RENESAS HA12227F

HA12226F/HA12227F
Audio Signal Processor for Cassette Deck
(Dolby B-type NR with Recording System)
REJ03F0133-0600
Previous: ADE-207-270E
Rev.6.00
Jun 15, 2005
Description
The HA12226F/HA12227F are silicon monolithic bipolar IC providing Dolby noise reduction system*1, music sensor
system, REC equalizer system and each electronic control switch in one chip.
Note: 1. Dolby is a trademark of Dolby Laboratories Licensing Corporation.
A license from Dolby Laboratories Licensing Corporation is required for the use of this IC.
The HA12227F is not built-in Dolby B-NR.
Functions
• Dolby B-NR*2
× 2 channel
• REC equalizer
× 2 channel
• Music sensor
× 1 channel
• Pass amp.
× 2 channel
• Each electronic control switch to change REC equalizer, bias, etc.
Note: 2. The HA12227F is not built-in Dolby B-NR.
Features
•
•
•
•
•
•
•
•
•
•
REC equalizer is very small number of external parts and have 4 types of frequency characteristics built-in.
2 types of input for PB, 1 type of input for REC.
70µ - PB equalizer changing system built-in.
Dolby NR*2 with dubbing double cassette decks.
Unprocessed signal output available from recording out terminals during PB mode.
Provide stable music sensor system, available to design music sensing time and level.
Controllable from direct micro-computer output.
Bias oscillator control switch built-in.
NR ON / OFF and REC / PB fully electronic control switching built-in.
Normal-speed / high-speed, Normal / Crom and PB equalizer fully electronic control switching built-in.
Available to reduce substrate-area because of high integration and small external parts.
Rev.6.00 Jun 15, 2005 page 1 of 83
HA12226F/HA12227F
Ordering Information
Operating Voltage
Product
Power Supply Range (Single Supply)
HA12226F
HA12227F
11.0 V to 15.0 V
9.5 V to 15.0 V
Standard Level
Product
HA12226F
HA12227F
Package Code
FP-56A
PB-OUT Level
580 mVrms
REC-OUT Level
300 mVrms
Dolby Level
300 mVrms

Function
Product
HA12226F
Dolby B-NR
❍
HA12227F
×
REC-EQ
REC / PB
Selection
❍
Music Sensor
❍
Pass Amp.
❍
ALC
❍
❍
❍
❍
❍
❍
❍
Note: Depending on the employed REC / PB head and test tape characteristics, there is a rare case that the REC-EQ
characteristics of this LSI can not be matched to the required characteristics because of built-in resistors which
determined the REC-EQ parameters in this case, please inquire the responsible agent because the adjustment
built-in resistor is necessary.
Difference of HA12215F and HA12226F/HA12227F
Product
HA12226F/HA12227F
HA12215F
Supply Voltage
Single supply voltage
Split supply voltage
Tape Correspondence
NORM
CROM
❍
❍
❍
❍
METAL
×
❍
Note: The HA12226F/HA12227F became single power supply for the HA12215F and deleted metal correspondence.
The HA12227F is not built-in Dolby B-NR.
Other characteristic aspects are similar as the HA12215F.
Rev.6.00 Jun 15, 2005 page 2 of 83
HA12226F/HA12227F
Pin Description, Equivalent Circuit
(VCC = 12 V, A system of single supply voltage, Ta = 25°C, No Signal, The value in the show typical value.)
Pin No.
51
Terminal Name
AIN (R)
Note
V = VCC / 2
Equivalent Circuit
Pin Description
PB A Deck input
V
100k
VCC/2
48
AIN (L)
53
46
BIN (R)
BIN (L)
PB B Deck input
56
RIN (R)
REC input
43
5
RIN (L)
EQIN (R)
REC equalizer input
38
EQIN (L)
1 *2
DET (R)
V = 2.7 V
VCC
Time constant pin for DolbyNR
V
GND
42 *2
49
2 *3
DET (L)
RIP
BIAS1
Ripple filter
Dolby bias current input
V = 0.6 V
V
41
BIAS2
GND
V = 1.3 V
REC equalizer bias current
input
V
Rev.6.00 Jun 15, 2005 page 3 of 83
GND
HA12226F/HA12227F
Pin Description, Equivalent Circuit (cont.)
(VCC = 12 V, A system of single supply voltage, Ta = 25°C, No Signal, The value in the show typical value.)
Pin No.
3
Terminal Name
PBOUT (R)
Note
V = VCC / 2
Equivalent Circuit
Pin Description
VCC
PB output
V
GND
40
PBOUT (L)
4
39
RECOUT (R)
RECOUT (L)
REC output
7
36
EQOUT (R)
EQOUT (L)
REC equalizer output
28
8
MAOUT
ROUT (R)
MS Amp. output *1
Input Amp. output
35
52
ROUT (L)
ABO (R)
R1 = 15 k
R2 = 12 k
V = VCC / 2
VCC
V
R1
Time constant pin for PB
equalizer (70µ)
R2
GND
47
6
ABO (L)
BOOST (R)
37
32
BOOST (L)
BIAS (C)
Time constant pin for low
boost
R1 = 4.8 k
R2 = 4.8 k
V = VCC / 2
V = VCC − 0.7 V
VCC
REC bias current output
V
33
21
50
31, 45, 54
BIAS (N)
VCC
GND
NC
V = VCC
V=0V
No connection
Rev.6.00 Jun 15, 2005 page 4 of 83
Power supply
GND pin
No connection
HA12226F/HA12227F
Pin Description, Equivalent Circuit (cont.)
(VCC = 12 V, A system of single supply voltage, Ta = 25°C, No Signal, The value in the show typical value.)
Pin No.
15
Terminal Name
ALC ON/OFF
Note
I = 20 µA
Equivalent Circuit
Pin Description
Mode control input
I
V
22 k
100 k
GND
16
17
18
19
20
22
23 *2
25
24
PB A/B
A 120/70
NORM/HIGH
B NORM/CROM
BIAS ON/OFF
RM ON/OFF
NR ON/OFF
LM ON/OFF
REC/PB/PASS
2.5 V
100 k
Mode control input
+
−
100 k
22 k
V
26
MSOUT
I = 0 µA
MS output (to MPU) *1
VCC
V
I
D GND
10
GPCAL
R = 110 kΩ
GP gain calibration terminal
R
11
12
RECCAL
ALCCAL
R = 110 kΩ
R = 140 kΩ
14
MSDET
n=6
2.5 V
REC gain calibration terminal
ALC operation level
calibration terminal
0 µA
VCC
n
GND
13
ALCDET
n=2
Rev.6.00 Jun 15, 2005 page 5 of 83
Time constant pin for MS *1
HA12226F/HA12227F
Pin Description, Equivalent Circuit (cont.)
(VCC = 12 V, A system of single supply voltage, Ta = 25°C, No Signal, The value in the show typical value.)
Pin No.
27
Terminal Name
MSIN
Note
R = 50 kΩ
Equivalent Circuit
Pin Description
1
MS input *
VCC
V
R
VCC/2
9
ALCIN (R)
R = 100 kΩ
34
30
ALCIN (L)
MAI
V = VCC / 2
MAOUT
VCC
MS Amp. input *1
100 k
V
MAI 8.2 k
VCC/2
29
MS GND
V=0V
MS output voltage level
1
control pin *
55
ALC (R)
V=0V
Variable impedance for
attenuation
44
ALC (L)
Notes: 1. MS: Music Sensor
2. Non connection regarding the HA12227F.
3. Test pin regarding the HA12227F.
Rev.6.00 Jun 15, 2005 page 6 of 83
HA12226F/HA12227F
Block Diagram
MSGND
MAI
NC
BIAS (C)
BIAS (N)
ALCIN (L)
ROUT (L)
EQOUT (L)
BOOST (L)
EQIN (L)
RECOUT (L)
PBOUT (L)
BIAS2
DET (L)
HA12226F
42 41 40 39 38 37 36 35 34 33 32 31 30 29
RIN (L)
43
ALC (L)
44
EQ
BIAS
Dolby
B-NR
28
MAOUT
27
MSIN
26
MSOUT
MS
NC
45
BIN (L)
46
25
LM ON / OFF
ABO (L)
47
24
REC / PB / PASS
AIN (L)
48
23
NR ON / OFF
22
RM ON / OFF
RIP
−
+
49
+
LPF
GND
50
21
VCC
AIN (R)
51
20
BIAS ON / OFF
ABO (R)
52
19
B NORM / CROM
BIN (R)
53
18
NORM / HIGH
NC
54
17
A 120 / 70
ALC (R)
55
16
PB A / B
RIN (R)
56
15
ALC ON / OFF
ALC
Dolby
B-NR
5
6
7
8
9
10 11 12 13 14
BIAS1
PBOUT (R)
RECOUT (R)
EQIN (R)
BOOST (R)
EQOUT (R)
ROUT (R)
ALCIN (R)
GPCAL
Rev.6.00 Jun 15, 2005 page 7 of 83
MSDET
4
ALCDET
3
ALCCAL
2
RECCAL
1
DET (R)
EQ
HA12226F/HA12227F
MSGND
MAI
NC
BIAS (C)
BIAS (N)
ALCIN (L)
ROUT (L)
EQOUT (L)
BOOST (L)
EQIN (L)
RECOUT (L)
PBOUT (L)
BIAS2
NC
HA12227F
42 41 40 39 38 37 36 35 34 33 32 31 30 29
RIN (L)
43
ALC (L)
44
EQ
BIAS
28
MAOUT
27
MSIN
MS
NC
45
26
MSOUT
BIN (L)
46
25
LM ON / OFF
ABO (L)
47
24
REC / PB / PASS
AIN (L)
48
23
NC
22
RM ON / OFF
RIP
−
+
49
+
LPF
GND
50
21
VCC
AIN (R)
51
20
BIAS ON / OFF
ABO (R)
52
19
B NORM / CROM
BIN (R)
53
18
NORM / HIGH
NC
54
17
A 120 / 70
ALC (R)
55
16
PB A / B
RIN (R)
56
15
ALC ON / OFF
ALC
5
6
7
8
9
10 11 12 13 14
Test mode pin
PBOUT (R)
RECOUT (R)
EQIN (R)
BOOST (R)
EQOUT (R)
ROUT (R)
ALCIN (R)
GPCAL
Rev.6.00 Jun 15, 2005 page 8 of 83
MSDET
4
ALCDET
3
ALCCAL
2
RECCAL
1
NC
EQ
HA12226F/HA12227F
Parallel-Data Format
Pin No.
15
16
17
22
20
23 *2
24
25
18
19
Pin Name
ALC ON/OFF
PB A/B
A 120/70
RM ON/OFF
BIAS ON/OFF
NR ON/OFF
REC/PB/PASS
LM ON/OFF
NORM/HIGH
B NORM/CROM
Lo
ALC ON
Ain *1
*1
REC MUTE ON
BIAS OFF
NR OFF
REC MODE
LINE MUTE OFF
Normal speed
1
REC EQ Normal *
Bias Normal
Mid






PB MODE


Hi
ALC OFF
Bin *1
*1
REC MUTE OFF
BIAS ON
NR ON
REC MODE PASS
LINE MUTE ON
High speed
REC EQ CROM *1
Bias CROM
REC EQ CROM *1
Bias CROM
Notes: 1. PB EQ logic
A 120/70
Lo
B NORM / CROM
Lo
PB
Lo
FLAT
Hi
FLAT
Lo
Hi
Mid or Hi
Lo
FLAT
70 µ
70 µ
FLAT
Hi
Mid or Hi
70 µ
70 µ
2. The HA12226F only.
Rev.6.00 Jun 15, 2005 page 9 of 83
MODE
"Pin Open"
Lo
Lo
Lo
Lo
Lo
Lo
Mid
Lo
Lo
Lo
HA12226F/HA12227F
Functional Description
Power Supply Range
These ICs are designed to operate on single supply.
Table 1
Supply Voltage
Product
HA12226F
HA12227F
Power Supply Range (Single Supply)
11.0 V to 15.0 V
9.5 V to 15.0 V
Note: The lower limit of supply voltage depends on the line output reference level.
The minimum value of the overload margin is specified as 12 dB by Dolby Laboratories (Dolby IC HA12226F).
Reference Voltage
The reference voltage are provided for the left channel and the right channel separately. The block diagram is shown as
figure 1.
21
VCC
+
−
L channel reference
+
−
VCC
Music sensor reference
+
−
R channel reference
50
GND
49
RIP
1µ
+
Unit C: F
Figure 1 Reference Voltage
Operating Mode Control
The HA12226F/HA12227F provide fully electronic switching circuits. And each operating mode control is controlled
by parallel data (DC voltage).
Table 2
Control Voltage
Pin No.
15, 16, 17, 18,
20,
22, 23*4, 25
19, 24
Lo
−0.2 to 1.0
Mid

Hi
4.0 to VCC
Unit
V
−0.2 to 1.0
2.0 to 3.0
4.0 to VCC
V
Test Condition
Input Pin
Measure
Notes: 1. Each pins are on pulled down with 100 kΩ internal resistor.
Therefore, it will be low-level when each pins are open.
But pin 24 is mid-level when it is open.
2. Over shoot level and under shoot level of input signal must be the standardized (High: VCC,
Low: −0.2 V).
3. For reduction of pop noise, connect 1 µF to 22 µF capacitor with mode control pins.
But it is impossible to reduce completely in regard to Line mute, therefore, use external mute at the same
time.
4. Non connection regarding the HA12227F.
Rev.6.00 Jun 15, 2005 page 10 of 83
HA12226F/HA12227F
Input Block Diagram and Level Diagram
The each level shown above is typical value
when offering PBOUT level to PBOUT pin.
MS
REF
300mVrms
AIN
21.3dB
BIN
REC
PB
PASS/REC,
PB=5.7dB/5.7dB
FLAT
(120µ)
300mVrms
PB/REC,
PASS=0dB/21.4dB 300mVrms
PB
Dolby *1
B-NR
REC
PASS
300mVrms
0dB
25.9mVrms
PASS
R3 70µs
12k
R4
15k
PBOUT
580mVrms
RECOUT
300mVrms
ALC
25.5mVrms
C2
4700pF
C1
0.1µF
R1
15k
RIN
200mVrms
R2
C3
2.2k 0.1µF
Note: 1. The HA12227F is not built-in Dolby B-NR.
Figure 2 Input Block Diagram
PB Equalizer
By switching logical input level of pin 17 (for Ain) and pin 19 (for Bin), you can equalize corresponding to tape
position at play back mode.
GV
t1 = C2 ⋅ (12k + 15k)
t2 = C2 ⋅ 15k
t1
t2
f
Figure 3 Frequency Characteristic of PB Equalizer
Rev.6.00 Jun 15, 2005 page 11 of 83
HA12226F/HA12227F
The Sensitivity Adjustment of Music Sensor
Adjusting MS Amp gain by external resistor, the sensitivity of music sensor can set up.
REP
VCC
R13
330k
MA
OUT
MSIN
+ C13
0.33µ
+
C16
1000p
D VCC
PB (L)
MAI
100k
8.2k
−6dB
−
+
RL
MS
DET
MS OUT
DET
Microcomputer
MS AMP
GND
LPF
25kHz
50k
GND
PB (R)
Figure 4 Music Sensor Block Diagram
The Sensitivity of Music Sensor
A standard level of MS input pin 25.9 mVrms, therefore, the sensitivity of music sensor (S) can request it, by lower
formulas.
A = MS Amp Gain*1
C
S = 20log
B = PB input Gain × (1/2)*2
25.9
⋅A⋅B
C = Sensed voltage
20log (A × B) = D [dB]
S = 14 − D [dB]
C = 130 [mVrms] (Intenally voltage in a standard)
PB input Gain = 21.3 [dB]
[dB]
Notes: 1. When there is not a regulation outside.
2. Case of one-sided channel input.
But necessary to consider the same attenuation quantity practically, on account of A(B) have made frequency
response.
GV
37.7dB
1
[Hz]
2π ⋅ C16 ⋅ 50k
f2 = 25k [Hz]
f1 =
f1
f2
f
Figure 5 Frequency Characteristic of MSIN
Occasion of the external component of figure 4, f1 is 3.18 kHz.
Rev.6.00 Jun 15, 2005 page 12 of 83
HA12226F/HA12227F
Time constant of detection
Attack
Recovery
Attack
C13
R13
(1)
(2)
Detection time
Recovery
Detection time
Detection time
Figure 6(1) generally shows that detection time is in proportion to value of capacitor C13. But, with Attack*1 and
Recovery*2 the detection time differs exceptionally.
Notes: 1. Attack
: Non-music to Music
2. Recovery : Music to Non-music
Recovery
Detection level
Attack
Input level
(3)
Figure 6 Function Characteristic of MS
Like the figure 6(2), Recovery time is variably possible by value of resistor R13. But Attack time gets about fixed
value. Attack time has dependence by input level. When a large signal is inputted, Attack time is short tendency.
Music Sensor Output (MSOUT)
As for internal circuit of music sensor block, music sensor output pin is connected to the collector of NPN type
directly, output level will be “high” when sensing no signal. And output level will be “low” when sensing signal.
Connection with microcomputer, it is requested to use external pull up resistor (RL = 10 kΩ to 22 kΩ)
Note: Supply voltage of MSOUT pin must be less than VCC voltage.
The Tolerances of External Components for Dolby NR-Block (Only the HA12226F)
For Dolby NR precision securing, please use external components shown at figure 7. If leak-current are a few
electrolytic-capacitor, it can be applicable to C5 and C23.
C23
0.1µ
±10%
42
DET (L)
HA12226F
DET (R)
1
C5
0.1µ
±10%
BIAS1
2
R5
33k
±2%
Figure 7 Tolerance of External Components
Rev.6.00 Jun 15, 2005 page 13 of 83
HA12226F/HA12227F
Low-Boost
EQIN
24.6dB
4.8k
REC EQ
EQOUT
4.8k
BOOST
C9(C19)
0.47µ
+
Figure 8 Example of Low Boost Circuit
External components shown figure 8 gives frequency response to take 6 dB boost. And cut off frequency can request it,
by C9 (C19).
REC Equalizer
The outlines of REC Equalizing frequency characteristics are shown by figure 9. Those peak level can be set up by
supplying voltage. (0 V to 5 V, GND = 0 V) to pin 10 (GPCAL).
And whole band gain can be set up by supplying voltage (0 V to 5 V, GND = 0 V) to pin 11 (RECCAL).
Both setting up range are ±4.5 dB. In case that you do not need setting up, pin 10, pin 11 should be open bias.
Note: Depending on the employed REC/PB head and test tape characteristics, there is a rare case that the REC-EQ
characteristics of this LSI can not be matched to the required characteristics because of built-in resistors which
determined the REC-EQ parameters in this care, please inquire the responsible agent because of the adjustment
of built-in resistor is necessary.
RECCAL
Gain (dB)
GPCAL
Frequency (Hz)
Figure 9 Frequency Characteristics of REC Equalizer
Bias Switch
The HA12215F built-in DC voltage generator for bias oscillator and its bias switches.
External resistor R20, R21 which corresponded with tape positions and bias out voltage are relater with below.
Vbias =..
R22
× (VCC − 0.7) [V]
(R20 or R21) + R22
Bias switch follows to a logic of pin 19 (B / Norm / Crom).
Note: A current that flows at bias out pin, please use it less than 5 mA.
Rev.6.00 Jun 15, 2005 page 14 of 83
HA12226F/HA12227F
BIAS (N)
Pin 33
BIAS (C)
Pin 32
R21
Vbias
R20
R22
Figure 10 External Components of Bias Block
Automatic Level Control
ALC is the input decay rate variable system. It has internal variable resistors of pin 55 (pin 44) by RECOUT signal that
is inputted to pin 9 (pin 34).
The operation is similitude to MS, detected by pin 13.
The signal input pin is pin 56 (pin 43). Resistor R1, R2 and capacitor C2, external components, for the input circuit are
commended as figure 12. There are requested to use value of the block diagram figure for performance maintenance of
S/N, T.H.D. etc.
Figure 11 shows the relation with R1 front RIN point and ROUT.
ALC operation level acts for the center of +4.5 dB at tape position TYPE I and the center of + 2.5 dB at tape position
TYPE II, to standard level (300 mVrms).
Then, adopted maximum value circuit, ALC is operated by a large channel of a signal.
ROUT
ALC ON/OFF can switch it by pin 15. Please do ALC ON, after it does for one time ALC OFF inevitably, for ALC
time to start usefully (when switching PB → PASS, when switching PB → PASS), in order to reset ALC circuit.
300mV
TYPE II
2.5dB
TYPE I
4.5dB
RIN
Figure 11 ALC Operation Level
RIN
56
Input
C2
0.1µ
55
R2
2.2k
25.5mV
ALC
21.4dB
ROUT
300mV
8
Output
ALC
9
C4
13
ALCIN
ALCDET
R12
VCC
+
R1
15k
C12
Figure 12 ALC Block Diagram
Rev.6.00 Jun 15, 2005 page 15 of 83
HA12226F/HA12227F
ALC Operation Level Necessary
ALC operation level is variable to pin 12 bias (ALC-CAL: 0 to 5 V), and its range is ±4.0 dB.
Unnecessary, pin 12 is unforced.
ROUT
ALC-CAL = 5V
ALC-CAL = 0V
RIN
Figure 13 ALC-CAL Characteristics
About a Test Pin (Pin 2)
The HA12227F does for testing exclusive terminal for pin 2.
In mount circuit, this terminal is open or connected to GND with a resistor of 33 kΩ.
Absolute Maximum Ratings
Item
Max supply voltage
Power dissipation
Operating temperature
Storage temperature
Symbol
VCC max
Pd
Topr
Tstg
Rev.6.00 Jun 15, 2005 page 16 of 83
Rating
16
625
−40 to +75
−55 to +125
Unit
V
mW
°C
°C
Note
Ta ≤ 75°C
Rev.6.00 Jun 15, 2005 page 17 of 83
A/B
A/B
A
A
A
A
A
A
A
A
A
A
A
A/B
A
A
A/B
A
A
A
A
A
A
A
120
120
120
70
70
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
OFF
OFF
ON
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
B
N/C
NORM
NORM
NORM
CROM
CROM
NORM
NORM
NORM
NORM
CROM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
Notes: 1. Other IC-condition : REC-MUTE OFF, Normal tape, Normal speed, Bias OFF
2. VCC = 11.0 V
3. For inputting signal to one side channel
MS sensing level
MS output low level
MS output leak current
ALC operate level
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
ON
ON
PASS
PASS
PB
PB
PB
PB
PB
PB
REC
REC
GV PA
∆GV
MUTE
GV EQ 1k
GV EQ 10k
VON
VOL
IOH
ALC (1)
ALC (2)
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
PB
PB
REC
REC
REC
REC
REC
REC
REC
Pass AMP. gain
Gain deviation
MUTE ATT.
70µ EQ gain
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF REC
PB
OFF
OFF REC
PB
OFF
OFF REC/PB
OFF
OFF
OFF
ON
ON
ON
ON
ON
ON
ON
OFF
OFF
OFF
OFF
GV PB
GV REC
ENC 2k (1)
ENC 2k (2)
ENC 5k (1)
ENC 5k (2)
Vo max
S/N
IQ
Symbol
Total Harmonic Distortion THD
Channel separation
CTRL (1)
CTRL (2)
Crosstalk
CT A/B
CT R/P
Signal handling
Signal to noise ratio
B-type
Encode boost
Input AMP. gain
Item
Quiescent current
IC Condition *1
ALC REC/PB
NR
120µ/ LINE
ON/OFF ON/OFF /PASS A/B
70µ MUTE
Test Condition

