HITACHI HA12209

HA12209F
Audio Signal Processor for Cassette Deck
(Dolby B-type NR with Recording System)
ADE-207-221A (Z)
2nd Edition
Jun. 1999
Description
HA12209F is silicon monolithic bipolar IC providing Dolby noise reduction system*, music sensor system,
REC equalizer system and each electronic control switch in one chip.
Functions
• Dolby B-NR
× 2 channel
• REC equalizer
× 2 channel
• Music sensor
× 1 channel
• Each electronic control switch to change REC equalizer, bias, etc.
Features
• REC equalizer is very small number of external parts and have 4 types of frequency characteristics
built-in.
• 2 types of input for PB, 1 type of input for REC.
• 70µ-PB equalizer changing system built-in.
• Dolby NR with dubbing double cassette decks.
Unprocessed signal output available from recording out terminals during PB mode.
• Provide stable music sensor system, available to design music sensing time and level.
• Controllable from direct micro-computer output.
• Bias oscillator control switch built-in.
• NR ON/OFF and REC/PB fully electronic control switching built-in.
• Normal-speed/high-speed, TYPE I/TYPE II and PB equalizer fully electronic control switching built-in.
• Available to reduce substrate-area because of high integration and small external parts.
*
Dolby is a trademark of Dolby Laboratories Licensing Corporation.
A license from Dolby Laboratories Licensing Corporation is required for the use of this IC.
HA12209F
Ordering Information
Standard Level
Operating Voltage
Product
Package
PB-OUT Level
REC-OUT Level Dolby Level
Min
Max
HA12209F
FP-56
580mVrms
300mVrms
10V
15V
300mVrms
Function
Product
Dolby B-NR
REC-EQ
Music Sensor
REC/PB Selection
HA12209F
❍
❍
❍
❍
Note: Depending on the employed REC/PB head and test tape characteristics, there is a rare case that the
REC-EQ characteristics of this LSI can not be matched to the required characteristics because of
built-in resistors which determined the REC-EQ parameters in this case, please inquire the
responsible agent because the adjustment of built-in resistor is necessary.
Rev.2, Jun. 1999, page 2 of 49
HA12209F
Pin Description, Equivalent Circuit (VCC=12V, Ta=25°C, No signal, The value in the
table show typical value.)
Pin No.
Pin Name
Note
52
AIN (R)
V = VCC / 2
Equivalent Circuit
Pin Description
PB A deck input
V
100k
VCC/2
48
AIN (L)
54
BIN (R)
45
BIN (L)
56
RIN (R)
44
RIN (L)
6
EQIN (R)
37
EQIN (L)
4
DET (R)
PB B deck input
REC input
REC equalizer
input
V = 2.6V
VCC
Time constant
pin for Dolby-NR
V
GND
39
DET (L)
49
RIP
V = VCC / 2
Ripple filter
1
BIAS1
V = 0.6V
Dolby bias
current input
V
42
BIAS2
GND
V = 1.3V
REC equalizer
bias current input
V
GND
Rev.2, Jun. 1999, page 3 of 49
HA12209F
Pin Description, Equivalent Circuit (VCC=12V, Ta=25°C, No signal, The value in the
table show typical value.) (cont)
Pin No.
Pin Name
Note
3
PBOUT (R)
V = VCC / 2
Equivalent Circuit
Pin Description
PB output
VCC
V
GND
40
PBOUT (L)
5
RECOUT (R)
38
RECOUT (L)
8
EQOUT (R)
35
EQOUT (L)
32
MAOUT
53
ABO (R)
REC output
Equalizer output
1
MS amp. input *
V = VCC / 2
VCC
Time constant
pin for PB
equalizer
V
15k
12k
GND
46
ABO (L)
25
BIAS (C)
V = VCC –
0.7
VCC
V
26
Note:
BIAS (N)
1. MS : Music Sensor
Rev.2, Jun. 1999, page 4 of 49
REC bias current
output
HA12209F
Pin Description, Equivalent Circuit (VCC=12V, Ta=25°C, No signal, The value in the
table show typical value.) (cont)
Pin No.
Pin Name
Note
29
MSDET
I = 0µA
Equivalent Circuit
Pin Description
VCC
I
Time constant
1
pin for MS *
V
GND
31
MSIN
V = VCC / 2
MS input
VCC
V
100k
VCC/2
33
MAI
V = VCC / 2
MS amp. output
MAOUT
VCC
100k
V
45k
VCC/2
27
MSOUT
I = 0µA
MS output (to
MPU)
VCC
V
I
DGND
Note:
1. MS : Music Sensor
Rev.2, Jun. 1999, page 5 of 49
HA12209F
Pin Description, Equivalent Circuit (VCC=12V, Ta=25°C, No signal, The value in the
table show typical value.) (cont)
Pin No.
