MAXIM MAX1994EVKIT

19-2692; Rev 0; 12/02
MAX1994 Evaluation Kit
Features
The MAX1994 evaluation kit (EV kit) is a complete tripleoutput regulator for notebook computer applications.
This fully assembled and tested circuit board provides
a digitally adjustable 0.925V to 2.000V output voltage
(5-bit on-board DAC) for CPU rail, fixed 2.5V output
voltage for I/O and memory supplies, and a 1.2V linear
regulator for a CPU VID supply. The battery input voltage range is 7V to 24V. The EV kit operates at 300kHz
switching frequency and has superior line- and loadtransient response.
The DC-to-DC converter steps down high-voltage batteries and/or AC adapters, generating a precision,
dynamically adjustable, low-voltage CPU core rail
(BUCK1), and a fixed 2.5V output for I/O and memory
supplies (BUCK2). The MAX1994 EV kit consists of the
MAX1994 dual Quick-PWM™ master step-down controller and the MAX1980 slave controller. The MAX1994
EV kit includes active voltage positioning with
adjustable gain and offset, reducing power dissipation
and bulk output capacitance requirements for BUCK1.
The MAX1994 includes a specialized digital interface,
making it suitable for mobile CPU and video processor
applications. The MAX1980 provides additional gatedrive circuitry, phase synchronization, current limit, and
current balancing. Precision slew-rate control provides
“just-in-time” arrival at the new DAC setting, minimizing
surge currents to and from the battery.
♦ High Speed, Accurate, and Efficient
This EV kit can also be used to evaluate the MAX1816,
which has an adjustable output from 0.600V to 1.750V
using an alternate VID code set.
MAX1994EVKIT
DESIGNATION
QTY
C1, C20, C22,
C43, C44
0
C2, C3, C4,
C21, C41, C42,
C45
C5, C6, C10,
C18, C31, C32,
C33
C7, C13, C16,
C19, C26, C34,
C35
C8, C12, C38
7
7
DESCRIPTION
Not installed (1812)
10µF, 25V X5R ceramic capacitors
(1812)
Taiyo Yuden TMK432BJ106KM or
TDK C4532X5R1E106M
330µF, 2.5V, 10mΩ low-ESR specialty
polymer capacitors (E case)
Panasonic EEFUE0E331XR
0
Not installed (E case)
3
0.22µF, 16V X5R ceramic capacitors
(0805)
Taiyo Yuden EMK212BJ224KG
Quick-PWM is a trademark of Maxim Integrated Products, Inc.
♦ Active Voltage Positioning with Adjustable Gain
and Offset
♦ Low-Bulk Output Capacitor Count (BUCK1)
♦ Multiphase Dual Quick-PWM Architecture
BUCK1: 0.925V to 2.000V Output-Voltage Range
(5-Bit DAC)
40A Load-Current Capability (20A Each Phase)
BUCK2: 2.5V Preset Output Voltage (Adjustable
with External Resistors)
7A Load-Current Capability
♦ 1.2V, 500mA Linear Output Voltage
♦ 7V to 24V Input Voltage Range
♦ 300kHz Switching Frequency
♦ 48-Pin QFN Package (MAX1994)
♦ 20-Pin QFN Package (MAX1980)
♦ Low-Profile Components
♦ Fully Assembled and Tested
Ordering Information
PART
TEMP RANGE
0°C to +70°C
IC PACKAGE
48 QFN (MAX1994),
20 QFN (MAX1980)
Component List
DESIGNATION
QTY
DESCRIPTION
C9, C14, C39
3
C11
1
47pF ceramic capacitor (0603)
C15, C40
2
2.2µF, 10V X5R ceramic capacitors
(0612)
TDK C1632X5R1A225KTB09N
0.1µF ceramic capacitors (0805)
C49
0
Not installed (0805)
