MAXIM 19-2870; Rev 0; 04/03 MAX1544/MAX1545 MAX1544/MAX1545 Evaluation Kits Pentium is a registered trademark of Intel Corp. Hammer is a trademark of Advanced Micro Devices, Inc. QuickPWM is a trademark of Maxim Integrated Products, Inc. Features _________________________________________________________________________________________ ♦ Quad-Phase Quick-PWM ♦ Mobile and Desktop P4 or AMD Hammer Compatible ♦ Active Voltage Positioning with Adjustable Gain, Offset and Remote Sensing ♦ High Speed, Accuracy and Efficiency ♦ Low Bulk Output Capacitor Count ♦ ♦ Multiphase Fast-Response Quick-PWM Architecture MAX1544/MAX1545 Dual-Phase Controller Two MAX1980 Slave Controllers 7V to 24V Input Voltage Range ♦ 5-Bit On-Board DAC TM EV Kit Mobile P4: 0.60V to 1.75V Output Range Desktop P4: 1.10V to 1.85V Output Range AMD Hammer: 0.675V to 1.55V Output Range ♦ 68A Load-Current Capability (17A Each Phase) ♦ 300kHz Switching Frequency ♦ MAX6509 Temperature Sensor ♦ 40-Pin Thin QFN Package (MAX1544/MAX1545) ♦ 20-Pin Thin QFN Package (MAX1980) ♦ Fully Assembled and Tested Ordering Information ___________________________________ PART MAX1544EVKIT MAX1545EVKIT TEMP RANGE IC PACKAGE 0°C to +70°C 40 QFN (MAX154_) 20 QFN (MAX1980) Component List ___________________________________________________________________________________________________________________________________ DESIGNATION QTY C1-C4, C7, C20, C25, C26, C33, C35, C62, C64 0 Not Installed (0603) 4 100pF 5% 50V C0G ceramic capacitor (0603) C5, C24, C36, C49 C6, C21, C23, C38, C39, C51, C60 MAXIM DESCRIPTION DESIGNATION QTY C8-C12, C31, C32, C47 8 or or C8-C12, C31, C32, C47 8 330µF, 2V 7mΩ Low-ESR specialty polymer capacitor (D case) Panasonic EEFSD0D331XR C13 0 Not installed (E case) C14, C29, C58, C59 4 1000pF 10% 50V C0G ceramic capacitor (0603) Murata GRM188R71H102K Murata GRM1885C1H101J 7 0.22µF 16V X5R ceramic capacitor (0805) Taiyo Yuden EMK212BJ224KG DESCRIPTION 330µF, 2.5V 9mΩ Low-ESR polymer capacitor (D case) Sanyo 2R5TPE330M9 Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. Evaluates: MAX1544/MAX1545 General Description ________________________________________________________ The MAX1544/MAX1545 evaluation kits (EV kits) demonstrate the high-power, dynamically adjustable multiphase notebook CPU application circuit. This DC-DC converter steps down high-voltage batteries and/or AC adapters, generating a precision, low-voltage CPU core VCC rail. The MAX1544 EV kit meets the mobile and desktop AMD Hammer CPU transient voltage specification. The MAX1545 EV kit meets the desktop and mobile Pentium 4 (P4) CPUs transient voltage specification. The MAX1544/MAX1545 kits consist of the MAX1544 or MAX1545 Dual-Phase Quick-PWM™ stepdown controller, two MAX1980 slave controllers and the MAX6590 temperature sensor. The MAX1544/MAX1545 kits include active voltage positioning with adjustable gain and offset, reducing power dissipation and bulk output capacitance requirements. The kit features independent four-level logic inputs for setting the suspend voltage (S0/S1). The MAX1980 provides additional gate drive circuitry, phase synchronization, current limit, and current balancing. Precision slew-rate control provides “just-in time” arrival at the new DAC setting, minimizing surge currents to and from the battery. This fully assembled and tested circuit board provides a 5bit digitally adjustable output voltage from a 7V to 24V battery input range. The EV kit operates at 300kHz switching frequency and has superior line- and loadtransient response. Evaluates: MAX1544/MAX1545 MAX1544/ MAX1544/MAX1545 MAX1545 Evaluation Kits ________________________________________________________________________________________________________ DESIGNATION QTY C15, C22, C34, C45 4 C16 1 C17, C18, C19, C41, C42, C43, C53, C54, C65 9 C27, C40, C52 3 C28 1 C30, C37, C50, C56, C63 5 C44, C48, C55, C57 4 C61 1 C67, C69, C70, C83, C84, C85, C87, C97-C101 12 C71-C78, C80C82, C88-C92 16 D1 1 D2, D3, D4, D12 4 D5, D13 2 D6, D11 D7, D10 2 2 0 J2 1 JUA0-JUA5 JU1, JU3, JU4 JU13 6 3 0 DESCRIPTION 4700pF 10% 50V X7R ceramic capacitor (0603) Murata GRM188R71H472K (Not installed when using Si7442DP) 2.2µF 10V X5R ceramic capacitor (0612) TDK C1632X5R1A225KTB09N 15µF 20% 25V X5R ceramic capacitor (1812) TDK C4532X5R1E156M 1µF 20% 10V X5R ceramic capacitor (0805) Taiyo Yuden LMK212BJ105KG or TDK C2012X7R1C105MKT 47pF 5% 50V C0G ceramic capacitor (0603) Murata GRM1885C1H470J 470pF 10% 50V X7R ceramic capacitor (0603) Murata GRM188R71H471K 1µF 10% 25V X7R ceramic capacitor (0805) TDK C2012X7R1E105K 0.1µF 10% 50V X7R ceramic capacitor (0805) Murata GRM21BR71H104K 10µF 20% 6.3V X5R ceramic capacitor (0805) TDK C2012X5R0J106M or Taiyo Yuden AMK212BJ106MG 22µF 6.3V X5R ceramic capacitor (1206) TDK C3216X5R0J226MT 100mA, 30V Dual Schottky Diode Central Semiconductor CMPSH-3A 5A Schottky Diode Central Semiconductor CMSH5-40 100mA, 30V Schottky Diode Central Semiconductor CMPSH-3 200mA Switching Diode Central Semiconductor CMPD2838 Not Installed 100mA, 30V Dual Schottky Diode Central Semiconductor CMPSH-3C 4-pin header Molex 39-29-3046 2-pin header 4-pin header 2-pin header Component List (continued) DESIGNATION JU2 QTY 1 L1-L4 4 N1, N2, N5, N6, N7, N10, N15, N16 8 or N2, N7, N10, N16 or 4 N3, N4, N8, N9, N11, N12, N13, N14 8 Q1, Q2 2 R1, R8, R11, R14, R15, R17, R20, R37, R50, R52, R63, R64, R78, R98, R102 R2, R9, R39, R45 R3, R33-R35, R40, R44, R46, R48, R49, R107 R5, R6, R18, R24 R7 R10 R12 R16, R83, R84 R19, R21, R27, R30, R36, R51, R53, R61, R62, R65-R67, R74, R75, R81, R87, R92, R99-R101, R103-R106, R108, R109 R26, R28, R73, R76, R77, R79, R80 DESCRIPTION 3-pin header 0.6µH 26A 0.9mΩ Power Inductors Panasonic ETQP1H0R6BFA or Sumida CDEP134H-0R6 N-channel MOSFET (SO-8) International Rectifier IRF7811W or Fairchild FDS6694 Vishay/Siliconix Si7886DP (Power PAK) N-channel MOSFET (SO-8) International Rectifier IRF7822 or Fairchild FDS6688 or Vishay/Siliconix Si7442DP (Power PAK) N-channel MOSFET Central Semiconductor 2N7002 0 Not Installed, (short PC trace) (0603) 4 0.001Ω ±1% 1W resistor (2512) Panasonic ERJM1WTF1M0U 10 100Ω ±5% resistor (0603) 4 1kΩ ±1% resistor (0603) 1 1 1 3 60.4kΩ ±1% resistor (0603) 100kΩ ±1% resistor (0603) 20kΩ ±1% resistor (0603) 10Ω ±5% resistor (0603) 0 Not Installed (0603) 7 0Ω ±5% resistor (0603) R29, R31 2 30.1kΩ ±1% resistor (0603) R32, R42 2 150kΩ ±1% resistor (0603) R41, R47 2 20Ω ±5% resistor (0603) R43, R38 R54-R59, R70, R95-R97, R110 2 10kΩ ±5% resistor (0603) 11 100kΩ ±5% resistor (0603) 1 1 2 11kΩ ±1% resistor (0603) R60 R82 U2, U3 1MΩ ±5% resistor (0603) MAX1980ETP (20-TQFN) MAXIM MAX1544/MAX1545 MAX1544/MAX1545 Evaluation Kits DESIGNATION U4 U5 None None QTY 1 0 10 1 _____________________________ DESIGNATION R4, R23 R22 R25 U1 U8 DESCRIPTION MAX6509HAUK-T (5-SOT23) MAX6509HAUK-T (5-SOT23) Shunts MAX1544/MAX1545 PC Board MAX1544 EV Kit Additional Components QTY 2 1 1 1 1 DESCRIPTION 2.61kΩ ±1% resistor (0603) 24.9kΩ ±1% resistor (0603) 100kΩ ±1% resistor (0603) MAX1544ETL (40-TQFN) Socket 754 DESIGNATION QTY None 1 None None None 1 1 1 __________________________ DESCRIPTION MAX1544/MAX1545 EV kit data sheet MAX1544/MAX1545 data sheet MAX1980 data sheet MAX6509 data sheet MAX1545 EV Kit