Pin Name
Note
10
PB A/B
I = 20µA
Equivalent Circuit
Pin Description
I
Mode control
input
V
22k
100k
GND
11
A 120/70
12
NORM/HIGH
14
B 120/70
16
BIAS
ON/OFF
17
RM ON/OFF
19
NR ON/OFF
20
REC/PB
21
LM ON/OFF
22, 23
VCC
V = VCC
Power supply
50, 51
GND
V = 0V
GND pin
2, 7, 9, 13, NC
15, 18, 24,
28, 30, 34,
36, 41, 43,
47, 55
Rev.2, Jun. 1999, page 6 of 49
No connection
HA12209F
MSDET
NC
MSIN
MAOUT
MAI
NC
EQOUT (L)
NC
EQIN (L)
RECOUT (L)
DET (L)
PBOUT (L)
NC
BIAS2
Block Diagram
+
+
+
42
41
40
39
38
+
37
36
35
34
33
32
31
30
29
EQ
43
NC
+
28
NC
27
MSOUT
100k
44
BIN (L)
45
ABO (L)
46
MS DET
–
+
RIN (L)
BIAS
SW
15k
26
25
45k
12k
NC
47
AIN (L)
48
23
RIP
49
22
24
DOLBY
B-NR
BIAS (N)
BIASOUT
BIAS (C)
NC
VCC
+
+
LPF
50
51
AIN (R)
DOLBY
B-NR
52
21
LM ON/
20
REC/
19
NR ON/
12k
15k
ABO (R)
53
18
NC
BIN (R)
54
17
RM
NC
55
16
BIAS ON/
RIN (R)
56
15
NC
9
10
11
12
13
NC
8
/HIGH
14
/70
+
B
RECOUT (R)
DET (R)
PBOUT (R)
NC
BIAS1
7
+
/70
6
+
A
5
PB /B
4
EQOUT (R)
3
NC
2
EQIN (R)
1
NC
EQ
/OFF
Rev.2, Jun. 1999, page 7 of 49
HA12209F
Functional Description
Power Supply Range
HA12209F is designed to operate on single supply.
Table 1
Spply Voltage
Item
Power Supply Range
Single Supply
10V to 15V
Note: The lower limit of supply voltage depends on the line output reference level.
The minimum value of the overload margin is specified as 12dB by Dolby Laboratories.
Reference Voltage
For this IC, the reference voltage (VCC/2) occurrence device is built-in as AC grand. A capacitor for a
ripple filter is greatly small characteristic with 1/100 compared with conventional device.
And, the reference voltage are provided for the left channel and the right channel separately.
The block diagram is shown as figure 1.
22 23
VCC
+
–
L channel Reference voltage
+
–
VCC
Music sensor Reference voltage
+
–
R channel Reference voltage
50 51 49
GND
PIR
+
1µ
Unit
Figure 1 Reference Voltage
Rev.2, Jun. 1999, page 8 of 49
C:F
HA12209F
Operating Mode Control
HA12209F provides fully electronic switching circuits. And each operating mode control is controlled by
parallel data (DC voltage).
Table 2
Pin No.
Control Voltage
Lo
10, 11, 12, 14, 16, –0.2 to 1.0
17, 19, 20, 21
Note:
Hi
Unit
4.0 to 5.3
V
Test Condition
Input Pin
Measure
1. Each pins are on pulled down with 100kΩ internal resistor. Therefore, it will be low-level when
each pins are open.
2. Over shoot level and under shoot level of input signal must be the standardized.
(High: 5.3V, Low: –0.2V)
3. For reduction of pop noise, connect 1µF to 22µF capacitor with mode control pins. But it is
impossible to reduce completely in regard to Line mute, therefore, use external mute at the same
time.
Input Block Diagram and Level Diagram
MS
REF
300mVrms
AIN
21.3dB
BIN
300mVrms
FLAT
(120µ)
5.7dB
PBOUT
580mVrms
300mVrms
0dB
25.9mVrms
REC
PB
70µs
PB
DOLBY
B-NR
REC
RECOUT
300mVrms
PB/REC=0dB/17dB
12k
15k
ABO
42.4mVrms
CEX1
RIN
Unit
R:Ω
C:F
Note: The each level shown above is typical value when offering PBOUT level to PBOUT pin.
Figure 2 Input Block Diagram
Rev.2, Jun. 1999, page 9 of 49
HA12209F
PB Equalizer
By switching logical input level of 11 pin (for Ain) and 14 pin (for Bin), you can equalize corresponding to
tape position at play back mode.
With the capacity CEX1 capacitance that we showed for figure 2 70 µs by the way figure seem to 3 they
are decided.
Gv
t1 = CEX1 · (12k + 15k)
t2 = CEX1 · 15k
f
(t1)
(t2)
Figure 3 Frequency Characteristic of PB Equalizer
The sensitivity Adjustment of Music Sensor
Adjusting MS amp. gain by external resistor, the sensitivity of music sensor can set up.
VCC
DVCC
REP
C26
0.01µ
R12
330k
MA
OUT
MSIN
+ C10
0.33µ
PB(L)
MAI
100k
RL
MS
DET
45k
–
+
–6dB
DET
MS AMP
MS OUT
Microcomputer
GND
LPF
25kHz
100k
GND
Unit
PB(R)
Figure 4 Music Sensor Block Diagram
Rev.2, Jun. 1999, page 10 of 49
R:Ω
C:F
HA12209F
The sensitivity of Music Sensor
Gv
f1 =
1
[Hz]
2π · C26 · 100k
f2 = 25k [Hz]
f
f1
f2
Figure 5 Frequency Characteristic of MSIN
Occasion of the external component of figure 4, f1 is 159Hz. A standard level of MS input pin
25.9mVrms, therefore, the sensitivity of music sensor (S) can request it, by lower formulas.
A = MS Amp Gain
B = PB input Gain × (1/2)*1
C = Sensed voltage
S = 20log
C
[dB]
25.9 · A · B
20log (A × B) = D [dB]
PB input Gain = 21.3 [dB]
S = 14 – D [dB]
Note: 1. Case of one-sided channel input.
Time Constant of Detection
Recovery
Attack
Recovery
Recovery
Detection time
Detection time
Detection time
Figure 6(1) generally shows that detection time is in proportion to value of capacitor C10. But, with
2
3
Attack* and Recovery* the detection time differs exceptionally.
Attack
C10
R12
Function Characteristic of MS (1)
Function Characteristic of MS (2)
Attack
Detection level
Input level
Function Characteristic of MS (3)
Figure 6 Function Characteristics of MS
Like the figure 6(2), Recovery time is variably possible by value of resistor R12. But Attack time gets
about fixed value. Attack time has dependence by input level. When a large signal is inputted, Attack time
is short tendency.
