HA12226F/HA12227F Audio Signal Processor for Cassette Deck (Dolby B-type NR with Recording System) REJ03F0133-0600 Previous: ADE-207-270E Rev.6.00 Jun 15, 2005 Description The HA12226F/HA12227F are silicon monolithic bipolar IC providing Dolby noise reduction system*1, music sensor system, REC equalizer system and each electronic control switch in one chip. Note: 1. Dolby is a trademark of Dolby Laboratories Licensing Corporation. A license from Dolby Laboratories Licensing Corporation is required for the use of this IC. The HA12227F is not built-in Dolby B-NR. Functions • Dolby B-NR*2 × 2 channel • REC equalizer × 2 channel • Music sensor × 1 channel • Pass amp. × 2 channel • Each electronic control switch to change REC equalizer, bias, etc. Note: 2. The HA12227F is not built-in Dolby B-NR. Features • • • • • • • • • • REC equalizer is very small number of external parts and have 4 types of frequency characteristics built-in. 2 types of input for PB, 1 type of input for REC. 70µ - PB equalizer changing system built-in. Dolby NR*2 with dubbing double cassette decks. Unprocessed signal output available from recording out terminals during PB mode. Provide stable music sensor system, available to design music sensing time and level. Controllable from direct micro-computer output. Bias oscillator control switch built-in. NR ON / OFF and REC / PB fully electronic control switching built-in. Normal-speed / high-speed, Normal / Crom and PB equalizer fully electronic control switching built-in. Available to reduce substrate-area because of high integration and small external parts. Rev.6.00 Jun 15, 2005 page 1 of 83 HA12226F/HA12227F Ordering Information Operating Voltage Product Power Supply Range (Single Supply) HA12226F HA12227F 11.0 V to 15.0 V 9.5 V to 15.0 V Standard Level Product HA12226F HA12227F Package Code FP-56A PB-OUT Level 580 mVrms REC-OUT Level 300 mVrms Dolby Level 300 mVrms Function Product HA12226F Dolby B-NR ❍ HA12227F × REC-EQ REC / PB Selection ❍ Music Sensor ❍ Pass Amp. ❍ ALC ❍ ❍ ❍ ❍ ❍ ❍ ❍ Note: Depending on the employed REC / PB head and test tape characteristics, there is a rare case that the REC-EQ characteristics of this LSI can not be matched to the required characteristics because of built-in resistors which determined the REC-EQ parameters in this case, please inquire the responsible agent because the adjustment built-in resistor is necessary. Difference of HA12215F and HA12226F/HA12227F Product HA12226F/HA12227F HA12215F Supply Voltage Single supply voltage Split supply voltage Tape Correspondence NORM CROM ❍ ❍ ❍ ❍ METAL × ❍ Note: The HA12226F/HA12227F became single power supply for the HA12215F and deleted metal correspondence. The HA12227F is not built-in Dolby B-NR. Other characteristic aspects are similar as the HA12215F. Rev.6.00 Jun 15, 2005 page 2 of 83 HA12226F/HA12227F Pin Description, Equivalent Circuit (VCC = 12 V, A system of single supply voltage, Ta = 25°C, No Signal, The value in the show typical value.) Pin No. 51 Terminal Name AIN (R) Note V = VCC / 2 Equivalent Circuit Pin Description PB A Deck input V 100k VCC/2 48 AIN (L) 53 46 BIN (R) BIN (L) PB B Deck input 56 RIN (R) REC input 43 5 RIN (L) EQIN (R) REC equalizer input 38 EQIN (L) 1 *2 DET (R) V = 2.7 V VCC Time constant pin for DolbyNR V GND 42 *2 49 2 *3 DET (L) RIP BIAS1 Ripple filter Dolby bias current input V = 0.6 V V 41 BIAS2 GND V = 1.3 V REC equalizer bias current input V Rev.6.00 Jun 15, 2005 page 3 of 83 GND HA12226F/HA12227F Pin Description, Equivalent Circuit (cont.) (VCC = 12 V, A system of single supply voltage, Ta = 25°C, No Signal, The value in the show typical value.) Pin No. 3 Terminal Name PBOUT (R) Note V = VCC / 2 Equivalent Circuit Pin Description VCC PB output V GND 40 PBOUT (L) 4 39 RECOUT (R) RECOUT (L) REC output 7 36 EQOUT (R) EQOUT (L) REC equalizer output 28 8 MAOUT ROUT (R) MS Amp. output *1 Input Amp. output 35 52 ROUT (L) ABO (R) R1 = 15 k R2 = 12 k V = VCC / 2 VCC V R1 Time constant pin for PB equalizer (70µ) R2 GND 47 6 ABO (L) BOOST (R) 37 32 BOOST (L) BIAS (C) Time constant pin for low boost R1 = 4.8 k R2 = 4.8 k V = VCC / 2 V = VCC − 0.7 V VCC REC bias current output V 33 21 50 31, 45, 54 BIAS (N) VCC GND NC V = VCC V=0V No connection Rev.6.00 Jun 15, 2005 page 4 of 83 Power supply GND pin No connection HA12226F/HA12227F Pin Description, Equivalent Circuit (cont.) (VCC = 12 V, A system of single supply voltage, Ta = 25°C, No Signal, The value in the show typical value.) Pin No. 15 Terminal Name ALC ON/OFF Note I = 20 µA Equivalent Circuit Pin Description Mode control input I V 22 k 100 k GND 16 17 18 19 20 22 23 *2 25 24 PB A/B A 120/70 NORM/HIGH B NORM/CROM BIAS ON/OFF RM ON/OFF NR ON/OFF LM ON/OFF REC/PB/PASS 2.5 V 100 k Mode control input + − 100 k 22 k V 26 MSOUT I = 0 µA MS output (to MPU) *1 VCC V I D GND 10 GPCAL R = 110 kΩ GP gain calibration terminal R 11 12 RECCAL ALCCAL R = 110 kΩ R = 140 kΩ 14 MSDET n=6 2.5 V REC gain calibration terminal ALC operation level calibration terminal 0 µA VCC n GND 13 ALCDET n=2 Rev.6.00 Jun 15, 2005 page 5 of 83 Time constant pin for MS *1 HA12226F/HA12227F Pin Description, Equivalent Circuit (cont.) (VCC = 12 V, A system of single supply voltage, Ta = 25°C, No Signal, The value in the show typical value.) Pin No. 27 Terminal Name MSIN Note R = 50 kΩ Equivalent Circuit Pin Description 1 MS input * VCC V R VCC/2 9 ALCIN (R) R = 100 kΩ 34 30 ALCIN (L) MAI V = VCC / 2 MAOUT VCC MS Amp. input *1 100 k V MAI 8.2 k VCC/2 29 MS GND V=0V MS output voltage level 1 control pin * 55 ALC (R) V=0V Variable impedance for attenuation 44 ALC (L) Notes: 1. MS: Music Sensor 2. Non connection regarding the HA12227F. 3. Test pin regarding the HA12227F. Rev.6.00 Jun 15, 2005 page 6 of 83 HA12226F/HA12227F Block Diagram MSGND MAI NC BIAS (C) BIAS (N) ALCIN (L) ROUT (L) EQOUT (L) BOOST (L) EQIN (L) RECOUT (L) PBOUT (L) BIAS2 DET (L) HA12226F 42 41 40 39 38 37 36 35 34 33 32 31 30 29 RIN (L) 43 ALC (L) 44 EQ BIAS Dolby B-NR 28 MAOUT 27 MSIN 26 MSOUT MS NC 45 BIN (L) 46 25 LM ON / OFF ABO (L) 47 24 REC / PB / PASS AIN (L) 48 23 NR ON / OFF 22 RM ON / OFF RIP − + 49 + LPF GND 50 21 VCC AIN (R) 51 20 BIAS ON / OFF ABO (R) 52 19 B NORM / CROM BIN (R) 53 18 NORM / HIGH NC 54 17 A 120 / 70 ALC (R) 55 16 PB A / B RIN (R) 56 15 ALC ON / OFF ALC Dolby B-NR 5 6 7 8 9 10 11 12 13 14 BIAS1 PBOUT (R) RECOUT (R) EQIN (R) BOOST (R) EQOUT (R) ROUT (R) ALCIN (R) GPCAL Rev.6.00 Jun 15, 2005 page 7 of 83 MSDET 4 ALCDET 3 ALCCAL 2 RECCAL 1 DET (R) EQ HA12226F/HA12227F MSGND MAI NC BIAS (C) BIAS (N) ALCIN (L) ROUT (L) EQOUT (L) BOOST (L) EQIN (L) RECOUT (L) PBOUT (L) BIAS2 NC HA12227F 42 41 40 39 38 37 36 35 34 33 32 31 30 29 RIN (L) 43 ALC (L) 44 EQ BIAS 28 MAOUT 27 MSIN MS NC 45 26 MSOUT BIN (L) 46 25 LM ON / OFF ABO (L) 47 24 REC / PB / PASS AIN (L) 48 23 NC 22 RM ON / OFF RIP − + 49 + LPF GND 50 21 VCC AIN (R) 51 20 BIAS ON / OFF ABO (R) 52 19 B NORM / CROM BIN (R) 53 18 NORM / HIGH NC 54 17 A 120 / 70 ALC (R) 55 16 PB A / B RIN (R) 56 15 ALC ON / OFF ALC 5 6 7 8 9 10 11 12 13 14 Test mode pin PBOUT (R) RECOUT (R) EQIN (R) BOOST (R) EQOUT (R) ROUT (R) ALCIN (R) GPCAL Rev.6.00 Jun 15, 2005 page 8 of 83 MSDET 4 ALCDET 3 ALCCAL 2 RECCAL 1 NC EQ HA12226F/HA12227F Parallel-Data Format Pin No. 15 16 17 22 20 23 *2 24 25 18 19 Pin Name ALC ON/OFF PB A/B A 120/70 RM ON/OFF BIAS ON/OFF NR ON/OFF REC/PB/PASS LM ON/OFF NORM/HIGH B NORM/CROM Lo ALC ON Ain *1 *1 REC MUTE ON BIAS OFF NR OFF REC MODE LINE MUTE OFF Normal speed 1 REC EQ Normal * Bias Normal Mid PB MODE Hi ALC OFF Bin *1 *1 REC MUTE OFF BIAS ON NR ON REC MODE PASS LINE MUTE ON High speed REC EQ CROM *1 Bias CROM REC EQ CROM *1 Bias CROM Notes: 1. PB EQ logic A 120/70 Lo B NORM / CROM Lo PB Lo FLAT Hi FLAT Lo Hi Mid or Hi Lo FLAT 70 µ 70 µ FLAT Hi Mid or Hi 70 µ 70 µ 2. The HA12226F only. Rev.6.00 Jun 15, 2005 page 9 of 83 MODE "Pin Open" Lo Lo Lo Lo Lo Lo Mid Lo Lo Lo HA12226F/HA12227F Functional Description Power Supply Range These ICs are designed to operate on single supply. Table 1 Supply Voltage Product HA12226F HA12227F Power Supply Range (Single Supply) 11.0 V to 15.0 V 9.5 V to 15.0 V Note: The lower limit of supply voltage depends on the line output reference level. The minimum value of the overload margin is specified as 12 dB by Dolby Laboratories (Dolby IC HA12226F). Reference Voltage The reference voltage are provided for the left channel and the right channel separately. The block diagram is shown as figure 1. 21 VCC + − L channel reference + − VCC Music sensor reference + − R channel reference 50 GND 49 RIP 1µ + Unit C: F Figure 1 Reference Voltage Operating Mode Control The HA12226F/HA12227F provide fully electronic switching circuits. And each operating mode control is controlled by parallel data (DC voltage). Table 2 Control Voltage Pin No. 15, 16, 17, 18, 20, 22, 23*4, 25 19, 24 Lo −0.2 to 1.0 Mid Hi 4.0 to VCC Unit V −0.2 to 1.0 2.0 to 3.0 4.0 to VCC V Test Condition Input Pin Measure Notes: 1. Each pins are on pulled down with 100 kΩ internal resistor. Therefore, it will be low-level when each pins are open. But pin 24 is mid-level when it is open. 2. Over shoot level and under shoot level of input signal must be the standardized (High: VCC, Low: −0.2 V). 3. For reduction of pop noise, connect 1 µF to 22 µF capacitor with mode control pins. But it is impossible to reduce completely in regard to Line mute, therefore, use external mute at the same time. 4. Non connection regarding the HA12227F. Rev.6.00 Jun 15, 2005 page 10 of 83 HA12226F/HA12227F Input Block Diagram and Level Diagram The each level shown above is typical value when offering PBOUT level to PBOUT pin. MS REF 300mVrms AIN 21.3dB BIN REC PB PASS/REC, PB=5.7dB/5.7dB FLAT (120µ) 300mVrms PB/REC, PASS=0dB/21.4dB 300mVrms PB Dolby *1 B-NR REC PASS 300mVrms 0dB 25.9mVrms PASS R3 70µs 12k R4 15k PBOUT 580mVrms RECOUT 300mVrms ALC 25.5mVrms C2 4700pF C1 0.1µF R1 15k RIN 200mVrms R2 C3 2.2k 0.1µF Note: 1. The HA12227F is not built-in Dolby B-NR. Figure 2 Input Block Diagram PB Equalizer By switching logical input level of pin 17 (for Ain) and pin 19 (for Bin), you can equalize corresponding to tape position at play back mode. GV t1 = C2 ⋅ (12k + 15k) t2 = C2 ⋅ 15k t1 t2 f Figure 3 Frequency Characteristic of PB Equalizer Rev.6.00 Jun 15, 2005 page 11 of 83 HA12226F/HA12227F The Sensitivity Adjustment of Music Sensor Adjusting MS Amp gain by external resistor, the sensitivity of music sensor can set up. REP VCC R13 330k MA OUT MSIN + C13 0.33µ + C16 1000p D VCC PB (L) MAI 100k 8.2k −6dB − + RL MS DET MS OUT DET Microcomputer MS AMP GND LPF 25kHz 50k GND PB (R) Figure 4 Music Sensor Block Diagram The Sensitivity of Music Sensor A standard level of MS input pin 25.9 mVrms, therefore, the sensitivity of music sensor (S) can request it, by lower formulas. A = MS Amp Gain*1 C S = 20log B = PB input Gain × (1/2)*2 25.9 ⋅A⋅B C = Sensed voltage 20log (A × B) = D [dB] S = 14 − D [dB] C = 130 [mVrms] (Intenally voltage in a standard) PB input Gain = 21.3 [dB] [dB] Notes: 1. When there is not a regulation outside. 2. Case of one-sided channel input. But necessary to consider the same attenuation quantity practically, on account of A(B) have made frequency response. GV 37.7dB 1 [Hz] 2π ⋅ C16 ⋅ 50k f2 = 25k [Hz] f1 = f1 f2 f Figure 5 Frequency Characteristic of MSIN Occasion of the external component of figure 4, f1 is 3.18 kHz. Rev.6.00 Jun 15, 2005 page 12 of 83 HA12226F/HA12227F Time constant of detection Attack Recovery Attack C13 R13 (1) (2) Detection time Recovery Detection time Detection time Figure 6(1) generally shows that detection time is in proportion to value of capacitor C13. But, with Attack*1 and Recovery*2 the detection time differs exceptionally. Notes: 1. Attack : Non-music to Music 2. Recovery : Music to Non-music Recovery Detection level Attack Input level (3) Figure 6 Function Characteristic of MS Like the figure 6(2), Recovery time is variably possible by value of resistor R13. But Attack time gets about fixed value. Attack time has dependence by input level. When a large signal is inputted, Attack time is short tendency. Music Sensor Output (MSOUT) As for internal circuit of music sensor block, music sensor output pin is connected to the collector of NPN type directly, output level will be “high” when sensing no signal. And output level will be “low” when sensing signal. Connection with microcomputer, it is requested to use external pull up resistor (RL = 10 kΩ to 22 kΩ) Note: Supply voltage of MSOUT pin must be less than VCC voltage. The Tolerances of External Components for Dolby NR-Block (Only the HA12226F) For Dolby NR precision securing, please use external components shown at figure 7. If leak-current are a few electrolytic-capacitor, it can be applicable to C5 and C23. C23 0.1µ ±10% 42 DET (L) HA12226F DET (R) 1 C5 0.1µ ±10% BIAS1 2 R5 33k ±2% Figure 7 Tolerance of External Components Rev.6.00 Jun 15, 2005 page 13 of 83 HA12226F/HA12227F Low-Boost EQIN 24.6dB 4.8k REC EQ EQOUT 4.8k BOOST C9(C19) 0.47µ + Figure 8 Example of Low Boost Circuit External components shown figure 8 gives frequency response to take 6 dB boost. And cut off frequency can request it, by C9 (C19). REC Equalizer The outlines of REC Equalizing frequency characteristics are shown by figure 9. Those peak level can be set up by supplying voltage. (0 V to 5 V, GND = 0 V) to pin 10 (GPCAL). And whole band gain can be set up by supplying voltage (0 V to 5 V, GND = 0 V) to pin 11 (RECCAL). Both setting up range are ±4.5 dB. In case that you do not need setting up, pin 10, pin 11 should be open bias. Note: Depending on the employed REC/PB head and test tape characteristics, there is a rare case that the REC-EQ characteristics of this LSI can not be matched to the required characteristics because of built-in resistors which determined the REC-EQ parameters in this care, please inquire the responsible agent because of the adjustment of built-in resistor is necessary. RECCAL Gain (dB) GPCAL Frequency (Hz) Figure 9 Frequency Characteristics of REC Equalizer Bias Switch The HA12215F built-in DC voltage generator for bias oscillator and its bias