Additional Components* DESIGNATION QTY DESCRIPTION R4, R23 2 3.01kΩ ±1% resistor (0603) R22 1 182kΩ ±1% resistor (0603) R25 1 20kΩ ±1% resistor (0603) U1 1 MAX1545ETL (40-TQFN) U8 1 None *Contact Intel for the Mobile P4 specifications and contact Maxim for a reference schematic. Component Suppliers _______________________________________________________________________________________________________________________ SUPPLIER PHONE FAX WEBSITE Central Semiconductor 516-435-1110 516-435-1824 www.centralsemi.com Fairchild Semiconductor 408-721-2181 408-721-1635 www.fairchildsemi.com International Rectifier 310-322-3331 310-322-3332 www.irf.com Panasonic 714-373-7939 714-373-7183 www.panasonic.com Sumida 708-956-0666 708-956-0702 www.sumida.com Taiyo Yuden 408-573-4150 408-573-4159 www.t-yuden.com TDK 847-390-4373 847-390-4428 www.component.tdk.com Vishay/Siliconix 203-268-6261 203-268-6296 www.vishay.com Note: Please indicate that you are using the MAX1544 and MAX1545 when contacting these component suppliers. Quick Start ________________________________________________________________________________ • • • • • Recommended Equipment 7V to 24V, >100W power supply, battery, or notebook AC adapter DC bias power supply, 5V at 1A One or more dummy loads capable of sinking 68A total Digital multimeter (DMM) 100MHz dual-trace oscilloscope Procedure 1) Ensure that the circuit is connected correctly to the supplies and dummy load prior to applying any power. 2) Verify that the shunts are across JU1 pins 1 and 3 (S0) and JU3 pins 1 and 4 (S1), JU2 pins 1 and 2 (SHDN) and JU4 pins 1 and 3 (TON). The DAC code settings (D4–D0) are set for 1.50V output through installed jumpers JUA3 and JUA1. A fixed +50mV offset fsets the final no load output voltage at 1.55V for the MAX1544 EV kit. A fixed -25mV offset sets the final no load output voltage at 1.45V for the MAX5145 EV kit. MAXIM 3) Turn on the battery power before turning on the +5V bias power; otherwise, the output UVLO timer times out and the FAULT latch is set, disabling the regulator until +5V power is cycled or shutdown is toggled. 4) Observe the output voltage with the DMM and/or oscilloscope. Look at the LX switching nodes and MOSFET gate-drive signals while varying the load current. Detailed Description _____________________________________________________ This 68A multiphase buck-regulator design is optimized for a 300kHz frequency and output voltage settings from 1.0V to 1.5V. At VOUT=1.5V and VIN=12V, the inductor ripple is approximately 30% (LIR=0.3). The MAX1544/MAX1545 controller shares the current between its two phases that operate 180° out-of-phase, supplying 17A per phase. Each MAX1980 slave is triggered by one side of the MAX1544/MAX1545 low-side gate driver, supplying another 17A per slave. 3 Evaluates: MAX1544/MAX1545 Component List (continued) __________________________________________________________________________________________________________ Evaluates: MAX1544/MAX1545 MAX1544/ MAX1544/MAX1545 MAX1545 Evaluation Kits Setting the Output Voltage The MAX1544/MAX1545 has two unique internal VID input multiplexers that can select one of three different VID DAC code settings for different processor states. On startup, the controller selects the DAC code from the D0–D4 input decoder when SUS=GND. A second multiplexer selects the lower S0-S1 DAC code when SUS is high (SUS=3.3V or VCC), or the higher S0-S1 DAC code when SUS=REF. The output voltage can be digitally set by the D0-D4 pins (Table 1) or the S0-S1 pins (Table 2). There are five different ways of setting the output voltage: 1) Drive the external VID0–VID4 inputs (no jumpers installed): The output voltage can be set by driving VID0–VID4 with open-drain drivers (pullup resistors are included on the board) or 3V/5V CMOS output logic levels (DPSLPVR = GND). 