C23, C36
2
100pF ceramic capacitors (0603)
C24
1
1000pF ceramic capacitor (0603)
C25, C27,
C47, C48, C54
0
Not installed (0603)
C28, C30
2
4700pF ceramic capacitors (0603)
C29
0
Not installed (1210)
C37
1
270pF ceramic capacitor (0805)
C53
1
3.3µF, 10V X5R ceramic capacitor
(0805)
TDK C2012X5R1A335K
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
Evaluates: MAX1816/MAX1980/MAX1994
General Description
Evaluates: MAX1816/MAX1980/MAX1994
MAX1994 Evaluation Kit
Component List (continued)
DESIGNATION
QTY
DESCRIPTION
10µF, 6.3V X5R ceramic capacitor
(0805)
TDK C2012X5R0J106M or
Taiyo Yuden AMK212BJ106MG
4.7µF, 6.3V X5R ceramic capacitor
(0805)
Taiyo Yuden JMK212BJ475MG
C46
1
C50
1
C54, C55
2
0.022µF ceramic capacitors (0603)
2
5A Schottky diodes
Central Semiconductor CMSH5-40
D2, D5, D7
3
100mA Schottky diodes
Central Semiconductor CMPSH-3
D3
1
200mA switching diode
Central Semiconductor CMPD2838
D1, D4
D6
1
2A Schottky diode
Nihon EC31QS03L
J1
1
Scope probe connector
Berg Electronics 33JR135-1
R1–R5, R11,
R17, R18, R20,
R21, R28, R30,
R60, R61, R62
R55
QTY
DESCRIPTION
0
Not installed (0603)
1
10Ω ±5% resistor (0603)
R6, R8, R9,
R56, R59
5
0Ω resistors (0603)
R7, R15, R37,
R50, R58
0
Not installed (short PC trace) (0805)
R10, R42
2
280kΩ ±1% resistors (0603)
R12, R45
2
0.001Ω ±1%, 1W resistors (2512)
Panasonic ERJM1WTF1M0U
R13, R29
2
49.9kΩ ±1% resistors (0603)
R14, R16, R41,
R44, R63
0
Not installed (0805)
R19, R27, R31
3
4.99kΩ ±1% resistors (0603)
R22–R26
5
100kΩ ±5% resistors (0805)
R32
1
10Ω ±5% resistor (0805)
JU1, JU2
2
4-pin headers
JUA0–JUA4
5
2-pin headers
R33, R34, R35,
R46
4
200Ω ±5% resistors (0603)
JU10, JU12,
JU13
3
3-pin headers
R36, R54, R57
3
100kΩ ±5% resistors (0805)
R38
1
R39
1
143kΩ ±1% resistor (0805)
0.005Ω ±5%, 1W resistor (2512)
Panasonic ERJM1WSF5M0U
100Ω ±5% resistor (0603)
L1, L2
L3
N1, N4, N9,
N10
2
0.6µH, 26A, 0.9mΩ power inductors
(13mm x 13mm x 6mm)
Panasonic ETQP1H0R6BFA
1
1.2µH, 9A, 6.2mΩ power inductor
(10mm x 10mm x 5.6mm)
Sumida CDEP105-1R2MC-32
4
N-channel MOSFETs (8-pin SO)
International Rectifier IRF7811W or
Fairchild FDS6694
N2, N5, N6, N8,
N11
5
N-channel MOSFETs (8-pin SO)
International Rectifier IRF7822 or
Fairchild FDS6688
N13
1
P1
Q1
2
DESIGNATION
R40
1
R43
1
20kΩ ±5% resistor (0805)
R47
1
20Ω ±5% resistor (0805)
R48, R49
2
4.7Ω ±5% resistors (0603)
R51
1
220Ω ±5% resistor (0805)
R52
1
20kΩ ±1% resistor (0805)
R53
1
100kΩ ±1% resistor (0805)
U1
1
MAX1994ETM (48-pin QFN)
N-channel MOSFET (8-pin SO)
International Rectifier IRF7811AV
U2
0
U3
1
0
Not installed, P-channel MOSFET
(SOT23)
Fairchild NDS0605 or
Fairchild FDV304P
None
10
None
4
1
PNP power transistor (SOT23)
Zetex FZT749
None
1
Not installed, single-logic inverter
(5-pin SOT23)
Fairchild NC7SZ04
MAX1980EGP (20-pin QFN)
Shunts
Rubber bumpers
3M SJ-5007
Mouser 517-SJ-5007BK or equivalent
MAX1994 PC board
None
1
MAX1994 EV kit data sheet
None
1
MAX1816/MAX1994 data sheet
None
1
MAX1980 data sheet
_______________________________________________________________________________________
MAX1994 Evaluation Kit