Note: 2. Attack :
Non-music → Music
3. Recovery : Music → Non-music
Rev.2, Jun. 1999, page 11 of 49
HA12209F
Music Sensor Output (MSOUT)
As for internal circuit of music sensor block, music sensor out pin is connected to the collector of NPN type
directly, output level will be “high” when sensing no signal. And output level will be “low” when sensing
signal.
Connection with microcomputer, it is requested to use external pull up resistor (RL = 10k to 22kΩ)
Note: Supply voltage of MSOUT pin must be less than VCC voltage.
The Tolerances of External Components
For Dolby NR precision securing, please use external components shown at figure 7.
If leak-current are a few electrolytic-capacitor, it can be applicable to C2 and C15.
C15
0.1µ
±10%
39
DET (L)
HA12209
BIAS1
DET (R)
1
4
R1
33k
±2%
C2
0.1µ
±10%
Unit
R:Ω
C:F
Figure 7 Tolerance of External Components
+
+
Low-Boost
EQIN
EQOUT
REC EQ
CEX2 REX1
2.2µ 20k
Vin
CEX4
0.47µ
REX2
6.8k
REX3
5.1k
+ CEX3
0.47µ
GND
Figure 8 Example of Low Boost Circuit
Rev.2, Jun. 1999, page 12 of 49
Unit
R:Ω
C:F
HA12209F
External components shown figure 8 gives frequency response to take 6dB boost. And cut off frequency
can request it, by lower formulas.
Gv
f1 =
1
[Hz]
2π · CEX3 · (REX3 + R0)
f2 =
1
[Hz]
2π · CEX3 · REX3
R0 =
REX1 · REX2
[Ω]
REX1 + REX2
f
f1
f2
Figure 9 Frequency Characteristic of Low-Boost
Bias Switch
This series built-in DC voltage generator for bias oscillator and its bias switches.
External resistor R8, R10 which corresponded with tape positions and bias out voltage are relater with
below.
Vbias =
R9
× (VCC – 0.7) [V]
(R10 or R8) + R9
Bias switch follows to a logic of 14 pin (B 120/70).
Note: A current that flows at bias out pin, please use it less than 5mA.
R10
BIAS (N) 26
Vbias
R8
BIAS (C) 25
R9
GND
Figure 10 External Components of Bias Block
Rev.2, Jun. 1999, page 13 of 49
HA12209F
Absolute Maximum Rating (Ta=25°C)
Item
Symbol
Rating
Unit
Max supply voltage
VCC max
16
V
Power dissipation
PT
500
mW
Operating temperature
Topr
–40 to +75
°C
Storage temperature
Tstg
–55 to +125
°C
Rev.2, Jun. 1999, page 14 of 49
Note
Ta ≤ 75°C
Symbol
mA
dB
dB
dB
dB
dB
dB
dB
dB
%
dB
dB
dB
dB
dB
dB
dB
dB
V
µA
V
V
30.0
28.5
24.2
5.8
10.0
4.7
9.7
—
—
0.3
—
—
—
—
—
27.0
23.8
–7.4
1.5
2.0
1.0
5.3
23.0
27.0
22.7
4.3
8.5
3.2
8.2
13.0
70.0
0.05
80.0
85.0
70.0
80.0
80.0
25.5
22.3
–11.4
1.0
—
—
—
15.0
25.5
21.2
2.8
7.0
1.7
6.7
12.0
64.0
Ñ
70.0
75.0
60.0
70.0
70.0
24.0
20.8
–15.4
—
—
–0.2
4.0
Unit
Max
Typ
Min
OFF
OFF
OFF
ON
ON
ON
ON
ON
ON
ON
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
—
—
3. For inputting signal to one side channel
2. VCC=10V
A
A/B
PB
REC A
REC A
REC A
REC A
REC A
REC A
REC A
REC A
A/B
PB
REC A
A/B
PB
REC/PB A/B
PB
A
PB
A/B
PB
A/B
PB
A
PB
A
PB
A
—
—
—
—
PB
Test Condition
IC Condition*1
REC/PB A/B
NR
ON/OFF
Note: 1. Other IC condition : REC-MUTE OFF, TYPE I, Normal speed, Bias OFF
IQ
GV PB
GV REC
B type
ENC 2k (1)
Encode boost
ENC 2k (2)
ENC 5k (1)
ENC 5k (2)
Signal handling
Vo max
Signal to noise ratio
S/N
Total harmonic distortion T.H.D.