switches. External resistor R20, R21 which corresponded with tape positions and bias out voltage are relater with below. Vbias =.. R22 × (VCC − 0.7) [V] (R20 or R21) + R22 Bias switch follows to a logic of pin 19 (B / Norm / Crom). Note: A current that flows at bias out pin, please use it less than 5 mA. Rev.6.00 Jun 15, 2005 page 14 of 83 HA12226F/HA12227F BIAS (N) Pin 33 BIAS (C) Pin 32 R21 Vbias R20 R22 Figure 10 External Components of Bias Block Automatic Level Control ALC is the input decay rate variable system. It has internal variable resistors of pin 55 (pin 44) by RECOUT signal that is inputted to pin 9 (pin 34). The operation is similitude to MS, detected by pin 13. The signal input pin is pin 56 (pin 43). Resistor R1, R2 and capacitor C2, external components, for the input circuit are commended as figure 12. There are requested to use value of the block diagram figure for performance maintenance of S/N, T.H.D. etc. Figure 11 shows the relation with R1 front RIN point and ROUT. ALC operation level acts for the center of +4.5 dB at tape position TYPE I and the center of + 2.5 dB at tape position TYPE II, to standard level (300 mVrms). Then, adopted maximum value circuit, ALC is operated by a large channel of a signal. ROUT ALC ON/OFF can switch it by pin 15. Please do ALC ON, after it does for one time ALC OFF inevitably, for ALC time to start usefully (when switching PB → PASS, when switching PB → PASS), in order to reset ALC circuit. 300mV TYPE II 2.5dB TYPE I 4.5dB RIN Figure 11 ALC Operation Level RIN 56 Input C2 0.1µ 55 R2 2.2k 25.5mV ALC 21.4dB ROUT 300mV 8 Output ALC 9 C4 13 ALCIN ALCDET R12 VCC + R1 15k C12 Figure 12 ALC Block Diagram Rev.6.00 Jun 15, 2005 page 15 of 83 HA12226F/HA12227F ALC Operation Level Necessary ALC operation level is variable to pin 12 bias (ALC-CAL: 0 to 5 V), and its range is ±4.0 dB. Unnecessary, pin 12 is unforced. ROUT ALC-CAL = 5V ALC-CAL = 0V RIN Figure 13 ALC-CAL Characteristics About a Test Pin (Pin 2) The HA12227F does for testing exclusive terminal for pin 2. In mount circuit, this terminal is open or connected to GND with a resistor of 33 kΩ. Absolute Maximum Ratings Item Max supply voltage Power dissipation Operating temperature Storage temperature Symbol VCC max Pd Topr Tstg Rev.6.00 Jun 15, 2005 page 16 of 83 Rating 16 625 −40 to +75 −55 to +125 Unit V mW °C °C Note Ta ≤ 75°C Rev.6.00 Jun 15, 2005 page 17 of 83 A/B A/B A A A A A A A A A A A A/B A A A/B A A A A A A A 120 120 120 70 70 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 OFF OFF ON OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF B N/C NORM NORM NORM CROM CROM NORM NORM NORM NORM CROM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM Notes: 1. Other IC-condition : REC-MUTE OFF, Normal tape, Normal speed, Bias OFF 2. VCC = 11.0 V 3. For inputting signal to one side channel MS sensing level MS output low level MS output leak current ALC operate level OFF OFF OFF OFF OFF OFF OFF OFF ON ON PASS PASS PB PB PB PB PB PB REC REC GV PA ∆GV MUTE GV EQ 1k GV EQ 10k VON VOL IOH ALC (1) ALC (2) OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF PB PB REC REC REC REC REC REC REC Pass AMP. gain Gain deviation MUTE ATT. 70µ EQ gain OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF REC PB OFF OFF REC PB OFF OFF REC/PB OFF OFF OFF ON ON ON ON ON ON ON OFF OFF OFF OFF GV PB GV REC ENC 2k (1) ENC 2k (2) ENC 5k (1) ENC 5k (2) Vo max S/N IQ Symbol Total Harmonic Distortion THD Channel separation CTRL (1) CTRL (2) Crosstalk CT A/B CT R/P Signal handling Signal to noise ratio B-type Encode boost Input AMP. gain Item Quiescent current IC Condition *1 ALC REC/PB NR 120µ/ LINE ON/OFF ON/OFF /PASS A/B 70µ MUTE Test Condition 0 0 −20 −30 −20 −30 0 +12 +12 +12 +12 0 0 +12 0 0 +12 +12 1k 1k 2k 2k 5k 5k 1k 1k 1k 1k 1k 1k 1k 1k 1k 1k 1k 10k 5k 1k 1k fin RECOUT (Hz) level (dB) 0.05 0.3 80.0 85.0 80.0 80.0 70.0 70.0 70.0 70.0 43 48 43 48/46 48/43 4 3 3 3 3 dB 51/53 48/46 3 dB 51/53 48/46 3 dB 51 48 3 dB 51 48 3 51 48 3 dB 51 48 3 51 48 V µA 4 dB 56 43 4 56 43 56 51 56 dB 51/53 51/56 % dB Max Unit R L R 35.0 mA 28.5 dB 51/53 48/46 3 28.0 3 56 43 5.8 dB 56 43 4 10.0 56 43 4 4.7 56 43 4 9.7 56 43 4 4 dB 56 43 4 dB 56 43 Typ 26.0 27.0 26.5 4.3 8.5 3.2 8.2 13.0 70.0 Min 18.0 25.5 25.0 2.8 7.0 1.7 6.7 12.0 64.0 25.5 27.0 28.5 GV PA − GV PB −1.0 0.0 1.0 70.0 80.0 24.0 25.5 27.0 20.8 22.3 23.8 −26.0 −22.0 −18.0 1.0 1.5 2.0 2.0 4.5 7.0 0.0 2.5 5.0 THD=1% Rg=5.1kΩ, CCIR/ARM Other No signal 40 40 40 40 40 40 39 39 39 40 40 40 40 26 26 26 3 L COM Remark 21 40 40 39 39 39 39 39 2 39 Application Terminal Input Output (Ta = 25°C, VCC = 12 V, Dolby Level = REC-OUT Level = 300 mVrms = 0 dB) HA12226F/HA12227F Electrical Characteristics HA12226F Symbol S/N (EQ) Rev.6.00 Jun 15, 2005 page 18 of 83 0.1 1.0 3.0 VCC −0.1 0.0 −0.2 2.0 4.0 RL = 2.2kΩ VIL VIM VIH V V V V dB dB V −4.0 −3.0 3.0 4.0 VCC VCC −1.4 −0.7 Bias off Bias out maximum level ALC CAL response Bias out offset ALC (1) = 0dB dB dB dB −6.0 −4.5 −3.0 6.0 Control voltage f = 12kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF VGP-CAL = 5V 4.5 −6.0 −4.5 −3.0 NORM NORM f = 12kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF GV EQ-NN3 = 0dB 3.0 VGP-CAL = 0V SW22 (L), SW23 (R) OFF 23.9 dB 28.4 dB 22.7 dB 27.5 dB 31.5 dB dB 6.0 dB 21.9 25.9 21.2 25.5 29.0 70 4.5 19.9 23.4 19.7 23.5 26.5 60 3.0 NORM NORM f = 1kHz, VALC-CAL = 0V f = 1kHz, VALC-CAL = 5V RL = 2.2kΩ GP-CAL2 GP-CAL1 f = 3kHz, Vin = −46dBs, VREC-CAL = 0V 0.5 % % 0.5 500 mV 21.8 dB 27.9 dB 35.1 dB 26.3 dB 32.5 dB 39.0 dB 18.0 dB 0.2 0.2 0 20.3 25.9 32.6 24.8 30.5 36.5 16.5 −500 18.8 23.9 30.1 23.3 28.5 34.0 15.0 dB 10.5 12.5 Min Typ Max Unit dB 55 58 ALC-CAL1 ALC-CAL2 Bias on GP CAL response R-CAL2 TAPE SPEED NORM NORM Rg = 5.1kΩ, A-WTG Filter SW22 (L), SW23 (R) OFF (0dB = −5dBs at EQOUT) Equalizer maximum input Vin max (EQ) NORM NORM f = 1kHz, THD = 1%, SW22 (L), SW23 (R) OFF Vin = −26dBs = 0dB Equalizer total harmonic T.H.D.1 (EQ) NORM NORM f = 1kHz, Vin = −26dBs SW22 (L), SW23 (R) OFF distortion f = 1kHz, Vin = −30dBs SW22 (L), SW23 (R) OFF T.H.D.2 (EQ) Equalizer offset voltage Vofs (EQ) NORM NORM No-Signal SW22 (L), SW23 (R) OFF Equalizer SW22 (L), SW23 (R) OFF GVEQ-NN1 NORM NORM f = 3kHz, Vin = −46dBs frequency response f = 8kHz, Vin = −46dBs GVEQ-NN2 SW22 (L), SW23 (R) OFF (NORM - NORM) f = 12kHz, Vin = −46dBs SW22 (L), SW23 (R) OFF GVEQ-NN3 SW22 (L), SW23 (R) OFF CROM NORM f = 3kHz, Vin = −46dBs Equalizer GVEQ-CN1 frequency response SW22 (L), SW23 (R) OFF f = 8kHz, Vin = −46dBs GVEQ-CN2 (CROM - NORM) f = 12kHz, Vin = −46dBs GVEQ-CN3 SW22 (L), SW23 (R) OFF Equalizer GVEQ-NH1 SW22 (L), SW23 (R) OFF NORM HIGH f = 5kHz, Vin = −46dBs frequency response f = 15kHz, Vin = −46dBs G SW22 (L), SW23 (R) OFF VEQ-NH2 (NORM - High) f = 20kHz, Vin = −46dBs GVEQ-NH3 SW22 (L), SW23 (R) OFF GVEQ-CH1 SW22 (L), SW23 (R) OFF Equalizer CROM HIGH f = 5kHz, Vin = −46dBs frequency Response f = 15kHz, Vin = −46dBs GVEQ-CH2 SW22 (L), SW23 (R) OFF (CROM - High) f = 20kHz, Vin = −46dBs GVEQ-CH3 SW22 (L), SW23 (R) OFF REC-MUTE attenuation REC-MUTE NORM