SUPPLIER
PHONE
FAX
WEBSITE
Central Semiconductor
516-435-1110
516-435-1824
www.centralsemi.com
Fairchild
408-721-2181
408-721-1635
www.fairchildsemi.com
International Rectifier
310-322-3331
310-322-3332
www.irf.com
Panasonic
714-373-7939
714-373-7183
www.panasonic.com
Sumida
708-956-0666
708-956-0702
www.sumida.com
Taiyo Yuden
408-573-4150
408-573-4159
www.t-yuden.com
TDK
847-390-4373
847-390-4428
www.component.tdk.com
Toko
408-432-8281
408-943-9790
www.tokoam.com
Note: Please indicate that you are using the MAX1994 and MAX1980 when contacting these component suppliers.
Recommended Equipment
• 7V to 24V, >50W power supply, battery, or notebook
AC adapter
• DC bias power supply, 5V at 100mA
• DC bias power supply, 3.3V at 500mA
• One or more dummy loads capable of sinking 40A
total
• Dummy load capable of sinking 7A
• Dummy load capable of sinking 0.5A
• Digital multimeters (DMMs)
• 100MHz dual-trace oscilloscope
Quick Start
1) Ensure that the circuit is connected correctly to the
supplies and dummy load prior to applying any
power.
2) Verify that the shunts are across JU10 pins 1 and 2
(DPSLP), JU12 pins 2 and 3 (SUS), and JU13 pins
1 and 2 (PERF). The DAC code settings (D4–D0)
are set for 1.250V output through installed jumpers
JUA3, JUA2, and JUA1.
3) Turn on the battery power before turning on the
3.3V and 5V bias power supplies. Turn on the 3.3V
bias power supply and then turn on +5V bias
power.
4) Observe the 1.250V (VOUT1) output voltage with the
DMM and/or oscilloscope. Look at the LX switching
nodes and MOSFET gate-drive signals while varying the load current.
5) Observe the 2.5V (VOUT2) and 1.2V (V_VID) output
voltages with the DMMs and/or oscilloscope.
Detailed Description
Setting the Output Voltage
The MAX1994 has a unique internal VID input multiplexer
that can select one of two different VID DAC code settings for different processor states. Depending on the
logic level at SUS (JU12), the suspend mode multiplexer
selects the VID DAC code settings from either the voltage at the D0–D4 inputs, or the S0/S1 (JU1, JU2) input
decoder. The output voltage can be digitally set from
0.925V to 2.000V (Table 1) from the D0–D4 pins and
from 0.700V to 1.075V (Table 2) from S0/S1 pins. There
are four different ways to set the output voltage:
1) Drive the external VID0–VID4 inputs (no jumpers
installed). The output voltage can be set by driving
the VID0–VID4 with open-drain drivers (pullup
resistors are included on the board) or 3V/5V
CMOS output logic levels (SUS = low, shunt is
across JU12 pins 2 and 3).
2) Install jumpers JUA0–JUA4. SUS = low (shunt is
across JU12 pins 2 and 3). When JUA0–JUA4 are
not installed, the MAX1994’s D0–D4 inputs are at
logic 1 (connected to VDD). When JUA0–JUA4 are
installed, D0–D4 inputs are at logic 0 (connected to
GND). The output voltage can be changed during
operation by installing and removing jumpers
JUA0–JUA4. As shipped, the EV kit is configured
with jumpers JUA0–JUA4 set for 1.250V output
(Table 1). Refer to the MAX1994 data sheet for
more information.