CTRL (1)
Channel separation
CTRL (2)
CT A/B
Crosstalk
CT R/P
Mute attenuation
MUTE
70µ EQ gain
GV EQ 1k
GV EQ 10k
MS sensing level*3
VON
MS output low level
VOL
IOH
MS output leak current
Control voltage
VIL
VIH
Quiescent current
Input AMP. gain
Item
120
120
120
120
120
120
120
120
120
120
120
120
120
120
70
70
120
120
120
—
—
120
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
ON
OFF
OFF
OFF
OFF
OFF
—
—
ON
—
1k
1k
2k
2k
5k
5k
1k
1k
1k
1k
1k
1k
1k
1k
1k
10k
5k
—
—
—
—
120µ/ MUTE fin
70µ
(Hz)
—
0
0
–20
–30
–20
–30
—
—
0
+12
+12
+12
+12
+12
0
0
—
—
—
—
—
THD=1%*2
Rg=5.1kΩ, CCIR/ARM
No signal
RECOUT Other
level (dB)
HA12209F
Electrical Characteristics (Ta = 25°C, VCC = 12V, Dolby Level = REC-OUT Level =
300mVrms = 0dB)
Rev.2, Jun. 1999, page 15 of 49
Rev.2, Jun. 1999, page 16 of 49
Bias out offset
REC MUTE attenuation
Bias out Max level
Equalizer
frequency responce
(TYPE II-HIGH)
Equalizer
frequency responce
(TYPE I-HIGH)
Equalizer
frequency responce
(TYPE II-NORM)
Bias off
Vofs (EQ)
GVEQ-1N1
GVEQ-1N2
GVEQ-1N3
GVEQ-2N1
GVEQ-2N2
GVEQ-2N3
GVEQ-1H1
GVEQ-1H2
GVEQ-1H3
GVEQ-2H1
GVEQ-2H2
GVEQ-2H3
REC-MUTE
Bias on
–500
18.5
19.4
29.1
21.4
23.3
32.0
17.7
19.8
31.0
20.5
24.3
35.7
60
VCC
–1.4
–100
55
10.5
—
S/N (EQ)
Equalizer S/N
Equalizer maximum input
Equalizer Total Harmonic
Distortion
Equalizer offset voltage
Equalizer
frequency responce
(TYPE I-NORM)
Vin max (EQ)
T.H.D. (EQ)
Min
Symbol
Item
0
20.0
21.4
32.1
22.9
25.3
35.0
19.2
21.8
34.0
22.0
26.3
38.7
70
VCC
–1.0
0
58
12.5
0.2
Typ
100
500
21.5
23.4
35.1
24.4
27.3
38.0
20.7
23.8
37.0
23.5
28.3
41.7
—
—
—
0.5
—
Max
mV
mV
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
V
dB
dB
%
Unit
RL=2.4kΩ+270Ω
TYPE I NORM No signal
TYPE I NORM f=1kHz, Vin=–46dBs
f=5kHz, Vin=–46dBs
f=12.5kHz, Vin=–46dBs
TYPE II NORM f=1kHz, Vin=–46dBs
f=5kHz, Vin=–46dBs
f=12.5kHz, Vin=–46dBs
TYPE I HIGH f=2kHz, Vin=–46dBs
f=10kHz, Vin=–46dBs
f=25kHz, Vin=–46dBs
TYPE II HIGH f=2kHz, Vin=–46dBs
f=10kHz, Vin=–46dBs
f=25kHz, Vin=–46dBs
TYPE I NORM f=1kHz, Vin=–14dBs
RL=2.4kΩ+270Ω
Test Condition
TAPE SPEED
TYPE I NORM Rg=5.1kΩ, A-WTG Filter
TYPE I NORM f=1kHz, THD=1%, Vin=–26dBs=0dB
TYPE I NORM f=1kHz, Vin=–26dBs
HA12209F
Electrical Characteristics (Ta=25°C, VCC = 12V, Dolby Level = REC-OUT Level =
300mVrms = 0dB) (cont)
+
+
R25 C25
5.1k 0.47µ
R24 C24
10k 0.47µ
C23
0.0047µ
+
RIN (R)
R23 C22
10k 0.47µ
C21
1µ
+
BIN (R)
R22 C20
10k 0.47µ
C19
0.0047µ
R21 C18
10k 0.47µ
R20
5.1k C17
0.47µ
+
AIN (R)
AIN (L)
BIN (L)
RIN (L)
+
2
3
C2
0.1µ
+
6
+ C5
+
EQ
36
8
35
LPF
34
32
10
45k
100k
33
11
31
30
12
13
MS DET
C26
0.01µ
29
14
BIAS
SW
R12
330k
24
25
26
27
28
0.33µ
+C10
R1
33k
R2
10k
C3
2.2µ
R4
6.8k
R3
20k
PB
REC
OUT (R) OUT (R)
C1
2.2µ
5
+
+
C4
0.47µ
R5
5.1k
R6
5.1k
0.47µ
JP2
7
+ C6
9
R7
10k
2.2µ
EQ
OUT (R)
EQIN
(R)
15
56
4
16
55
1
17
54
EQ
18
53
19
20
51
52
21
50
DOLBY
B-NR
37
C11
+ 2.2µ
R13
10k
22
DOLBY
B-NR
39
+
38
JP1
C12
+ 0.47µ
EQIN
(L)
R14
5.1k
49
12k
12k
40
C14
2.2µ
R15
5.1k
+
C13
0.47µ
23
15k
15k
41
C15
+0.1µ
R17
20k
R16
6.8k
48
47
46
45
44
43
42
C16
2.2µ
R19 R18
22k 10k
–
+
EQ
OUT (L)
R8
910
R10
2k
/70
SW7
SW8
SW9
R27
22k
Unit
SW1
SW2
SW3
SW4
SW5
C7
22µ SW6
C8
22µ
R26
22k
R9
2.4k
/HIGH
/70
PB /B
A
B
R11
3.9k
MSOUT
BIASOUT
/OFF
BIAS ON/
RM
NR ON/
REC/
LM ON/
VCC
BIAS (C)
BIAS (N)
+
+
+
PB
REC
OUT (L) OUT (L)
+
VCC1
R:Ω
C:F
VCC2
5V
C9
100µ
HA12209F
Test Circuit
+
Rev.2, Jun. 1999, page 17 of 49
HA12209F
Parallel Data Format
Pin No.
