HITACHI HA12227F

HA12226F/HA12227F
Audio Signal Processor for Cassette Deck
(Dolby B-type NR with Recording System)
ADE-207-270E (Z)
6th Edition
Dec. 2000
Description
1
The HA12226F/HA12227F are silicon monolithic bipolar IC providing Dolby noise reduction system* ,
music sensor system, REC equalizer system and each electronic control switch in one chip.
Note: 1. Dolby is a trademark of Dolby Laboratories Licensing Corporation.
A license from Dolby Laboratories Licensing Corporation is required for the use of this IC.
The HA12227F is not built-in Dolby B-NR.
Functions
• Dolby B-NR*
2
× 2 channel
• REC equalizer
× 2 channel
• Music sensor
× 1 channel
• Pass amp.
× 2 channel
• Each electronic control switch to change REC equalizer, bias, etc.
Note: 2. The HA12227F is not built-in Dolby B-NR.
Features
• REC equalizer is very small number of external parts and have 4 types of frequency characteristics
built-in.
• 2 types of input for PB, 1 type of input for REC.
• 70µ - PB equalizer changing system built-in.
• Dolby NR* with dubbing double cassette decks.
Unprocessed signal output available from recording out terminals during PB mode.
2
• Provide stable music sensor system, available to design music sensing time and level.
• Controllable from direct micro-computer output.
• Bias oscillator control switch built-in.
• NR ON / OFF and REC / PB fully electronic control switching built-in.
• Normal-speed / high-speed, Normal / Crom and PB equalizer fully electronic control switching built-in.
• Available to reduce substrate-area because of high integration and small external parts.
HA12226F/HA12227F
Ordering Information
Operating Voltage
Product
Power Supply Range (Single Supply)
HA12226F
11.0 V to 15.0 V
HA12227F
9.5 V to 15.0 V
Standard Level
Product
Package
PB-OUT Level
REC-OUT Level
Dolby Level
HA12226F
FP-56A
580 mVrms
300 mVrms
300 mVrms