3) Suspend mode configuration. SUS = high (shunt
is across JU12 pins 1 and 2). As shipped, the EV
kit is configured for operation in the suspend mode
S0/S1 set for 0.850V output (Table 2).
4) Drive DPSLP. DPSLP can be driven by an external
driver or through JU10 to introduce offsets to the
output voltage (Table 3).
_______________________________________________________________________________________
3
Evaluates: MAX1816/MAX1980/MAX1994
Component Suppliers
Evaluates: MAX1816/MAX1980/MAX1994
MAX1994 Evaluation Kit
Table 1. MAX1994 Output-Voltage
Adjustment Settings (SUS = Low)
D4
JAU4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
D3
JUA3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
D2
D1
JUA2 JUA1
0
0
0
0
0
1
0
1
1
0
1
0
1
1
1
1
0
0
0
0
0
1
0
1
1
0
1
0
1
1
1
1
0
0
0
0
0
1
0
1
1
0
1
0
1
1
1
1
0
0
0
0
0
1
0
1
1
0
1
0
1
1
1
1
D0
JUA0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
VOUT (V)
MAX1816
1.750
1.700
1.650
1.600
1.550
1.500
1.450
1.400
1.350
1.300
1.250
1.200
1.150
1.100
1.050
1.000
0.975
0.950
0.925
0.900
0.875
0.850
0.825
0.800
0.775
0.750
0.725
0.700
0.675
0.650
0.625
0.600
VOUT (V)
MAX1994
2.000
1.950
1.900
1.850
1.800
1.750
1.700
1.650
1.600
1.550
1.500
1.450
1.400
1.350
1.300
No CPU
1.275
1.250
1.225
1.200
1.175
1.150
1.125
1.100
1.075
1.050
1.025
1.000
0.975
0.950
0.925
No CPU
BUCK1 Output Voltage Offset Control
(DPSLP and OFS_)
The MAX1994 supports three independent offsets to
the voltage-positioned output. The offsets are adjusted
using resistive voltage-dividers at the OFS0, OFS1, and
OFS2 inputs. The offset control inputs are selected
using a combination of the three logic inputs (SUS,
PERF, and DPSLP), which also define the operating
mode for the MAX1994. Table 3 details which OFS
input is selected based on these control inputs. The
default for this EV kit is for zero offsets. Refer to the
MAX1994 data sheet for more information.
4
Table 2. MAX1994 Output-Voltage
Adjustment Settings, Suspend Mode
(SUS = High)
SHUNT
SHUNT
LOCATION LOCATION
JU2
JU1
1, 2
1, 2
1, 2
1, 3
Not
1, 2
installed
1, 2
1, 4
1, 3
1, 2
1, 3
1, 3
Not
1, 3
installed
1, 3
1, 4
Not
1, 2
installed
Not
1, 3
installed
Not
Not
installed
installed
Not
1, 4
installed
1, 4
1, 2
1, 4
1, 3
Not
1, 4
installed
1, 4
1, 4
S1
PIN
S0
PIN
GND
GND
GND
REF
OUTPUT
VOLTAGE
(V)
1.075
1.050
GND
OPEN
1.025
GND
REF
REF
VCC
GND
REF
1.000
0.975
0.950
REF
OPEN
0.925
REF
VCC
0.900
OPEN
GND
0.875
OPEN
REF
0.850
OPEN
OPEN
0.825
OPEN
VCC
0.800
VCC
VCC
GND
REF
0.775
0.750
VCC
OPEN
0.725
VCC
VCC
0.700
Reduced Power Dissipation
Voltage Positioning
The MAX1994 EV kit can use voltage positioning to
decrease the size of the output capacitor and to reduce
power dissipation at heavy loads. A current-sense
resistor (R12, 1mΩ) is used to sense the inductor current
and adjust the output voltage. The current-sense resistor
dissipates some power, but the net power savings are
substantial. The default setting for this EV kit has voltage
positioning disabled. However, with the op-amp gain
configured for 4 (per phase), the voltage-positioning
slope can bet set at -2mV/A at the output.