2) Install jumpers JUA0–JUA4: SUS=low. When JUA0– JUA4 are not installed, the MAX1544/MAX1545’s D0– 3) 4) 5) D4 inputs are at logic 1 (connected to VID_VCC). When JUA0–JUA4 are installed, D0–D4 inputs are at logic 0 (connected to GND). The output voltage can be changed during operation by installing and removing jumpers JUA0–JUA4. As shipped, the EV kit is configured with jumpers JUA0–JUA4 set for 1.50V output (Table 1). Refer to the MAX1544 and MAX1545 data sheets for more information. Drive DPSLPVR (suspend mode configuration): As shipped, the EV kit is configured for operation in the suspend mode S0-S1 set for 1.000V output (Table 2). Drive DPSLP: DPSLP DPSLP can be driven by an external driver to introduce offsets to the output voltage (Table 2). Drive header J1 for full system control: VID0-VID4, DPSLP, DPRSLPVR, VRON, and VROK are all available directly on header connections J1 (Figure 1c). Do not install jumper JU2 in this mode. Table 1. MAX1544/MAX1545 Output Voltage Adjustment Settings (SUS=GND) MAX1545 D4 4 D3 D2 D1 D0 MAX1544 VOUT (V) MAX1545 CODE=VCC CODE=GND VOUT (V) VOUT (V) MAX1545 D4 D3 D2 D1 D0 MAX1544 VOUT (V) MAX1545 CODE=VCC CODE=GND VOUT (V) VOUT (V) 0 0 0 0 0 1.550 1.750 1.850 1 0 0 0 0 1.150 0.975 1.450 0 0 0 0 1 1.525 1.700 1.825 1 0 0 0 1 1.125 0.950 1.425 0 0 0 1 0 1.500 1.650 1.800 1 0 0 1 0 1.100 0.925 1.400 0 0 0 1 1 1.475 1.600 1.775 1 0 0 1 1 1.075 0.900 1.375 1.550 1.750 1 0 1 0 0 1.050 0.875 1.350 1 0 1 0 1 1.025 0.850 1.325 0.825 1.300 0 0 1 0 0 1.450 0 0 1 0 1 1.425 1.500 1.725 1.450 1.700 1 0 1 1 0 1.000 0 0 1 1 0 1.400 0 0 1 1 1 1.375 1.400 1.675 1 0 1 1 1 0.975 0.800 1.275 0 1 0 0 0 1.350 1.350 1.650 1 1 0 0 0 0.950 0.775 1.250 0 1 0 0 1 1.325 1.300 1.625 1 1 0 0 1 0.925 0.750 1.225 0 1 0 1 0 1.300 1.250 1.600 1 1 0 1 0 0.900 0.725 1.200 1.200 1.575 1 1 0 1 1 0.875 0.700 1.175 1 1 1 0 0 0.850 0.675 1.150 0.650 1.125 0 1 0 1 1 1.275 0 1 1 0 0 1.250 1.150 1.550 1.100 1.525 1 1 1 0 1 0.825 0 1 1 0 1 1.225 0 1 1 1 0 1.200 1.050 1.500 1 1 1 1 0 0.800 0.625 1.100 0 1 1 1 1 1.175 1.000 1.475 1 1 1 1 1 OFF 0.600 OFF MAXIM MAX1544/MAX1545 MAX1544/MAX1545 Evaluation Kits LOWER SUSPEND CODES SUS* High High High High High High High High High High High High High High High High S1 GND GND GND GND REF REF REF REF OPEN OPEN OPEN OPEN VCC VCC VCC VCC S0 GND REF OPEN VCC GND REF OPEN VCC GND REF OPEN VCC GND REF OPEN VCC MAX1544/MAX1545 Evaluates: MAX1544/MAX1545 Table 2. MAX1544/MAX1545 Output Voltage Adjustment Settings (SUS=High or REF) UPPER SUSPEND CODES VOUT (V) 0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000 1.025 1.050 SUS* REF REF REF REF REF REF REF REF REF REF REF REF REF REF REF REF S1 GND GND GND GND REF REF REF REF OPEN OPEN OPEN OPEN VCC VCC VCC VCC S0 GND REF OPEN VCC GND REF OPEN VCC GND REF OPEN VCC GND REF OPEN VCC VOUT (V) 1.075 1.100 1.125 1.150 1.175 1.200 1.225 1.250 1.275 1.300 1.325 1.350 1.375 1.400 1.425 1.450 *Note: Connect the 3-level SUS input to a 2.7V or greater supply (3.3V or VCC) for an input logic level high. Table 3. MAX1544/MAX1545 Operating Mode Truth Table SHDN SUS SKIP OFS OUTPUT VOLTAGE GND x x x GND VCC GND VCC GND or REF D0-D4 (No offset) OPERATING MODE Low-Power Shutdown Mode. DL_ is forced high, DH_ is forced low, and the PWM controller is disabled. The supply current drops to 1µA (typ). Normal Operation. The no load output voltage is determined by the selected VID DAC code (D0-D4, Table 