HA12227F
Function
Product
Dolby B-NR
REC-EQ
Music
Sensor
Pass Amp.
REC / PB
Selection
ALC
HA12226F
❍
❍
❍
❍
❍
❍
HA12227F
×
❍
❍
❍
❍
❍
Note: Depending on the employed REC / PB head and test tape characteristics, there is a rare case that
the REC-EQ characteristics of this LSI can not be matched to the required characteristics because of
built-in resistors which determined the REC-EQ parameters in this case, please inquire the
responsible agent because the adjustment built-in resistor is necessary.
Difference of HA12215F and HA12226F/HA12227F
Tape Correspondence
Product
Supply Voltage
NORM
CROM
METAL
HA12226F/HA12227F
Single supply voltage
❍
❍
×
HA12215F
Split supply voltage
❍
❍
❍
Note: The HA12226F/HA12227F became single power supply for the HA12215F and deleted metal
correspondence. The HA12227F is not built-in Dolby B-NR.
Other characteristic aspects are similar as the HA12215F.
Rev.6, Dec. 2000, page 2 of 86
HA12226F/HA12227F
Pin Description, Equivalent Circuit (VCC = 12 V, A system of single supply voltage,
Ta = 25°C, No Signal, The value in the show typical value.)
Pin No.
Terminal Name
Note
51
AIN (R)
V = VCC / 2
Equivalent Circuit
Pin Description
PB A Deck input
V
100k
VCC/2
48
AIN (L)
53
BIN (R)
46
BIN (L)
56
RIN (R)
43
RIN (L)
5
EQIN (R)
38
PB B Deck input
REC input
REC equalizer input
EQIN (L)
2
1*
DET (R)
V = 2.7 V
VCC
Time constant pin for
Dolby-NR
V
GND
2
42 *
DET (L)
49
RIP
3
2*
BIAS1
Ripple filter
V = 0.6 V
Dolby bias current
input
V
41
BIAS2
GND
V = 1.3 V
REC equalizer bias
current input
V
GND
Rev.6, Dec. 2000, page 3 of 86
HA12226F/HA12227F
Pin Description, Equivalent Circuit (VCC = 12 V, A system of single supply voltage,
Ta = 25°C, No Signal, The value in the show typical value.) (cont)
Pin No.
Terminal Name
Note
3
PBOUT (R)
V = VCC / 2
Equivalent Circuit
Pin Description
VCC
PB output
V
GND
40
PBOUT (L)
4
RECOUT (R)
39
RECOUT (L)
7
EQOUT (R)
36
EQOUT (L)
28
MAOUT
MS Amp. output *
8
ROUT (R)
Input Amp. output
35
ROUT (L)
52
ABO (R)
REC output
REC equalizer output
R1 = 15 k
R2 = 12 k
V = VCC / 2
VCC
V
R1
1
Time constant pin for
PB equalizer (70µ)
R2
GND
47
ABO (L)
6
BOOST (R)
37
BOOST (L)
32
BIAS (C)
R1 = 4.8 k
R2 = 4.8 k
V = VCC / 2
V = VCC − 0.7 V
Time constant pin for
low boost
VCC
V
33
BIAS (N)
Rev.6, Dec. 2000, page 4 of 86
REC bias current
output
HA12226F/HA12227F
Pin Description, Equivalent Circuit (VCC = 12 V, A system of single supply voltage,
Ta = 25°C, No Signal, The value in the show typical value.) (cont)
Pin No.
Terminal Name
Note
Equivalent Circuit
Pin Description
21
VCC
V = VCC
Power supply
50
GND
V=0V
GND pin
31, 45, 54
NC
No connection
No connection
15
ALC ON/OFF
I = 20 µA
Mode control input
I
V
22 k
100 k
GND
16
PB A/B
17
A 120/70
18
NORM/HIGH
19
B NORM/CROM
20
BIAS ON/OFF
RM ON/OFF
22
2
23 *
NR ON/OFF
25
LM ON/OFF
24
REC/PB/PASS
2.5 V
100 k
Mode control input
+
−
100 k
22 k
V
26
MSOUT
I = 0 µA
V
MS output (to MPU) *
VCC
1
I
D GND
Rev.6, Dec. 2000, page 5 of 86
HA12226F/HA12227F
Pin Description, Equivalent Circuit (VCC = 12 V, A system of single supply voltage,
Ta = 25°C, No Signal, The value in the show typical value.) (cont)
Pin No.
Terminal Name
Note
10
GPCAL
R = 110 kΩ
Equivalent Circuit
Pin Description
R
2.5 V
GP gain calibration
terminal
11
RECCAL
R = 110 kΩ
REC gain calibration
terminal
12
ALCCAL
R = 140 kΩ
ALC operation level
calibration terminal
14
MSDET
n=6
0 µA
VCC
n
Time constant pin for
1
MS *
GND
13
ALCDET
n=2
27
MSIN
R = 50 kΩ
MS input *
VCC
1
V
R
VCC/2
9
ALCIN (R)
34
ALCIN (L)
30
MAI
R = 100 kΩ
V = VCC / 2
MAOUT
VCC
MS Amp. input *
1
100 k
V
MAI 8.2 k
VCC/2
29
MS GND
V=0V
MS output voltage
1
level control pin *
55
ALC (R)
V=0V
Variable impedance
for attenuation
44
ALC (L)
Note:
1. MS: Music Sensor
2. Non connection regarding the HA12227F.
3. Test pin regarding the HA12227F.
Rev.6, Dec. 2000, page 6 of 86
HA12226F/HA12227F
Block Diagram
MSGND
MAI
NC
BIAS (C)
BIAS (N)
ALCIN (L)
ROUT (L)
EQOUT (L)
BOOST (L)
EQIN (L)
RECOUT (L)
PBOUT (L)
BIAS2
DET (L)
HA12226F
42 41 40 39 38 37 36 35 34 33 32 31 30 29
RIN (L)
43
ALC (L)
44
NC
45
EQ
BIAS
Dolby
B-NR
28
MAOUT
27
MSIN
26
MSOUT
MS
BIN (L)
46
25
LM ON / OFF
ABO (L)
47
24
REC / PB / PASS
AIN (L)
48
23
NR ON / OFF
22
RM ON / OFF
RIP
−
+
49
+
LPF
GND
50
21
VCC
AIN (R)
51
20
BIAS ON / OFF
ABO (R)
52
19
B NORM / CROM
BIN (R)
53
NC
54
ALC (R)
55
RIN (R)
56
ALC
Dolby
B-NR
5
6
7
8
9
10 11 12 13 14
BIAS1
PBOUT (R)
RECOUT (R)
EQIN (R)
BOOST (R)
EQOUT (R)
ROUT (R)
ALCIN (R)
GPCAL
NORM / HIGH
17
A 120 / 70
16
PB A / B
15
ALC ON / OFF
MSDET
4
ALCDET
3
ALCCAL
2
RECCAL
1
DET (R)
EQ
18
Rev.6, Dec. 2000, page 7 of 86
HA12226F/HA12227F
MSGND
MAI
NC
BIAS (C)
BIAS (N)
ALCIN (L)
ROUT (L)
EQOUT (L)
BOOST (L)
EQIN (L)
RECOUT (L)
PBOUT (L)
BIAS2
NC
HA12227F
42 41 40 39 38 37 36 35 34 33 32 31 30 29
RIN (L)
43
ALC (L)
44
EQ
BIAS
28
MAOUT
27
MSIN
MS
NC
45
26
MSOUT
BIN (L)
46
25
LM ON / OFF
ABO (L)
47
24
REC / PB / PASS
AIN (L)
48
23
NC
RIP
49
22
RM ON / OFF
+
−
+
LPF
GND
50
21
VCC
AIN (R)
51
20
BIAS ON / OFF
ABO (R)
52
19
B NORM / CROM
BIN (R)
53
18
NORM / HIGH
NC
54
17
A 120 / 70
ALC (R)
55
16
PB A / B
RIN (R)
56
15
ALC ON / OFF
ALC
Test mode pin
PBOUT (R)
RECOUT (R)
EQIN (R)
BOOST (R)
EQOUT (R)
Rev.6, Dec. 2000, page 8 of 86
8
9
10 11 12 13 14
MSDET
7
ALCDET
6
ALCCAL
5
RECCAL
4
GPCAL
3
ROUT (R)
2
ALCIN (R)
1
NC
EQ
HA12226F/HA12227F
Parallel-Data Format
Pin No.
Pin Name
Lo
15
ALC ON/OFF
ALC ON
16
PB A/B
Ain *

17
A 120/70
*1
22
RM ON/OFF
REC MUTE ON
1
MODE
“Pin Open”
Mid
Hi

ALC OFF
Lo
1
Bin *
Lo

*1
Lo

REC MUTE OFF
Lo
BIAS ON/OFF
BIAS OFF

BIAS ON
Lo
23 *
NR ON/OFF
NR OFF

NR ON
Lo
24
REC/PB/PASS
REC MODE
PB MODE
REC MODE PASS
Mid
25
LM ON/OFF
LINE MUTE OFF

LINE MUTE ON
Lo
18
NORM/HIGH
Normal speed
19
B NORM/CROM
20
2
Note:

1
REC EQ Normal *
Bias Normal
High speed
1
REC EQ CROM *
Bias CROM
Lo
1
REC EQ CROM *
Bias CROM
Lo
1. PB EQ logic
PB
A 120/70
120
B NORM / CROM
Lo
Hi
Lo
Lo
FLAT
FLAT
Lo
Mid or Hi
FLAT
70 µ
Hi
Lo
70 µ
FLAT
Hi
Mid or Hi
70 µ
70 µ
2. The HA12226F only.
Rev.6, Dec. 2000, page 9 of 86
HA12226F/HA12227F
Functional Description
Power Supply Range
These ICs are designed to operate on single supply.
Table 1
Supply Voltage
Product
Power Supply Range (Single Supply)
HA12226F
11.0 V to 15.0 V
HA12227F
9.5 V to 15.0 V
Note: The lower limit of supply voltage depends on the line output reference level.
The minimum value of the overload margin is specified as 12 dB by Dolby Laboratories (Dolby IC
HA12226F).
Reference Voltage
The reference voltage are provided for the left channel and the right channel separately. The block diagram
is shown as figure 1.
21
VCC
+
−
L channel reference
+
−
VCC
Music sensor reference
+
−
R channel reference
50
GND
49
RIP
+
1µ
Unit C: F
Figure 1 Reference Voltage
Rev.6, Dec. 2000, page 10 of 86
HA12226F/HA12227F
Operating Mode Control
The HA12226F/HA12227F provide fully electronic switching circuits. And each operating mode control is
controlled by parallel data (DC voltage).
Table 2
Control Voltage
Pin No.
Lo
Mid
Hi
Unit
15, 16, 17, 18, 20,
4
22, 23* , 25
−0.2 to 1.0