NORM f = 1kHz, Vin = −14dBs SW22 (L), SW23 (R) OFF NORM NORM f = 3kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF GV EQ-NN1 = 0dB REC CAL response R-CAL1 VREC-CAL = 5V Item Equalizer S/N Test Condition 38 38 38 38 38 5 5 5 5 5 43 43 38 38 56 56 5 5 38 38 38 38 38 38 38 38 38 38 38 5 5 5 5 5 5 5 5 5 5 5 38 38 38 5 5 5 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 32, 33 39 39 32, 33 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 19, 24 15 to 20 22 to 25 15 to 20 22 to 25 Application Terminal Input Output R L R L COM Remark 5 38 7 36 (Ta = 25°C, VCC = 12 V) HA12226F/HA12227F HA12226F (cont.) IQ Symbol Rev.6.00 Jun 15, 2005 page 19 of 83 PASS GV PA PASS ∆GV PB MUTE PB GV EQ 1k PB GV EQ 10k PB VON PB VOL PB IOH REC ALC (1) REC ALC (2) PB REC REC REC REC PB REC PB REC/PB PB OFF OFF OFF OFF OFF OFF OFF OFF ON ON A/B A/B A A A A A A A A 120 120 120 70 70 120 120 120 120 120 OFF OFF ON OFF OFF OFF OFF OFF OFF OFF NORM NORM NORM CROM CROM NORM NORM NORM NORM CROM Notes: 1. Other IC-condition : REC-MUTE OFF, Normal tape, Normal speed, Bias OFF 2. VCC = 11.0 V 3. For inputting signal to one side channel MS sensing level MS output low level MS output leak current ALC operate level Pass AMP. gain Gain deviation MUTE ATT. 70µ EQ gain GV PB GV REC Signal handling Vo max Signal to noise ratio S/N Total Harmonic Distortion THD CTRL (1) Channel separation CTRL (2) CT A/B Crosstalk CT R/P Input AMP. gain Item Quiescent current REC/PB /PASS 1k 1k 1k 1k 10k 5k 1k 1k 0 0 +12 0 0 +12 +12 GV PA − GV PB Test Condition IC Condition *1 fin RECOUT ALC 120µ/ LINE B ON/OFF A/B (Hz) level (dB) 70µ MUTE N/C Other 120 OFF NORM OFF A No signal OFF A/B 120 OFF NORM 1k 0 OFF A 120 OFF NORM 1k 0 OFF A 120 OFF NORM 1k THD=1% OFF A 120 OFF NORM 1k Rg=5.1kΩ, CCIR/ARM OFF A 120 OFF NORM 1k 0 OFF A 120 OFF NORM 1k +12 OFF A 120 OFF NORM 1k +12 OFF A/B 120 OFF NORM 1k +12 OFF A 120 OFF NORM 1k +12 27.0 28.5 26.5 28.0 13.0 70.0 0.05 0.3 80.0 85.0 80.0 80.0 25.5 27.0 28.5 −1.0 0.0 1.0 70.0 80.0 24.0 25.5 27.0 20.8 22.3 23.8 −26.0 −22.0 −18.0 1.0 1.5 2.0 2.0 4.5 7.0 0.0 2.5 5.0 25.5 25.0 12.0 64.0 70.0 70.0 70.0 70.0 R 48/46 43 43 43 43 48 43 48/46 48/43 L 3 3 4 4 4 3 3 3 3 R 40 40 40 40 40 40 39 39 40 40 39 39 39 40 40 40 40 26 26 26 3 2 L COM Remark 21 Output dB 51/53 48/46 3 dB 51/53 48/46 3 dB 51 48 3 dB 51 48 3 3 51 48 dB 51 48 3 V 51 48 µA dB 56 43 4 4 56 43 dB 51/53 56 dB 56 dB 56 % 56 dB 51 56 dB 51/53 51/56 Min Typ Max Unit 14.0 22.0 30.0 mA Input Application Terminal (Ta = 25°C, VCC = 12 V, Dolby Level = REC-OUT Level = 300 mVrms = 0 dB) HA12226F/HA12227F HA12227F Symbol S/N (EQ) Rev.6.00 Jun 15, 2005 page 20 of 83 0.1 1.0 3.0 VCC −0.1 0.0 −0.2 2.0 4.0 RL = 2.2kΩ VIL VIM VIH V V V V dB dB V −4.0 −3.0 3.0 4.0 VCC VCC −1.4 −0.7 Bias off Bias out maximum level ALC CAL response Bias out offset ALC (1) = 0dB dB −6.0 −4.5 −3.0 Control voltage f = 12kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF VGP-CAL = 5V dB dB 6.0 4.5 −6.0 −4.5 −3.0 23.9 dB 28.4 dB 22.7 dB 27.5 dB 31.5 dB dB 6.0 dB 21.9 25.9 21.2 25.5 29.0 70 4.5 19.9 23.4 19.7 23.5 26.5 60 3.0 NORM NORM f = 12kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF GV EQ-NN3 = 0dB 3.0 VGP-CAL = 0V SW22 (L), SW23 (R) OFF 0.5 % % 0.5 500 mV 21.8 dB 27.9 dB 35.1 dB 26.3 dB 32.5 dB 39.0 dB 18.0 dB 0.2 0.2 0 20.3 25.9 32.6 24.8 30.5 36.5 16.5 −500 18.8 23.9 30.1 23.3 28.5 34.0 15.0 dB 10.5 12.5 Min Typ Max Unit dB 55 58 NORM NORM f = 1kHz, VALC-CAL = 0V f = 1kHz, VALC-CAL = 5V RL = 2.2kΩ GP-CAL2 GP-CAL1 f = 3kHz, Vin = −46dBs, VREC-CAL = 0V TAPE SPEED NORM NORM Rg = 5.1kΩ, A-WTG Filter SW22 (L), SW23 (R) OFF (0dB = −5dBs at EQOUT) NORM NORM f = 1kHz, THD = 1%, SW22 (L), SW23 (R) OFF Vin = −26dBs = 0dB NORM NORM f = 1kHz, Vin = −26dBs SW22 (L), SW23 (R) OFF f = 1kHz, Vin = −30dBs SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF NORM NORM No-Signal SW22 (L), SW23 (R) OFF NORM NORM f = 3kHz, Vin = −46dBs f = 8kHz, Vin = −46dBs SW22 (L), SW23 (R) OFF f = 12kHz, Vin = −46dBs SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF CROM NORM f = 3kHz, Vin = −46dBs SW22 (L), SW23 (R) OFF f = 8kHz, Vin = −46dBs f = 12kHz, Vin = −46dBs SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF NORM HIGH f = 5kHz, Vin = −46dBs f = 15kHz, Vin = −46dBs SW22 (L), SW23 (R) OFF f = 20kHz, Vin = −46dBs SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF CROM HIGH f = 5kHz, Vin = −46dBs f = 15kHz, Vin = −46dBs SW22 (L), SW23 (R) OFF f = 20kHz, Vin = −46dBs SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF NORM NORM f = 1kHz, Vin = −14dBs NORM NORM f = 3kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF GV EQ-NN1 = 0dB VREC-CAL = 5V ALC-CAL1 ALC-CAL2 Bias on GP CAL response R-CAL2 Equalizer total harmonic T.H.D.1 (EQ) distortion T.H.D.2 (EQ) Equalizer offset voltage Vofs (EQ) Equalizer GVEQ-NN1 frequency response GVEQ-NN2 (NORM - NORM) GVEQ-NN3 Equalizer GVEQ-CN1 frequency response GVEQ-CN2 (CROM - NORM) GVEQ-CN3 Equalizer GVEQ-NH1 frequency response GVEQ-NH2 (NORM - High) GVEQ-NH3 Equalizer GVEQ-CH1 frequency Response GVEQ-CH2 (CROM - High) GVEQ-CH3 REC-MUTE attenuation REC-MUTE REC CAL response R-CAL1 Equalizer maximum input Vin max (EQ) Item Equalizer S/N Test Condition 38 38 38 38 38 5 5 5 5 5 43 43 38 38 56 56 5 5 38 38 38 38 38 38 38 38 38 38 38 5 5 5 5 5 5 5 5 5 5 5 38 38 38 5 5 5 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 32, 33 39 39 32, 33 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 19, 24 15 to 20 22 to 25 15 to 20 22 to 25 Application Terminal Input Output R L R L COM Remark 5 38 7 36 (Ta = 25°C, VCC = 12 V) HA12226F/HA12227F HA12227F (cont.) OFF ON SW2 Rch SW4 EQ R2 10k RIN (R) R B C27 0.47µ C30 1µ C2 0.0047µ C1 0.47µ R4 13k C4 0.1µ R3 2.2k ALC (R) C3 0.47µ + A BIN (R) C26 0.0047µ C25 0.47µ + R1 10k AIN (R) R33 10k R31 2.2k 56 55 54 53 52 51 50 49 48 47 46 45 44 C5 0.1µ GND RIP 2.2µ 0.47µ C20 JP3 OFF SW 22 ON C18 2.2µ EQ C17 0.47µ R22 2.4k R21 2k C R20 910 SW21 N 1 R5 33k REC R6 10k + 3 C6 2.2µ EQ R8 7.5k R9 16k R10 5.1k PB SW8 REC R11 10k EQ 8 6 7 5 + SW ON 23 0.47µ JP1 OFF + + C10 C9 2.2µ 0.47µ R7 20k + C8 4 C7 2.2µ 9 C11 0.47µ LPF ROUT (R) PB SW6 2 EQ Dolby B-NR + Dolby B-NR EQ ALC − + MS R12 1M C12 10µ R13 330k 10 11 12 13 14 BIAS 42 41 40 39 38 37 36 35 34 33 32 31 30 29 2.2µ R25 16k C21 R24 5.1k R27 20k C19 0.47µ REC SW7 PB ALCDET Notes: 1. Resistor tolerance are ±1%. 2. Capacitor tolerance are ±1%. 