HA12209F Audio Signal Processor for Cassette Deck (Dolby B-type NR with Recording System) ADE-207-221A (Z) 2nd Edition Jun. 1999 Description HA12209F is silicon monolithic bipolar IC providing Dolby noise reduction system*, music sensor system, REC equalizer system and each electronic control switch in one chip. Functions • Dolby B-NR × 2 channel • REC equalizer × 2 channel • Music sensor × 1 channel • Each electronic control switch to change REC equalizer, bias, etc. Features • REC equalizer is very small number of external parts and have 4 types of frequency characteristics built-in. • 2 types of input for PB, 1 type of input for REC. • 70µ-PB equalizer changing system built-in. • Dolby NR with dubbing double cassette decks. Unprocessed signal output available from recording out terminals during PB mode. • Provide stable music sensor system, available to design music sensing time and level. • Controllable from direct micro-computer output. • Bias oscillator control switch built-in. • NR ON/OFF and REC/PB fully electronic control switching built-in. • Normal-speed/high-speed, TYPE I/TYPE II and PB equalizer fully electronic control switching built-in. • Available to reduce substrate-area because of high integration and small external parts. * Dolby is a trademark of Dolby Laboratories Licensing Corporation. A license from Dolby Laboratories Licensing Corporation is required for the use of this IC. HA12209F Ordering Information Standard Level Operating Voltage Product Package PB-OUT Level REC-OUT Level Dolby Level Min Max HA12209F FP-56 580mVrms 300mVrms 10V 15V 300mVrms Function Product Dolby B-NR REC-EQ Music Sensor REC/PB Selection HA12209F ❍ ❍ ❍ ❍ Note: Depending on the employed REC/PB head and test tape characteristics, there is a rare case that the REC-EQ characteristics of this LSI can not be matched to the required characteristics because of built-in resistors which determined the REC-EQ parameters in this case, please inquire the responsible agent because the adjustment of built-in resistor is necessary. Rev.2, Jun. 1999, page 2 of 49 HA12209F Pin Description, Equivalent Circuit (VCC=12V, Ta=25°C, No signal, The value in the table show typical value.) Pin No. Pin Name Note 52 AIN (R) V = VCC / 2 Equivalent Circuit Pin Description PB A deck input V 100k VCC/2 48 AIN (L) 54 BIN (R) 45 BIN (L) 56 RIN (R) 44 RIN (L) 6 EQIN (R) 37 EQIN (L) 4 DET (R) PB B deck input REC input REC equalizer input V = 2.6V VCC Time constant pin for Dolby-NR V GND 39 DET (L) 49 RIP V = VCC / 2 Ripple filter 1 BIAS1 V = 0.6V Dolby bias current input V 42 BIAS2 GND V = 1.3V REC equalizer bias current input V GND Rev.2, Jun. 1999, page 3 of 49 HA12209F Pin Description, Equivalent Circuit (VCC=12V, Ta=25°C, No signal, The value in the table show typical value.) (cont) Pin No. Pin Name Note 3 PBOUT (R) V = VCC / 2 Equivalent Circuit Pin Description PB output VCC V GND 40 PBOUT (L) 5 RECOUT (R) 38 RECOUT (L) 8 EQOUT (R) 35 EQOUT (L) 32 MAOUT 53 ABO (R) REC output Equalizer output 1 MS amp. input * V = VCC / 2 VCC Time constant pin for PB equalizer V 15k 12k GND 46 ABO (L) 25 BIAS (C) V = VCC – 0.7 VCC V 26 Note: BIAS (N) 1. MS : Music Sensor Rev.2, Jun. 1999, page 4 of 49 REC bias current output HA12209F Pin Description, Equivalent Circuit (VCC=12V, Ta=25°C, No signal, The value in the table show typical value.) (cont) Pin No. Pin Name Note 29 MSDET I = 0µA Equivalent Circuit Pin Description VCC I Time constant 1 pin for MS * V GND 31 MSIN V = VCC / 2 MS input VCC V 100k VCC/2 33 MAI V = VCC / 2 MS amp. output MAOUT VCC 100k V 45k VCC/2 27 MSOUT I = 0µA MS output (to MPU) VCC V I DGND Note: 1. MS : Music Sensor Rev.2, Jun. 1999, page 5 of 49 HA12209F