0
0
−20
−30
−20
−30


0
+12
+12
+12
+12
0
0
+12
0
0



+12
+12

1k
1k
2k
2k
5k
5k
1k
1k
1k
1k
1k
1k
1k
1k
1k
1k
1k
10k
5k


1k
1k
fin RECOUT
(Hz) level (dB)
0.05 0.3
80.0 
85.0 
80.0 
80.0 

70.0
70.0
70.0
70.0
43
48
43
48/46
48/43
4
3
3
3
3
dB 51/53 48/46 3
dB 51/53 48/46 3
dB 51 48
3
dB 51 48
3
51 48
3
dB 51 48
3
51 48 
V
µA 
 
4
dB 56 43
4
56 43
56
51
56
dB 51/53
51/56
%
dB
Max Unit R
L
R
35.0 mA 
 
28.5 dB 51/53 48/46 3
28.0
3
56 43
5.8 dB 56 43
4
10.0
56 43
4
4.7
56 43
4
9.7
56 43
4

4
dB 56 43

4
dB 56 43
Typ
26.0
27.0
26.5
4.3
8.5
3.2
8.2
13.0
70.0
Min
18.0
25.5
25.0
2.8
7.0
1.7
6.7
12.0
64.0
25.5 27.0 28.5
GV PA − GV PB −1.0 0.0 1.0
70.0 80.0 
24.0 25.5 27.0
20.8 22.3 23.8
−26.0 −22.0 −18.0
 1.0 1.5

 2.0
2.0 4.5 7.0
0.0 2.5 5.0
THD=1%
Rg=5.1kΩ,
CCIR/ARM
Other
No signal
40
40
40
40
40
40


39
39
39
40
40
40
40





26
26
26







3
L COM Remark

21
40

40

39

39

39

39

39

2
39

Application Terminal
Input
Output
(Ta = 25°C, VCC = 12 V, Dolby Level = REC-OUT Level = 300 mVrms = 0 dB)
HA12226F/HA12227F
Electrical Characteristics
HA12226F
Symbol
S/N (EQ)
Rev.6.00 Jun 15, 2005 page 18 of 83
0.1
1.0
3.0
VCC
−0.1 0.0



−0.2
2.0
4.0
RL = 2.2kΩ
VIL
VIM
VIH
V
V
V
V
dB
dB
V
 −4.0 −3.0
3.0 4.0 
VCC VCC
−1.4 −0.7 
Bias off
Bias out maximum level
ALC CAL response
Bias out offset
ALC (1) = 0dB
dB
dB
dB
−6.0 −4.5 −3.0
6.0
Control voltage
f = 12kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF
VGP-CAL = 5V
4.5
−6.0 −4.5 −3.0
NORM NORM f = 12kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF GV EQ-NN3 = 0dB 3.0
VGP-CAL = 0V
SW22 (L), SW23 (R) OFF
23.9 dB
28.4 dB
22.7 dB
27.5 dB
31.5 dB
dB

6.0 dB
21.9
25.9
21.2
25.5
29.0
70
4.5
19.9
23.4
19.7
23.5
26.5
60
3.0
NORM NORM f = 1kHz, VALC-CAL = 0V
f = 1kHz, VALC-CAL = 5V
RL = 2.2kΩ
GP-CAL2
GP-CAL1
f = 3kHz, Vin = −46dBs,
VREC-CAL = 0V
0.5 %
%
0.5
500 mV
21.8 dB
27.9 dB
35.1 dB
26.3 dB
32.5 dB
39.0 dB
18.0 dB
0.2
0.2
0
20.3
25.9
32.6
24.8
30.5
36.5
16.5


−500
18.8
23.9
30.1
23.3
28.5
34.0
15.0
dB

10.5 12.5
Min Typ Max Unit

dB
55 58
ALC-CAL1
ALC-CAL2
Bias on
GP CAL response
R-CAL2
TAPE SPEED
NORM NORM Rg = 5.1kΩ, A-WTG Filter
SW22 (L), SW23 (R) OFF
(0dB = −5dBs at EQOUT)
Equalizer maximum input Vin max (EQ) NORM NORM f = 1kHz, THD = 1%,
SW22 (L), SW23 (R) OFF
Vin = −26dBs = 0dB
Equalizer total harmonic T.H.D.1 (EQ) NORM NORM f = 1kHz, Vin = −26dBs
SW22 (L), SW23 (R) OFF
distortion
f = 1kHz, Vin = −30dBs
SW22 (L), SW23 (R) OFF
T.H.D.2 (EQ)
Equalizer offset voltage Vofs (EQ)
NORM NORM No-Signal
SW22 (L), SW23 (R) OFF
Equalizer
SW22 (L), SW23 (R) OFF
GVEQ-NN1
NORM NORM f = 3kHz, Vin = −46dBs
frequency response
f = 8kHz, Vin = −46dBs
GVEQ-NN2
SW22 (L), SW23 (R) OFF
(NORM - NORM)
f = 12kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
GVEQ-NN3
SW22 (L), SW23 (R) OFF
CROM NORM f = 3kHz, Vin = −46dBs
Equalizer
GVEQ-CN1
frequency response
SW22 (L), SW23 (R) OFF
f = 8kHz, Vin = −46dBs
GVEQ-CN2
(CROM - NORM)
f = 12kHz, Vin = −46dBs
GVEQ-CN3
SW22 (L), SW23 (R) OFF
Equalizer
GVEQ-NH1
SW22 (L), SW23 (R) OFF
NORM HIGH f = 5kHz, Vin = −46dBs
frequency response
f
=
15kHz,
Vin
=
−46dBs
G
SW22 (L), SW23 (R) OFF
VEQ-NH2
(NORM - High)
f = 20kHz, Vin = −46dBs
GVEQ-NH3
SW22 (L), SW23 (R) OFF
GVEQ-CH1
SW22 (L), SW23 (R) OFF
Equalizer
CROM HIGH f = 5kHz, Vin = −46dBs
frequency Response
f = 15kHz, Vin = −46dBs
GVEQ-CH2
SW22 (L), SW23 (R) OFF
(CROM - High)
f = 20kHz, Vin = −46dBs
GVEQ-CH3
SW22 (L), SW23 (R) OFF
REC-MUTE attenuation REC-MUTE NORM NORM f = 1kHz, Vin = −14dBs
SW22 (L), SW23 (R) OFF
NORM NORM f = 3kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF GV EQ-NN1 = 0dB
REC CAL response
R-CAL1
VREC-CAL = 5V
Item
Equalizer S/N
Test Condition
38
38
38
38
38
5
5
5
5
5








43
43

38
38
56
56

5
5
38
38
38
38
38
38
38
38
38
38
38
5
5
5
5
5
5
5
5
5
5
5
38
38
38
5
5
5




4
4

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7



























 32, 33
39

39

 32, 33
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
19, 24
15 to 20
22 to 25
15 to 20
22 to 25
Application Terminal
Input
Output
R
L
R
L COM Remark

5
38
7
36
(Ta = 25°C, VCC = 12 V)
HA12226F/HA12227F
HA12226F (cont.)
IQ
Symbol
Rev.6.00 Jun 15, 2005 page 19 of 83
PASS
GV PA
PASS
∆GV
PB
MUTE
PB
GV EQ 1k
PB
GV EQ 10k
PB
VON
PB
VOL
PB
IOH
REC
ALC (1)
REC
ALC (2)
PB
REC
REC
REC
REC
PB
REC
PB
REC/PB
PB
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
ON
ON
A/B
A/B
A
A
A
A
A
A
A
A
120
120
120
70
70
120
120
120
120
120
OFF
OFF
ON
OFF
OFF
OFF
OFF
OFF
OFF
OFF
NORM
NORM
NORM
CROM
CROM
NORM
NORM
NORM
NORM
CROM
Notes: 1. Other IC-condition : REC-MUTE OFF, Normal tape, Normal speed, Bias OFF
2. VCC = 11.0 V
3. For inputting signal to one side channel
MS sensing level
MS output low level
MS output leak current
ALC operate level
Pass AMP. gain
Gain deviation
MUTE ATT.
70µ EQ gain
GV PB
GV REC
Signal handling
Vo max
Signal to noise ratio
S/N
Total Harmonic Distortion THD
CTRL (1)
Channel separation
CTRL (2)
CT A/B
Crosstalk
CT R/P
Input AMP. gain
Item
Quiescent current
REC/PB
/PASS
1k
1k
1k
1k
10k
5k