4.0 to VCC
V
19, 24
−0.2 to 1.0
2.0 to 3.0
4.0 to VCC
V
Test Condition
Input Pin
Measure
Notes: 1. Each pins are on pulled down with 100 kΩ internal resistor.
Therefore, it will be low-level when each pins are open.
But pin 24 is mid-level when it is open.
2. Over shoot level and under shoot level of input signal must be the standardized (High: VCC,
Low: −0.2 V).
3. For reduction of pop noise, connect 1 µF to 22 µF capacitor with mode control pins.
But it is impossible to reduce completely in regard to Line mute, therefore, use external mute at
the same time.
4. Non connection regarding the HA12227F.
Input Block Diagram and Level Diagram
The each level shown above is typical value
when offering PBOUT level to PBOUT pin.
MS
300mVrms
AIN
21.3dB
BIN
25.9mVrms
REF
PASS
REC
PB
PASS/REC,
PB=5.7dB/5.7dB
FLAT
(120µ)
300mVrms
0dB
R3 70µs
12k
PB/REC,
PASS=0dB/21.4dB 300mVrms
PB
Dolby *1
B-NR
REC
PASS
300mVrms
R4
15k
PBOUT
580mVrms
RECOUT
300mVrms
ALC
25.5mVrms
C2
4700pF
C1
0.1µF
R1
15k
RIN
200mVrms
R2
C3
2.2k 0.1µF
Note: 1. The HA12227F is not built-in Dolby B-NR.
Figure 2 Input Block Diagram
Rev.6, Dec. 2000, page 11 of 86
HA12226F/HA12227F
PB Equalizer
By switching logical input level of pin 17 (for Ain) and pin 19 (for Bin), you can equalize corresponding to
tape position at play back mode.
GV
t1 = C2 ⋅ (12k + 15k)
t2 = C2 ⋅ 15k
t1
f
t2
Figure 3 Frequency Characteristic of PB Equalizer
The Sensitivity Adjustment of Music Sensor
Adjusting MS Amp gain by external resistor, the sensitivity of music sensor can set up.
REP
D VCC
VCC
R13
330k
MA
OUT
MSIN
+ C13
0.33µ
+
C16
1000p
PB (L)
MAI
100k
8.2k
−6dB
−
+
RL
MS
DET
DET
MS AMP
MS OUT
Microcomputer
GND
LPF
25kHz
50k
PB (R)
Figure 4 Music Sensor Block Diagram
Rev.6, Dec. 2000, page 12 of 86
GND
HA12226F/HA12227F
The Sensitivity of Music Sensor
A standard level of MS input pin 25.9 mVrms, therefore, the sensitivity of music sensor (S) can request
it, by lower formulas.
A = MS Amp Gain*1
C
S = 20log
B = PB input Gain × (1/2)*2
25.9
⋅A⋅B
C = Sensed voltage
20log (A × B) = D [dB]
S = 14 − D [dB]
C = 130 [mVrms] (Intenally voltage in a standard)
PB input Gain = 21.3 [dB]
[dB]
Notes: 1. When there is not a regulation outside.
2. Case of one-sided channel input.
But necessary to consider the same attenuation quantity practically, on account of A(B) have made
frequency response.
GV
37.7dB
1
[Hz]
2π ⋅ C16 ⋅ 50k
f2 = 25k [Hz]
f1 =
f1
f
f2
Figure 5 Frequency Characteristic of MSIN
Occasion of the external component of figure 4, f1 is 3.18 kHz.
Time constant of detection
Figure 6(1) generally shows that detection time is in proportion to value of capacitor C13. But, with
2
3
Attack* and Recovery* the detection time differs exceptionally.
Notes 2. Attack
: Non-music to Music
Attack
Recovery
Attack
C13
R13
(1)
(2)
Detection time
Recovery
Detection time
Detection time
3. Recovery : Music to Non-music
Recovery
Detection level
Attack
Input level
(3)
Figure 6 Function Characteristic of MS
Like the figure 6(2), Recovery time is variably possible by value of resistor R13. But Attack time gets
about fixed value. Attack time has dependence by input level. When a large signal is inputted, Attack time
is short tendency.
Rev.6, Dec. 2000, page 13 of 86
HA12226F/HA12227F
Music Sensor Output (MSOUT)
As for internal circuit of music sensor block, music sensor output pin is connected to the collector of
NPN type directly, output level will be “high” when sensing no signal. And output level will be “low”
when sensing signal.
Connection with microcomputer, it is requested to use external pull up resistor (RL = 10 kΩ to 22 kΩ)
Note: Supply voltage of MSOUT pin must be less than VCC voltage.
The Tolerances of External Components for Dolby NR-Block (Only the HA12226F)
For Dolby NR precision securing, please use external components shown at figure 7. If leak-current are a
few electrolytic-capacitor, it can be applicable to C5 and C23.
C23
0.1µ
±10%
42
DET (L)
HA12226F
DET (R)
1
C5
0.1µ
±10%
BIAS1
2
R5
33k
±2%
Figure 7 Tolerance of External Components
Low-Boost
24.6dB
EQIN
4.8k
REC EQ
EQOUT
4.8k
BOOST
C9(C19)
0.47µ
+
Figure 8 Example of Low Boost Circuit
External components shown figure 8 gives frequency response to take 6 dB boost. And cut off frequency
can request it, by C9 (C19).
Rev.6, Dec. 2000, page 14 of 86
HA12226F/HA12227F
REC Equalizer
The outlines of REC Equalizing frequency characteristics are shown by figure 9. Those peak level can be
set up by supplying voltage. (0 V to 5 V, GND = 0 V) to pin 10 (GPCAL).
And whole band gain can be set up by supplying voltage (0 V to 5 V, GND = 0 V) to pin 11 (RECCAL).
Both setting up range are ±4.5 dB. In case that you do not need setting up, pin 10, pin 11 should be open
bias.
Note: Depending on the employed REC/PB head and test tape characteristics, there is a rare case that the
REC-EQ characteristics of this LSI can not be matched to the required characteristics because of
built-in resistors which determined the REC-EQ parameters in this care, please inquire the
responsible agent because of the adjustment of built-in resistor is necessary.
RECCAL
Gain (dB)
GPCAL
Frequency (Hz)
Figure 9 Frequency Characteristics of REC Equalizer
Bias Switch
The HA12215F built-in DC voltage generator for bias oscillator and its bias switches.
External resistor R20, R21 which corresponded with tape positions and bias out voltage are relater with
below.
.
Vbias =
.
R22
× (VCC − 0.7) [V]
(R20 or R21) + R22
Bias switch follows to a logic of pin 19 (B / Norm / Crom).
Note: A current that flows at bias out pin, please use it less than 5 mA.
Rev.6, Dec. 2000, page 15 of 86
HA12226F/HA12227F
BIAS (N)
Pin 33
BIAS (C)
Pin 32
R21
Vbias
R20
R22
Figure 10 External Components of Bias Block
Automatic Level Control
ALC is the input decay rate variable system. It has internal variable resistors of pin 55 (pin 44) by
RECOUT signal that is inputted to pin 9 (pin 34).
The operation is similitude to MS, detected by pin 13.
The signal input pin is pin 56 (pin 43). Resistor R1, R2 and capacitor C2, external components, for the
input circuit are commended as figure 12. There are requested to use value of the block diagram figure for
performance maintenance of S/N, T.H.D. etc.
Figure 11 shows the relation with R1 front RIN point and ROUT.
ALC operation level acts for the center of +4.5 dB at tape position TYPE I and the center of +2.5 dB at tape
position TYPE II, to standard level (300 mVrms).
Then, adopted maximum value circuit, ALC is operated by a large channel of a signal.
ROUT
ALC ON/OFF can switch it by pin 15. Please do ALC ON, after it does for one time ALC OFF inevitably,
for ALC time to start usefully (when switching PB → PASS, when switching PB → PASS), in order to
reset ALC circuit.
300mV
TYPE II
2.5dB
TYPE I
4.5dB
RIN
Figure 11 ALC Operation Level
Rev.6, Dec. 2000, page 16 of 86
HA12226F/HA12227F
RIN
56
Input
C2
0.1µ
55
25.5mV
ALC
21.4dB
ROUT
300mV
8
Output
ALC
9
C4
R2
2.2k
13
ALCIN
ALCDET
R12
VCC
+
R1
15k
C12
Figure 12 ALC Block Diagram
ALC Operation Level Necessary
ALC operation level is variable to pin 12 bias (ALC-CAL: 0 to 5 V), and its range is ±4.0 dB.
Unnecessary, pin 12 is unforced.
ROUT
ALC-CAL = 5V
ALC-CAL = 0V
RIN
Figure 13 ALC-CAL Characteristics
About a Test Pin (Pin 2)
The HA12227F does for testing exclusive terminal for pin 2.
In mount circuit, this terminal is open or connected to GND with a resistor of 33 kΩ.
Rev.6, Dec. 2000, page 17 of 86
HA12226F/HA12227F
Absolute Maximum Ratings
Item
Symbol
Rating
Unit
Max supply voltage
VCC max
16
V
Power dissipation
Pd
625
mW
Operating temperature
Topr
−40 to +75
°C
Storage temperature
Tstg
−55 to +125
°C
Rev.6, Dec. 2000, page 18 of 86
Note
Ta ≤ 75°C
PB
PB
REC
REC
REC
REC
REC
REC
REC
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
ON
ON
PASS
PASS
PB
PB
PB
PB
PB
PB
REC
REC
OFF REC
PB
OFF
OFF REC
OFF
PB
OFF REC/PB
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
A/B
A/B
A
A
A
A
A
A
A
A
A
A
A
A/B
A
A/B
A
A
A
A
A
A
A
A
120
120
120
70
70
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
OFF
OFF
ON
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
B
N/C
NORM
NORM
NORM
CROM
CROM
NORM
NORM
NORM
NORM
CROM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
Notes: 1. Other IC-condition : REC-MUTE OFF, Normal tape, Normal speed, Bias OFF
2. VCC = 11.0 V
3. For inputting signal to one side channel
MS sensing level
MS output low level
MS output leak current
ALC operate level
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
GV PA
∆GV
MUTE
GV EQ 1k
GV EQ 10k
VON
VOL
IOH
ALC (1)
ALC (2)
Pass AMP. gain
Gain deviation
MUTE ATT.
70µ EQ gain
OFF
OFF
OFF
ON
ON
ON
ON
ON
ON
ON
OFF
OFF
OFF
OFF
IQ
GV PB
GV REC
ENC 2k (1)
ENC 2k (2)
ENC 5k (1)
ENC 5k (2)
Vo max
S/N
Symbol
Total Harmonic Distortion THD
CTRL (1)
Channel separation
CTRL (2)
CT A/B
Crosstalk
CT R/P
Signal handling
Signal to noise ratio
B-type
Encode boost
Item
Quiescent current
Input AMP. gain
IC Condition *1
NR
ALC REC/PB
120µ/ LINE
ON/OFF ON/OFF /PASS A/B
70µ MUTE
Test Condition
0
+12
+12
+12
+12
0
0
+12
0
0