Dynamic Output-Voltage
Transition Experiment
Observe the output-voltage transition between 0.850V
and 1.250V by setting jumpers JUA0–JUA4 to 1.250V
and toggling the SUS input between GND and VCC,
respectively. This is the worst-case transition, and
should complete within 100µs.
_______________________________________________________________________________________
MAX1994 Evaluation Kit
ACTIVE OFS
INPUTS
INPUT
MODE
Battery sleep
(offset = 0%)
SUS
JU12
0
PERF DPSLP
OFS2 OFS1 OFS0
JU13
JU10
0
0
1
0
0
Battery
(offset = 0%)
0
0
1
0
1
0
Performance
sleep
(offset = 0%)
0
1
0
0
0
1
Performance
0
1
1
0
0
0
Suspend
1
0
0
0
0
0
Suspend
1
0
1
0
0
0
Suspend
1
1
0
0
0
0
Suspend
1
1
1
0
0
0
0 = Logic low or input not selected
1 = Logic high or input selected
This EV kit is set to transition the output voltage at
9mV/µs. The speed of the transition can be altered by
changing resistor R38 (143kΩ). During the voltage transition, watch the inductor current by looking across R12
with a differential scope probe, or by inserting a current
probe in series with the inductor. Observe the low, wellcontrolled inductor current that accompanies the voltage transition. The same slew-rate and controlled inductor current are used during shutdown and startup,
resulting in well-controlled currents into and out of the
battery (input source).
There are two other methods to create an output-voltage transition. Select D0–D4 (JUA0–JUA4). Then either
manually change the JUA0–JUA4 jumpers to a new VID
code setting (Table 1), or remove all jumpers and drive
the VID0–VID4 PC board test points externally to the
desired code settings.
For lower output current CPU applications, the
MAX1980 slave controller can be disabled by cutting
the trace shorting pins 1 and 2 of JU11. The slope of
the voltage-positioned load line is decreased by onehalf. Changing the setting of the gain pin can compensate for the reduced slope. With the slave disabled, the
MAX1994 can be operated in skip mode.
Load-Transient Experiment
One interesting experiment is to subject the output to
large, fast-load transients and observe the output with
an oscilloscope. This necessitates careful instrumentation of the output, using the supplied scope-probe jack.
Accurate measurement of output ripple and load-transient response invariably requires that ground clip
leads be completely avoided and that the probe hat be
removed to expose the GND shield, so the probe can
be plugged directly into the jack. Otherwise, EMI and
noise pickup may corrupt the waveforms.
Most benchtop electronic loads intended for powersupply testing lack the ability to subject the DC-to-DC
converter to ultra-fast load transients. Emulating the supply current dI/dt at the CPU VCORE pins requires at least
10A/µs load transients. One easy method for generating
such an abusive load transient is to solder a power
MOSFET directly across the scope-probe jack. Then
drive its gate with a strong pulse generator at a low duty
cycle (<5%) to minimize heat stress in the MOSFET. Vary
the high-level output voltage of the pulse generator to
vary the load current.
To determine the load current, you might expect to
insert a meter in the load path, but this method is prohibited here by the need for low resistance and inductance in the path of the dummy load MOSFET. There
are two easy alternative methods of determining how
much load current a particular pulse-generator amplitude is causing. The easiest method is to observe the
currents through inductors L1 and L2 with a calibrated
AC current probe or by looking across R12 and R45
with a differential probe. In the buck topology, the load
current is approximately equal to the average value of
the inductor currents.