1). Dual-Phase Pulse Skipping Operation. When SKIP is set to 2V, the MAX1544/MAX1545 immediately enters dual-phase pulse skipping operation allowing automatic PWM/PFM switchover under light loads. Both MAX1980 slaves are disabled. The VROK upper threshold is blanked. Single-Phase Pulse Skipping Operation. When SKIP is pulled to GND, the MAX1544/MAX1545 immediately enters single-phase pulse skipping operation allowing automatic PWM/PFM switchover under light loads. Both MAX1980 slaves are disabled. The VROK upper threshold is blanked. VCC x REF GND or REF D0-D4 (No offset) VCC x GND GND or REF D0-D4 (No offset) VCC GND x 0 to 0.8V or 1.2V to 2.0V D0-D4 (Plus offset) Deep Sleep Mode. The no load output voltage is determined by the selected VID DAC code (D0-D4, Table 1) plus the offset voltage set by OFS. VCC REF or High x x SUS, S0-S1 (Offset disabled) Suspend Mode. The no load output voltage is determined by the selected suspend code (SUS, S0-S1, Table 2), overriding all other active modes of operation. VCC x x x GND Fault Mode. The fault latch has been set by either UVP, OVP (if enabled), or thermal shutdown. The controller will remain in FAULT mode until VCC power is cycled or SHDN toggled. MAXIM 5 Evaluates: MAX1544/MAX1545 MAX1544/ MAX1544/MAX1545 MAX1545 Evaluation Kits Reduced Power Dissipation Voltage Positioning The MAX1544/MAX1545 EV kit uses voltage positioning to decrease the size of the output capacitor and to reduce power dissipation at heavy loads. Current-sense resistors (R2 and R9=1mΩ) are used to sense the inductor current and adjust the output voltage. The current-sense resistors dissipate some power but the net power savings are substantial. This EV kit further improves efficiency by using an internal op-amp gain stage to allow a reduction in the sense resistor value. The MAX1544 op amp is configured for a gain of 2.5 (only 2 phases sensed) providing a -1.25mV/A voltage-positioning slope at the output when all four phases are active. The MAX1545 op amp is configured for a gain of 3 providing a slope of -1.5mV/A. Remote output and ground sensing eliminate any additional PC board voltage drops. Dynamic Output Voltage Transition Experiment Observe the output voltage transition between 1.00V and 1.50V by setting jumpers JUA0–JUA4 to 1.50V and toggling the SUS input between GND and VCC, respectively. This is the worst-case transition and should complete within 100µs. This EV kit is set to transition the output voltage at 1-LSB per 2µs. The speed of the transition can be altered by changing resistor R7 (60.4kΩ). During the voltage transition, watch the inductor current by looking across R2 and/or R9 with a differential scope probe or by inserting a current probe in series with the inductor. Observe the low, well-controlled inductor current that accompanies the voltage transition. The same slew rate and controlled inductor current are used during shutdown and startup, resulting in well-controlled currents into and out of the battery (input source). There are two other methods to create an output voltage transition. Select D0–D4 (JUA0–JUA4). Then either manually change the JUA0–JUA4 jumpers to a new VID code setting (Table 1), or remove all jumpers and drive the VID0–VID4 PC board test points externally to the desired code settings. Load-Transient Experiment One interesting experiment is to subject the output to large, fast load transients and observe the output with an oscilloscope. This necessitates careful instrumentation of the output, using the supplied scope-probe jack. Accurate measurement of output ripple and load-transient response invariably