 377 378 379 380
381 382 383 384 385 386 387 388 389 390
R
T
391 392 393 394 395 396 397 398 399 400
401 402 403 404 405 406 407 408 409 410
T
U
411 412 413 414 415 416 417 418 419 420
421 422 423 424 425 426 427 428 429 430
U
V
431 432 433 434 435 436 437 438 439 440
441 442 443 444 445 446 447 448 449 450
V
W
451 452 453 454 455 456 457 458 459 460
461 462 463 464 465 466 467 468 469 470
W
Y
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
Y
AA 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 AA
AB 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 AB
AC 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 AC
AD 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 AD
AE 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 AE
AF 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 AF
AG 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 AG
AH 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 AH
AJ 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 AJ
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
GND
A24
GND_SENSE
AE15
VID[0]
VOUT
A23
VOUT_SENSE
AF15
VID[1]
AG14
VID[2]
AF14
VID[3]
AG13
VID[4]
24
25
26
27
28
29
Figure 3. CPU Socket (U8) pinout
10
MAXIM
MAX1544/MAX1545
MAX1544/MAX1545 Evaluation Kits
Evaluates: MAX1544/MAX1545
Figure 4. MAX1544/MAX1545 EV Component Placement Guide - Top Side
MAXIM
11
Evaluates: MAX1544/MAX1545
MAX1544/
MAX1544/MAX1545
MAX1545 Evaluation Kits
Figure 5. MAX1544/MAX1545 EV Kit Component Placement Guide - Bottom Side
12
MAXIM
MAX1544/MAX1545
MAX1544/MAX1545 Evaluation Kits
MAX1544/MAX1545
Evaluates: MAX1544/MAX1545
Figure 6. MAX1544/MAX1545 EV Kit PC Board Layout – Top Side
MAXIM
13
Evaluates: MAX1544/MAX1545
MAX1544/
MAX1544/MAX1545
MAX1545 Evaluation Kits
Figure 7. MAX1544/MAX1545 EV Kit PC Board Layout – GND Layer 2
14
MAXIM
MAX1544/MAX1545
MAX1544/MAX1545 Evaluation Kits
Evaluates: MAX1544/MAX1545
Figure 8. MAX1544/MAX1545 EV Kit PC Board Layout – Signal Layer 3
MAXIM
15
Evaluates: MAX1544/MAX1545
MAX1544/
MAX1544/MAX1545
MAX1545 Evaluation Kits
Figure 9. MAX1544/MAX1545 EV Kit PC Board Layout – Layer 4
16
MAXIM
MAX1544/MAX1545
MAX1544/MAX1545 Evaluation Kits
Evaluates: MAX1544/MAX1545
Figure 10. MAX1544/MAX1545 EV Kit PC Board Layout – Layer 5
MAXIM
17
Evaluates: MAX1544/MAX1545
MAX1544/
MAX1544/MAX1545
MAX1545 Evaluation Kits
Figure 11. MAX1544/MAX1545 EV Kit PC Board Layout – Layer 6
18
MAXIM
MAX1544/MAX1545
MAX1544/MAX1545 Evaluation Kits
Evaluates: MAX1544/MAX1545
Figure 12. MAX1544/MAX1545 EV Kit PC Board Layout – Layer 7
MAXIM
19
Evaluates: MAX1544/MAX1545
MAX1544/
MAX1544/MAX1545
MAX1545 Evaluation Kits
Figure 13. MAX1544/MAX1545 EV Kit PC Board Layout – Bottom Layer
20
MAXIM