1k
1k
0
0
+12
0
0



+12
+12
GV PA − GV PB
Test Condition
IC Condition *1
fin RECOUT
ALC
120µ/ LINE
B
ON/OFF A/B
(Hz) level (dB)
70µ MUTE N/C
Other
120
OFF NORM 
OFF
A

No signal
OFF
A/B
120
OFF NORM 1k
0
OFF
A
120
OFF NORM 1k
0
OFF
A
120
OFF NORM 1k
THD=1%

OFF
A
120
OFF NORM 1k
Rg=5.1kΩ, CCIR/ARM

OFF
A
120
OFF NORM 1k
0
OFF
A
120
OFF NORM 1k
+12
OFF
A
120
OFF NORM 1k
+12
OFF
A/B
120
OFF NORM 1k
+12
OFF
A
120
OFF NORM 1k
+12
27.0 28.5
26.5 28.0
13.0 
70.0 
0.05 0.3
80.0 
85.0 
80.0 
80.0 
25.5 27.0 28.5
−1.0 0.0 1.0
70.0 80.0 
24.0 25.5 27.0
20.8 22.3 23.8
−26.0 −22.0 −18.0
 1.0 1.5

 2.0
2.0 4.5 7.0
0.0 2.5 5.0
25.5
25.0
12.0
64.0

70.0
70.0
70.0
70.0
R

48/46
43
43
43
43
48
43
48/46
48/43
L

3
3
4
4
4
3
3
3
3
R

40
40
40
40
40
40


39
39
40
40
39
39
39
40
40
40
40





26
26
26











3
2
L COM Remark
21

Output
dB 51/53 48/46 3
dB 51/53 48/46 3
dB 51 48
3
dB 51 48
3
3
51 48
dB 51 48
3
V
51 48 
µA 
 
dB 56 43
4
4
56 43
dB 51/53
56
dB 56
dB 56
%
56
dB 51
56
dB 51/53
51/56
Min Typ Max Unit
14.0 22.0 30.0 mA
Input
Application Terminal
(Ta = 25°C, VCC = 12 V, Dolby Level = REC-OUT Level = 300 mVrms = 0 dB)
HA12226F/HA12227F
HA12227F
Symbol
S/N (EQ)
Rev.6.00 Jun 15, 2005 page 20 of 83
0.1
1.0
3.0
VCC
−0.1 0.0



−0.2
2.0
4.0
RL = 2.2kΩ
VIL
VIM
VIH
V
V
V
V
dB
dB
V
 −4.0 −3.0
3.0 4.0 
VCC VCC
−1.4 −0.7 
Bias off
Bias out maximum level
ALC CAL response
Bias out offset
ALC (1) = 0dB
dB
−6.0 −4.5 −3.0
Control voltage
f = 12kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF
VGP-CAL = 5V
dB
dB
6.0
4.5
−6.0 −4.5 −3.0
23.9 dB
28.4 dB
22.7 dB
27.5 dB
31.5 dB
dB

6.0 dB
21.9
25.9
21.2
25.5
29.0
70
4.5
19.9
23.4
19.7
23.5
26.5
60
3.0
NORM NORM f = 12kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF GV EQ-NN3 = 0dB 3.0
VGP-CAL = 0V
SW22 (L), SW23 (R) OFF
0.5 %
%
0.5
500 mV
21.8 dB
27.9 dB
35.1 dB
26.3 dB
32.5 dB
39.0 dB
18.0 dB
0.2
0.2
0
20.3
25.9
32.6
24.8
30.5
36.5
16.5


−500
18.8
23.9
30.1
23.3
28.5
34.0
15.0
dB

10.5 12.5
Min Typ Max Unit

dB
55 58
NORM NORM f = 1kHz, VALC-CAL = 0V
f = 1kHz, VALC-CAL = 5V
RL = 2.2kΩ
GP-CAL2
GP-CAL1
f = 3kHz, Vin = −46dBs,
VREC-CAL = 0V
TAPE SPEED
NORM NORM Rg = 5.1kΩ, A-WTG Filter
SW22 (L), SW23 (R) OFF
(0dB = −5dBs at EQOUT)
NORM NORM f = 1kHz, THD = 1%,
SW22 (L), SW23 (R) OFF
Vin = −26dBs = 0dB
NORM NORM f = 1kHz, Vin = −26dBs
SW22 (L), SW23 (R) OFF
f = 1kHz, Vin = −30dBs
SW22 (L), SW23 (R) OFF
SW22 (L), SW23 (R) OFF
NORM NORM No-Signal
SW22 (L), SW23 (R) OFF
NORM NORM f = 3kHz, Vin = −46dBs
f = 8kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
f = 12kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
SW22 (L), SW23 (R) OFF
CROM NORM f = 3kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
f = 8kHz, Vin = −46dBs
f = 12kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
SW22 (L), SW23 (R) OFF
NORM HIGH f = 5kHz, Vin = −46dBs
f = 15kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
f = 20kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
SW22 (L), SW23 (R) OFF
CROM HIGH f = 5kHz, Vin = −46dBs
f = 15kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
f = 20kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
SW22 (L), SW23 (R) OFF
NORM NORM f = 1kHz, Vin = −14dBs
NORM NORM f = 3kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF GV EQ-NN1 = 0dB
VREC-CAL = 5V
ALC-CAL1
ALC-CAL2
Bias on
GP CAL response
R-CAL2
Equalizer total harmonic T.H.D.1 (EQ)
distortion
T.H.D.2 (EQ)
Equalizer offset voltage Vofs (EQ)
Equalizer
GVEQ-NN1
frequency response
GVEQ-NN2
(NORM - NORM)
GVEQ-NN3
Equalizer
GVEQ-CN1
frequency response
GVEQ-CN2
(CROM - NORM)
GVEQ-CN3
Equalizer
GVEQ-NH1
frequency response
GVEQ-NH2
(NORM - High)
GVEQ-NH3
Equalizer
GVEQ-CH1
frequency Response
GVEQ-CH2
(CROM - High)
GVEQ-CH3
REC-MUTE attenuation REC-MUTE
REC CAL response
R-CAL1
Equalizer maximum input Vin max (EQ)
Item
Equalizer S/N
Test Condition
38
38
38
38
38
5
5
5
5
5








43
43

38
38
56
56

5
5
38
38
38
38
38
38
38
38
38
38
38
5
5
5
5
5
5
5
5
5
5
5
38
38
38
5
5
5




4
4

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7



























 32, 33
39

39

 32, 33
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
19, 24
15 to 20
22 to 25
15 to 20
22 to 25
Application Terminal
Input
Output
R
L
R
L COM Remark