+12
+12
1k
1k
1k
1k
10k
5k


1k
1k

0
0
−20
−30
−20
−30


1k
1k
1k
1k
1k
1k
1k
2k
2k
5k
5k
1k
1k

fin RECOUT
(Hz) level (dB)

70.0
70.0
70.0
70.0
0.05 0.3
80.0 
85.0 
80.0 
80.0 
43
48
43
48/46
48/43
4
3
3
3
3
dB 51/53 48/46 3
dB 51/53 48/46 3
dB 51 48
3
dB 51 48
3
51 48
3
3
dB 51 48
51 48 
V
 
µA 
dB 56 43
4
56 43
4
56
51
56
dB 51/53
51/56
%
dB
Min Typ Max Unit R
L
R
 
18.0 26.0 35.0 mA 
25.5 27.0 28.5 dB 51/53 48/46 3
56 43
25.0 26.5 28.0
3
2.8 4.3 5.8 dB 56 43
4
7.0 8.5 10.0
56 43
4
56 43
1.7 3.2 4.7
4
56 43
6.7 8.2 9.7
4
dB 56 43
12.0 13.0 
4
dB 56 43
64.0 70.0 
4
25.5 27.0 28.5
GV PA − GV PB −1.0 0.0 1.0
70.0 80.0 
24.0 25.5 27.0
20.8 22.3 23.8
−26.0 −22.0 −18.0
 1.0 1.5

 2.0
2.0 4.5 7.0
0.0 2.5 5.0
THD=1%
Rg=5.1kΩ,
CCIR/ARM
Other
No signal
40
40
40
40
40
40


39
39
39
40
40
40
40





26
26
26







3
L COM Remark

21
40

40

39

39

39

39

2
39

39

Application Terminal
Input
Output
(Ta = 25°C, VCC = 12 V, Dolby Level = REC-OUT Level = 300 mVrms = 0 dB)
HA12226F/HA12227F
Electrical Characteristics
HA12226F
Rev.6, Dec. 2000, page 19 of 86
Symbol
S/N (EQ)
Rev.6, Dec. 2000, page 20 of 86
0.1
1.0
3.0
VCC
−0.1 0.0



−0.2
2.0
4.0
RL = 2.2kΩ
VIL
VIM
VIH
V
V
V
V
dB
dB
V
 −4.0 −3.0
3.0 4.0 
VCC VCC
−1.4 −0.7 
Bias off
Bias out maximum level
ALC CAL response
Bias out offset
ALC (1) = 0dB
dB
−6.0 −4.5 −3.0
Control voltage
f = 12kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF
VGP-CAL = 5V
dB
dB
6.0
4.5
−6.0 −4.5 −3.0
NORM NORM f = 12kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF GV EQ-NN3 = 0dB 3.0
VGP-CAL = 0V
SW22 (L), SW23 (R) OFF
21.9
25.9
21.2
25.5
29.0
70
4.5
19.9
23.4
19.7
23.5
26.5
60
3.0
23.9 dB
28.4 dB
22.7 dB
27.5 dB
31.5 dB
dB

6.0 dB
0.5 %
%
0.5
500 mV
21.8 dB
27.9 dB
35.1 dB
26.3 dB
32.5 dB
39.0 dB
18.0 dB
0.2
0.2
0
20.3
25.9
32.6
24.8
30.5
36.5
16.5


−500
18.8
23.9
30.1
23.3
28.5
34.0
15.0
dB

10.5 12.5
Min Typ Max Unit
dB
55 58

NORM NORM f = 1kHz, VALC-CAL = 0V
f = 1kHz, VALC-CAL = 5V
RL = 2.2kΩ
GP-CAL2
GP-CAL1
f = 3kHz, Vin = −46dBs,
VREC-CAL = 0V
Test Condition
TAPE SPEED
NORM NORM Rg = 5.1kΩ, A-WTG Filter
SW22 (L), SW23 (R) OFF
(0dB = −5dBs at EQOUT)
NORM NORM f = 1kHz, THD = 1%,
SW22 (L), SW23 (R) OFF
Vin = −26dBs = 0dB
NORM NORM f = 1kHz, Vin = −26dBs
SW22 (L), SW23 (R) OFF
f = 1kHz, Vin = −30dBs
SW22 (L), SW23 (R) OFF
NORM NORM No-Signal
SW22 (L), SW23 (R) OFF
SW22 (L), SW23 (R) OFF
NORM NORM f = 3kHz, Vin = −46dBs
f = 8kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
f = 12kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
SW22 (L), SW23 (R) OFF
CROM NORM f = 3kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
f = 8kHz, Vin = −46dBs
f = 12kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
SW22 (L), SW23 (R) OFF
NORM HIGH f = 5kHz, Vin = −46dBs
f = 15kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
f = 20kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
SW22 (L), SW23 (R) OFF
CROM HIGH f = 5kHz, Vin = −46dBs
f = 15kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
f = 20kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
NORM NORM f = 1kHz, Vin = −14dBs
SW22 (L), SW23 (R) OFF
NORM NORM f = 3kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF GV EQ-NN1 = 0dB
VREC-CAL = 5V
ALC-CAL1
ALC-CAL2
Bias on
GP CAL response
R-CAL2
Equalizer total harmonic T.H.D.1 (EQ)
distortion
T.H.D.2 (EQ)
Equalizer offset voltage Vofs (EQ)
Equalizer
GVEQ-NN1
frequency response
GVEQ-NN2
(NORM - NORM)
GVEQ-NN3
GVEQ-CN1
Equalizer
frequency response
GVEQ-CN2
(CROM - NORM)
GVEQ-CN3
Equalizer
GVEQ-NH1
frequency response
GVEQ-NH2
(NORM - High)
GVEQ-NH3
Equalizer
GVEQ-CH1
frequency Response
GVEQ-CH2
(CROM - High)
GVEQ-CH3
REC-MUTE attenuation REC-MUTE
R-CAL1
REC CAL response
Equalizer maximum input Vin max (EQ)
Item
Equalizer S/N
(Ta = 25°C, VCC = 12 V)
38
38
38
38
38
5
5
5
5
5