_______________________________________________________________________________________
5
Evaluates: MAX1816/MAX1980/MAX1994
Disabling the MAX1980
Table 3. MAX1994 Offset Selection
Truth Table
OVPSET
REF
OFS0
REF
OFS1
REF
OFS2
REF
ILIM2
REF
LIMIT
ILIM1
REF
R3
OPEN
R28
OPEN
R20
OPEN
R17
OPEN
R14
OPEN
R10
280kΩ
1%
R2
OPEN
VCC
VCC
VCC
VOUT1
AGND1
AGND1
R6
SHORT AGND1
R5
OPEN
R31
4.99kΩ AGND1
1%
R30
OPEN
VOUT1
R27
4.99kΩ AGND1
1%
R21
OPEN
VOUT1
R19
4.99kΩ AGND1
1%
R18
OPEN
R16
OPEN
R15
SHORT
C23
100pF
R13
49.9kΩ AGND1
R11
OPEN
VOUT2
R8
0Ω
1
VCC
VDD
R62
OPEN
LINGOOD
LINBSE
VCC
REF
2V REF
AGND1
R32
10Ω
AGND1
AGND1
C11
47pF
OVPSET
AGND1
C12
0.22µF
AGND1
C8
0.22µF
JU10
36
2
1
25
26
27
28
29
30
31
32
LINFB
14
15
10
16
CM+
17
SKP1/SDN
Figure 1. MAX1994 EV Kit Schematic (Sheet 1 of 4)
_______________________________________________________________________________________
3
1
2
S1
19
20
3 2
AGND1 AGND1
JU4
VCC
S0
18
JU7
21
48
1
47
JU8
22
3 2
AGND1
VCC
BACKSIDE METAL IS
CONNECTED TO GND
MAX1994
U1
4
3
7
8
9
6
AGND1
C27
OPEN
5
1
VCC
C53
3.3µF
OFS2 OFS1 OFS0 GAIN CS1+ CS1- BST1 LX1
VID0 VID1 VID2 VID3 VID4
13
OVPSET
TIME
12
11
JU12
AGND1
3
1
2
LINGOOD
LINBSE
AGND
VCC
REF
FB2
ILIM2
CC
ILIM1
AGND1
3
1
2
VCC
CUT HERE (PC TRACE) 33
ILIM2
ILIM1
DPSLP#
SUS
R54
100kΩ LINFB
R38
143kΩ
1%
3
JU3
VCC
R61
OPEN 1
2
AGND1
SLAVE_OFF
D1
GAIN
P1
OPEN
3
DPSLP#
R4
OPEN
SUS
D2
R1
OPEN
S1
VCC
BST1
2
SKP1/SDN
FBS
VCC
LX1
LIN/SDN
VCC
D0
OFS2
D3
OFS1
D4
GAIN
OSF0
S0
CS1-
CS1+
SKP2/SDN
GDS
23
PGOOD
6
VDD
DL1
PERF
DH1
OUT2
CS2
V+
BST2
LX2
DH2
DL2
R57
100kΩ
TON1
AGND1
PGOOD
VCC
C24
1000pF
34
R40
100Ω
3
1
2
VCC
R59
0Ω
BST2
LX2
DH2
DL2
VDD
TRIG
JU13
DH1
GDS
VOUT1
AGND1
VBATT
C48
OPEN
35
37
38
39
40
41
43
42
44
45
46
AGND1
PGND
24
R56
0Ω
R55
10Ω
C47
OPEN
TON
REF
VOUT2
CS2
LINFB
R51
220Ω
LINBSE
AGND1
CS1-
CS1+
PERF
R53
100kΩ
1%
R52
20kΩ
1%
1
C49
OPEN
AGND1
Q1
GDS
VOUT1
V_VID
3V3
VOUT1
(CM-)
CM+
GND_SENSE
VOUT1_SENSE
AGND1
C46
10µF
6.3V
C50
4.7µF
6.3V
AGND1
R49
4.7Ω
R48
4.7Ω
AGND1
2
3
3V3
AGND1
C55
0.022µF
C25
OPEN
C54
0.022µF
Evaluates: MAX1816/MAX1980/MAX1994
MAX1994 Evaluation Kit
_______________________________________________________________________________________
CS2
DL2
LX2
BST2
LX1
BST1
C2
10µF
25V
TRIG
C1
OPEN
C4
10µF
25V
1
4
5
6
1
R58
SHORT
(PC TRACE)
4
5
6
C9
0.1µF
R7
SHORT
(PC TRACE)
C3
10µF
25V
C14
0.1µF
3
2
R39
0.005Ω
1%
N11
8
7
4
1
5
6
3
2
N2
8
7
VDD 1