5
38
7
36
(Ta = 25°C, VCC = 12 V)
HA12226F/HA12227F
HA12227F (cont.)
OFF
ON SW2
Rch
SW4
EQ
R2
10k
RIN (R)
R
B
C27
0.47µ
C30
1µ
C2
0.0047µ
C1
0.47µ
R4
13k
C4
0.1µ
R3
2.2k ALC (R)
C3
0.47µ
+
A
BIN (R)
C26
0.0047µ
C25
0.47µ
+
R1
10k
AIN (R)
R33
10k
R31
2.2k
56
55
54
53
52
51
50
49
48
47
46
45
44
C5
0.1µ
GND
RIP
2.2µ
0.47µ
C20
JP3 OFF
SW
22 ON
C18
2.2µ
EQ
C17
0.47µ
R22
2.4k
R21
2k
C
R20
910
SW21
N
1
R5
33k
REC
R6
10k
+
3
C6
2.2µ
EQ
R8
7.5k
R9
16k
R10
5.1k
PB
SW8
REC
R11
10k
EQ
8
6
7
5
+ SW ON
23
0.47µ JP1 OFF +
+ C10
C9 2.2µ
0.47µ
R7
20k
+ C8
4
C7
2.2µ
9
C11
0.47µ
LPF
ROUT (R)
PB
SW6
2
EQ
Dolby
B-NR
+
Dolby
B-NR
EQ
ALC
−
+
MS
R12
1M
C12
10µ
R13
330k
10 11 12 13 14
BIAS
42 41 40 39 38 37 36 35 34 33 32 31 30 29
2.2µ
R25
16k
C21
R24
5.1k
R27
20k C19
0.47µ
REC
SW7
PB
ALCDET
Notes: 1. Resistor tolerance are ±1%.
2. Capacitor tolerance are ±1%.
3. Unit R: Ω, C: F.
SW1
BIN (L)
R32
10k
B
AIN (L)
A
R
+
AC VM1
Audio
SG
Lch
SW3
EQ
43
RIN (L)
ALC (L) C24
0.1µ
R30
13k
+
+
C23
0.1µ
R28
10k
C22
+
R29
22k
R26
7.5k
+
REC
+
EQ
+
Rev.6.00 Jun 15, 2005 page 21 of 83
+
C15
22µ
C14
22µ
VCC
C13
0.33µ
15
SW9
16 SW10
17 SW11
18 SW12
19 SW13
20 SW14
21
22
23
24 SW17
MAOUT
R18
3.9k
DC VM2
ON
A
OFF
120
B
N
70
OFF
C
C
N
H
ON
ALC ON / OFF
PB A / B
A 120 / 70
NORM / HIGH
B NORM / CROM
BIAS ON / OFF
SW19
Rch
Lch
DC VM1
JP2
DC +12V
SOURCE1
R14
10k
R15
10k
DC +5V
SOURCE4
DC +2.5V
SOURCE3
C28
100µ
BIAS
OFF LM ON / OFF
PASS
PB
REC REC / PB / PASS
R17
ON
22k
SW16 OFF NR ON / OFF
R16
OFF
22k
RM ON / OFF
SW15 ON
ON
C16
1000p
MSOUT
MSIN
25 SW18
26
27
28
+
ROUT (L)
+
ALCIN (L)
+
MSDET
+
+
SW5
PB
Lch
Rch
AC VM2
Oscillo
scope
Distortion
analyzer
Noise
meter
noise meter
with ccir/arm filter
and a-wtg filter
SW20
HA12226F/HA12227F
Test Circuit
HA12226F
ALCCal
RECCal
GPCal
ALCIN (R)
Rev.6.00 Jun 15, 2005 page 22 of 83
Rch
SW4
EQ
RIN (R)
R
B
R2
10k
C30
1µ
C2
0.0047µ
C1
0.47µ
R4
13k
C4
0.1µ
R3
2.2k ALC (R)
C3
0.47µ
+
A
BIN (R)
C27
0.47µ
+
R1
10k
AIN (R)
C26
0.0047µ
C25
0.47µ
+
OFF
ON SW2
R33
10k
R31
2.2k
+
56
55
54
53
52
51
50
49
48
47
46
45
44
43
GND
RIP
JP3 OFF
SW
22 ON
1
REC
R6
10k
+
3
C6
2.2µ
PB
SW6
2
C17
0.47µ
EQ
R8
7.5k
R9
16k
R10
5.1k
PB
SW8
REC
R11
10k
EQ
8
6
9
C11
0.47µ
LPF
7
5
+
+ SW ON
23
0.47µ JP1 OFF +
+ C10
C9 2.2µ
0.47µ
R7
20k
+ C8
4
C7
2.2µ
EQ
EQ
ROUT (R)
Notes: 1. Resistor tolerance are ±1%.
2. Capacitor tolerance are ±1%.
3. Unit R: Ω, C: F.
SW1
BIN (L)
R32
10k
B
R
AIN (L)
A
EQ
+
AC VM1
Audio
SG
Lch
SW3
ALC (L) C24
0.1µ
RIN (L)
0.47µ
C20
C18
2.2µ
R22
2.4k
R21
2k
C
R20
910
SW21
N
ALC
−
+
MS
R12
1M
C12
10µ
R13
330k
10 11 12 13 14
BIAS
ALCDET
+
R30
13k
2.2µ
R25
16k
C21
R27
20k C19
0.47µ
R24
5.1k
REC
EQ
42 41 40 39 38 37 36 35 34 33 32 31 30 29
2.2µ
R28
10k
C22
+
R29
22k
+
R26
7.5k
+
REC
SW7
PB
+
EQ
ROUT (L)
VCC
C14
22µ
C13
0.33µ
15
SW9
16 SW10
17 SW11
18 SW12
19 SW13
20 SW14
21
22
23
24 SW17
MAOUT
ON
A
OFF
120
B
N
70
OFF
C
C
N
H
ON
ON
OFF
ALC ON / OFF
PB A / B
A 120 / 70
NORM / HIGH
SW19
Rch
Lch
DC VM1
JP2
DC +12V
SOURCE1
R14
10k
R15
10k
DC +5V
SOURCE4
DC +2.5V
SOURCE3
C28
100µ
BIAS
RM ON / OFF
B NORM / CROM
BIAS ON / OFF
R16
22k
SW15
R18
3.9k
DC VM2
OFF LM ON / OFF
PASS
PB
REC REC / PB / PASS
ON
C16
1000p
MSOUT
MSIN
25 SW18
26
27
28
+
ALCIN (L)
+
MSDET
+
+
SW5
PB
Rch
Lch
AC VM2
Oscillo
scope
Distortion
analyzer
Noise
meter
noise meter
with ccir/arm filter
and a-wtg filter
SW20
HA12226F/HA12227F
HA12227F
ALCCal
RECCal
GPCal
ALCIN (R)
HA12226F/HA12227F
Characteristic Curves
HA12226F
Quiescent Current vs. Supply Voltage (REC mode)
35
Quiescent Current IQ (mA)
REC mode
NR-OFF, REC-MUTE ON, BIAS OFF
NR-OFF, REC-MUTE OFF, BIAS OFF
NR-ON, REC-MUTE OFF, BIAS ON
Other switch is all Low
30
25
20
11
12
13
Supply Voltage (V)
14
15
Quiescent Current vs. Supply Voltage (PB mode)
35
Quiescent Current IQ (mA)
PB mode
NR-OFF, BIAS OFF
NR-ON, BIAS OFF
NR-ON, BIAS ON
Other switch is all Low
30
25
20
11
Rev.6.00 Jun 15, 2005 page 23 of 83
12
13
Supply Voltage (V)
14
15
HA12226F/HA12227F
Input Amp. Gain vs. Frequency (1)
40
VCC = 12V
Ain
→ RECOUT
Bin
Gain (dB)
30
NR-ON
20
NR-OFF
10
0
−10
10
100
1k
10k
Frequency (Hz)
100k
1M
Input Amp. Gain vs. Frequency (2)
40
VCC = 12V
Ain
→ PBOUT
Bin
30
Gain (dB)
PASS mode
20
PB mode
10
0
−10
10
100
Rev.6.00 Jun 15, 2005 page 24 of 83
1k
10k
Frequency (Hz)
100k
1M
HA12226F/HA12227F
Input Amp. Gain vs. Frequency (3)
40
VCC = 12V
REC mode
30
Gain (dB)
PBOUT
20
RECOUT
10
0
−10
10
100
1k
10k
Frequency (Hz)
100k
1M
100k
1M
Input Amp. Gain vs. Frequency (4)
30
VCC = 12V
Ain
→ PBOUT
Bin
120µ
Gain (dB)
26
22
70µ
18
14
10
10
100
Rev.6.00 Jun 15, 2005 page 25 of 83
1k
10k
Frequency (Hz)
HA12226F/HA12227F
Encode Boost vs. Frequency
12
VCC = 12V
Dolby B-NR
−40dB
Encode Boost (dB)
10
8
−30dB
6
4
−20dB
2
−10dB
0dB
0
100
1k
Frequency (Hz)
10k
20k
Decode Cut vs. Frequency
0
0dB
−10dB
−2
Decode Cut (dB)
−20dB
−4
−6
−30dB
−8
−10
−40dB
VCC = 12V
Dolby B-NR
−12
100
Rev.6.00 Jun 15, 2005 page 26 of 83
1k
Frequency (Hz)
10k
20k
HA12226F/HA12227F
Signal Handling (1)
30
REC mode
Rin → RECOUT = 300mVrms = 0dB
f = 1kHz, T.H.D. ≈ 1%
NR-OFF
NR-ON
Vomax (dB)
25
20
15
11
12
13
Supply Voltage (V)
14
15
14
15
Signal Handling (2)
25
Ain
→ PBOUT = 580mVrms = 0dB
Bin
f = 1kHz, T.H.D. ≈ 1%
NR-OFF
PB mode
NR-ON
PASS mode
Vomax (dB)
20
15
10
11
Rev.6.00 Jun 15, 2005 page 27 of 83
12
13
Supply Voltage (V)
HA12226F/HA12227F
Signal to Noise Ratio vs. Split Supply Voltage (1)
85
A, Bin, PB mode, NR-ON
Signal to Noise Ratio (dB)
Rin, REC mode, NR-OFF
80
A, Bin, PASS mode, PBOUT
A, Bin, PB mode, NR-OFF
75
f = 1kHz, CCIR/ARM filter
Rin → RECOUT = 300mVrms = 0dB
Ain
→ PBOUT = 580mVrms = 0dB
Bin
Rin, PEC mode, NR-ON
70
65
11
12
13
Supply Voltage (V)
14
15
Total Harmonic Distortion vs. Supply Voltage (1)
(REC mode, NR-OFF)
1.0
T.H.D. (%)
REC mode, NR-OFF
Rin → RECOUT = 300mVrms
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 80kHz LPF)
Rin → PBOUT = 580mVrms
1kHz (400Hz HPF + 30kHz LPF)
0.1
0.01
11
Rev.6.00 Jun 15, 2005 page 28 of 83
12
13
Supply Voltage (V)
14
15
HA12226F/HA12227F
Total Harmonic Distortion vs. Supply Voltage (2)
(REC mode, NR-ON)
1.0
T.H.D. (%)
REC mode, NR-ON
Rin → RECOUT = 300mVrms
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 80kHz LPF)
Rin → PBOUT = 580mVrms
1kHz (400Hz HPF + 30kHz LPF)
0.1
0.01
11
12
14
15
Total Harmonic Distortion vs. Supply Voltage (3)
(PB mode, NR-OFF)
1.0
T.H.D. (%)
13
Supply Voltage (V)
PB mode, NR-OFF
Ain
→ PBOUT = 580mVrms
Bin
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 80kHz LPF)
Ain
→ RECOUT = 300mVrms
Bin
1kHz (400Hz HPF + 30kHz LPF)
0.1
0.01
11
Rev.6.00 Jun 15, 2005 page 29 of 83
12
13
Supply Voltage (V)
14
15
HA12226F/HA12227F
Total Harmonic Distortion vs. Supply Voltage (4)
(PB mode, NR-ON)
T.H.D. (%)
1.0
PB mode, NR-ON
Ain
→ PBOUT = 580mVrms
Bin
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 80kHz LPF)
Ain
→ RECOUT = 300mVrms
Bin
1kHz (400Hz HPF + 30kHz LPF)
0.1
0.01
11
12
13
Supply Voltage (V)
14
15
Total Harmonic Distortion vs. Supply Voltage (5)
(PASS mode, NR-OFF)
1.0
PASS mode, NR
Ain
Bin
ON
OFF
→ PBOUT = 580mVrms
T.H.D. (%)
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 80kHz LPF)
0.1
0.01
11
Rev.6.00 Jun 15, 2005 page 30 of 83
12
13
Supply Voltage (V)
14
15
HA12226F/HA12227F
Total Harmonic Distortion vs. Output Level (1)
(REC mode, NR-OFF)
10
REC mode, NR-OFF
VCC = 12V
100Hz
1kHz
10kHz
Rin → RECOUT = 300mVrms = 0dB
T.H.D. (%)
1.0
0.1
0.01
−10
−5
0
5
10
Output Level Vout (dB)
15
20
Total Harmonic Distortion vs. Output Level (2)
(REC mode, NR-ON)
10
REC mode, NR-ON
VCC = 12V
100Hz
1kHz
10kHz
Rin → RECOUT = 300mVrms = 0dB
T.H.D. (%)
1.0
0.1
0.01
−10
Rev.6.00 Jun 15, 2005 page 31 of 83
−5
0
5
10
Output Level Vout (dB)