3. Unit R: Ω, C: F. SW1 BIN (L) R32 10k B AIN (L) A R + AC VM1 Audio SG Lch SW3 EQ 43 RIN (L) ALC (L) C24 0.1µ R30 13k + + C23 0.1µ R28 10k C22 + R29 22k R26 7.5k + REC + EQ + Rev.6.00 Jun 15, 2005 page 21 of 83 + C15 22µ C14 22µ VCC C13 0.33µ 15 SW9 16 SW10 17 SW11 18 SW12 19 SW13 20 SW14 21 22 23 24 SW17 MAOUT R18 3.9k DC VM2 ON A OFF 120 B N 70 OFF C C N H ON ALC ON / OFF PB A / B A 120 / 70 NORM / HIGH B NORM / CROM BIAS ON / OFF SW19 Rch Lch DC VM1 JP2 DC +12V SOURCE1 R14 10k R15 10k DC +5V SOURCE4 DC +2.5V SOURCE3 C28 100µ BIAS OFF LM ON / OFF PASS PB REC REC / PB / PASS R17 ON 22k SW16 OFF NR ON / OFF R16 OFF 22k RM ON / OFF SW15 ON ON C16 1000p MSOUT MSIN 25 SW18 26 27 28 + ROUT (L) + ALCIN (L) + MSDET + + SW5 PB Lch Rch AC VM2 Oscillo scope Distortion analyzer Noise meter noise meter with ccir/arm filter and a-wtg filter SW20 HA12226F/HA12227F Test Circuit HA12226F ALCCal RECCal GPCal ALCIN (R) Rev.6.00 Jun 15, 2005 page 22 of 83 Rch SW4 EQ RIN (R) R B R2 10k C30 1µ C2 0.0047µ C1 0.47µ R4 13k C4 0.1µ R3 2.2k ALC (R) C3 0.47µ + A BIN (R) C27 0.47µ + R1 10k AIN (R) C26 0.0047µ C25 0.47µ + OFF ON SW2 R33 10k R31 2.2k + 56 55 54 53 52 51 50 49 48 47 46 45 44 43 GND RIP JP3 OFF SW 22 ON 1 REC R6 10k + 3 C6 2.2µ PB SW6 2 C17 0.47µ EQ R8 7.5k R9 16k R10 5.1k PB SW8 REC R11 10k EQ 8 6 9 C11 0.47µ LPF 7 5 + + SW ON 23 0.47µ JP1 OFF + + C10 C9 2.2µ 0.47µ R7 20k + C8 4 C7 2.2µ EQ EQ ROUT (R) Notes: 1. Resistor tolerance are ±1%. 2. Capacitor tolerance are ±1%. 3. Unit R: Ω, C: F. SW1 BIN (L) R32 10k B R AIN (L) A EQ + AC VM1 Audio SG Lch SW3 ALC (L) C24 0.1µ RIN (L) 0.47µ C20 C18 2.2µ R22 2.4k R21 2k C R20 910 SW21 N ALC − + MS R12 1M C12 10µ R13 330k 10 11 12 13 14 BIAS ALCDET + R30 13k 2.2µ R25 16k C21 R27 20k C19 0.47µ R24 5.1k REC EQ 42 41 40 39 38 37 36 35 34 33 32 31 30 29 2.2µ R28 10k C22 + R29 22k + R26 7.5k + REC SW7 PB + EQ ROUT (L) VCC C14 22µ C13 0.33µ 15 SW9 16 SW10 17 SW11 18 SW12 19 SW13 20 SW14 21 22 23 24 SW17 MAOUT ON A OFF 120 B N 70 OFF C C N H ON ON OFF ALC ON / OFF PB A / B A 120 / 70 NORM / HIGH SW19 Rch Lch DC VM1 JP2 DC +12V SOURCE1 R14 10k R15 10k DC +5V SOURCE4 DC +2.5V SOURCE3 C28 100µ BIAS RM ON / OFF B NORM / CROM BIAS ON / OFF R16 22k SW15 R18 3.9k DC VM2 OFF LM ON / OFF PASS PB REC REC / PB / PASS ON C16 1000p MSOUT MSIN 25 SW18 26 27 28 + ALCIN (L) + MSDET + + SW5 PB Rch Lch AC VM2 Oscillo scope Distortion analyzer Noise meter noise meter with ccir/arm filter and a-wtg filter SW20 HA12226F/HA12227F HA12227F ALCCal RECCal GPCal ALCIN (R) HA12226F/HA12227F Characteristic Curves HA12226F Quiescent Current vs. Supply Voltage (REC mode) 35 Quiescent Current IQ (mA) REC mode NR-OFF, REC-MUTE ON, BIAS OFF NR-OFF, REC-MUTE OFF, BIAS OFF NR-ON, REC-MUTE OFF, BIAS ON Other switch is all Low 30 25 20 11 12 13 Supply Voltage (V) 14 15 Quiescent Current vs. Supply Voltage (PB mode) 35 Quiescent Current IQ (mA) PB mode NR-OFF, BIAS OFF NR-ON, BIAS OFF NR-ON, BIAS ON Other switch is all Low 30 25 20 11 Rev.6.00 Jun 15, 2005 page 23 of 83 12 13 Supply Voltage (V) 14 15 HA12226F/HA12227F Input Amp. Gain vs. Frequency (1) 40 VCC = 12V Ain → RECOUT Bin Gain (dB) 30 NR-ON 20 NR-OFF 10 0 −10 10 100 1k 10k Frequency (Hz) 100k 1M Input Amp. Gain vs. Frequency (2) 40 VCC = 12V Ain → PBOUT Bin 30 Gain (dB) PASS mode 20 PB mode 10 0 −10 10 100 Rev.6.00 Jun 15, 2005 page 24 of 83 1k 10k Frequency (Hz) 100k 1M HA12226F/HA12227F Input Amp. Gain vs. Frequency (3) 40 VCC = 12V REC mode 30 Gain (dB) PBOUT 20 RECOUT 10 0 −10 10 100 1k 10k Frequency (Hz) 100k 1M 100k 1M Input Amp. Gain vs. Frequency (4) 30 VCC = 12V Ain → PBOUT Bin 120µ Gain (dB) 26 22 70µ 18 14 10 10 100 Rev.6.00 Jun 15, 2005 page 25 of 83 1k 10k Frequency (Hz) HA12226F/HA12227F Encode Boost vs. Frequency 12 VCC = 12V Dolby B-NR −40dB Encode Boost (dB) 10 8 −30dB 6 4 −20dB 2 −10dB 0dB 0 100 1k Frequency (Hz) 10k 20k Decode Cut vs. Frequency 0 0dB −10dB −2 Decode Cut (dB) −20dB −4 −6 −30dB −8 −10 −40dB VCC = 12V Dolby B-NR −12 100 Rev.6.00 Jun 15, 2005 page 26 of 83 1k Frequency (Hz) 10k 20k HA12226F/HA12227F Signal Handling (1) 30 REC mode Rin → RECOUT = 300mVrms = 0dB f = 1kHz, T.H.D. ≈ 1% NR-OFF NR-ON Vomax (dB) 25 20 15 11 12 13 Supply Voltage (V) 14 15 14 15 Signal Handling (2) 25 Ain → PBOUT = 580mVrms = 0dB Bin f = 1kHz, T.H.D. ≈ 1% NR-OFF PB mode NR-ON PASS mode Vomax (dB) 20 15 10 11 Rev.6.00 Jun 15, 2005 page 27 of 83 12 13 Supply Voltage (V) HA12226F/HA12227F Signal to Noise Ratio vs. Split Supply Voltage (1) 85 A, Bin, PB mode, NR-ON Signal to Noise Ratio (dB) Rin, REC mode, NR-OFF 80 A, Bin, PASS mode, PBOUT A, Bin, PB mode, NR-OFF 75 f = 1kHz, CCIR/ARM filter Rin → RECOUT = 300mVrms = 0dB Ain → PBOUT = 580mVrms = 0dB Bin Rin, PEC mode, NR-ON 70 65 11 12 13 Supply Voltage (V) 14 15 Total Harmonic Distortion vs. Supply Voltage (1) (REC mode, NR-OFF) 1.0 T.H.D. (%) REC mode, NR-OFF Rin → RECOUT = 300mVrms 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) Rin → PBOUT = 580mVrms 1kHz (400Hz HPF + 30kHz LPF) 0.1 0.01 11 Rev.6.00 Jun 15, 2005 page 28 of 83 12 13 Supply Voltage (V) 14 15 HA12226F/HA12227F Total Harmonic Distortion vs. Supply Voltage (2) (REC mode, NR-ON) 1.0 T.H.D. (%) REC mode, NR-ON Rin → RECOUT = 300mVrms 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) Rin → PBOUT = 580mVrms 1kHz (400Hz HPF + 30kHz LPF) 0.1 0.01 11 12 14 15 Total Harmonic Distortion vs. Supply Voltage (3) (PB mode, NR-OFF) 1.0 T.H.D. (%) 13 Supply Voltage (V) PB mode, NR-OFF Ain → PBOUT = 580mVrms Bin 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) Ain → RECOUT = 300mVrms Bin 1kHz (400Hz HPF + 30kHz LPF) 0.1 0.01 11 Rev.6.00 Jun 15, 2005 page 29 of 83 12 13 Supply Voltage (V) 14 15 HA12226F/HA12227F Total Harmonic Distortion vs. Supply Voltage (4) (PB mode, NR-ON) T.H.D. (%) 1.0 PB mode, NR-ON Ain → PBOUT = 580mVrms Bin 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) Ain → RECOUT = 300mVrms Bin 1kHz (400Hz HPF + 30kHz LPF) 0.1 0.01 11 12 13 Supply Voltage (V) 14 15 Total Harmonic Distortion vs. Supply Voltage (5) (PASS mode, NR-OFF) 1.0 PASS mode, NR Ain Bin ON OFF → PBOUT = 580mVrms T.H.D. (%) 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) 0.1 0.01 11 Rev.6.00 Jun 15, 2005 page 30 of 83 12 13 Supply Voltage (V) 14 15 HA12226F/HA12227F Total Harmonic Distortion vs. Output Level (1) (REC mode, NR-OFF) 10 REC mode, NR-OFF VCC = 12V 100Hz 1kHz 10kHz Rin → RECOUT = 300mVrms = 0dB T.H.D. (%) 1.0 0.1 0.01 −10 −5 0 5 10 Output Level Vout (dB) 15 20 Total Harmonic Distortion vs. Output Level (2) (REC mode, NR-ON) 10 REC mode, NR-ON VCC = 12V 100Hz 1kHz 10kHz Rin → RECOUT = 300mVrms = 0dB T.H.D. (%) 1.0 0.1 0.01 −10 Rev.6.00 Jun 15, 2005 page 31 of 83 −5 0 5 10 Output Level Vout (dB) 15 20 HA12226F/HA12227F Total Harmonic Distortion vs. Output Level (3) (PB mode, NR-OFF) 10 T.H.D. (%) 1.0 PB mode, NR-OFF VCC = 12V 100Hz 1kHz 10kHz Ain → PBOUT = 580mVrms = 0dB Bin 0.1 0.01 −10 −5 15 20 Total Harmonic Distortion vs. Output Level (4) (PB mode, NR-ON) 10 PB mode, NR-ON VCC = 12V 100Hz 1kHz 10kHz Ain → PBOUT = 580mVrms = 0dB Bin T.H.D. (%) 1.0 0 5 10 Output Level Vout (dB) 0.1 0.01 −10 Rev.6.00 Jun 15, 2005 page 32 of 83 −5 0 5 10 Output Level Vout (dB) 15 20 HA12226F/HA12227F Total Harmonic Distortion vs. Output Level (5) (PASS mode, NR-OFF) 10 T.H.D. (%) 1.0 PASS mode, NR-OFF VCC = 12V 100Hz 1kHz 10kHz Ain → PBOUT = 580mVrms = 0dB Bin 0.1 0.01 −10 −5 0 5 10 Output Level Vout (dB) 15 20 Total Harmonic Distortion vs. Frequency (1) T.H.D. (%) REC mode, NR-OFF, VCC = 12V Rin → RECOUT = 300mVrms −10dB 0dB 10dB 0.1 0.01 100 Rev.6.00 Jun 15, 2005 page 33 of 83 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Total Harmonic Distortion vs. Frequency (2) T.H.D. (%) REC mode, NR-ON, VCC = 12V Rin → RECOUT = 300mVrms −10dB 0dB 10dB 0.1 