4
DH2
VBATT
5
6
D7
CMPSH-3
VDD
3
2
N5
8
7
C15
2.2µF
10V
D2
CMPSH-3
DH1
C20
OPEN
D1
5
6
4
1
2
5
6
3
2
D6
N13
8
7
L1
0.6µH
3
1
N4
N1
3
2
8
7
8
7
C21
10µF
25V
L3
1.2µH
4
R12
0.001Ω
CM+
VOUT2
GDS
R60
OPEN
C18
C19
330µF OPEN GND
2.5V
C22
OPEN
R9
0Ω
DH1
D3
+5V
VBIAS
C29
C26
OPEN
C10
C13
330µF OPEN
2.5V
C16
OPEN
1
J1
SCOPE JACK
2
VOUT1
C31
C32
C33
C35 C34
330µF 330µF 330µF OPEN OPEN
GND
2.5V 2.5V
2.5V
C7
C5
C6
330µF 330µF OPEN
2.5V 2.5V
(CM-)
VDD
Evaluates: MAX1816/MAX1980/MAX1994
VBATT
MAX1994 Evaluation Kit
Figure 1. MAX1994 EV Kit Schematic (Sheet 2 of 4)
7
JU5
VDD
8
VID0
VID1
VID2
VID3
VID4
VID_VCC
R22
100kΩ
R23
100kΩ
R24
100kΩ
R25
100kΩ
R26
100kΩ
VID0
VID1
VID2
VID3
VID4
JUA0
JUA1
JUA2
JUA3
JUA4
AGND1
AGND1
AGND1
AGND1
AGND1
S1
S0
2
2
AGND1
JU2
1
4
VCC
AGND1
JU1
1
4
VCC
3
3
REF
REF
Evaluates: MAX1816/MAX1980/MAX1994
MAX1994 Evaluation Kit
Figure 1. MAX1994 EV Kit Schematic (Sheet 3 of 4)
_______________________________________________________________________________________
_______________________________________________________________________________________
REF
AGND1
R29
49.9kΩ
1%
7
9
POL
PGND
GND
550kHz
AGND2
3
R46
200Ω
MAX1980
U3
VDD
11
VDD
CM+
1
CM+
C28
4700pF
R33
200Ω
COMP
VOUT1
2
CM-
CS-
CS+
DL
LX
DH
BST
V+
Y
VCC
17
BACKSIDE METAL IS
CONNECTED TO GND
VCC
12
R47
20Ω
U2
NC7SZ04
VCCS
LIMIT
TRIG
ILIM
DD
1 200kΩ
JU9 3
2
TON
VCC
AGND2
8
18
20
19
R36
100kΩ
13
AGND2
AGND2
JU6
AGND2
3
2
1
VCC
LIMIT
TRIG
3
JU11
FLOAT = 300kHz
DISABLE
R42
280kΩ
1%
AGND2
R50
SHORT
(PC TRACE)
AGND2
C36
100pF
R41
OPEN
VCCS
2
1
C38
0.22µF
GND
A
N.C.
6
4
5
10
15
14
16
4
5
R63
OPEN
VDD
C37
270pF
C30
4700pF
R37
SHORT
(PC TRACE)
VCC
R44
OPEN
R43
20kΩ
R34
200Ω
R35
200Ω
C39
0.1µF
D5
CMPSH-3
4
4
6
5
C40
6
2.2µF 5
10V
SLAVE_OFF
1
1
3
2
N6
7
8
3
2
N9
7
8
CM+
4
6
5
1
4
3
2
6
5
N10
7
8
1
3
2
N8
7
8
D4
L2
0.6µH
R45
0.001Ω
C41 C42 C43 C44 C45
10µF 10µF OPEN OPEN 10µF
25V 25V
25V
VBATT
VOUT1
Evaluates: MAX1816/MAX1980/MAX1994
VCCS
AGND2
3
2
1
OPEN
MAX1994 Evaluation Kit
Figure 1. MAX1994 EV Kit Schematic (Sheet 4 of 4)
9
Evaluates: MAX1816/MAX1980/MAX1994
MAX1994 Evaluation Kit
Jumper and Switch Settings
Table 4. Jumper JU3 Function (FB2)
SHUNT
POSITION
FB2 PIN
MAX1994 OUTPUT
1 and 2
Connected to VCC
VOUT2 = 1.8V
2 and 3
Connected to GND
VOUT2 = 2.5V
Not installed
Connected to
resistor-divider
R61/R62. (Cut PC
trace shorting JU2
pins 2 and 3 on the
solder side.)