Pin Description, Equivalent Circuit (VCC=12V, Ta=25°C, No signal, The value in the table show typical value.) (cont) Pin No. Pin Name Note 10 PB A/B I = 20µA Equivalent Circuit Pin Description I Mode control input V 22k 100k GND 11 A 120/70 12 NORM/HIGH 14 B 120/70 16 BIAS ON/OFF 17 RM ON/OFF 19 NR ON/OFF 20 REC/PB 21 LM ON/OFF 22, 23 VCC V = VCC Power supply 50, 51 GND V = 0V GND pin 2, 7, 9, 13, NC 15, 18, 24, 28, 30, 34, 36, 41, 43, 47, 55 Rev.2, Jun. 1999, page 6 of 49 No connection HA12209F MSDET NC MSIN MAOUT MAI NC EQOUT (L) NC EQIN (L) RECOUT (L) DET (L) PBOUT (L) NC BIAS2 Block Diagram + + + 42 41 40 39 38 + 37 36 35 34 33 32 31 30 29 EQ 43 NC + 28 NC 27 MSOUT 100k 44 BIN (L) 45 ABO (L) 46 MS DET – + RIN (L) BIAS SW 15k 26 25 45k 12k NC 47 AIN (L) 48 23 RIP 49 22 24 DOLBY B-NR BIAS (N) BIASOUT BIAS (C) NC VCC + + LPF 50 51 AIN (R) DOLBY B-NR 52 21 LM ON/ 20 REC/ 19 NR ON/ 12k 15k ABO (R) 53 18 NC BIN (R) 54 17 RM NC 55 16 BIAS ON/ RIN (R) 56 15 NC 9 10 11 12 13 NC 8 /HIGH 14 /70 + B RECOUT (R) DET (R) PBOUT (R) NC BIAS1 7 + /70 6 + A 5 PB /B 4 EQOUT (R) 3 NC 2 EQIN (R) 1 NC EQ /OFF Rev.2, Jun. 1999, page 7 of 49 HA12209F Functional Description Power Supply Range HA12209F is designed to operate on single supply. Table 1 Spply Voltage Item Power Supply Range Single Supply 10V to 15V Note: The lower limit of supply voltage depends on the line output reference level. The minimum value of the overload margin is specified as 12dB by Dolby Laboratories. Reference Voltage For this IC, the reference voltage (VCC/2) occurrence device is built-in as AC grand. A capacitor for a ripple filter is greatly small characteristic with 1/100 compared with conventional device. And, the reference voltage are provided for the left channel and the right channel separately. The block diagram is shown as figure 1. 22 23 VCC + – L channel Reference voltage + – VCC Music sensor Reference voltage + – R channel Reference voltage 50 51 49 GND PIR + 1µ Unit Figure 1 Reference Voltage Rev.2, Jun. 1999, page 8 of 49 C:F HA12209F Operating Mode Control HA12209F provides fully electronic switching circuits. And each operating mode control is controlled by parallel data (DC voltage). Table 2 Pin No. Control Voltage Lo 10, 11, 12, 14, 16, –0.2 to 1.0 17, 19, 20, 21 Note: Hi Unit 4.0 to 5.3 V Test Condition Input Pin Measure 1. Each pins are on pulled down with 100kΩ internal resistor. Therefore, it will be low-level when each pins are open. 2. Over shoot level and under shoot level of input signal must be the standardized. (High: 5.3V, Low: –0.2V) 3. For reduction of pop noise, connect 1µF to 22µF capacitor with mode control pins. But it is impossible to reduce completely in regard to Line mute, therefore, use external mute at the same time. Input Block Diagram and Level Diagram MS REF 300mVrms AIN 21.3dB BIN 300mVrms FLAT (120µ) 5.7dB PBOUT 580mVrms 300mVrms 0dB 25.9mVrms REC PB 70µs PB DOLBY B-NR REC RECOUT 300mVrms PB/REC=0dB/17dB 12k 15k ABO 42.4mVrms CEX1 RIN Unit R:Ω C:F Note: The each level shown above is typical value when offering PBOUT level to PBOUT pin. Figure 2 Input Block Diagram Rev.2, Jun. 1999, page 9 of 49 HA12209F PB Equalizer By switching logical input level of 11 pin (for Ain) and 14 pin (for Bin), you can equalize corresponding to tape position at play back mode. With the capacity CEX1 capacitance that we showed for figure 2 70 µs by the way figure seem to 3 they are decided. Gv t1 = CEX1 · (12k + 15k) t2 = CEX1 · 15k f (t1) (t2) Figure 3 Frequency Characteristic of PB Equalizer The sensitivity Adjustment of Music Sensor Adjusting MS amp. gain by external resistor, the sensitivity of music sensor can set up. VCC DVCC REP C26 0.01µ R12 330k MA OUT MSIN + C10 0.33µ PB(L) MAI 100k RL MS DET 45k – + –6dB DET MS AMP MS OUT Microcomputer GND LPF 25kHz 100k GND Unit PB(R) Figure 4 Music Sensor Block Diagram Rev.2, Jun. 1999, page 10 of 49 R:Ω C:F HA12209F The sensitivity of Music Sensor Gv f1 = 1 [Hz] 2π · C26 · 100k f2 = 25k [Hz] f f1 f2 Figure 5 Frequency Characteristic of MSIN Occasion of the external component of figure 4, f1 is 159Hz. A standard level of MS input pin 25.9mVrms, therefore, the sensitivity of music sensor (S) can request it, by lower formulas. A = MS Amp Gain B = PB input Gain × (1/2)*1 C = Sensed voltage S = 20log C [dB] 25.9 · A · B 20log (A × B) = D [dB] PB input Gain = 21.3 [dB] S = 14 – D [dB] Note: 1. Case of one-sided channel input. Time Constant of Detection Recovery Attack Recovery Recovery Detection time Detection time Detection time Figure 6(1) generally shows that detection time is in proportion to value of capacitor C10. But, with 2 3 Attack* and Recovery* the detection time differs exceptionally. Attack C10 R12 Function Characteristic of MS (1) Function Characteristic of MS (2) Attack Detection level Input level Function Characteristic of MS (3) Figure 6 Function Characteristics of MS Like the figure 6(2), Recovery time is variably possible by value of resistor R12. But Attack time gets about fixed value. Attack time has dependence by input level. When a large signal is inputted, Attack time is short tendency. Note: 2. Attack : Non-music → Music 3. Recovery : Music → Non-music Rev.2, Jun. 1999, page 11 of 49 HA12209F Music Sensor Output (MSOUT) As for internal circuit of music sensor block, music sensor out pin is connected to the collector of NPN type directly, output level will be “high” when sensing no signal. And output level will be “low” when sensing signal. Connection with microcomputer, it is requested to use external pull up resistor (RL = 10k to 22kΩ) Note: Supply voltage of MSOUT pin must be less than VCC voltage. The Tolerances of External Components For Dolby NR precision securing, please use external components shown at figure 7. If leak-current are a few electrolytic-capacitor, it can be applicable to C2 and C15. C15 0.1µ ±10% 39 DET (L) HA12209 BIAS1 DET (R) 1 4 R1 33k ±2% C2 0.1µ ±10% Unit R:Ω C:F Figure 7 Tolerance of External Components + + Low-Boost EQIN EQOUT REC EQ CEX2 REX1 2.2µ 20k Vin CEX4 0.47µ REX2 6.8k REX3 5.1k + CEX3 0.47µ GND Figure 8 Example of Low Boost Circuit Rev.2, Jun. 1999, page 12 of 49 Unit R:Ω C:F HA12209F External components shown figure 8 gives frequency response to take 6dB boost. And cut off frequency can request it, by lower formulas. Gv f1 = 1 [Hz] 2π · CEX3 · (REX3 + R0) f2 = 1 [Hz] 2π · CEX3 · REX3 R0 = REX1 · REX2 [Ω] REX1 + REX2 f f1 f2 Figure 9 Frequency Characteristic of Low-Boost Bias Switch This series built-in DC voltage generator for bias oscillator and its bias switches. External resistor R8, R10 which corresponded with tape positions and bias out voltage are relater with below. Vbias = R9 × (VCC – 0.7) [V] (R10 or R8) + R9 Bias switch follows to a logic of 14 pin (B 120/70). Note: A current that flows at bias out pin, please use it less than 5mA. R10 BIAS (N) 26 Vbias R8 BIAS (C) 25 R9 GND Figure 10 External Components of Bias Block Rev.2, Jun. 1999, page 13 of 49 HA12209F Absolute Maximum Rating (Ta=25°C) Item Symbol Rating Unit Max supply voltage VCC max 16 V Power dissipation PT 500 mW Operating temperature Topr –40 to +75 °C Storage temperature Tstg –55 to +125 °C Rev.2, Jun. 1999, page 14 of 49 Note Ta ≤ 75°C Symbol mA dB dB dB dB dB dB dB dB % dB dB dB dB dB dB dB dB V µA V V 30.0 28.5 24.2 5.8 10.0 4.7 9.7 — — 0.3 — — — — — 27.0 23.8 –7.4 1.5 2.0 1.0 5.3 23.0 27.0 