43
43

38
38

56
56

5
5
38
38
38
38
38
38
38
38
38
38
38
5
5
5
5
5
5
5
5
5
5
5
38
38
38
5
5
5




4
4

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7



























 32, 33
39

39

 32, 33
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
19, 24
15 to 20
22 to 25
15 to 20
22 to 25
Application Terminal
Input
Output
L
R
L COM Remark
R
38
7
36

5
HA12226F/HA12227F
HA12226F (cont)
IQ
Symbol
GV PA
PASS
∆GV
PASS
MUTE
PB
GV EQ 1k
PB
GV EQ 10k
PB
VON
PB
VOL
PB
IOH
PB
ALC (1)
REC
ALC (2)
REC
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
ON
ON
OFF
OFF
PB
REC OFF
REC OFF
REC OFF
REC OFF
OFF
PB
REC OFF
PB
OFF
REC/PB OFF
PB
A/B
A/B
A
A
A
A
A
A
A
A
A
A/B
A
A
A
A
A
A
A/B
A
120
120
120
70
70
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
OFF
OFF
ON
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
NORM
NORM
NORM
CROM
CROM
NORM
NORM
NORM
NORM
CROM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
B
N/C
Notes: 1. Other IC-condition : REC-MUTE OFF, Normal tape, Normal speed, Bias OFF
2. VCC = 11.0 V
3. For inputting signal to one side channel
MS sensing level
MS output low level
MS output leak current
ALC operate level
Pass AMP. gain
Gain deviation
MUTE ATT.
70µ EQ gain
GV PB
GV REC
Vo max
Signal handling
S/N
Signal to noise ratio
Total Harmonic Distortion THD
Channel separation
CTRL (1)
CTRL (2)
Crosstalk
CT A/B
CT R/P
Item
Quiescent current
Input AMP. gain
IC Condition *1
REC/PB ALC
120µ/ LINE
/PASS ON/OFF A/B
70µ MUTE
1k
1k
1k
1k
10k
5k


1k
1k

1k
1k
1k
1k
1k
1k
1k
1k
1k
0
0
+12
0
0



+12
+12

0
0


0
+12
+12
+12
+12
fin RECOUT
(Hz) level (dB)
Test Condition
GV PA − GV PB
Typ
22.0
27.0
26.5
13.0
70.0
0.05
80.0
85.0
80.0
80.0
dB 51/53 48/46 3
dB 51/53 48/46 3
3
dB 51 48
3
dB 51 48
51 48
3
3
dB 51 48
51 48 
V
 
µA 
4
dB 56 43
56 43
4
40
40
40
40
40
40


39
39





26
26
26


3
L COM Remark
21


40

40

2
39

39

39

40

40

40
40

Output
Max Unit R
L
R
 
30.0 mA 
28.5 dB 51/53 48/46 3
28.0
3
56 43
dB 56 43

4
dB 56 43

4
0.3 %
4
56 43
dB 51 48

3

3
56 43
dB 51/53 48/46 3

51/56 48/43 3

25.5 27.0 28.5
−1.0 0.0 1.0
70.0 80.0 
24.0 25.5 27.0
20.8 22.3 23.8
−26.0 −22.0 −18.0
 1.0 1.5
 2.0

2.0 4.5 7.0
0.0 2.5 5.0
Min
14.0
25.5
25.0
12.0
THD=1%
Rg=5.1kΩ, CCIR/ARM 64.0

70.0
70.0
70.0
70.0
Other
No signal
Input
Application Terminal
(Ta = 25°C, VCC = 12 V, Dolby Level = REC-OUT Level = 300 mVrms = 0 dB)
HA12226F/HA12227F
HA12227F
Rev.6, Dec. 2000, page 21 of 86
Symbol
S/N (EQ)
Rev.6, Dec. 2000, page 22 of 86
0.1
1.0
3.0
VCC
−0.1 0.0



−0.2
2.0
4.0
RL = 2.2kΩ
VIL
VIM
VIH
V
V
V
V
dB
dB
V
 −4.0 −3.0
3.0 4.0 
VCC VCC
−1.4 −0.7 
Bias off
Bias out maximum level
ALC CAL response
Bias out offset
ALC (1) = 0dB
dB
−6.0 −4.5 −3.0
Control voltage
f = 12kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF
VGP-CAL = 5V
dB
dB
6.0
4.5
−6.0 −4.5 −3.0
NORM NORM f = 12kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF GV EQ-NN3 = 0dB 3.0
VGP-CAL = 0V
SW22 (L), SW23 (R) OFF
21.9
25.9
21.2
25.5
29.0
70
4.5
19.9
23.4
19.7
23.5
26.5
60
3.0
23.9 dB
28.4 dB
22.7 dB
27.5 dB
31.5 dB
dB

6.0 dB
0.5 %
%
0.5
500 mV
21.8 dB
27.9 dB
35.1 dB
26.3 dB
32.5 dB
39.0 dB
18.0 dB
0.2
0.2
0
20.3
25.9
32.6
24.8
30.5
36.5
16.5