Adjustable mode 1.0V
< VOUT < 5.5V.
(Refer to the MAX1994
data sheet for
selection of output
capacitor and
inductor.)
Table 5. Jumper JU4 Function
(SKP1/SDN)
SHUNT
POSITION
1 and 2
SKP1/SDN PIN
Connected to VCC
MAX1994 OUTPUT
BUCK1 output enabled.
Normal PFM/PWM
operation. VOUT1 is
selected by VID DAC
code (D0–D4) settings.
2 and 3
Connected to GND
Shutdown mode,
VOUT1 = 0V
Not installed
Floating.
Connected to
SKIP1/SHDN pad.
Low-noise forced-PWM
operation. (MAX1994
must be driven by an
external signal.)
Table 6. Jumper JU6 Function
(Polarity Selection, MAX1980)
SHUNT
POSITION
1 and 2
2 and 3
10
POL PIN
TRIGGER POLARITY
SELECT
Connected to VCC
Trigger on the rising
edge (default).
Connected to GND
Trigger on the falling
edge. Install additional
input capacitors C1 and
C20 for in-phase
operation.
Table 7. Jumper JU7 Function
(SKP2/SDN)
SHUNT
POSITION
SKP2/SDN PIN
MAX1994 OUTPUT
1 and 2
Connected to VCC
BUCK2 output enabled,
normal PFM/PWM
operation (default),
VOUT2 = 2.5V
2 and 3
Connected to GND
Shutdown mode
Not
installed
Floating
Low-noise forced-PWM
operation,
VOUT2 = 2.5V
Table 8. Jumper JU8 Function
(LIN/SDN)
SHUNT
POSITION
LIN/SDN PIN
MAX1994 OUTPUT
1 and 2
Connected to VCC
Linear-regulator output
enabled, V_VID = 1.20V
2 and 3
Connected to GND
Shutdown mode,
V_VID = 0V
Table 9. Jumper JU12 Function
(Suspend Mode)
SHUNT
POSITION
SUS PIN
EFFECT
1 and 2
Connected to VCC
The suspend mode VID
code, as programmed by
S0 and S1, is delivered to
the DAC.
2 and 3
Connected to GND
The suspend mode
multiplexer is not used.
______________________________________________________________________________________
MAX1994 Evaluation Kit
Evaluates: MAX1816/MAX1980/MAX1994
Figure 2. MAX1994 EV Kit Component Placement Guide—Top Silkscreen
______________________________________________________________________________________
11
Evaluates: MAX1816/MAX1980/MAX1994
MAX1994 Evaluation Kit
Figure 3. MAX1994 EV Kit PC Board Layout—Component Side
12
______________________________________________________________________________________
MAX1994 Evaluation Kit
Evaluates: MAX1816/MAX1980/MAX1994
Figure 4. MAX1994 EV Kit PC Board Layout—GND Layer 2
______________________________________________________________________________________
13
Evaluates: MAX1816/MAX1980/MAX1994
MAX1994 Evaluation Kit
Figure 5. MAX1994 EV Kit PC Board Layout—GND Layer 3
14
______________________________________________________________________________________
MAX1994 Evaluation Kit
Evaluates: MAX1816/MAX1980/MAX1994
Figure 6. MAX1994 EV Kit PC Board Layout—Solder Side
______________________________________________________________________________________
15
Evaluates: MAX1816/MAX1980/MAX1994
MAX1994 Evaluation Kit
Figure 7. MAX1994 EV Kit Component Placement Guide—Bottom Silkscreen
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2002 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.