0.01 100 1k Frequency (Hz) 10k 100k Total Harmonic Distortion vs. Frequency (3) T.H.D. (%) PB mode, NR-OFF, VCC = 12V Ain → PBOUT = 580mVrms Bin −10dB 0dB 10dB 0.1 0.01 100 Rev.6.00 Jun 15, 2005 page 34 of 83 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Total Harmonic Distortion vs. Frequency (4) T.H.D. (%) PB mode, NR-ON, VCC = 12V Ain → PBOUT = 580mVrms Bin −10dB 0dB 10dB 0.1 0.01 100 1k Frequency (Hz) 10k 100k Total Harmonic Distortion vs. Frequency (5) T.H.D. (%) PASS mode, NR-OFF, VCC = 12V Ain → PBOUT = 580mVrms Bin −10dB 0dB 10dB 0.1 0.01 100 Rev.6.00 Jun 15, 2005 page 35 of 83 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Channel Separation vs. Frequency (R → L) (1) −40 VCC = 11V, 12V, 15V Rin → RECOUT, Vin = +12dB REC mode, R → L Channel Separation (dB) −60 −80 NR-ON −100 NR-OFF −120 −140 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (R → L) (2) −40 VCC = 11V, 12V, 15V Rin → PBOUT, Vin = +12dB REC mode, R → L Channel Separation (dB) −60 NR-ON/OFF −80 −100 −120 −140 10 Rev.6.00 Jun 15, 2005 page 36 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Channel Separation vs. Frequency (L → R) (3) −40 VCC = 11V, 12V, 15V Rin → RECOUT, Vin = +12dB REC mode, L → R Channel Separation (dB) −60 NR-ON −80 −100 NR-OFF −120 −140 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L → R) (4) −40 VCC = 11V, 12V, 15V Rin → PBOUT, Vin = +12dB REC mode, L → R Channel Separation (dB) −60 −80 NR-ON/OFF −100 −120 −140 10 Rev.6.00 Jun 15, 2005 page 37 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Channel Separation vs. Frequency (R → L) (1) −20 VCC = 11V, 12V, 15V Ain → PBOUT, Vin = +10dB R→L Channel Separation (dB) −40 −60 NR-OFF −80 NR-ON −100 −120 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (R → L) (2) −20 VCC = 11V, 12V, 15V Ain → RECOUT, Vin = +10dB R→L Channel Separation (dB) −40 −60 NR-ON/OFF −80 −100 −120 10 Rev.6.00 Jun 15, 2005 page 38 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Channel Separation vs. Frequency (R → L) (3) −20 VCC = 11V, 12V, 15V Bin → PBOUT, Vin = +10dB R→L Channel Separation (dB) −40 −60 NR-OFF −80 NR-ON −100 −120 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (R → L) (4) −20 VCC = 11V, 12V, 15V Bin → RECOUT, Vin = +10dB R→L Channel Separation (dB) −40 −60 NR-ON/OFF −80 −100 −120 10 Rev.6.00 Jun 15, 2005 page 39 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Channel Separation vs. Frequency (L → R) (5) −20 VCC = 11V, 12V, 15V Ain → PBOUT, Vin = +10dB L→R Channel Separation (dB) −40 −60 NR-OFF −80 NR-ON −100 −120 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L → R) (6) −20 VCC = 11V, 12V, 15V Ain → RECOUT, Vin = +10dB L→R Channel Separation (dB) −40 −60 NR-ON/OFF −80 −100 −120 10 Rev.6.00 Jun 15, 2005 page 40 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Channel Separation vs. Frequency (L → R) (7) −20 VCC = 11V, 12V, 15V Bin → PBOUT, Vin = +10dB L→R Channel Separation (dB) −40 −60 NR-OFF −80 NR-ON −100 −120 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L → R) (8) −20 VCC = 11V, 12V, 15V Bin → RECOUT, Vin = +10dB L→R Channel Separation (dB) −40 −60 NR-ON/OFF −80 −100 −120 10 Rev.6.00 Jun 15, 2005 page 41 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Channel Separation vs. Frequency (R → L) (1) −20 Channel Separation (dB) −40 VCC = 11V, 12V, 15V Ain → PBOUT, Vin = +10dB Bin PASS mode, R → L −60 Ain −80 Bin −100 −120 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L → R) (2) −20 Channel Separation (dB) −40 VCC = 11V, 12V, 15V Ain → PBOUT, Vin = +10dB Bin PASS mode, L → R −60 Ain −80 Bin −100 −120 10 Rev.6.00 Jun 15, 2005 page 42 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Crosstalk vs. Frequency (Ain → Bin) (1) −40 VCC = 11V, 12V, 15V PB mode, PBOUT Vin = +12dB, Ain → Bin Crosstalk (dB) −60 NR-OFF −80 NR-ON −100 −120 −140 10 100 1k Frequency (Hz) 10k 100k Crosstalk vs. Frequency (Bin → Ain) (2) −40 VCC = 11V, 12V, 15V PB mode, PBOUT Vin = +12dB, Bin → Ain Crosstalk (dB) −60 NR-OFF −80 NR-ON −100 −120 −140 10 Rev.6.00 Jun 15, 2005 page 43 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Crosstalk vs. Frequency (PB mode → PASS mode) (1) −20 Crosstalk (dB) −40 VCC = 11V, 12V, 15V Ain → RECOUT Vin = +12dB PB mode → PASS mode −60 −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k Crosstalk vs. Frequency (PB mode → PASS mode) (2) −20 Crosstalk (dB) −40 VCC = 11V, 12V, 15V Bin → RECOUT Vin = +12dB PB mode → PASS mode −60 −80 −100 −120 10 Rev.6.00 Jun 15, 2005 page 44 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Line Mute vs. Frequency −20 Line Mute (dB) VCC = 12V Ain → PBOUT Bin Vin = +12dB −40 PB mode −60 −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k REC Mute Attenuation vs. Frequency 80 Crosstalk (dB) 40 VCC = 12V EQIN → EQOUT Vin = +14dB Norm speed, Norm tape 0 −40 −80 −120 10 Rev.6.00 Jun 15, 2005 page 45 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Ripple Rejection Ratio vs. Frequency (REC mode) (1) 20 Ripple Rejection Ratio R.R.R. (dB) VCC = 12V REC mode EQOUT 0 RECOUT NR-ON −20 −40 RECOUT NR-OFF PBOUT −60 −80 10 100 1k Frequency (Hz) 10k 100k Ripple Rejection Ratio vs. Frequency (PB mode) (2) 20 VCC = 12V PB mode Ripple Rejection Ratio R.R.R. (dB) EQOUT 0 −20 PBOUT NR-OFF −40 RECOUT PBOUT NR-ON −60 −80 10 Rev.6.00 Jun 15, 2005 page 46 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Ripple Rejection Ratio vs. Frequency (PASS mode) (3) 20 Ripple Rejection Ratio R.R.R. (dB) VCC = 12V PASS mode EQOUT 0 RECOUT NR-ON −20 −40 PBOUT RECOUT NR-OFF −60 −80 10 100 1k Frequency (Hz) 10k 100k Equalizer Amp. Gain vs. Frequency (1) 55 50 VCC = 12V Norm speed 45 REC-EQ Gain (dB) 40 35 30 Crom 25 20 Norm 15 10 5 10 Rev.6.00 Jun 15, 2005 page 47 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Equalizer Amp. Gain vs. Frequency (2) 55 50 VCC = 12V High speed 45 REC-EQ Gain (dB) 40 35 30 Crom 25 20 15 Norm 10 5 10 100 1k Frequency (Hz) 10k 100k Equalizer Amp. Gain vs. Frequency (REC-cal) 55 REC-cal = 5V 50 45 REC-EQ Gain (dB) 40 35 30 25 20 REC-cal = 2.5V 15 REC-cal = 0V 10 5 10 Rev.6.00 Jun 15, 2005 page 48 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Equalizer Amp. Gain vs. Frequency (GP-cal) 55 GP-cal = 0V 50 45 REC-EQ Gain (dB) 40 35 30 GP-cal = 2.5V 25 20 GP-cal = 5V 15 10 5 10 100 1k Frequency (Hz) 10k 100k Equalizer Signal to Noise Ratio vs. Supply Voltage (1) 70 REC-EQ S/N (dB) f = 1kHz A-WTG filter Norm speed NN NC 65 60 55 11 Rev.6.00 Jun 15, 2005 page 49 of 83 12 13 Supply Voltage (V) 14 15 HA12226F/HA12227F Equalizer Signal to Noise Ratio vs. Supply Voltage (2) 70 REC-EQ S/N (dB) f = 1kHz A-WTG filter High speed HN HC 65 60 55 11 12 13 Supply Voltage (V) 15 14 REC-cal Correction vs. VREC-cal 5 f = 3kHz GP-cal open VCC = 12V Norm speed Norm tape 4 REC-cal Correction (dB) 3 2 1 0 −1 −2 −3 −4 −5 0 Rev.6.00 Jun 15, 2005 page 50 of 83 1 2 3 VREC-cal (V) 4 5 HA12226F/HA12227F GP-cal Correction vs. VGP-cal 5 4 GP-cal Correction (dB) 3 2 1 0 −1 −2 f = 12kHz REC-cal open VCC = 12V Norm speed Norm tape −3 −4 −5 0 1 2 3 VGP-cal (V) 4 5 ALC Operate Level vs. Input Level Output Level RECOUT (dB) 