requires that ground clip leads be completely avoided and that the probe must be removed to expose the GND shield, so the probe can be plugged directly into the jack. Otherwise, EMI and noise pickup corrupt the waveforms. Most benchtop electronic loads intended for power supply testing lack the ability to subject the DC-DC converter to ultrafast load transients. Emulating the supply current di/dt at the CPU VCORE pins requires at least 10A/µs load transients. One easy method for generating such an abusive load transient is to solder a power MOSFET directly across the scope-probe jack. Then drive its gate with a strong pulse generator at a low duty cycle (< 5%) to minimize heat stress in the MOSFET. Vary the high-level output voltage of the pulse generator to vary the load current. To determine the load current, you might expect to insert a meter in the load path, but this method is prohibited here by the need for low resistance and inductance in the path of the dummy load MOSFET. There are two easy alternative methods of determining how much load current a particular pulse-generator amplitude is causing. The easiest method is to observe the currents through inductors L1 and L2 with a calibrated AC current probe, such as a Tektronix AM503, or by looking across R2 and R9 with a differential probe. In the buck topology, the load current is approximately equal to the average value of the inductor currents. TON Settings Jumper JU4 selects the MAX1544/MAX1545 switching frequency. Note: Always set the MAX1980 slaves to the same switching frequency as the MAX1544/MAX1545. Note: When changing the switching frequency, recalculate the inductor and output capacitor values using the equations in the MAX1544/MAX1545 and MAX1980 datasheets. Table 4. Jumper JU4 Function (TON Setting) SHUNT POSITION 1 and 2 1 and 3 (Default) 1 and 4 Not installed TON PIN Connected to GND Connected to REF Connected to VCC VR_ON driven by external signal MAX1544/MAX1545 SWITCHING FREQUENCY 550kHz. Short R104 and R108 to set the MAX1980s to 550kHz. 300kHz. 200kHz. Short R105 and R109 to set the MAX1980s to 200kHz. 100kHz. Not supported by MAX1980. Disable MAX1980 when setting MAX1544/MAX1545 at 100kHz for highest suspend mode efficiency. Table 5. PIN19 Function and Setting PIN 19 High Low 6 MAX1544 (OVP PIN) Overvoltage Protection Enabled Overvoltage Protection Disabled MAX1545 (CODE PIN) Selects Mobile P4 VID code set Selects Desktop P4 VID code set MAXIM MAXIM REF VR_ON 2 JU4 3 R73 0Ω 3 JU2 R70 100kΩ R76 0Ω VCC Q2 2N7002 R77 0Ω C23 0.22µF C28 47pF C5 100pF 8 12 1 3 5 4 21 20 23 22 19 24 11 13 25 6 C56 470pF 18 SKIP 2 9 C24 100pF R7 60.4kΩ 1% VID4 VID2 VID3 VID0 VID1 PIN 19 R3 100Ω C20 OPEN R97 100kΩ R12 20kΩ 1% VROK REF 1 4 OVP CODE 2 JU3 3 R10 100kΩ 1% 1 GND_SENSE 2 1 VCC 1 4 VCC DISABLE DPRSLPVR REF VCC=100kHz OPEN=200kHz REF=300kHz GND=550kHz DPRSLPVR REF JU1 3 2 4 VCC MAX1544 MAX1545 C27 1µF 10V GND GNDS VROK SHDN SKIP TON REF ILIM CCV TIME SUS S0 S1 D4 D2 D3 D0 D1 PIN 19 R16 10Ω VDD 30 VDD MAX1544 U1* (BACKSIDE PAD IS CONNECTED TO GND) VCC 10 VCC OFS CCI FB OAIN- OAIN+ CSP CSN CMN CMP PGND DLS LXS DHS BSTS DLM LXM DHM BSTM V+ 4 4 1 3 2 3 2 R25* 20kΩ 1% R20 SHORT (PC TRACE) C7 OPEN R23* 2.49kΩ 1% 1 4 6 7 8 6 7 8 CM+ R15 SHORT (PC TRACE) CM- 5 N9 N8 1 N7 3 6 7 8 2 N6 3 2 5 1 4 3 6 7 8 2 5 8 7 6 5 8 7 6 C21 0.22µF BSTS 1 3 2 5 N4 3 2 N2 N1 N3 1 5 5 8 7 6 3 2 5 8 7 6 4 BSTS D1 CMPSH-3A R82 1MΩ R24 1kΩ 1% R18 1kΩ 1% R21 OPEN Q1 2N7002 R19 OPEN DLS 4 DLM 4 R22* 182kΩ 1% CS- CM- CSR11 SHORT (PC TRACE) CS+ R14 SHORT (PC TRACE) C25 OPEN C30 470pF 2 C6 0.22µF 4 1 3 VBIAS R17 SHORT (PC TRACE) C26 OPEN C22 