22.7 4.3 8.5 3.2 8.2 13.0 70.0 0.05 80.0 85.0 70.0 80.0 80.0 25.5 22.3 –11.4 1.0 — — — 15.0 25.5 21.2 2.8 7.0 1.7 6.7 12.0 64.0 Ñ 70.0 75.0 60.0 70.0 70.0 24.0 20.8 –15.4 — — –0.2 4.0 Unit Max Typ Min OFF OFF OFF ON ON ON ON ON ON ON OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF — — 3. For inputting signal to one side channel 2. VCC=10V A A/B PB REC A REC A REC A REC A REC A REC A REC A REC A A/B PB REC A A/B PB REC/PB A/B PB A PB A/B PB A/B PB A PB A PB A — — — — PB Test Condition IC Condition*1 REC/PB A/B NR ON/OFF Note: 1. Other IC condition : REC-MUTE OFF, TYPE I, Normal speed, Bias OFF IQ GV PB GV REC B type ENC 2k (1) Encode boost ENC 2k (2) ENC 5k (1) ENC 5k (2) Signal handling Vo max Signal to noise ratio S/N Total harmonic distortion T.H.D. CTRL (1) Channel separation CTRL (2) CT A/B Crosstalk CT R/P Mute attenuation MUTE 70µ EQ gain GV EQ 1k GV EQ 10k MS sensing level*3 VON MS output low level VOL IOH MS output leak current Control voltage VIL VIH Quiescent current Input AMP. gain Item 120 120 120 120 120 120 120 120 120 120 120 120 120 120 70 70 120 120 120 — — 120 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF ON OFF OFF OFF OFF OFF — — ON — 1k 1k 2k 2k 5k 5k 1k 1k 1k 1k 1k 1k 1k 1k 1k 10k 5k — — — — 120µ/ MUTE fin 70µ (Hz) — 0 0 –20 –30 –20 –30 — — 0 +12 +12 +12 +12 +12 0 0 — — — — — THD=1%*2 Rg=5.1kΩ, CCIR/ARM No signal RECOUT Other level (dB) HA12209F Electrical Characteristics (Ta = 25°C, VCC = 12V, Dolby Level = REC-OUT Level = 300mVrms = 0dB) Rev.2, Jun. 1999, page 15 of 49 Rev.2, Jun. 1999, page 16 of 49 Bias out offset REC MUTE attenuation Bias out Max level Equalizer frequency responce (TYPE II-HIGH) Equalizer frequency responce (TYPE I-HIGH) Equalizer frequency responce (TYPE II-NORM) Bias off Vofs (EQ) GVEQ-1N1 GVEQ-1N2 GVEQ-1N3 GVEQ-2N1 GVEQ-2N2 GVEQ-2N3 GVEQ-1H1 GVEQ-1H2 GVEQ-1H3 GVEQ-2H1 GVEQ-2H2 GVEQ-2H3 REC-MUTE Bias on –500 18.5 19.4 29.1 21.4 23.3 32.0 17.7 19.8 31.0 20.5 24.3 35.7 60 VCC –1.4 –100 55 10.5 — S/N (EQ) Equalizer S/N Equalizer maximum input Equalizer Total Harmonic Distortion Equalizer offset voltage Equalizer frequency responce (TYPE I-NORM) Vin max (EQ) T.H.D. (EQ) Min Symbol Item 0 20.0 21.4 32.1 22.9 25.3 35.0 19.2 21.8 34.0 22.0 26.3 38.7 70 VCC –1.0 0 58 12.5 0.2 Typ 100 500 21.5 23.4 35.1 24.4 27.3 38.0 20.7 23.8 37.0 23.5 28.3 41.7 — — — 0.5 — Max mV mV dB dB dB dB dB dB dB dB dB dB dB dB dB V dB dB % Unit RL=2.4kΩ+270Ω TYPE I NORM No signal TYPE I NORM f=1kHz, Vin=–46dBs f=5kHz, Vin=–46dBs f=12.5kHz, Vin=–46dBs TYPE II NORM f=1kHz, Vin=–46dBs f=5kHz, Vin=–46dBs f=12.5kHz, Vin=–46dBs TYPE I HIGH f=2kHz, Vin=–46dBs f=10kHz, Vin=–46dBs f=25kHz, Vin=–46dBs TYPE II HIGH f=2kHz, Vin=–46dBs f=10kHz, Vin=–46dBs f=25kHz, Vin=–46dBs TYPE I NORM f=1kHz, Vin=–14dBs RL=2.4kΩ+270Ω Test Condition TAPE SPEED TYPE I NORM Rg=5.1kΩ, A-WTG Filter TYPE I NORM f=1kHz, THD=1%, Vin=–26dBs=0dB TYPE I NORM f=1kHz, Vin=–26dBs HA12209F Electrical Characteristics (Ta=25°C, VCC = 12V, Dolby Level = REC-OUT Level = 300mVrms = 0dB) (cont) + + R25 C25 5.1k 0.47µ R24 C24 10k 0.47µ C23 0.0047µ + RIN (R) R23 C22 10k 0.47µ C21 1µ + BIN (R) R22 C20 10k 0.47µ C19 0.0047µ R21 C18 10k 0.47µ R20 5.1k C17 0.47µ + AIN (R) AIN (L) BIN (L) RIN (L) + 2 3 C2 0.1µ + 6 + C5 + EQ 36 8 35 LPF 34 32 10 45k 100k 33 11 31 30 12 13 MS DET C26 0.01µ 29 14 BIAS SW R12 330k 24 25 26 27 28 0.33µ +C10 R1 33k R2 10k C3 2.2µ R4 6.8k R3 20k PB REC OUT (R) OUT (R) C1 2.2µ 5 + + C4 0.47µ R5 5.1k R6 5.1k 0.47µ JP2 7 + C6 9 R7 10k 2.2µ EQ OUT (R) EQIN (R) 15 56 4 16 55 1 17 54 EQ 18 53 19 20 51 52 21 50 DOLBY B-NR 37 C11 + 2.2µ R13 10k 22 DOLBY B-NR 39 + 38 JP1 C12 + 0.47µ EQIN (L) R14 5.1k 49 12k 12k 40 C14 2.2µ R15 5.1k + C13 0.47µ 23 15k 15k 41 C15 +0.1µ R17 20k R16 6.8k 48 47 46 45 44 43 42 C16 2.2µ R19 R18 22k 10k – + EQ OUT (L) R8 910 R10 2k /70 SW7 SW8 SW9 R27 22k Unit SW1 SW2 SW3 SW4 SW5 C7 22µ SW6 C8 22µ R26 22k R9 2.4k /HIGH /70 PB /B A B R11 3.9k MSOUT BIASOUT /OFF BIAS ON/ RM NR ON/ REC/ LM ON/ VCC BIAS (C) BIAS (N) + + + PB REC OUT (L) OUT (L) + VCC1 R:Ω C:F VCC2 5V C9 100µ HA12209F Test Circuit + Rev.2, Jun. 1999, page 17 of 49 HA12209F Parallel Data Format Pin No. Pin Name Lo Hi 10 PB A/B 11 A 120/70 * 12 NORM/HIGH Normal speed 14 B 120/70 16 17 1 Mode “Pin Open” 1 Bin* Ain* 1 Lo 1 * Lo High speed 1 Lo 1 REC EQ TYPE I* Bias TYPE I REC EQ TYPE II* Bias TYPE II Lo BIAS ON/OFF BIAS OFF BIAS OFF Lo RM ON/OFF REC MUTE ON REC MUTE OFF Lo 19 NR ON/OFF NR OFF NR ON Lo 20 REC/PB PB MODE REC MODE Lo 21 LM ON/OFF LINE MUTE OFF LINE MUTE ON Lo Note: 1. PB EQ LOGIC PB A/B A 120/70 120 B 120/70 120 Lo Hi Lo Lo FLAT FLAT Lo Hi FLAT 70µ Hi Lo 70µ FLAT Hi Hi 70µ 70µ Rev.2, Jun. 1999, page 18 of 49 HA12209F Characteristics Curve Quiescent Current vs. Supply Voltage (1) Quiescent Current (mA) 25 RECmode 20 15 No Signal NR-OFF, REC-MUTE ON NR-OFF, REC-MUTE OFF NR-ON, REC-MUTE ON NR-ON, REC-MUTE OFF Other SW is “Low” 10 8 10 12 Supply Voltage (V) 16 14 Quiescent Current vs. Supply Voltage (2) Quiescent Current (mA) 25 PBmode 20 15 No Signal NR-OFF, REC-MUTE ON NR-OFF, REC-MUTE OFF NR-ON, REC-MUTE ON NR-ON, REC-MUTE OFF Other SW is “Low” 10 8 10 12 Supply Voltage (V) 14 16 Rev.2, Jun. 1999, page 19 of 49 HA12209F Input Amp. Gain vs. Frequency (1) 30 Input Amp. Gain (dB) A µ A 70µ 20 VCC=12V PBmode NR-OFF AIN→PBOUT 10 10 100 1k 10k Frequency (Hz) 100k 1M 100k 1M Input Amp. Gain vs. Frequency (2) Input Amp. Gain (dB) 30 20 VCC=12V PBmode NR-OFF AIN→RECOUT 10 10 100 Rev.2, Jun. 1999, page 20 of 49 1k 10k Frequency (Hz) HA12209F Input Amp. Gain vs. Frequency (3) Input Amp. Gain (dB) 30 PBOUT 20 RECOUT VCC = 12V RECmode NR-OFF RIN → PBOUT, RECOUT 10 10 100 1k 10k Frequency (Hz) 100k 1M Rev.2, Jun. 1999, page 21 of 49 HA12209F Encode Boost vs. Frequency 12 VCC = 12V Encode Boost (dB) Vin = –40dB 8 –30dB 4 –20dB –10dB 0dB 0 100 1k Frequency (Hz) 10k 20k Decode Cut vs. Frequency 0 Vin = 0dB –10dB –2 Decode Cut (dB) –20dB –4 –6 –30dB –8 –10 –40dB VCC=12V –12 100 Rev.2, Jun. 1999, page 22 of 49 1k Frequency (Hz) 10k 20k HA12209F Maximum Output Level vs. Supply Voltage (1) Maximum Output Level Vomax (dB) 25 NR-OFF NR-ON PBmode Ain → PBOUT 0dB = 580mVrms (at PBOUT) T.H.D = 1% f = 1kHz 400Hz LPF + 30kHz HPF 20 15 10 8 10 12 Supply Voltage (V) 16 14 Maximum Output Level vs. Supply Voltage (2) Maximum Output Level Vomax (dB) 25 20 15 NR-OFF NR-ON PBmode Ain → RECOUT 0dB = 300mVrms (at RECOUT) T.H.D = 1% f = 1kHz 400Hz LPF + 30kHz HPF 10 8 10 12 Supply Voltage (V) 14 16 Rev.2, Jun. 1999, page 23 of 49 HA12209F Maximum Output Level vs. Supply Voltage (3) Maximum Output Level Vomax (dB) 25 20 15 NR-OFF NR-ON RECmode Rin → RECOUT 0dB = 300mVrms (at RECOUT) T.H.D = 1% f = 1kHz 400Hz LPF + 30kHz HPF 10 8 10 12 Supply Voltage (V) 14 16 Maximum Output Level vs. Supply Voltage (4) Maximum Output Level Vomax (dB) 25 NR-OFF NR-ON RECmode Rin → PBOUT 0dB = 580mVrms (at PBOUT) T.H.D = 1% f = 1kHz 400Hz LPF + 30kHz HPF 20 15 10 8 Rev.2, Jun. 1999, page 24 of 49 10 12 Supply Voltage (V) 14 16 HA12209F Signal to Noise Ratio vs. Supply Voltage (1) Signal to Noise Ratio S/N (dB) 85 80 75 NR-OFF NR-ON PBmode Ain → PBOUT CCIR/ARM 0dB = 580mVrms (PBOUT) 70 8 10 12 Supply Voltage (V) 16 14 Signal to Noise Ratio vs. Supply Voltage (2) Signal to Noise Ratio S/N (dB) 85 80 NR-OFF NR-ON RECmode Rin → RECOUT CCIR/ARM 0dB = 300mVrms (RECOUT) 75 70 8 10 12 Supply Voltage (V) 14 16 Rev.2, Jun. 