0dB ≈ 300mVrms 10 8 f = 1kHz, VCC = 12V, Both channel input (L, Rch) Rin → RECOUT, Cal = 5V Norm Crom Cal = 5V 6 Cal = 2.5V 4 Cal = 2.5V 2 Cal = 0V 0 −2 −5 Cal = 0V 0 Rev.6.00 Jun 15, 2005 page 51 of 83 10 20 5 15 25 Input Level Vin (dB) 0dB ≈ 221mVrms 30 35 HA12226F/HA12227F ALC Total Harmonic Distortion vs. Input Level (1) f = 1kHz, VCC = 12V Norm tape Cal = 0V Cal = 2.5V Cal = 5V ALC T.H.D. (%) 1.0 0.1 0.01 −5 0 30 5 10 15 20 25 Input Level Vin (dB) 0dB ≈ 221mVrms (ALC-OFF, RECOUT ≈ 300mVrms) ALC Total Harmonic Distortion vs. Input Level (2) f = 1kHz, VCC = 12V Crom tape Cal = 0V Cal = 2.5V Cal = 5V ALC T.H.D. (%) 1.0 0.1 0.01 −5 Rev.6.00 Jun 15, 2005 page 52 of 83 0 30 5 10 15 20 25 Input Level Vin (dB) 0dB ≈ 221mVrms (ALC-OFF, RECOUT ≈ 300mVrms) HA12226F/HA12227F ALC Operate Level vs. Frequency Operate Level RECOUT (dB) 0dB = 300mVrms 10 8 ALC-cal = 5V 6 ALC-cal = 5V 4 ALC-cal = 2.5V 2 ALC-cal = 2.5V ALC-cal = 0V 0 ALC-cal = 0V −2 Vin = +12dB, Both channel input (L, Rch), Rin → RECOUT Norm Crom −4 100 1k Frequency (Hz) 10k Bias Output Voltage vs. Load Current 13 VCC = 12V Bias ON 270Ω 31 Bias Output Voltage (V) V I 12 11 10 0 Rev.6.00 Jun 15, 2005 page 53 of 83 1 2 3 4 5 Load Current I (mA) 6 7 HA12226F/HA12227F MS Sensing Level vs. Frequency 5 VCC = 12V, MSOUT Ain → PBOUT = 580mVrms = 0dB Lo → Hi Hi → Lo MS Sensing Level (dB) 0 −5 −10 −15 −20 −25 −30 100 1k 10k 100k Frequency (Hz) MS Amp. Gain vs. Frequency 40 VCC = 12V MAOUT Gain (dB) 30 20 10 MSIN 0 −10 10 Rev.6.00 Jun 15, 2005 page 54 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F No-Signal Sensing Time vs. Resistance No-Signal Sensing Time (ms) 1000 VCC = 12V, f = 5kHz Ain → PBOUT = 580mVrms 0dB −10dB −20dB 100 PBOUT 10 MSOUT C13 0.33µ 14 VCC R13 1 10k 100k Resistance R13 (Ω) 1M Signal Sensing Time vs. Capacitance Signal Sensing Time (ms) VCC = 12V, f = 5kHz Ain → PBOUT = 580mVrms 0dB −10dB 100 −20dB 10 PBOUT MSOUT 1 C13 14 VCC R13 330k 0.1 0.01 Rev.6.00 Jun 15, 2005 page 55 of 83 0.1 Capacitance C13 (µF) 1.0 HA12226F/HA12227F HA12227F Quiescent Current vs. Supply Voltage (REC mode) 30 Quiescent Current IQ (mA) REC mode REC-MUTE ON, BIAS OFF REC-MUTE OFF, BIAS OFF REC-MUTE OFF, BIAS ON Other switch is all Low 25 20 15 11 12 13 Supply Voltage (V) 14 15 Quiescent Current vs. Supply Voltage (PB mode) 30 Quiescent Current IQ (mA) PB mode REC-MUTE ON, BIAS OFF REC-MUTE OFF, BIAS OFF REC-MUTE OFF, BIAS ON Other switch is all Low 25 20 15 11 Rev.6.00 Jun 15, 2005 page 56 of 83 12 13 Supply Voltage (V) 14 15 HA12226F/HA12227F Input Amp. Gain vs. Frequency (1) 50 Gain (dB) 40 VCC = 12V Ain → PBOUT Bin PB mode 30 20 10 0 10 100 1k 10k Frequency (Hz) 100k 1M 100k 1M Input Amp. Gain vs. Frequency (2) 50 Gain (dB) 40 VCC = 12V Ain → PBOUT Bin PASS mode 30 20 10 0 10 100 Rev.6.00 Jun 15, 2005 page 57 of 83 1k 10k Frequency (Hz) HA12226F/HA12227F Input Amp. Gain vs. Frequency (3) 50 VCC = 12V REC mode Gain (dB) 40 30 PBOUT 20 RECOUT 10 0 10 100 1k 10k Frequency (Hz) 100k 1M 100k 1M Input Amp. Gain vs. Frequency (4) 50 VCC = 12V Ain → PBOUT Bin Gain (dB) 40 30 120µ 70µ 20 10 0 10 100 Rev.6.00 Jun 15, 2005 page 58 of 83 1k 10k Frequency (Hz) HA12226F/HA12227F Signal Handling (1) 25 Vomax (dB) 20 15 REC mode, T.H.D. ≈ 1% Rin → RECOUT = 300mVrms = 0dB 1kHz Rin → PBOUT = 580mVrms = 0dB 1kHz 10 11 12 13 Supply Voltage (V) 14 15 14 15 Signal Handling (2) 25 Vomax (dB) 20 15 PB mode, T.H.D. ≈ 1% Ain → RECOUT = 300mVrms = 0dB Bin 1kHz Ain Bin 10 11 Rev.6.00 Jun 15, 2005 page 59 of 83 → PBOUT = 580mVrms = 0dB 1kHz 12 13 Supply Voltage (V) HA12226F/HA12227F Signal to Noise Ratio vs. Supply Voltage (1) Signal to Noise Ratio (dB) 85 80 75 REC mode, CCIR/ARM filter Rin → RECOUT = 300mVrms = 0dB 1kHz Rin → PBOUT = 580mVrms = 0dB 1kHz 70 11 12 13 Supply Voltage (V) 14 15 Signal to Noise Ratio vs. Supply Voltage (2) Signal to Noise Ratio (dB) 85 80 75 PB mode, CCIR/ARM filter Ain → RECOUT = 300mVrms = 0dB Bin 1kHz Ain Bin 70 11 Rev.6.00 Jun 15, 2005 page 60 of 83 → PBOUT = 580mVrms = 0dB 1kHz 12 13 Supply Voltage (V) 14 15 HA12226F/HA12227F Signal to Noise Ratio vs. Supply Voltage (3) 85 Signal to Noise Ratio (dB) PASS mode, CCIR/ARM filter Ain → PBOUT = 580mVrms = 0dB Bin 1kHz 80 75 70 11 12 13 Supply Voltage (V) 14 15 Total Harmonic Distortion vs. Supply Voltage (1) 1.0 T.H.D. (%) REC mode Rin → RECOUT = 300mVrms 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) Rin → PBOUT = 580mVrms 1kHz (400Hz HPF + 30kHz LPF) 0.1 0.01 11 Rev.6.00 Jun 15, 2005 page 61 of 83 12 13 Supply Voltage (V) 14 15 HA12226F/HA12227F Total Harmonic Distortion vs. Supply Voltage (2) T.H.D. (%) 1.0 PB mode, NR-OFF Ain → PBOUT = 580mVrms Bin 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) Ain → RECOUT = 300mVrms Bin 1kHz (400Hz HPF + 30kHz LPF) 0.1 0.01 11 12 13 Supply Voltage (V) 14 15 Total Harmonic Distortion vs. Supply Voltage (3) 1.0 T.H.D. (%) PASS mode Ain → PBOUT = 580mVrms 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) 0.1 0.01 11 Rev.6.00 Jun 15, 2005 page 62 of 83 12 13 Supply Voltage (V) 14 15 HA12226F/HA12227F Total Harmonic Distortion vs. Output Level (1) 10 T.H.D. (%) 1.0 REC mode Rin → RECOUT 0dB = 300mVrms VCC = 12V 100Hz 1kHz 10kHz 0.1 0.01 −15 −10 −5 0 5 10 15 Output Level Vout (dB) 20 25 Total Harmonic Distortion vs. Output Level (2) 10 T.H.D. (%) 1.0 PB mode Ain → PBOUT Bin 0dB = 580mVrms VCC = 12V 100Hz 1kHz 10kHz 0.1 0.01 −15 Rev.6.00 Jun 15, 2005 page 63 of 83 −10 −5 0 5 10 15 Output Level Vout (dB) 20 25 HA12226F/HA12227F Total Harmonic Distortion vs. Output Level (3) 10 T.H.D. (%) 1.0 PASS mode Ain → PBOUT Bin 0dB = 580mVrms VCC = 12V 100Hz 1kHz 10kHz 0.1 0.01 −15 −10 −5 0 5 10 15 Output Level Vout (dB) 20 25 Total Harmonic Distortion vs. Frequency (1) T.H.D. (%) REC mode Rin → RECOUT 0dB = 300mVrms −10dB 0dB 10dB 0.1 0.01 100 Rev.6.00 Jun 15, 2005 page 64 of 83 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Total Harmonic Distortion vs. Frequency (2) T.H.D. (%) PB mode Ain → PBOUT Bin 0dB = 580mVrms −10dB 0dB 10dB 0.1 0.01 100 1k Frequency (Hz) 10k 100k Total Harmonic Distortion vs. Frequency (3) T.H.D. (%) PB mode Ain → PBOUT Bin 0dB = 580mVrms −10dB 0dB 10dB 0.1 0.01 100 Rev.6.00 Jun 15, 2005 page 65 of 83 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Channel Separation vs. Frequency (R → L) (1) 40 VCC = 11V, 12V, 15V Rin → RECOUT, Vin = +12dB REC mode, R → L Channel Separation (dB) 0 −40 −80 −120 −160 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L → R) (2) 40 VCC = 11V, 12V, 15V Rin → RECOUT, Vin = +12dB REC mode, L → R Channel Separation (dB) 0 −40 −80 −120 −160 10 Rev.6.00 Jun 15, 2005 page 66 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Channel Separation vs. Frequency (R → L) (3) 40 VCC = 11V, 12V, 15V Ain → PBOUT, Vin = +10dB R→L Channel Separation (dB) 0 −40 −80 −120 −160 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L → R) (4) 40 VCC = 11V, 12V, 15V Ain → PBOUT, Vin = +10dB L→R Channel Separation (dB) 0 −40 −80 −120 −160 10 Rev.6.00 Jun 15, 2005 page 67 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Channel Separation vs. Frequency (R → L) (5) 40 VCC = 11V, 12V, 15V Bin → PBOUT, Vin = +10dB R→L Channel Separation (dB) 0 −40 −80 −120 −160 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L → R) (6) 40 VCC = 11V, 12V, 15V Bin → PBOUT, Vin = +10dB L→R Channel Separation (dB) 0 −40 −80 −120 −160 10 Rev.6.00 Jun 15, 2005 page 68 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Channel Separation vs. Frequency (R → L) (7) 40 VCC = 11V, 12V, 15V Ain → PBOUT, Vin = +10dB PASS mode, R → L Channel Separation (dB) 0 −40 −80 −120 −160 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L → R) (8) 40 VCC = 11V, 12V, 15V Ain → PBOUT, Vin = +10dB PASS mode, L → R Channel Separation (dB) 0 −40 −80 −120 −160 10 Rev.6.00 Jun 15, 2005 page 69 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Channel Separation vs. Frequency (R → L) (9) 40 VCC = 11V, 12V, 15V Bin → PBOUT, Vin = +10dB PASS mode, R → L Channel Separation (dB) 0 −40 −80 −120 −160 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L → R) (10) 40 VCC = 11V, 12V, 15V Bin → PBOUT, Vin = +10dB PASS mode, L → R Channel Separation (dB) 0 −40 −80 −120 −160 10 Rev.6.00 Jun 15, 2005 page 70 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Crosstalk vs. Frequency (Ain → Bin) (1) 40 VCC = 11V, 12V, 15V PB mode, PBOUT Vin = +12dB, Ain → Bin Channel Separation (dB) 0 −40 −80 −120 −160 10 100 1k Frequency (Hz) 10k 100k Crosstalk vs. Frequency (Bin → Ain) (2) 40 VCC = 11V, 12V, 15V PB mode, PBOUT Vin = +12dB, Bin → Ain Channel Separation (dB) 0 −40 −80 −120 −160 10 Rev.6.00 Jun 15, 2005 page 71 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Line Mute vs. Frequency 40 Line Mute (dB) VCC = 12V Ain → PBOUT Bin Vin = +12dB 0 PB mode −40 −80 −120 −160 10 100 1k Frequency (Hz) 10k 100k REC Mute Attenuation vs. Frequency 40 Crosstalk (dB) 0 VCC = 12V EQIN → EQOUT Vin = +14dB Norm speed, Norm tape −40 −80 −120 −160 10 Rev.6.00 Jun 15, 2005 page 72 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Ripple Rejection Ratio vs. Frequency (REC mode) (1) 20 Ripple Rejection Ratio R.R.R. (dB) VCC = 12V REC mode 0 EQOUT −20 −40 RECOUT −60 −80 10 100 1k Frequency (Hz) 10k 100k Ripple Rejection Ratio vs. Frequency (PB mode) (2) 20 Ripple Rejection Ratio R.R.R. (dB) VCC = 12V PB mode, RECOUT 0 −20 −40 −60 −80 10 Rev.6.00 Jun 15, 2005 page 73 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Ripple Rejection Ratio vs. Frequency (PASS mode) (3) 20 Ripple Rejection Ratio R.R.R. (dB) VCC = 12V PASS mode, PBOUT 0 −20 −40 −60 −80 10 100 1k Frequency (Hz) 10k 100k Equalizer Amp. Gain vs. Frequency (1) 55 50 VCC = 12V Norm speed 45 REC-EQ Gain (dB) 40 35 30 Crom 25 20 15 Norm 10 5 10 Rev.6.00 Jun 15, 2005 page 74 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Equalizer Amp. Gain vs. Frequency (2) 55 50 VCC = 12V High speed 45 REC-EQ Gain (dB) 40 35 30 Crom 25 20 15 Norm 10 5 10 100 1k Frequency (Hz) 10k 100k Equalizer Amp. Gain vs. Frequency (REC-cal) 55 REC-cal = 5V 50 45 REC-EQ Gain (dB) 40 35 30 25 20 REC-cal = 2.5V 15 REC-cal = 0V 10 5 10 Rev.6.00 Jun 15, 2005 page 75 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Equalizer Amp. Gain vs. Frequency (GP-cal) 55 GP-cal = 0V 50 45 REC-EQ Gain (dB) 40 35 30 GP-cal = 2.5V 25 20 GP-cal = 5V 15 10 5 10 100 1k Frequency (Hz) 10k 100k Equalizer Signal to Noise Ratio vs. Supply Voltage (1) 70 REC-EQ S/N (dB) f = 1kHz A-WTG filter Norm speed NN NC 65 60 55 11 Rev.6.00 Jun 15, 2005 page 76 of 83 12 13 Supply Voltage (V) 14 15 HA12226F/HA12227F Equalizer Signal to Noise Ratio vs. Supply Voltage (2) 70 REC-EQ S/N (dB) f = 1kHz A-WTG filter High speed HN HC 65 60 55 11 12 13 Supply Voltage (V) 15 14 REC-cal Correction vs. VREC-cal 5 f = 3kHz GP-cal open VCC = 12V Norm speed Norm tape 4 REC-cal Correction (dB) 3 2 1 0 −1 −2 −3 −4 −5 0 Rev.6.00 Jun 15, 2005 page 77 of 83 1 2 3 VREC-cal (V) 4 5 HA12226F/HA12227F GP-cal Correction vs. VGP-cal 5 4 GP-cal Correction (dB) 3 2 1 0 −1 −2 f = 12kHz REC-cal open VCC = 12V Norm speed Norm tape −3 −4 −5 0 1 2 3 VGP-cal (V) 4 5 ALC Operate Level vs. Input Level Output Level RECOUT (dB) 0dB = 300mVrms 10 8 f = 1kHz, VCC = 12V, Both channel input (L, Rch) Rin → RECOUT, Cal = 5V Norm Crom Cal = 5V 6 Cal = 2.5V 4 Cal = 2.5V 2 Cal = 0V 0 Cal = 0V −2 −5 0 Rev.6.00 Jun 15, 2005 page 78 of 83 10 20 5 15 25 Input Level Vin (dB) 0dB = 218mVrms 30 35 HA12226F/HA12227F ALC Total Harmonic Distortion vs. Input Level (1) f = 1kHz, VCC = 12V Norm tape Cal = 0V Cal = 2.5V Cal = 5V ALC T.H.D. (%) 1.0 0.1 0.01 −5 0 30 5 10 15 20 25 Input Level Vin (dB) 0dB ≈ 217mVrms (ALC-OFF, RECOUT = 300mVrms) ALC Total Harmonic Distortion vs. Input Level (2) f = 1kHz, VCC = 12V Crom tape Cal = 0V Cal = 2.5V Cal = 5V ALC T.H.D. (%) 1.0 0.1 0.01 −5 Rev.6.00 Jun 15, 2005 page 79 of 83 0 30 5 10 15 20 25 Input Level Vin (dB) 0dB ≈ 217mVrms (ALC-OFF, RECOUT = 300mVrms) HA12226F/HA12227F ALC Operate Level vs. Frequency Operate Level RECOUT (dB) 0dB = 300mVrms 10 8 ALC-cal = 5V 6 ALC-cal = 5V ALC-cal = 2.5V 4 ALC-cal = 2.5V 2 ALC-cal = 0V 0 ALC-cal = 0V −2 Vin = +12dB, Both channel input (L, Rch), Rin → RECOUT Norm Crom −4 100 1k Frequency (Hz) 10k Bias Output Voltage vs. Load Current 13 VCC = 12V Bias ON 270Ω 31 Bias Output Voltage (V) V I 12 11 10 0 Rev.6.00 Jun 15, 2005 page 80 of 83 1 2 3 4 5 Load Current I (mA) 6 7 HA12226F/HA12227F MS Sensing Level vs. Frequency 5 VCC = 12V, MSOUT Ain → PBOUT = 580mVrms = 0dB Lo → Hi Hi → Lo MS Sensing Level (dB) 0 −5 −10 −15 −20 −25 −30 100 1k 10k 100k Frequency (Hz) MS Amp. Gain vs. Frequency 40 VCC = 12V MAOUT Gain (dB) 30 20 10 MSIN 0 −10 10 Rev.6.00 Jun 15, 2005 page 81 of 83 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F No-Signal Sensing Time vs. Resistance No-Signal Sensing Time (ms) 1000 VCC = 12V, f = 5kHz Ain → PBOUT = 580mVrms 0dB −10dB −20dB 100 PBOUT 10 MSOUT C13 0.33µ 14 VCC R13 1 10k 100k Resistance R13 (Ω) 1M Signal Sensing Time vs. Capacitance Signal Sensing Time (ms) VCC = 12V, f = 5kHz Ain → PBOUT = 580mVrms 0dB −10dB 100 −20dB 10 PBOUT MSOUT 1 C13 14 VCC R13 330k 0.1 0.01 Rev.6.00 Jun 15, 2005 page 82 of 83 0.1 Capacitance C13 (µF) 1.0 HA12226F/HA12227F Package Dimensions As of January, 2003 12.8 ± 0.3 Unit: mm 10.0 42 29 28 56 15 0.65 12.8 ± 0.3 43 1 0.775 0.10 *Dimension including the plating thickness Base material dimension Rev.6.00 Jun 15, 2005 page 83 of 83 0.1 +0.1 −0.09 2.20 0.13 M *0.17 ± 0.05 0.15 ± 0.04 *0.30 ± 0.08 0.27 ± 0.06 2.54 Max 14 0.775 1.40 0° − 8° 0.60 ± 0.15 Package Code JEDEC JEITA Mass (reference value) FP-56A 0.5 g Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party. 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein. http://www.renesas.com RENESAS SALES OFFICES Refer to "http://www.renesas.com/en/network" for the latest and detailed information. Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501 Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900 Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071 Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952 Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 © 2005. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon 2.0