15
20
HA12226F/HA12227F
Total Harmonic Distortion vs. Output Level (3)
(PB mode, NR-OFF)
10
T.H.D. (%)
1.0
PB mode, NR-OFF
VCC = 12V
100Hz
1kHz
10kHz
Ain
→ PBOUT = 580mVrms = 0dB
Bin
0.1
0.01
−10
−5
15
20
Total Harmonic Distortion vs. Output Level (4)
(PB mode, NR-ON)
10
PB mode, NR-ON
VCC = 12V
100Hz
1kHz
10kHz
Ain
→ PBOUT = 580mVrms = 0dB
Bin
T.H.D. (%)
1.0
0
5
10
Output Level Vout (dB)
0.1
0.01
−10
Rev.6.00 Jun 15, 2005 page 32 of 83
−5
0
5
10
Output Level Vout (dB)
15
20
HA12226F/HA12227F
Total Harmonic Distortion vs. Output Level (5)
(PASS mode, NR-OFF)
10
T.H.D. (%)
1.0
PASS mode, NR-OFF
VCC = 12V
100Hz
1kHz
10kHz
Ain
→ PBOUT = 580mVrms = 0dB
Bin
0.1
0.01
−10
−5
0
5
10
Output Level Vout (dB)
15
20
Total Harmonic Distortion vs. Frequency (1)
T.H.D. (%)
REC mode, NR-OFF, VCC = 12V
Rin → RECOUT = 300mVrms
−10dB
0dB
10dB
0.1
0.01
100
Rev.6.00 Jun 15, 2005 page 33 of 83
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Total Harmonic Distortion vs. Frequency (2)
T.H.D. (%)
REC mode, NR-ON, VCC = 12V
Rin → RECOUT = 300mVrms
−10dB
0dB
10dB
0.1
0.01
100
1k
Frequency (Hz)
10k
100k
Total Harmonic Distortion vs. Frequency (3)
T.H.D. (%)
PB mode, NR-OFF, VCC = 12V
Ain
→ PBOUT = 580mVrms
Bin
−10dB
0dB
10dB
0.1
0.01
100
Rev.6.00 Jun 15, 2005 page 34 of 83
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Total Harmonic Distortion vs. Frequency (4)
T.H.D. (%)
PB mode, NR-ON, VCC = 12V
Ain
→ PBOUT = 580mVrms
Bin
−10dB
0dB
10dB
0.1
0.01
100
1k
Frequency (Hz)
10k
100k
Total Harmonic Distortion vs. Frequency (5)
T.H.D. (%)
PASS mode, NR-OFF, VCC = 12V
Ain
→ PBOUT = 580mVrms
Bin
−10dB
0dB
10dB
0.1
0.01
100
Rev.6.00 Jun 15, 2005 page 35 of 83
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Channel Separation vs. Frequency (R → L) (1)
−40
VCC = 11V, 12V, 15V
Rin → RECOUT, Vin = +12dB
REC mode, R → L
Channel Separation (dB)
−60
−80
NR-ON
−100
NR-OFF
−120
−140
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (R → L) (2)
−40
VCC = 11V, 12V, 15V
Rin → PBOUT, Vin = +12dB
REC mode, R → L
Channel Separation (dB)
−60
NR-ON/OFF
−80
−100
−120
−140
10
Rev.6.00 Jun 15, 2005 page 36 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Channel Separation vs. Frequency (L → R) (3)
−40
VCC = 11V, 12V, 15V
Rin → RECOUT, Vin = +12dB
REC mode, L → R
Channel Separation (dB)
−60
NR-ON
−80
−100
NR-OFF
−120
−140
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L → R) (4)
−40
VCC = 11V, 12V, 15V
Rin → PBOUT, Vin = +12dB
REC mode, L → R
Channel Separation (dB)
−60
−80
NR-ON/OFF
−100
−120
−140
10
Rev.6.00 Jun 15, 2005 page 37 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Channel Separation vs. Frequency (R → L) (1)
−20
VCC = 11V, 12V, 15V
Ain → PBOUT, Vin = +10dB
R→L
Channel Separation (dB)
−40
−60
NR-OFF
−80
NR-ON
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (R → L) (2)
−20
VCC = 11V, 12V, 15V
Ain → RECOUT, Vin = +10dB
R→L
Channel Separation (dB)
−40
−60
NR-ON/OFF
−80
−100
−120
10
Rev.6.00 Jun 15, 2005 page 38 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Channel Separation vs. Frequency (R → L) (3)
−20
VCC = 11V, 12V, 15V
Bin → PBOUT, Vin = +10dB
R→L
Channel Separation (dB)
−40
−60
NR-OFF
−80
NR-ON
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (R → L) (4)
−20
VCC = 11V, 12V, 15V
Bin → RECOUT, Vin = +10dB
R→L
Channel Separation (dB)
−40
−60
NR-ON/OFF
−80
−100
−120
10
Rev.6.00 Jun 15, 2005 page 39 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Channel Separation vs. Frequency (L → R) (5)
−20
VCC = 11V, 12V, 15V
Ain → PBOUT, Vin = +10dB
L→R
Channel Separation (dB)
−40
−60
NR-OFF
−80
NR-ON
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L → R) (6)
−20
VCC = 11V, 12V, 15V
Ain → RECOUT, Vin = +10dB
L→R
Channel Separation (dB)
−40
−60
NR-ON/OFF
−80
−100
−120
10
Rev.6.00 Jun 15, 2005 page 40 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Channel Separation vs. Frequency (L → R) (7)
−20
VCC = 11V, 12V, 15V
Bin → PBOUT, Vin = +10dB
L→R
Channel Separation (dB)
−40
−60
NR-OFF
−80
NR-ON
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L → R) (8)
−20
VCC = 11V, 12V, 15V
Bin → RECOUT, Vin = +10dB
L→R
Channel Separation (dB)
−40
−60
NR-ON/OFF
−80
−100
−120
10
Rev.6.00 Jun 15, 2005 page 41 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Channel Separation vs. Frequency (R → L) (1)
−20
Channel Separation (dB)
−40
VCC = 11V, 12V, 15V
Ain
→ PBOUT, Vin = +10dB
Bin
PASS mode, R → L
−60
Ain
−80
Bin
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L → R) (2)
−20
Channel Separation (dB)
−40
VCC = 11V, 12V, 15V
Ain
→ PBOUT, Vin = +10dB
Bin
PASS mode, L → R
−60
Ain
−80
Bin
−100
−120
10
Rev.6.00 Jun 15, 2005 page 42 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Crosstalk vs. Frequency (Ain → Bin) (1)
−40
VCC = 11V, 12V, 15V
PB mode, PBOUT
Vin = +12dB, Ain → Bin
Crosstalk (dB)
−60
NR-OFF
−80
NR-ON
−100
−120
−140
10
100
1k
Frequency (Hz)
10k
100k
Crosstalk vs. Frequency (Bin → Ain) (2)
−40
VCC = 11V, 12V, 15V
PB mode, PBOUT
Vin = +12dB, Bin → Ain
Crosstalk (dB)
−60
NR-OFF
−80
NR-ON
−100
−120
−140
10
Rev.6.00 Jun 15, 2005 page 43 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Crosstalk vs. Frequency (PB mode → PASS mode) (1)
−20
Crosstalk (dB)
−40
VCC = 11V, 12V, 15V
Ain → RECOUT
Vin = +12dB
PB mode → PASS mode
−60
−80
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Crosstalk vs. Frequency (PB mode → PASS mode) (2)
−20
Crosstalk (dB)
−40
VCC = 11V, 12V, 15V
Bin → RECOUT
Vin = +12dB
PB mode → PASS mode
−60
−80
−100
−120
10
Rev.6.00 Jun 15, 2005 page 44 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Line Mute vs. Frequency
−20
Line Mute (dB)
VCC = 12V
Ain
→ PBOUT
Bin
Vin = +12dB
−40 PB mode
−60
−80
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
REC Mute Attenuation vs. Frequency
80
Crosstalk (dB)
40
VCC = 12V
EQIN → EQOUT
Vin = +14dB
Norm speed, Norm tape
0
−40
−80
−120
10
Rev.6.00 Jun 15, 2005 page 45 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Ripple Rejection Ratio vs. Frequency (REC mode) (1)
20
Ripple Rejection Ratio R.R.R. (dB)
VCC = 12V
REC mode
EQOUT
0
RECOUT
NR-ON
−20
−40
RECOUT
NR-OFF
PBOUT
−60
−80
10
100
1k
Frequency (Hz)
10k
100k
Ripple Rejection Ratio vs. Frequency (PB mode) (2)
20
VCC = 12V
PB mode
Ripple Rejection Ratio R.R.R. (dB)
EQOUT
0
−20
PBOUT
NR-OFF
−40
RECOUT
PBOUT
NR-ON
−60
−80
10
Rev.6.00 Jun 15, 2005 page 46 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Ripple Rejection Ratio vs. Frequency (PASS mode) (3)
20
Ripple Rejection Ratio R.R.R. (dB)
VCC = 12V
PASS mode
EQOUT
0
RECOUT
NR-ON
−20
−40
PBOUT
RECOUT
NR-OFF
−60
−80
10
100
1k
Frequency (Hz)
10k
100k
Equalizer Amp. Gain vs. Frequency (1)
55
50
VCC = 12V
Norm speed
45
REC-EQ Gain (dB)
40
35
30
Crom
25
20
Norm
15
10
5
10
Rev.6.00 Jun 15, 2005 page 47 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Equalizer Amp. Gain vs. Frequency (2)
55
50
VCC = 12V
High speed
45
REC-EQ Gain (dB)
40
35
30
Crom
25
20
15
Norm
10
5
10
100
1k
Frequency (Hz)
10k
100k
Equalizer Amp. Gain vs. Frequency (REC-cal)
55
REC-cal = 5V
50
45
REC-EQ Gain (dB)
40
35
30
25
20
REC-cal = 2.5V
15
REC-cal = 0V
10
5
10
Rev.6.00 Jun 15, 2005 page 48 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Equalizer Amp. Gain vs. Frequency (GP-cal)
55
GP-cal = 0V
50
45
REC-EQ Gain (dB)
40
35
30
GP-cal = 2.5V
25
20
GP-cal = 5V
15
10
5
10
100
1k
Frequency (Hz)
10k
100k
Equalizer Signal to Noise Ratio vs. Supply Voltage (1)
70
REC-EQ S/N (dB)
f = 1kHz
A-WTG filter
Norm speed
NN
NC
65
60
55
11
Rev.6.00 Jun 15, 2005 page 49 of 83
12
13
Supply Voltage (V)
14
15
HA12226F/HA12227F
Equalizer Signal to Noise Ratio vs. Supply Voltage (2)
70
REC-EQ S/N (dB)