1999, page 25 of 49 HA12209F Total Harmonic Distortion vs. Supply Voltage (1) Total Harmonic Distortion T.H.D (%) 1.0 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 8kHz LPF) PBmode NR-OFF Ain → PBOUT Vin = 0dB 0.1 0.01 8 10 12 Supply Voltage (V) 14 16 Total Harmonic Distortion vs. Supply Voltage (2) Total Harmonic Distortion T.H.D (%) 1.0 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 8kHz LPF) PBmode NR-ON Ain → PBOUT Vin = 0dB 0.1 0.01 8 Rev.2, Jun. 1999, page 26 of 49 10 12 Supply Voltage (V) 14 16 HA12209F Total Harmonic Distortion vs. Supply Voltage (3) Total Harmonic Distortion T.H.D (%) 1.0 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 8kHz LPF) RECmode NR-OFF Rin → RECOUT Vin = 0dB 0.1 0.01 8 10 12 Supply Voltage (V) 16 14 Total Harmonic Distortion vs. Supply Voltage (4) Total Harmonic Distortion T.H.D (%) 1.0 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 8kHz LPF) RECmode NR-ON Rin → RECOUT Vin = 0dB 0.1 0.01 8 10 12 Supply Voltage (V) 14 16 Rev.2, Jun. 1999, page 27 of 49 HA12209F Total Harmonic Distortion vs. Output Level (1) Total Harmonic Distortion T.H.D (%) 10 100Hz 1kHz 10kHz VCC = 12V, PBmode NR-OFF, AIN → PBOUT 0dB = 580mVrms (at PBOUT) 1 0.1 0.01 –25 –20 –15 –10 –5 0 5 Output Level Vout (dB) 10 15 20 15 20 Total Harmonic Distortion vs. Output Level (2) Total Harmonic Distortion T.H.D (%) 10 100Hz 1kHz 10kHz VCC = 12V, PBmode NR-ON, AIN → PBOUT 0dB = 580mVrms (at PBOUT) 1 0.1 0.01 –25 –20 Rev.2, Jun. 1999, page 28 of 49 –15 –10 –5 0 5 Output Level Vout (dB) 10 HA12209F Total Harmonic Distortion vs. Output Level (3) Total Harmonic Distortion T.H.D (%) 10 100Hz 1kHz 10kHz VCC = 12V, RECmode NR-OFF, RIN → RECOUT 0dB = 300mVrms (at RECOUT) 1 0.1 0.01 –15 –10 –5 0 5 10 Output Level Vout (dB) 15 20 25 Total Harmonic Distortion vs. Output Level (4) Total Harmonic Distortion T.H.D (%) 10 100Hz 1kHz 10kHz VCC = 12V, RECmode NR-ON, RIN → RECOUT 0dB = 300mVrms (at RECOUT) 1 0.1 0.01 –20 –15 –10 –5 0 5 10 Output Level Vout (dB) 15 20 25 Rev.2, Jun. 1999, page 29 of 49 HA12209F Total Harmonic Distortion vs. Frequency (1) Total Harmonic Distortion T.H.D (%) 0.5 +10dB 0dB –10dB VCC = 12V, PBmode NR-OFF, AIN → PBOUT Vin = 0dB 0.1 0.05 0.01 100 1k Frequency (Hz) 10k 20k 10k 20k Total Harmonic Distortion vs. Frequency (2) Total Harmonic Distortion T.H.D (%) 0.5 +10dB 0dB –10dB VCC =12V, PBmode NR-ON, AIN → PBOUT Vin = 0dB 0.1 0.05 0.01 100 Rev.2, Jun. 1999, page 30 of 49 1k Frequency (Hz) HA12209F Total Harmonic Distortion vs. Frequency (3) Total Harmonic Distortion T.H.D (%) 0.5 +10dB 0dB –10dB VCC = 12V, RECmode NR-OFF, RIN → RECOUT Vin = 0dB 0.1 0.05 0.01 100 1k Frequency (Hz) 10k 20k 10k 20k Total Harmonic Distortion vs. Frequency (4) Total Harmonic Distortion T.H.D (%) 0.5 +10dB 0dB –10dB VCC =12V, RECmode NR-ON, RIN → RECOUT Vin = 0dB 0.1 0.05 0.01 100 1k Frequency (Hz) Rev.2, Jun. 1999, page 31 of 49 HA12209F Crosstalk vs. Frequency (1) –40 –60 AIN → BIN VCC = 12V PBmode (AIN, PBOUT) Vin = +10dB Crosstalk (dB) NR-OFF –80 NR-ON –100 –120 –140 10 100 1k Frequency (Hz) 10k 100k 10k 100k Crosstalk vs. Frequency (2) –40 –60 BIN → AIN VCC = 12V PBmode (BIN, PBOUT) Vin = +10dB Crosstalk (dB) NR-OFF –80 NR-ON –100 –120 –140 10 Rev.2, Jun. 1999, page 32 of 49 100 1k Frequency (Hz) HA12209F Crosstalk vs. Frequency (3) –40 Crosstalk (dB) –60 PB → REC VCC = 12V PBmode (AIN, RECOUT) Vin = +10dB NR-ON –80 NR-OFF –100 –120 –140 10 100 1k Frequency (Hz) 10k 100k 10k 100k Crosstalk vs. Frequency (4) –40 Crosstalk (dB) –60 REC → PB VCC = 12V RECmode (RIN, PBOUT) Vin = +12dB –80 NR-OFF –100 NR-ON –120 –140 10 100 1k Frequency (Hz) Rev.2, Jun. 1999, page 33 of 49 HA12209F Channel Separation vs. Frequency (1) –20 