4700pF DLS DHS R8 SHORT (PC TRACE) C15 4700pF DLM DHM (PC TRACE) R1 SHORT C63 470pF 7 14 15 16 17 40 39 38 37 31 32 34 33 35 29 27 28 26 36 C16 2.2µF 10V +5V R53 OPEN LM2 C8 330µF 2.5V CS- R50 SHORT (PC TRACE) R84 10Ω R83 10Ω C12 330µF 2.5V GND_SENSE R78 SHORT (PC TRACE) GND_SENSE VOUT C19 15µF 25V VBATT AGND2 VOUT GND VOUT GND C13 OPEN VOUT 7V TO 24V C11 330µF 2.5V VOUT_SENSE VOUT_SENSE VOUT_SENSE CS+ CM+ R9 0.001Ω C2 OPEN CS+ C18 15µF 25V VOUT C65 15µF 25V CM- C10 330µF 2.5V C17 15µF 25V * See MAX1545 EV Kit Additional Components for Desktop P4 Solution. DPSLP# VOUT REF R6 1kΩ 1% R5 1kΩ 1% R81 OPEN L2 0.6µH C57 1µF 25V LM1 C1 OPEN R2 0.001Ω CM+ AGND1 L1 0.6µH C48 1µF 25V VBATT R4* 2.49kΩ 1% D2 DHS C55 1µF 25V D3 DHM C44 1µF 25V VBATT Evaluates: MAX1544/MAX1545 PIN 19 MAX1544/MAX1545 MAX1544/MAX1545 Evaluation Kits Figure 1a. MAX1544 EV Kit Schematic (Sheet 1 of 3) 7 8 2 1 DLS D10 BAT54A OPEN DLM 2 1 VCC=200kHz OPEN=300kHz GND=550kHz DISABLE DLS D7 BAT54A OPEN DLM VCC=200kHz OPEN=300kHz GND=550kHz DISABLE R27 OPEN R26 0Ω 3 R28 0Ω R30 OPEN AGND2 R108 OPEN R109 OPEN VCC2 R80 0Ω 3 AGND1 R104 OPEN R105 OPEN VCC1 R79 00Ω AGND2 R99 OPEN C37 470pF C50 470pF AGND2 AGND2 R31 30.1kΩ 1% VDD C35 OPEN R65 OPEN R38 10kΩ 19 3 6 18 13 17 20 7 20 7 C49 100pF 8 C33 OPEN AGND2 19 3 6 18 13 17 C36 100pF 8 R62 OPEN C60 0.22µF VDD R43 10kΩ D11 CMPD2838 VBATT AGND1 AGND1 R29 30.1kΩ 1% R32 150kΩ 1% VCC2 R98 SHORT (PC TRACE) REF CS+ AGND2 R51 OPEN R106 OPEN VCC2 AGND1 R103 OPEN AGND1 C38 0.22µF D6 CMPD2838 VBATT R42 150kΩ 1% VCC1 R102 SHORT (PC TRACE) REF CM+ AGND1 R36 OPEN R100 OPEN VCC1 TRIG POL GND ILIM TON COMP LIMIT DD VDD DL LX DH BST 11 VDD MAX1980 R41 20Ω VDD DL LX DH BST 11 VDD CM- CM+ CS- CS+ CM- CM+ CS- CS+ U3 (BACKSIDE PGND PAD IS CONNECTED TO AGND2) 12 VCC V+ MAX1980 R47 20Ω U2 (BACKSIDE PGND PAD IS CONNECTED TO AGND1) VCC2 TRIG POL GND ILIM TON COMP LIMIT DD V+ VCC 12 VCC1 2 1 4 5 9 10 15 14 16 2 1 4 5 9 10 15 14 16 C58 1000pF C59 1000pF 1 1 R44 100Ω R40 100Ω R48 100Ω R49 100Ω 4 8 7 6 4 C51 0.22µF 1 3 2 5 N5 5 8 7 6 3 2 3 2 5 3 2 3 2 N13 N14 5 1 CM- 5 4 CS- CS+ CS2- CS2+ 1 4 3 6 7 8 2 N16 CM+ CS1- N15 5 8 7 6 1 CS1+ C52 1µF 10V 3 2 5 N10 3 6 7 8 2 C40 1µF 10V N12 N11 5 D13 CMPSH-3 R33 100Ω R46 100Ω R34 100Ω DLS2 C45 4700pF 4 8 7 6 4 C39 0.22µF D5 CMPSH-3 R35 100Ω DHS2 R52 SHORT (PC TRACE) C29 1000pF C14 1000pF C34 4700pF DLS1 DHS1 R37 SHORT (PC TRACE) 6 7 8 6 7 8 DLS2 4 DLS1 4 D12 DHS2 C53 15µF 25V D4 DHS1 C41 15µF 25V LS1 C3 OPEN R45 0.001Ω R92 OPEN L4 0.6µH LS2 C4 OPEN R39 0.001Ω C54 15µF 25V CS2+ VBATT R87 OPEN L3 0.6µH C42 15µF 25V CS1+ VBATT VOUT C31 330µF 2.5V CS2- C9 330µF 2.5V CS1- VOUT C47 330µF 2.5V C32 330µF 2.5V GND VOUT GND VOUT Evaluates: MAX1544/MAX1545 MAX1544/ MAX1544/MAX1545 MAX1545 Evaluation Kits Figure 1b. MAX1544 EV Kit Schematic (Sheet 2 of 3) MAXIM MAXIM VID_VCC VDD J2 1 4 2 3 PIN 19 JUA5 JUA4 JUA3 JUA2 JUA1 JUA0 C43 15µF 25V VBATT R59 100kΩ VID4 R58 100kΩ VID3 R57 100kΩ VID2 R56 100kΩ VID1 R55 100kΩ VID0 R54 100kΩ MAX1544 MAX1545 PIN 19 VID4 VID3 VID2 VID1 VID0 OVP CODE PIN 19 +5V GND VBIAS VDD DPRSLPVR VR_ON VROK R96 100kΩ VRHOT# R95 100kΩ DPSLP# R110 100kΩ R66 OPEN R64 SHORT (PC TRACE) 2 4 5 GND OPEN U5 1 3 DPRSLPVR VR_ON VROK VRHOT# DPSLP# SET MAX6509 HYST OUT VCC R67 OPEN C62 OPEN VDD C80 22µF VOUT C71 22µF VOUT VRHOT# R101 OPEN C81 22µF C72 22µF C97 10µF VOUT C69 10µF VOUT C82 22µF C73 22µF C98 10µF C70 10µF R61 OPEN R63 SHORT (PC TRACE) C88 22µF C74 22µF C99 10µF C83 10µF 2 4 5 GND C89 22µF C75 22µF C100 10µF C84 10µF U4 C61 0.1µF C90 22µF C76 22µF C101 10µF C91 22µF C77 22µF R60 1 11kΩ 1% 3 C85 10µF SET MAX6509 HYST OUT VCC VDD C92 22µF C78 