Pin Name
Lo
Hi
10
PB A/B
11
A 120/70
*
12
NORM/HIGH
Normal speed
14
B 120/70
16
17
1
Mode “Pin Open”
1
Bin*
Ain*
1
Lo
1
*
Lo
High speed
1
Lo
1
REC EQ TYPE I*
Bias TYPE I
REC EQ TYPE II*
Bias TYPE II
Lo
BIAS ON/OFF
BIAS OFF
BIAS OFF
Lo
RM ON/OFF
REC MUTE ON
REC MUTE OFF
Lo
19
NR ON/OFF
NR OFF
NR ON
Lo
20
REC/PB
PB MODE
REC MODE
Lo
21
LM ON/OFF
LINE MUTE OFF
LINE MUTE ON
Lo
Note:
1. PB EQ LOGIC
PB A/B
A 120/70
120
B 120/70
120
Lo
Hi
Lo
Lo
FLAT
FLAT
Lo
Hi
FLAT
70µ
Hi
Lo
70µ
FLAT
Hi
Hi
70µ
70µ
Rev.2, Jun. 1999, page 18 of 49
HA12209F
Characteristics Curve
Quiescent Current vs. Supply Voltage (1)
Quiescent Current (mA)
25
RECmode
20
15
No Signal
NR-OFF, REC-MUTE ON
NR-OFF, REC-MUTE OFF
NR-ON, REC-MUTE ON
NR-ON, REC-MUTE OFF
Other SW is “Low”
10
8
10
12
Supply Voltage (V)
16
14
Quiescent Current vs. Supply Voltage (2)
Quiescent Current (mA)
25
PBmode
20
15
No Signal
NR-OFF, REC-MUTE ON
NR-OFF, REC-MUTE OFF
NR-ON, REC-MUTE ON
NR-ON, REC-MUTE OFF
Other SW is “Low”
10
8
10
12
Supply Voltage (V)
14
16
Rev.2, Jun. 1999, page 19 of 49
HA12209F
Input Amp. Gain vs. Frequency (1)
30
Input Amp. Gain (dB)
A
µ
A 70µ
20
VCC=12V
PBmode
NR-OFF
AIN→PBOUT
10
10
100
1k
10k
Frequency (Hz)
100k
1M
100k
1M
Input Amp. Gain vs. Frequency (2)
Input Amp. Gain (dB)
30
20
VCC=12V
PBmode
NR-OFF
AIN→RECOUT
10
10
100
Rev.2, Jun. 1999, page 20 of 49
1k
10k
Frequency (Hz)
HA12209F
Input Amp. Gain vs. Frequency (3)
Input Amp. Gain (dB)
30
PBOUT
20
RECOUT
VCC = 12V
RECmode
NR-OFF
RIN → PBOUT, RECOUT
10
10
100
1k
10k
Frequency (Hz)
100k
1M
Rev.2, Jun. 1999, page 21 of 49
HA12209F
Encode Boost vs. Frequency
12
VCC = 12V
Encode Boost (dB)
Vin = –40dB
8
–30dB
4
–20dB
–10dB
0dB
0
100
1k
Frequency (Hz)
10k
20k
Decode Cut vs. Frequency
0
Vin = 0dB
–10dB
–2
Decode Cut (dB)
–20dB
–4
–6
–30dB
–8
–10
–40dB
VCC=12V
–12
100
Rev.2, Jun. 1999, page 22 of 49
1k
Frequency (Hz)
10k
20k
HA12209F
Maximum Output Level vs. Supply Voltage (1)
Maximum Output Level Vomax (dB)
25
NR-OFF
NR-ON
PBmode
Ain → PBOUT
0dB = 580mVrms (at PBOUT)
T.H.D = 1%
f = 1kHz
400Hz LPF + 30kHz HPF
20
15
10
8
10
12
Supply Voltage (V)
16
14
Maximum Output Level vs. Supply Voltage (2)
Maximum Output Level Vomax (dB)
25
20
15
NR-OFF
NR-ON
PBmode
Ain → RECOUT
0dB = 300mVrms (at RECOUT)
T.H.D = 1%
f = 1kHz
400Hz LPF + 30kHz HPF
10
8
10
12
Supply Voltage (V)
14
16
Rev.2, Jun. 1999, page 23 of 49
HA12209F
Maximum Output Level vs. Supply Voltage (3)
Maximum Output Level Vomax (dB)
25
20
15
NR-OFF
NR-ON
RECmode
Rin → RECOUT
0dB = 300mVrms (at RECOUT)
T.H.D = 1%
f = 1kHz
400Hz LPF + 30kHz HPF
10
8
10
12
Supply Voltage (V)
14
16
Maximum Output Level vs. Supply Voltage (4)
Maximum Output Level Vomax (dB)
25
NR-OFF
NR-ON
RECmode
Rin → PBOUT
0dB = 580mVrms (at PBOUT)
T.H.D = 1%
f = 1kHz
400Hz LPF + 30kHz HPF
20
15
10
8
Rev.2, Jun. 1999, page 24 of 49
10
12
Supply Voltage (V)
14
16
HA12209F
Signal to Noise Ratio vs. Supply Voltage (1)
Signal to Noise Ratio S/N (dB)
85
80
75
NR-OFF
NR-ON
PBmode
Ain → PBOUT
CCIR/ARM
0dB = 580mVrms (PBOUT)
70
8
10
12
Supply Voltage (V)
16
14
Signal to Noise Ratio vs. Supply Voltage (2)
Signal to Noise Ratio S/N (dB)
85
80
NR-OFF
NR-ON
RECmode
Rin → RECOUT
CCIR/ARM
0dB = 300mVrms (RECOUT)
75
70
8
10
12
Supply Voltage (V)
14
16
Rev.2, Jun. 1999, page 25 of 49
HA12209F
Total Harmonic Distortion vs. Supply Voltage (1)
Total Harmonic Distortion T.H.D (%)
1.0
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 8kHz LPF)
PBmode
NR-OFF
Ain → PBOUT
Vin = 0dB
0.1
0.01
8
10
12
Supply Voltage (V)
14
16
Total Harmonic Distortion vs. Supply Voltage (2)
Total Harmonic Distortion T.H.D (%)
1.0
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 8kHz LPF)