VCC = 12V PBmode (AIN, PBOUT), 120µ Vin = +10dB Channel Separation (dB) –40 –60 NR-OFF –80 NR-ON –100 –120 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (2) –20 VCC = 12V PBmode (BIN, PBOUT), 120µ Vin = +10dB Channel Separation (dB) –40 –60 NR-OFF –80 NR-ON –100 –120 10 Rev.2, Jun. 1999, page 34 of 49 100 1k Frequency (Hz) 10k 100k HA12209F Channel Separation vs. Frequency (3) –40 VCC = 12V RECmode (RIN, RECOUT) Vin = +12dB Channel Separation (dB) –60 NR-ON –80 –100 –120 –140 10 NR-OFF 100 1k Frequency (Hz) 10k 100k LINE-MUTE Attenuation vs. Frequency (1) –40 LINE-MUTE Attenuation (dB) –60 VCC = 12V PBmode (AIN, PBOUT) NR-OFF Vin = +12dB –80 –100 –120 –140 10 100 1k Frequency (Hz) 10k 100k Rev.2, Jun. 1999, page 35 of 49 HA12209F LINE-MUTE Attenuation vs. Frequency (2) –40 LINE-MUTE Attenuation (dB) –60 VCC = 12V PBmode (BIN, PBOUT) NR-OFF Vin = +12dB –80 –100 –120 –140 10 100 1k Frequency (Hz) 10k 100k LINE-MUTE Attenuation vs. Frequency (3) –40 LINE-MUTE Attenuation (dB) –60 VCC = 12V RECmode (RIN, PBOUT) NR-OFF Vin = +12dB –80 –100 –120 –140 10 Rev.2, Jun. 1999, page 36 of 49 100 1k Frequency (Hz) 10k 100k HA12209F Ripple Relection Ratio vs. Frequency (1) 0 Ripple Relection Ratio R.R.R. (dB) VCC = 12V PBmode –20 PBOUT NR-ON PBOUT NR-OFF –40 RECOUT NR-ON –60 RECOUT NR-OFF –80 –100 10 100 1k Frequency (Hz) 10k 100k Ripple Relection Ratio vs. Frequency (2) 0 Ripple Relection Ratio R.R.R. (dB) VCC = 12V RECmode –20 RECOUT NR-ON PBOUT NR-ON/OFF –40 RECOUT NR-OFF –60 –80 –100 10 100 1k Frequency (Hz) 10k 100k Rev.2, Jun. 1999, page 37 of 49 HA12209F Ripple Relection Ratio vs. Frequency (3) 0 Ripple Relection Ratio R.R.R. (dB) VCC = 12V EQOUT N : Normal speed N-TYPE II –20 N-TYPE I –40 –60 –80 –100 10 100 1k Frequency (Hz) 10k 100k REC-EQ Gain vs. Frequency 50 VCC = 12V N : Normal speed H : High speed N-TYPE II REC-EQ Gain (dB) 40 N-TYPE I 30 20 H-TYPE I H-TYPE II 10 0 10 Rev.2, Jun. 1999, page 38 of 49 100 1k Frequency (Hz) 10k 100k HA12209F EQ Maximum Input Level vs. Supply Voltage (1) EQ Maximum Input Level Vinmax (dB) 25 f = 1kHz, EQin → EQOUT Vin = –26dBs, T.H.D ≥ 1% Norm speed, TYPE I 20 15 10 8 10 12 Supply Voltage (V) 16 14 EQ Maximum Input Level vs. Supply Voltage (2) EQ Maximum Input Level Vinmax (dB) 25 f = 1kHz, EQin → EQOUT Vin = –26dBs, T.H.D ≥ 1% Norm speed, TYPE II 20 15 10 8 10 12 Supply Voltage (V) 14 16 Rev.2, Jun. 1999, page 39 of 49 HA12209F EQ Maximum Input Level vs. Supply Voltage (3) EQ Maximum Input Level Vinmax (dB) 25 f = 1kHz, EQin → EQOUT Vin = –26dBs, T.H.D ≥ 1% High speed, TYPE I 20 15 10 8 10 12 Supply Voltage (V) 14 16 EQ Maximum Input Level vs. Supply Voltage (4) EQ Maximum Input Level Vinmax (dB) 25 f = 1kHz, EQin → EQOUT Vin = –26dBs, T.H.D ≥ 1% High speed, TYPE II 20 15 10 8 Rev.2, Jun. 1999, page 40 of 49 10 12 Supply Voltage (V) 14 16 HA12209F EQ Signal to Noise Ratio vs. Supply Voltage EQ Signal to Noise Ratio EQ S/N (dB) 65 60 55 N-TYPE I N-TYPE II H-TYPE I H-TYPE II A-WTG filter N : Normal speed H : High speed 50 8 10 12 Supply Voltage (V) 16 14 EQ Total Harmonic Distortion vs. Supply Voltage (1) EQ Total Harmonic Distortion EQ T.H.D (%) 10 315Hz (30kHz LPF) 1kHz (30kHz LPF + 400Hz HPF) 5kHz (30kHz LPF + 400Hz HPF) 10kHz (30kHz LPF + 400Hz HPF) EQin → EQOUT, Vin = –26dBs Normal speed, TYPE I 1.0 0.1 8 10 12 Supply Voltage (V) 14 16 Rev.2, Jun. 1999, page 41 of 49 HA12209F EQ Total Harmonic Distortion vs. Supply Voltage (2) EQ Total Harmonic Distortion EQ T.H.D (%) 10 315Hz (30kHz LPF) 1kHz (30kHz LPF + 400Hz HPF) 5kHz (30kHz LPF + 400Hz HPF) 10kHz (30kHz LPF + 400Hz HPF) EQin → EQOUT, Vin = –26dBs Normal speed, TYPE II 1.0 0.1 8 10 12 Supply Voltage (V) 14 16 EQ Total Harmonic Distortion