−500
18.8
23.9
30.1
23.3
28.5
34.0
15.0
dB

10.5 12.5
Min Typ Max Unit
dB
55 58

NORM NORM f = 1kHz, VALC-CAL = 0V
f = 1kHz, VALC-CAL = 5V
RL = 2.2kΩ
GP-CAL2
GP-CAL1
f = 3kHz, Vin = −46dBs,
VREC-CAL = 0V
Test Condition
TAPE SPEED
NORM NORM Rg = 5.1kΩ, A-WTG Filter
SW22 (L), SW23 (R) OFF
(0dB = −5dBs at EQOUT)
NORM NORM f = 1kHz, THD = 1%,
SW22 (L), SW23 (R) OFF
Vin = −26dBs = 0dB
NORM NORM f = 1kHz, Vin = −26dBs
SW22 (L), SW23 (R) OFF
f = 1kHz, Vin = −30dBs
SW22 (L), SW23 (R) OFF
NORM NORM No-Signal
SW22 (L), SW23 (R) OFF
SW22 (L), SW23 (R) OFF
NORM NORM f = 3kHz, Vin = −46dBs
f = 8kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
f = 12kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
SW22 (L), SW23 (R) OFF
CROM NORM f = 3kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
f = 8kHz, Vin = −46dBs
f = 12kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
SW22 (L), SW23 (R) OFF
NORM HIGH f = 5kHz, Vin = −46dBs
f = 15kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
f = 20kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
SW22 (L), SW23 (R) OFF
CROM HIGH f = 5kHz, Vin = −46dBs
f = 15kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
f = 20kHz, Vin = −46dBs
SW22 (L), SW23 (R) OFF
NORM NORM f = 1kHz, Vin = −14dBs
SW22 (L), SW23 (R) OFF
NORM NORM f = 3kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF GV EQ-NN1 = 0dB
VREC-CAL = 5V
ALC-CAL1
ALC-CAL2
Bias on
GP CAL response
R-CAL2
Equalizer total harmonic T.H.D.1 (EQ)
distortion
T.H.D.2 (EQ)
Equalizer offset voltage Vofs (EQ)
Equalizer
GVEQ-NN1
frequency response
GVEQ-NN2
(NORM - NORM)
GVEQ-NN3
GVEQ-CN1
Equalizer
frequency response
GVEQ-CN2
(CROM - NORM)
GVEQ-CN3
Equalizer
GVEQ-NH1
frequency response
GVEQ-NH2
(NORM - High)
GVEQ-NH3
Equalizer
GVEQ-CH1
frequency Response
GVEQ-CH2
(CROM - High)
GVEQ-CH3
REC-MUTE attenuation REC-MUTE
R-CAL1
REC CAL response
Equalizer maximum input Vin max (EQ)
Item
Equalizer S/N
(Ta = 25°C, VCC = 12 V)
38
38
38
38
38
5
5
5
5
5







43
43

38
38

56
56

5
5
38
38
38
38
38
38
38
38
38
38
38
5
5
5
5
5
5
5
5
5
5
5
38
38
38
5
5
5




4
4

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7



























 32, 33
39

39

 32, 33
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
19, 24
15 to 20
22 to 25
15 to 20
22 to 25
Application Terminal
Input
Output
L
R
L COM Remark
R
38
7
36