22µF VRHOT# R107 100Ω Evaluates: MAX1544/MAX1545 JU13 MAX1544/MAX1545 MAX1544/MAX1545 Evaluation Kits Figure 1c. MAX1544 EV Kit Schematic (Sheet 3 of 3) 9 Evaluates: MAX1544/MAX1545 MAX1544/ MAX1544/MAX1545 MAX1545 Evaluation Kits 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 A B 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 B C 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 C D 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 D E 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 E F 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 F G 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 G H 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 H J 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 J K 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 K L 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 L M 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 M N 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 N P 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 P R 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 R T 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 T U 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 U V 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 V W 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 W Y 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 Y AA 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 AA AB 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 AB AC 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 AC AD 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 AD AE 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 AE AF 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 AF AG 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 AG AH 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 AH AJ 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 AJ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 GND A24 GND_SENSE AE15 VID[0] VOUT A23 VOUT_SENSE AF15 VID[1] AG14 VID[2] AF14 VID[3] AG13 VID[4] 24 25 26 27 28 29 Figure 3. CPU Socket (U8) pinout 10 MAXIM MAX1544/MAX1545 MAX1544/MAX1545 Evaluation Kits Evaluates: MAX1544/MAX1545 Figure 4. MAX1544/MAX1545 EV Component Placement Guide - Top Side MAXIM 11 Evaluates: MAX1544/MAX1545 MAX1544/ MAX1544/MAX1545 MAX1545 Evaluation Kits Figure 5. MAX1544/MAX1545 EV Kit Component Placement Guide - Bottom Side 12 MAXIM MAX1544/MAX1545 MAX1544/MAX1545 Evaluation Kits MAX1544/MAX1545 Evaluates: MAX1544/MAX1545 Figure 6. MAX1544/MAX1545 EV Kit PC Board Layout – Top Side MAXIM 13 Evaluates: MAX1544/MAX1545 MAX1544/ MAX1544/MAX1545 MAX1545 Evaluation Kits Figure 7. MAX1544/MAX1545 EV Kit PC Board Layout – GND Layer 2 14 MAXIM MAX1544/MAX1545 MAX1544/MAX1545 Evaluation Kits Evaluates: MAX1544/MAX1545 Figure 8. MAX1544/MAX1545 EV Kit PC Board Layout – Signal Layer 3 MAXIM 15 Evaluates: MAX1544/MAX1545 MAX1544/ MAX1544/MAX1545 MAX1545 Evaluation Kits Figure 9. MAX1544/MAX1545 EV Kit PC Board Layout – Layer 4 16 MAXIM MAX1544/MAX1545 MAX1544/MAX1545 Evaluation Kits Evaluates: MAX1544/MAX1545 Figure 10. MAX1544/MAX1545 EV Kit PC Board Layout – Layer 5 MAXIM 17 Evaluates: MAX1544/MAX1545 MAX1544/ MAX1544/MAX1545 MAX1545 Evaluation Kits Figure 11. MAX1544/MAX1545 EV Kit PC Board Layout – Layer 6 18 MAXIM MAX1544/MAX1545 MAX1544/MAX1545 Evaluation Kits Evaluates: MAX1544/MAX1545 Figure 12. MAX1544/MAX1545 EV Kit PC Board Layout – Layer 7 MAXIM 19 Evaluates: MAX1544/MAX1545 MAX1544/ MAX1544/MAX1545 MAX1545 Evaluation Kits Figure 13. MAX1544/MAX1545 EV Kit PC Board Layout – Bottom Layer 20 MAXIM