f = 1kHz
A-WTG filter
High speed
HN
HC
65
60
55
11
12
13
Supply Voltage (V)
15
14
REC-cal Correction vs. VREC-cal
5
f = 3kHz
GP-cal open
VCC = 12V
Norm speed
Norm tape
4
REC-cal Correction (dB)
3
2
1
0
−1
−2
−3
−4
−5
0
Rev.6.00 Jun 15, 2005 page 50 of 83
1
2
3
VREC-cal (V)
4
5
HA12226F/HA12227F
GP-cal Correction vs. VGP-cal
5
4
GP-cal Correction (dB)
3
2
1
0
−1
−2
f = 12kHz
REC-cal open
VCC = 12V
Norm speed
Norm tape
−3
−4
−5
0
1
2
3
VGP-cal (V)
4
5
ALC Operate Level vs. Input Level
Output Level RECOUT (dB) 0dB ≈ 300mVrms
10
8
f = 1kHz, VCC = 12V, Both channel input (L, Rch)
Rin → RECOUT,
Cal = 5V
Norm
Crom
Cal = 5V
6
Cal = 2.5V
4
Cal = 2.5V
2
Cal = 0V
0
−2
−5
Cal = 0V
0
Rev.6.00 Jun 15, 2005 page 51 of 83
10
20
5
15
25
Input Level Vin (dB) 0dB ≈ 221mVrms
30
35
HA12226F/HA12227F
ALC Total Harmonic Distortion vs. Input Level (1)
f = 1kHz, VCC = 12V
Norm tape
Cal = 0V
Cal = 2.5V
Cal = 5V
ALC T.H.D. (%)
1.0
0.1
0.01
−5
0
30
5
10
15
20
25
Input Level Vin (dB) 0dB ≈ 221mVrms
(ALC-OFF, RECOUT ≈ 300mVrms)
ALC Total Harmonic Distortion vs. Input Level (2)
f = 1kHz, VCC = 12V
Crom tape
Cal = 0V
Cal = 2.5V
Cal = 5V
ALC T.H.D. (%)
1.0
0.1
0.01
−5
Rev.6.00 Jun 15, 2005 page 52 of 83
0
30
5
10
15
20
25
Input Level Vin (dB) 0dB ≈ 221mVrms
(ALC-OFF, RECOUT ≈ 300mVrms)
HA12226F/HA12227F
ALC Operate Level vs. Frequency
Operate Level RECOUT (dB) 0dB = 300mVrms
10
8
ALC-cal = 5V
6
ALC-cal = 5V
4
ALC-cal = 2.5V
2
ALC-cal = 2.5V
ALC-cal = 0V
0
ALC-cal = 0V
−2
Vin = +12dB, Both channel input (L, Rch), Rin → RECOUT
Norm
Crom
−4
100
1k
Frequency (Hz)
10k
Bias Output Voltage vs. Load Current
13
VCC = 12V
Bias ON
270Ω
31
Bias Output Voltage (V)
V
I
12
11
10
0
Rev.6.00 Jun 15, 2005 page 53 of 83
1
2
3
4
5
Load Current I (mA)
6
7
HA12226F/HA12227F
MS Sensing Level vs. Frequency
5
VCC = 12V, MSOUT
Ain → PBOUT = 580mVrms = 0dB
Lo → Hi
Hi → Lo
MS Sensing Level (dB)
0
−5
−10
−15
−20
−25
−30
100
1k
10k
100k
Frequency (Hz)
MS Amp. Gain vs. Frequency
40
VCC = 12V
MAOUT
Gain (dB)
30
20
10
MSIN
0
−10
10
Rev.6.00 Jun 15, 2005 page 54 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
No-Signal Sensing Time vs. Resistance
No-Signal Sensing Time (ms)
1000
VCC = 12V, f = 5kHz
Ain → PBOUT = 580mVrms
0dB
−10dB
−20dB
100
PBOUT
10
MSOUT
C13
0.33µ
14
VCC
R13
1
10k
100k
Resistance R13 (Ω)
1M
Signal Sensing Time vs. Capacitance
Signal Sensing Time (ms)
VCC = 12V, f = 5kHz
Ain → PBOUT = 580mVrms
0dB
−10dB
100
−20dB
10
PBOUT
MSOUT
1
C13
14
VCC
R13
330k
0.1
0.01
Rev.6.00 Jun 15, 2005 page 55 of 83
0.1
Capacitance C13 (µF)
1.0
HA12226F/HA12227F
HA12227F
Quiescent Current vs. Supply Voltage (REC mode)
30
Quiescent Current IQ (mA)
REC mode
REC-MUTE ON, BIAS OFF
REC-MUTE OFF, BIAS OFF
REC-MUTE OFF, BIAS ON
Other switch is all Low
25
20
15
11
12
13
Supply Voltage (V)
14
15
Quiescent Current vs. Supply Voltage (PB mode)
30
Quiescent Current IQ (mA)
PB mode
REC-MUTE ON, BIAS OFF
REC-MUTE OFF, BIAS OFF
REC-MUTE OFF, BIAS ON
Other switch is all Low
25
20
15
11
Rev.6.00 Jun 15, 2005 page 56 of 83
12
13
Supply Voltage (V)
14
15
HA12226F/HA12227F
Input Amp. Gain vs. Frequency (1)
50
Gain (dB)
40
VCC = 12V
Ain
→ PBOUT
Bin
PB mode
30
20
10
0
10
100
1k
10k
Frequency (Hz)
100k
1M
100k
1M
Input Amp. Gain vs. Frequency (2)
50
Gain (dB)
40
VCC = 12V
Ain
→ PBOUT
Bin
PASS mode
30
20
10
0
10
100
Rev.6.00 Jun 15, 2005 page 57 of 83
1k
10k
Frequency (Hz)
HA12226F/HA12227F
Input Amp. Gain vs. Frequency (3)
50
VCC = 12V
REC mode
Gain (dB)
40
30
PBOUT
20
RECOUT
10
0
10
100
1k
10k
Frequency (Hz)
100k
1M
100k
1M
Input Amp. Gain vs. Frequency (4)
50
VCC = 12V
Ain
→ PBOUT
Bin
Gain (dB)
40
30
120µ
70µ
20
10
0
10
100
Rev.6.00 Jun 15, 2005 page 58 of 83
1k
10k
Frequency (Hz)
HA12226F/HA12227F
Signal Handling (1)
25
Vomax (dB)
20
15
REC mode, T.H.D. ≈ 1%
Rin → RECOUT = 300mVrms = 0dB
1kHz
Rin → PBOUT = 580mVrms = 0dB
1kHz
10
11
12
13
Supply Voltage (V)
14
15
14
15
Signal Handling (2)
25
Vomax (dB)
20
15
PB mode, T.H.D. ≈ 1%
Ain
→ RECOUT = 300mVrms = 0dB
Bin
1kHz
Ain
Bin
10
11
Rev.6.00 Jun 15, 2005 page 59 of 83
→ PBOUT = 580mVrms = 0dB
1kHz
12
13
Supply Voltage (V)
HA12226F/HA12227F
Signal to Noise Ratio vs. Supply Voltage (1)
Signal to Noise Ratio (dB)
85
80
75
REC mode, CCIR/ARM filter
Rin → RECOUT = 300mVrms = 0dB
1kHz
Rin → PBOUT = 580mVrms = 0dB
1kHz
70
11
12
13
Supply Voltage (V)
14
15
Signal to Noise Ratio vs. Supply Voltage (2)
Signal to Noise Ratio (dB)
85
80
75
PB mode, CCIR/ARM filter
Ain
→ RECOUT = 300mVrms = 0dB
Bin
1kHz
Ain
Bin
70
11
Rev.6.00 Jun 15, 2005 page 60 of 83
→ PBOUT = 580mVrms = 0dB
1kHz
12
13
Supply Voltage (V)
14
15
HA12226F/HA12227F
Signal to Noise Ratio vs. Supply Voltage (3)
85
Signal to Noise Ratio (dB)
PASS mode, CCIR/ARM filter
Ain
→ PBOUT = 580mVrms = 0dB
Bin
1kHz
80
75
70
11
12
13
Supply Voltage (V)
14
15
Total Harmonic Distortion vs. Supply Voltage (1)
1.0
T.H.D. (%)
REC mode
Rin → RECOUT = 300mVrms
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 80kHz LPF)
Rin → PBOUT = 580mVrms
1kHz (400Hz HPF + 30kHz LPF)
0.1
0.01
11
Rev.6.00 Jun 15, 2005 page 61 of 83
12
13
Supply Voltage (V)
14
15
HA12226F/HA12227F
Total Harmonic Distortion vs. Supply Voltage (2)
T.H.D. (%)
1.0
PB mode, NR-OFF
Ain
→ PBOUT = 580mVrms
Bin
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 80kHz LPF)
Ain
→ RECOUT = 300mVrms
Bin
1kHz (400Hz HPF + 30kHz LPF)
0.1
0.01
11
12
13
Supply Voltage (V)
14
15
Total Harmonic Distortion vs. Supply Voltage (3)
1.0
T.H.D. (%)
PASS mode
Ain → PBOUT = 580mVrms
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 80kHz LPF)
0.1
0.01
11
Rev.6.00 Jun 15, 2005 page 62 of 83
12
13
Supply Voltage (V)
14
15
HA12226F/HA12227F
Total Harmonic Distortion vs. Output Level (1)
10
T.H.D. (%)
1.0
REC mode
Rin → RECOUT
0dB = 300mVrms
VCC = 12V
100Hz
1kHz
10kHz
0.1
0.01
−15
−10
−5
0
5
10
15
Output Level Vout (dB)
20
25
Total Harmonic Distortion vs. Output Level (2)
10
T.H.D. (%)
1.0
PB mode
Ain
→ PBOUT
Bin
0dB = 580mVrms
VCC = 12V
100Hz
1kHz
10kHz
0.1
0.01
−15
Rev.6.00 Jun 15, 2005 page 63 of 83
−10
−5
0
5
10
15
Output Level Vout (dB)
20
25
HA12226F/HA12227F
Total Harmonic Distortion vs. Output Level (3)
10
T.H.D. (%)
1.0
PASS mode
Ain
→ PBOUT
Bin
0dB = 580mVrms
VCC = 12V
100Hz
1kHz
10kHz
0.1
0.01
−15
−10
−5
0
5
10
15
Output Level Vout (dB)
20
25
Total Harmonic Distortion vs. Frequency (1)
T.H.D. (%)
REC mode
Rin → RECOUT
0dB = 300mVrms
−10dB
0dB
10dB
0.1
0.01
100
Rev.6.00 Jun 15, 2005 page 64 of 83
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Total Harmonic Distortion vs. Frequency (2)
T.H.D. (%)
PB mode
Ain
→ PBOUT
Bin
0dB = 580mVrms
−10dB
0dB
10dB
0.1
0.01
100
1k
Frequency (Hz)
10k
100k
Total Harmonic Distortion vs. Frequency (3)
T.H.D. (%)
PB mode
Ain
→ PBOUT
Bin
0dB = 580mVrms
−10dB
0dB
10dB
0.1
0.01
100
Rev.6.00 Jun 15, 2005 page 65 of 83
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Channel Separation vs. Frequency (R → L) (1)
40
VCC = 11V, 12V, 15V
Rin → RECOUT, Vin = +12dB
REC mode, R → L
Channel Separation (dB)
0
−40
−80
−120
−160
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L → R) (2)
40
VCC = 11V, 12V, 15V
Rin → RECOUT, Vin = +12dB
REC mode, L → R
Channel Separation (dB)
0
−40
−80
−120
−160
10
Rev.6.00 Jun 15, 2005 page 66 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Channel Separation vs. Frequency (R → L) (3)
40
VCC = 11V, 12V, 15V
Ain → PBOUT, Vin = +10dB
R→L
Channel Separation (dB)
0
−40
−80
−120
−160
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L → R) (4)
40
VCC = 11V, 12V, 15V
Ain → PBOUT, Vin = +10dB
L→R
Channel Separation (dB)
0
−40
−80
−120
−160
10
Rev.6.00 Jun 15, 2005 page 67 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Channel Separation vs. Frequency (R → L) (5)