PBmode
NR-ON
Ain → PBOUT
Vin = 0dB
0.1
0.01
8
Rev.2, Jun. 1999, page 26 of 49
10
12
Supply Voltage (V)
14
16
HA12209F
Total Harmonic Distortion vs. Supply Voltage (3)
Total Harmonic Distortion T.H.D (%)
1.0
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 8kHz LPF)
RECmode
NR-OFF
Rin → RECOUT
Vin = 0dB
0.1
0.01
8
10
12
Supply Voltage (V)
16
14
Total Harmonic Distortion vs. Supply Voltage (4)
Total Harmonic Distortion T.H.D (%)
1.0
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 8kHz LPF)
RECmode
NR-ON
Rin → RECOUT
Vin = 0dB
0.1
0.01
8
10
12
Supply Voltage (V)
14
16
Rev.2, Jun. 1999, page 27 of 49
HA12209F
Total Harmonic Distortion vs. Output Level (1)
Total Harmonic Distortion T.H.D (%)
10
100Hz
1kHz
10kHz
VCC = 12V, PBmode
NR-OFF, AIN → PBOUT
0dB = 580mVrms (at PBOUT)
1
0.1
0.01
–25
–20
–15
–10
–5
0
5
Output Level Vout (dB)
10
15
20
15
20
Total Harmonic Distortion vs. Output Level (2)
Total Harmonic Distortion T.H.D (%)
10
100Hz
1kHz
10kHz
VCC = 12V, PBmode
NR-ON, AIN → PBOUT
0dB = 580mVrms (at PBOUT)
1
0.1
0.01
–25
–20
Rev.2, Jun. 1999, page 28 of 49
–15
–10
–5
0
5
Output Level Vout (dB)
10
HA12209F
Total Harmonic Distortion vs. Output Level (3)
Total Harmonic Distortion T.H.D (%)
10
100Hz
1kHz
10kHz
VCC = 12V, RECmode
NR-OFF, RIN → RECOUT
0dB = 300mVrms (at RECOUT)
1
0.1
0.01
–15
–10
–5
0
5
10
Output Level Vout (dB)
15
20
25
Total Harmonic Distortion vs. Output Level (4)
Total Harmonic Distortion T.H.D (%)
10
100Hz
1kHz
10kHz
VCC = 12V, RECmode
NR-ON, RIN → RECOUT
0dB = 300mVrms (at RECOUT)
1
0.1
0.01
–20
–15
–10
–5
0
5
10
Output Level Vout (dB)
15
20
25
Rev.2, Jun. 1999, page 29 of 49
HA12209F
Total Harmonic Distortion vs. Frequency (1)
Total Harmonic Distortion T.H.D (%)
0.5
+10dB
0dB
–10dB
VCC = 12V, PBmode
NR-OFF, AIN → PBOUT
Vin = 0dB
0.1
0.05
0.01
100
1k
Frequency (Hz)
10k
20k
10k
20k
Total Harmonic Distortion vs. Frequency (2)
Total Harmonic Distortion T.H.D (%)
0.5
+10dB
0dB
–10dB
VCC =12V, PBmode
NR-ON, AIN → PBOUT
Vin = 0dB
0.1
0.05
0.01
100
Rev.2, Jun. 1999, page 30 of 49
1k
Frequency (Hz)
HA12209F
Total Harmonic Distortion vs. Frequency (3)
Total Harmonic Distortion T.H.D (%)
0.5
+10dB
0dB
–10dB
VCC = 12V, RECmode
NR-OFF, RIN → RECOUT
Vin = 0dB
0.1
0.05
0.01
100
1k
Frequency (Hz)
10k
20k
10k
20k
Total Harmonic Distortion vs. Frequency (4)
Total Harmonic Distortion T.H.D (%)
0.5
+10dB
0dB
–10dB
VCC =12V, RECmode
NR-ON, RIN → RECOUT
Vin = 0dB
0.1
0.05
0.01
100
1k
Frequency (Hz)
Rev.2, Jun. 1999, page 31 of 49
HA12209F
Crosstalk vs. Frequency (1)
–40
–60
AIN → BIN
VCC = 12V
PBmode (AIN, PBOUT)
Vin = +10dB
Crosstalk (dB)
NR-OFF
–80
NR-ON
–100
–120
–140
10
100
1k
Frequency (Hz)
10k
100k
10k
100k
Crosstalk vs. Frequency (2)
–40
–60
BIN → AIN
VCC = 12V
PBmode (BIN, PBOUT)
Vin = +10dB
Crosstalk (dB)
NR-OFF
–80
NR-ON
–100
–120
–140
10
Rev.2, Jun. 1999, page 32 of 49
100
1k
Frequency (Hz)
HA12209F
Crosstalk vs. Frequency (3)
–40
Crosstalk (dB)
–60
PB → REC
VCC = 12V
PBmode (AIN, RECOUT)
Vin = +10dB
NR-ON
–80
NR-OFF
–100
–120
–140
10
100
1k
Frequency (Hz)
10k
100k
10k
100k
Crosstalk vs. Frequency (4)
–40
Crosstalk (dB)
–60
REC → PB
VCC = 12V
RECmode (RIN, PBOUT)
Vin = +12dB
–80
NR-OFF
–100
NR-ON
–120
–140
10
100
1k
Frequency (Hz)
Rev.2, Jun. 1999, page 33 of 49
HA12209F
Channel Separation vs. Frequency (1)
–20
VCC = 12V
PBmode (AIN, PBOUT), 120µ
Vin = +10dB
Channel Separation (dB)
–40
–60
NR-OFF
–80
NR-ON
–100
–120
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (2)
–20
VCC = 12V
PBmode (BIN, PBOUT), 120µ
Vin = +10dB
Channel Separation (dB)
–40
–60
NR-OFF
–80
NR-ON
–100
–120
10
Rev.2, Jun. 1999, page 34 of 49
100
1k
Frequency (Hz)
10k
100k