vs. Supply Voltage (3) EQ Total Harmonic Distortion EQ T.H.D (%) 10 315Hz (30kHz LPF) 2kHz (30kHz LPF + 400Hz HPF) 10kHz (30kHz LPF + 400Hz HPF) EQin → EQOUT, Vin = –26dBs High speed, TYPE I 1.0 0.1 8 Rev.2, Jun. 1999, page 42 of 49 10 12 Supply Voltage (V) 14 16 HA12209F EQ Total Harmonic Distortion vs. Supply Voltage (4) EQ Total Harmonic Distortion EQ T.H.D (%) 10 315Hz (30kHz LPF) 2kHz (30kHz LPF + 400Hz HPF) 10kHz (30kHz LPF + 400Hz HPF) EQin → EQOUT, Vin = –26dBs High speed, TYPE II 1.0 0.1 8 10 12 Supply Voltage (V) 16 14 EQ Total Harmonic Distortion vs. Input Level (1) EQ Total Harmonic Distortion EQ T.H.D (%) 100 10 315Hz 1kHz 5kHz 10kHz VCC = 12V, EQin → EQOUT, Vin = –26dBs = 0dB Normal speed, TYPE I 1.0 0.1 –30 –20 –10 10 0 Input Level (dB) 20 30 Rev.2, Jun. 1999, page 43 of 49 HA12209F EQ Total Harmonic Distortion vs. Input Level (2) EQ Total Harmonic Distortion EQ T.H.D (%) 100 10 315Hz 1kHz 5kHz 10kHz VCC = 12V, EQin → EQOUT, Vin = –26dBs = 0dB Normal speed, TYPE II 1.0 0.1 –30 –20 –10 10 0 Input Level (dB) 20 30 EQ Total Harmonic Distortion vs. Input Level (3) EQ Total Harmonic Distortion EQ T.H.D (%) 100 10 315Hz 2kHz 10kHz 20kHz VCC = 12V, EQin → EQOUT, Vin = –26dBs = 0dB High speed, TYPE I 1.0 0.1 –30 Rev.2, Jun. 1999, page 44 of 49 –20 –10 10 0 Input Level (dB) 20 30 HA12209F EQ Total Harmonic Distortion vs. Input Level (4) EQ Total Harmonic Distortion EQ T.H.D (%) 100 10 315Hz 2kHz 10kHz 20kHz VCC = 12V, EQin → EQOUT, Vin = –26dBs = 0dB High speed, TYPE II 1.0 0.1 –30 –20 –10 10 0 Input Level (dB) 20 30 REC-MUTE Attenuation vs. Frequency –40 VCC = 12V REC-MUTE Attenuation (dB) –60 –80 –100 –120 –140 10 100 1k Frequency (Hz) 10k 100k Rev.2, Jun. 1999, page 45 of 49 HA12209F MS AMP. Gain vs. Frequency 40 VCC =12V 30 MS AMP. Gain (dB) MAOUT 20 MSIN 10 0 –10 10 100 1k Frequency (Hz) 10k 100k 10k 100k MS Sensitivity vs. Frequency 10 VCC =12V Hi → Lo Lo → Hi MS Sensitivity (dB) 5 0 –5 –10 –15 10 Rev.2, Jun. 1999, page 46 of 49 100 1k Frequency (Hz) HA12209F No-Signal Sensing Time vs. Resistance 10000 No-Signal Sensing Time (ms) PBOUT MSOUT 1000 VCC 22 R12 29 MSDET C10 100 10 +10dB 0dB –10dB VS = 12V, f = 5kHz 1 10k 100k Resistance R12 (Ω) 1M Signal Sensing Time vs. Capacitance 1000 Signal Sensing Time (ms) PBOUT MSOUT 100 VCC 22 R12 29 MSDET C10 10 1.0 +10dB 0dB –10dB VS = 12V, f = 5kHz 0.1 0.01 0.1 Capacitor C10 (µF) 1.0 Rev.2, Jun. 1999, page 47 of 49 HA12209F Package Dimensions 12.8 ± 0.3 Unit: mm 10.0 42 29 28 56 15 0.65 12.8 ± 0.3 43 1 0.35 0.10 *Dimension including the plating thickness Base material dimension Rev.2, Jun. 1999, page 48 of 49 0.1 +0.1 –0.09 0.775 2.20 0.13 M *0.17 ± 0.05 0.15 ± 0.04 *0.32 ± 0.08 0.30 ± 0.06 2.54 Max 14 0.775 1.40 0 –8 0.60 ± 0.15 Hitachi Code JEDEC EIAJ Weight (reference value) FP-56 — — 0.5 g HA12209F Disclaimer 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Sales Offices Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http://semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia : http://sicapac.hitachi-asia.com Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic Components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 585160 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel : <65>-538-6533/538-8577 Fax : <65>-538-6933/538-3877 URL : http://www.hitachi.com.sg Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building, Taipei (105), Taiwan Tel : <886>-(2)-2718-3666 Fax : <886>-(2)-2718-8180 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong Tel : <852>-(2)-735-9218 Fax : <852>-(2)-730-0281 URL : http://www.hitachi.com.hk Copyright Hitachi, Ltd., 2000. All rights reserved. Printed in Japan. Colophon 2.0 Rev.2, Jun. 1999, page 49 of 49