40
VCC = 11V, 12V, 15V
Bin → PBOUT, Vin = +10dB
R→L
Channel Separation (dB)
0
−40
−80
−120
−160
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L → R) (6)
40
VCC = 11V, 12V, 15V
Bin → PBOUT, Vin = +10dB
L→R
Channel Separation (dB)
0
−40
−80
−120
−160
10
Rev.6.00 Jun 15, 2005 page 68 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Channel Separation vs. Frequency (R → L) (7)
40
VCC = 11V, 12V, 15V
Ain → PBOUT, Vin = +10dB
PASS mode, R → L
Channel Separation (dB)
0
−40
−80
−120
−160
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L → R) (8)
40
VCC = 11V, 12V, 15V
Ain → PBOUT, Vin = +10dB
PASS mode, L → R
Channel Separation (dB)
0
−40
−80
−120
−160
10
Rev.6.00 Jun 15, 2005 page 69 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Channel Separation vs. Frequency (R → L) (9)
40
VCC = 11V, 12V, 15V
Bin → PBOUT, Vin = +10dB
PASS mode, R → L
Channel Separation (dB)
0
−40
−80
−120
−160
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L → R) (10)
40
VCC = 11V, 12V, 15V
Bin → PBOUT, Vin = +10dB
PASS mode, L → R
Channel Separation (dB)
0
−40
−80
−120
−160
10
Rev.6.00 Jun 15, 2005 page 70 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Crosstalk vs. Frequency (Ain → Bin) (1)
40
VCC = 11V, 12V, 15V
PB mode, PBOUT
Vin = +12dB, Ain → Bin
Channel Separation (dB)
0
−40
−80
−120
−160
10
100
1k
Frequency (Hz)
10k
100k
Crosstalk vs. Frequency (Bin → Ain) (2)
40
VCC = 11V, 12V, 15V
PB mode, PBOUT
Vin = +12dB, Bin → Ain
Channel Separation (dB)
0
−40
−80
−120
−160
10
Rev.6.00 Jun 15, 2005 page 71 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Line Mute vs. Frequency
40
Line Mute (dB)
VCC = 12V
Ain
→ PBOUT
Bin
Vin = +12dB
0 PB mode
−40
−80
−120
−160
10
100
1k
Frequency (Hz)
10k
100k
REC Mute Attenuation vs. Frequency
40
Crosstalk (dB)
0
VCC = 12V
EQIN → EQOUT
Vin = +14dB
Norm speed, Norm tape
−40
−80
−120
−160
10
Rev.6.00 Jun 15, 2005 page 72 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Ripple Rejection Ratio vs. Frequency (REC mode) (1)
20
Ripple Rejection Ratio R.R.R. (dB)
VCC = 12V
REC mode
0
EQOUT
−20
−40
RECOUT
−60
−80
10
100
1k
Frequency (Hz)
10k
100k
Ripple Rejection Ratio vs. Frequency (PB mode) (2)
20
Ripple Rejection Ratio R.R.R. (dB)
VCC = 12V
PB mode, RECOUT
0
−20
−40
−60
−80
10
Rev.6.00 Jun 15, 2005 page 73 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Ripple Rejection Ratio vs. Frequency (PASS mode) (3)
20
Ripple Rejection Ratio R.R.R. (dB)
VCC = 12V
PASS mode, PBOUT
0
−20
−40
−60
−80
10
100
1k
Frequency (Hz)
10k
100k
Equalizer Amp. Gain vs. Frequency (1)
55
50
VCC = 12V
Norm speed
45
REC-EQ Gain (dB)
40
35
30
Crom
25
20
15
Norm
10
5
10
Rev.6.00 Jun 15, 2005 page 74 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Equalizer Amp. Gain vs. Frequency (2)
55
50
VCC = 12V
High speed
45
REC-EQ Gain (dB)
40
35
30
Crom
25
20
15
Norm
10
5
10
100
1k
Frequency (Hz)
10k
100k
Equalizer Amp. Gain vs. Frequency (REC-cal)
55
REC-cal = 5V
50
45
REC-EQ Gain (dB)
40
35
30
25
20
REC-cal = 2.5V
15
REC-cal = 0V
10
5
10
Rev.6.00 Jun 15, 2005 page 75 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Equalizer Amp. Gain vs. Frequency (GP-cal)
55
GP-cal = 0V
50
45
REC-EQ Gain (dB)
40
35
30
GP-cal = 2.5V
25
20
GP-cal = 5V
15
10
5
10
100
1k
Frequency (Hz)
10k
100k
Equalizer Signal to Noise Ratio vs. Supply Voltage (1)
70
REC-EQ S/N (dB)
f = 1kHz
A-WTG filter
Norm speed
NN
NC
65
60
55
11
Rev.6.00 Jun 15, 2005 page 76 of 83
12
13
Supply Voltage (V)
14
15
HA12226F/HA12227F
Equalizer Signal to Noise Ratio vs. Supply Voltage (2)
70
REC-EQ S/N (dB)
f = 1kHz
A-WTG filter
High speed
HN
HC
65
60
55
11
12
13
Supply Voltage (V)
15
14
REC-cal Correction vs. VREC-cal
5
f = 3kHz
GP-cal open
VCC = 12V
Norm speed
Norm tape
4
REC-cal Correction (dB)
3
2
1
0
−1
−2
−3
−4
−5
0
Rev.6.00 Jun 15, 2005 page 77 of 83
1
2
3
VREC-cal (V)
4
5
HA12226F/HA12227F
GP-cal Correction vs. VGP-cal
5
4
GP-cal Correction (dB)
3
2
1
0
−1
−2
f = 12kHz
REC-cal open
VCC = 12V
Norm speed
Norm tape
−3
−4
−5
0
1
2
3
VGP-cal (V)
4
5
ALC Operate Level vs. Input Level
Output Level RECOUT (dB) 0dB = 300mVrms
10
8
f = 1kHz, VCC = 12V, Both channel input (L, Rch)
Rin → RECOUT,
Cal = 5V
Norm
Crom
Cal = 5V
6
Cal = 2.5V
4
Cal = 2.5V
2
Cal = 0V
0
Cal = 0V
−2
−5
0
Rev.6.00 Jun 15, 2005 page 78 of 83
10
20
5
15
25
Input Level Vin (dB) 0dB = 218mVrms
30
35
HA12226F/HA12227F
ALC Total Harmonic Distortion vs. Input Level (1)
f = 1kHz, VCC = 12V
Norm tape
Cal = 0V
Cal = 2.5V
Cal = 5V
ALC T.H.D. (%)
1.0
0.1
0.01
−5
0
30
5
10
15
20
25
Input Level Vin (dB) 0dB ≈ 217mVrms
(ALC-OFF, RECOUT = 300mVrms)
ALC Total Harmonic Distortion vs. Input Level (2)
f = 1kHz, VCC = 12V
Crom tape
Cal = 0V
Cal = 2.5V
Cal = 5V
ALC T.H.D. (%)
1.0
0.1
0.01
−5
Rev.6.00 Jun 15, 2005 page 79 of 83
0
30
5
10
15
20
25
Input Level Vin (dB) 0dB ≈ 217mVrms
(ALC-OFF, RECOUT = 300mVrms)
HA12226F/HA12227F
ALC Operate Level vs. Frequency
Operate Level RECOUT (dB) 0dB = 300mVrms
10
8
ALC-cal = 5V
6
ALC-cal = 5V
ALC-cal = 2.5V
4
ALC-cal = 2.5V
2
ALC-cal = 0V
0
ALC-cal = 0V
−2
Vin = +12dB, Both channel input (L, Rch), Rin → RECOUT
Norm
Crom
−4
100
1k
Frequency (Hz)
10k
Bias Output Voltage vs. Load Current
13
VCC = 12V
Bias ON
270Ω
31
Bias Output Voltage (V)
V
I
12
11
10
0
Rev.6.00 Jun 15, 2005 page 80 of 83
1
2
3
4
5
Load Current I (mA)
6
7
HA12226F/HA12227F
MS Sensing Level vs. Frequency
5
VCC = 12V, MSOUT
Ain → PBOUT = 580mVrms = 0dB
Lo → Hi
Hi → Lo
MS Sensing Level (dB)
0
−5
−10
−15
−20
−25
−30
100
1k
10k
100k
Frequency (Hz)
MS Amp. Gain vs. Frequency
40
VCC = 12V
MAOUT
Gain (dB)
30
20
10
MSIN
0
−10
10
Rev.6.00 Jun 15, 2005 page 81 of 83
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
No-Signal Sensing Time vs. Resistance
No-Signal Sensing Time (ms)
1000
VCC = 12V, f = 5kHz
Ain → PBOUT = 580mVrms
0dB
−10dB
−20dB
100
PBOUT
10
MSOUT
C13
0.33µ
14
VCC
R13
1
10k
100k
Resistance R13 (Ω)
1M
Signal Sensing Time vs. Capacitance
Signal Sensing Time (ms)
VCC = 12V, f = 5kHz
Ain → PBOUT = 580mVrms
0dB
−10dB
100
−20dB
10
PBOUT
MSOUT
1
C13
14
VCC
R13
330k
0.1
0.01
Rev.6.00 Jun 15, 2005 page 82 of 83
0.1
Capacitance C13 (µF)
1.0
HA12226F/HA12227F
Package Dimensions
As of January, 2003
12.8 ± 0.3
Unit: mm
10.0
42
29
28
56
15
0.65
12.8 ± 0.3
43
1
0.775
0.10
*Dimension including the plating thickness
Base material dimension
Rev.6.00 Jun 15, 2005 page 83 of 83
0.1 +0.1
−0.09
2.20
0.13 M
*0.17 ± 0.05
0.15 ± 0.04
*0.30 ± 0.08
0.27 ± 0.06
2.54 Max
14
0.775
1.40
0° − 8°
0.60 ± 0.15
Package Code
JEDEC
JEITA
Mass (reference value)
FP-56A


0.5 g
Sales Strategic Planning Div.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble
may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits,
(ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's
application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of
publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is
therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product
information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor
home page (http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to
evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes
no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life
is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a
product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater
use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and
cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
http://www.renesas.com
RENESAS SALES OFFICES
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001
© 2005. Renesas Technology Corp., All rights reserved. Printed in Japan.
Colophon 2.0