HA12209F
Channel Separation vs. Frequency (3)
–40
VCC = 12V
RECmode (RIN, RECOUT)
Vin = +12dB
Channel Separation (dB)
–60
NR-ON
–80
–100
–120
–140
10
NR-OFF
100
1k
Frequency (Hz)
10k
100k
LINE-MUTE Attenuation vs. Frequency (1)
–40
LINE-MUTE Attenuation (dB)
–60
VCC = 12V
PBmode (AIN, PBOUT)
NR-OFF
Vin = +12dB
–80
–100
–120
–140
10
100
1k
Frequency (Hz)
10k
100k
Rev.2, Jun. 1999, page 35 of 49
HA12209F
LINE-MUTE Attenuation vs. Frequency (2)
–40
LINE-MUTE Attenuation (dB)
–60
VCC = 12V
PBmode (BIN, PBOUT)
NR-OFF
Vin = +12dB
–80
–100
–120
–140
10
100
1k
Frequency (Hz)
10k
100k
LINE-MUTE Attenuation vs. Frequency (3)
–40
LINE-MUTE Attenuation (dB)
–60
VCC = 12V
RECmode (RIN, PBOUT)
NR-OFF
Vin = +12dB
–80
–100
–120
–140
10
Rev.2, Jun. 1999, page 36 of 49
100
1k
Frequency (Hz)
10k
100k
HA12209F
Ripple Relection Ratio vs. Frequency (1)
0
Ripple Relection Ratio R.R.R. (dB)
VCC = 12V
PBmode
–20
PBOUT NR-ON
PBOUT NR-OFF
–40
RECOUT NR-ON
–60
RECOUT NR-OFF
–80
–100
10
100
1k
Frequency (Hz)
10k
100k
Ripple Relection Ratio vs. Frequency (2)
0
Ripple Relection Ratio R.R.R. (dB)
VCC = 12V
RECmode
–20
RECOUT NR-ON
PBOUT NR-ON/OFF
–40
RECOUT NR-OFF
–60
–80
–100
10
100
1k
Frequency (Hz)
10k
100k
Rev.2, Jun. 1999, page 37 of 49
HA12209F
Ripple Relection Ratio vs. Frequency (3)
0
Ripple Relection Ratio R.R.R. (dB)
VCC = 12V
EQOUT
N : Normal speed
N-TYPE II
–20
N-TYPE I
–40
–60
–80
–100
10
100
1k
Frequency (Hz)
10k
100k
REC-EQ Gain vs. Frequency
50
VCC = 12V
N : Normal speed
H : High speed
N-TYPE II
REC-EQ Gain (dB)
40
N-TYPE I
30
20
H-TYPE I
H-TYPE II
10
0
10
Rev.2, Jun. 1999, page 38 of 49
100
1k
Frequency (Hz)
10k
100k
HA12209F
EQ Maximum Input Level vs. Supply Voltage (1)
EQ Maximum Input Level Vinmax (dB)
25
f = 1kHz, EQin → EQOUT
Vin = –26dBs, T.H.D ≥ 1%
Norm speed, TYPE I
20
15
10
8
10
12
Supply Voltage (V)
16
14
EQ Maximum Input Level vs. Supply Voltage (2)
EQ Maximum Input Level Vinmax (dB)
25
f = 1kHz, EQin → EQOUT
Vin = –26dBs, T.H.D ≥ 1%
Norm speed, TYPE II
20
15
10
8
10
12
Supply Voltage (V)
14
16
Rev.2, Jun. 1999, page 39 of 49
HA12209F
EQ Maximum Input Level vs. Supply Voltage (3)
EQ Maximum Input Level Vinmax (dB)
25
f = 1kHz, EQin → EQOUT
Vin = –26dBs, T.H.D ≥ 1%
High speed, TYPE I
20
15
10
8
10
12
Supply Voltage (V)
14
16
EQ Maximum Input Level vs. Supply Voltage (4)
EQ Maximum Input Level Vinmax (dB)
25
f = 1kHz, EQin → EQOUT
Vin = –26dBs, T.H.D ≥ 1%
High speed, TYPE II
20
15
10
8
Rev.2, Jun. 1999, page 40 of 49
10
12
Supply Voltage (V)
14
16
HA12209F
EQ Signal to Noise Ratio vs. Supply Voltage
EQ Signal to Noise Ratio EQ S/N (dB)
65
60
55
N-TYPE I
N-TYPE II
H-TYPE I
H-TYPE II
A-WTG filter
N : Normal speed
H : High speed
50
8
10
12
Supply Voltage (V)
16
14
EQ Total Harmonic Distortion vs. Supply Voltage (1)
EQ Total Harmonic Distortion EQ T.H.D (%)
10
315Hz (30kHz LPF)
1kHz (30kHz LPF + 400Hz HPF)
5kHz (30kHz LPF + 400Hz HPF)
10kHz (30kHz LPF + 400Hz HPF)
EQin → EQOUT, Vin = –26dBs
Normal speed, TYPE I
1.0
0.1
8
10
12
Supply Voltage (V)
14
16
Rev.2, Jun. 1999, page 41 of 49
HA12209F
EQ Total Harmonic Distortion vs. Supply Voltage (2)
EQ Total Harmonic Distortion EQ T.H.D (%)
10
315Hz (30kHz LPF)
1kHz (30kHz LPF + 400Hz HPF)
5kHz (30kHz LPF + 400Hz HPF)
10kHz (30kHz LPF + 400Hz HPF)
EQin → EQOUT, Vin = –26dBs
Normal speed, TYPE II
1.0
0.1
8
10
12
Supply Voltage (V)
14
16
EQ Total Harmonic Distortion vs. Supply Voltage (3)
EQ Total Harmonic Distortion EQ T.H.D (%)
10
315Hz (30kHz LPF)
2kHz (30kHz LPF + 400Hz HPF)
10kHz (30kHz LPF + 400Hz HPF)
EQin → EQOUT, Vin = –26dBs
High speed, TYPE I
1.0
0.1
8
Rev.2, Jun. 1999, page 42 of 49
10
12
Supply Voltage (V)
14
16
HA12209F
EQ Total Harmonic Distortion vs. Supply Voltage (4)
EQ Total Harmonic Distortion EQ T.H.D (%)
10
315Hz (30kHz LPF)
2kHz (30kHz LPF + 400Hz HPF)
10kHz (30kHz LPF + 400Hz HPF)
EQin → EQOUT, Vin = –26dBs
High speed, TYPE II
1.0
0.1
8
10
12
Supply Voltage (V)
16
14
EQ Total Harmonic Distortion vs. Input Level (1)
EQ Total Harmonic Distortion EQ T.H.D (%)
100
10
315Hz
1kHz
5kHz
10kHz
VCC = 12V, EQin → EQOUT,
Vin = –26dBs = 0dB
Normal speed, TYPE I
1.0
0.1
–30
–20
–10
10
0
Input Level (dB)
20
30
Rev.2, Jun. 1999, page 43 of 49
HA12209F
EQ Total Harmonic Distortion vs. Input Level (2)
EQ Total Harmonic Distortion EQ T.H.D (%)
100
10
315Hz
1kHz
5kHz
10kHz
VCC = 12V, EQin → EQOUT,
Vin = –26dBs = 0dB
Normal speed, TYPE II
1.0
0.1
–30
–20
–10
10
0
Input Level (dB)
20
30
EQ Total Harmonic Distortion vs. Input Level (3)
EQ Total Harmonic Distortion EQ T.H.D (%)
100
10
315Hz
2kHz
10kHz
20kHz
VCC = 12V, EQin → EQOUT,
Vin = –26dBs = 0dB
High speed, TYPE I
1.0
0.1
–30
Rev.2, Jun. 1999, page 44 of 49
–20
–10
10
0
Input Level (dB)
20
30
HA12209F
EQ Total Harmonic Distortion vs. Input Level (4)
EQ Total Harmonic Distortion EQ T.H.D (%)
100
10
315Hz
2kHz
10kHz
20kHz
VCC = 12V, EQin → EQOUT,
Vin = –26dBs = 0dB
High speed, TYPE II
1.0
0.1
–30
–20
–10
10
0
Input Level (dB)
20
30
REC-MUTE Attenuation vs. Frequency
–40
VCC = 12V
REC-MUTE Attenuation (dB)
–60
–80
–100
–120
–140
10
100
1k
Frequency (Hz)
10k
100k
Rev.2, Jun. 1999, page 45 of 49
HA12209F
MS AMP. Gain vs. Frequency
40
VCC =12V
30
MS AMP. Gain (dB)
MAOUT
20
MSIN
10
0
–10
10
100
1k
Frequency (Hz)
10k
100k
10k
100k
MS Sensitivity vs. Frequency
10
VCC =12V
Hi → Lo
Lo → Hi
MS Sensitivity (dB)
5
0
–5
–10
–15
10
Rev.2, Jun. 1999, page 46 of 49
100
1k
Frequency (Hz)
HA12209F
No-Signal Sensing Time vs. Resistance
10000
No-Signal Sensing Time (ms)
PBOUT
MSOUT
1000
VCC
22
R12
29
MSDET
C10
100
10
+10dB
0dB
–10dB
VS = 12V, f = 5kHz
1
10k
100k
Resistance R12 (Ω)
1M
Signal Sensing Time vs. Capacitance
1000
Signal Sensing Time (ms)
PBOUT
MSOUT
100
VCC
22
R12
29
MSDET
C10
10
1.0
+10dB
0dB
–10dB
VS = 12V, f = 5kHz
0.1
0.01
0.1
Capacitor C10 (µF)
1.0
Rev.2, Jun. 1999, page 47 of 49
HA12209F
Package Dimensions
12.8 ± 0.3
Unit: mm
10.0
42
29
28
56
15
0.65
12.8 ± 0.3
43
1
0.35
0.10
*Dimension including the plating thickness
Base material dimension
Rev.2, Jun. 1999, page 48 of 49
0.1 +0.1
–0.09
0.775
2.20
0.13 M
*0.17 ± 0.05
0.15 ± 0.04
*0.32 ± 0.08
0.30 ± 0.06
2.54 Max
14
0.775
1.40
0 –8
0.60 ± 0.15
Hitachi Code
JEDEC
EIAJ
Weight (reference value)
FP-56
—
—
0.5 g
HA12209F
Disclaimer
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Sales Offices
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http://semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia
: http://sicapac.hitachi-asia.com
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic Components Group
Dornacher Straße 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 585160
Hitachi Asia Ltd.
Hitachi Tower
16 Collyer Quay #20-00,
Singapore 049318
Tel : <65>-538-6533/538-8577
Fax : <65>-538-6933/538-3877
URL : http://www.hitachi.com.sg
Hitachi Asia Ltd.
(Taipei Branch Office)
4/F, No. 167, Tun Hwa North Road,
Hung-Kuo Building,
Taipei (105), Taiwan
Tel : <886>-(2)-2718-3666
Fax : <886>-(2)-2718-8180
Telex : 23222 HAS-TP
URL : http://www.hitachi.com.tw
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower,
World Finance Centre,
Harbour City, Canton Road
Tsim Sha Tsui, Kowloon,
Hong Kong
Tel : <852>-(2)-735-9218
Fax : <852>-(2)-730-0281
URL : http://www.hitachi.com.hk
Copyright  Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.
Colophon 2.0
Rev.2, Jun. 1999, page 49 of 49