5
HA12226F/HA12227F
HA12227F (cont)
OFF
ON SW2
Rch
SW4
EQ
R2
10k
RIN (R)
R
B
C27
0.47µ
C30
1µ
C2
0.0047µ
C1
0.47µ
R4
13k
C4
0.1µ
R3
2.2k ALC (R)
C3
0.47µ
+
A
BIN (R)
C26
0.0047µ
C25
0.47µ
+
R1
10k
AIN (R)
R33
10k
R31
2.2k
56
55
54
53
52
51
50
49
48
47
46
45
44
43
C5
0.1µ
GND
RIP
2.2µ
0.47µ
C20
JP3 OFF
SW
22 ON
C18
2.2µ
EQ
C17
0.47µ
R22
2.4k
R21
2k
C
R20
910
SW21
N
1
R5
33k
REC
R6
10k
+
3
C6
2.2µ
EQ
R8
7.5k
R9
16k
R10
5.1k
PB
SW8
REC
R11
10k
EQ
8
6
7
5
+ SW ON
23
0.47µ JP1 OFF +
+ C10
C9 2.2µ
0.47µ
R7
20k
+ C8
4
C7
2.2µ
9
C11
0.47µ
LPF
ROUT (R)
PB
SW6
2
EQ
Dolby
B-NR
+
Dolby
B-NR
EQ
ALC
−
+
MS
R12
1M
C12
10µ
R13
330k
10 11 12 13 14
BIAS
42 41 40 39 38 37 36 35 34 33 32 31 30 29
2.2µ
R25
16k
C21
R24
5.1k
R27
20k C19
0.47µ
REC
SW7
PB
ALCDET
Notes: 1. Resistor tolerance are ±1%.
2. Capacitor tolerance are ±1%.
3. Unit R: Ω, C: F.
AC VM1
SW1
BIN (L)
R32
10k
B
AIN (L)
A
R
ALC (L) C24
0.1µ
RIN (L)
+
Audio
SG
Lch
SW3
EQ
R30
13k
+
+
C23
0.1µ
R28
10k
C22
+
R29
22k
R26
7.5k
+
REC
+
EQ
+
+
C15
22µ
VCC
C14
22µ
C13
0.33µ
15
SW9
16 SW10
17 SW11
18 SW12
19 SW13
20 SW14
21
22
23
24 SW17
MAOUT
R18
3.9k
DC VM2
ON
A
OFF
120
B
N
70
OFF
C
C
N
H
ON
ALC ON / OFF
PB A / B
A 120 / 70
NORM / HIGH
B NORM / CROM
BIAS ON / OFF
SW19
Rch
Lch
DC VM1
JP2
DC +12V
SOURCE1
R14
10k
R15
10k
DC +5V
SOURCE4
DC +2.5V
SOURCE3
C28
100µ
BIAS
OFF LM ON / OFF
PASS
PB
REC REC / PB / PASS
R17
ON
22k
SW16 OFF NR ON / OFF
R16
OFF
22k
RM ON / OFF
SW15 ON
ON
C16
1000p
MSOUT
MSIN
25 SW18
26
27
28
+
ROUT (L)
+
ALCIN (L)
+
MSDET
+
+
SW5
PB
Lch
Rch
AC VM2
Oscillo
scope
Distortion
analyzer
Noise
meter
noise meter
with ccir/arm filter
and a-wtg filter
SW20
HA12226F/HA12227F
Test Circuit
HA12226F
ALCCal
RECCal
GPCal
ALCIN (R)
Rev.6, Dec. 2000, page 23 of 86
Rev.6, Dec. 2000, page 24 of 86
Rch
SW4
EQ
RIN (R)
R
B
R2
10k
C30
1µ
C2
0.0047µ
C1
0.47µ
R4
13k
C4
0.1µ
R3
2.2k ALC (R)
C3
0.47µ
+
A
BIN (R)
C27
0.47µ
+
R1
10k
AIN (R)
C26
0.0047µ
C25
0.47µ
+
OFF
ON SW2
R33
10k
R31
2.2k
+
56
55
54
53
52
51
50
49
48
47
46
45
44
43
GND
RIP
JP3 OFF
SW
22 ON
1
REC
R6
10k
+
3
C6
2.2µ
PB
SW6
2
C17
0.47µ
EQ
R8
7.5k
R9
16k
R10
5.1k
PB
SW8
REC
R11
10k
EQ
8
6
9
C11
0.47µ
LPF
7
5
+
+ SW ON
23
0.47µ JP1 OFF +
+ C10
C9 2.2µ
0.47µ
R7
20k
+ C8
4
C7
2.2µ
EQ
EQ
ROUT (R)
Notes: 1. Resistor tolerance are ±1%.
2. Capacitor tolerance are ±1%.
3. Unit R: Ω, C: F.
SW1
BIN (L)
R32
10k
B
R
AIN (L)
A
EQ
+
AC VM1
Audio
SG
Lch
SW3
ALC (L) C24
0.1µ
RIN (L)
0.47µ
C20
C18
2.2µ
R22
2.4k
R21
2k
C
R20
910
SW21
N
ALC
−
+
MS
R12
1M
C12
10µ
R13
330k
10 11 12 13 14
BIAS
ALCDET
+
R30
13k
2.2µ
R25
16k
C21
R24
5.1k
R27
20k C19
0.47µ
REC
EQ
42 41 40 39 38 37 36 35 34 33 32 31 30 29
2.2µ
R28
10k
C22
+
R29
22k
+
R26
7.5k
+
REC
SW7
PB
+
EQ
ROUT (L)
VCC
C14
22µ
C13
0.33µ
15
SW9
16 SW10
17 SW11
18 SW12
19 SW13
20 SW14
21
22
23
24 SW17
MAOUT
ON
A
OFF
120
B
N
70
OFF
C
C
N
H
ON
ON
OFF
ALC ON / OFF
PB A / B
A 120 / 70
NORM / HIGH
SW19
Rch
Lch
DC VM1
JP2
DC +12V
SOURCE1
R14
10k
R15
10k
DC +5V
SOURCE4
DC +2.5V
SOURCE3
C28
100µ
BIAS
RM ON / OFF
B NORM / CROM
BIAS ON / OFF
R16
22k
SW15
R18
3.9k
DC VM2
OFF LM ON / OFF
PASS
PB
REC REC / PB / PASS
ON
C16
1000p
MSOUT
MSIN
25 SW18
26
27
28
+
ALCIN (L)
+
MSDET
+
+
SW5
PB
Rch
Lch
AC VM2
Oscillo
scope
Distortion
analyzer
Noise
meter
noise meter
with ccir/arm filter
and a-wtg filter
SW20
HA12226F/HA12227F
HA12227F
ALCCal
RECCal
GPCal
ALCIN (R)
HA12226F/HA12227F
Characteristic Curves
HA12226F
Quiescent Current vs. Supply Voltage (REC mode)
35
Quiescent Current IQ (mA)
REC mode
NR-OFF, REC-MUTE ON, BIAS OFF
NR-OFF, REC-MUTE OFF, BIAS OFF
NR-ON, REC-MUTE OFF, BIAS ON
Other switch is all Low
30
25
20
11
12
13
Supply Voltage (V)
15
14
Quiescent Current vs. Supply Voltage (PB mode)
35
Quiescent Current IQ (mA)
PB mode
NR-OFF, BIAS OFF
NR-ON, BIAS OFF
NR-ON, BIAS ON
Other switch is all Low
30
25
20
11
12
13
Supply Voltage (V)
14
15
Rev.6, Dec. 2000, page 25 of 86
HA12226F/HA12227F
Input Amp. Gain vs. Frequency (1)
40
VCC = 12V
Ain → RECOUT
Bin
Gain (dB)
30
NR-ON
20
NR-OFF
10
0
−10
10
100
1k
10k
Frequency (Hz)
100k
1M
Input Amp. Gain vs. Frequency (2)
40
VCC = 12V
Ain → PBOUT
Bin
30
Gain (dB)
PASS mode
20
PB mode
10
0
−10
10
100
Rev.6, Dec. 2000, page 26 of 86
1k
10k
Frequency (Hz)
100k
1M
HA12226F/HA12227F
Input Amp. Gain vs. Frequency (3)
40
VCC = 12V
REC mode
30
Gain (dB)
PBOUT
20
RECOUT
10
0
−10
10
100
1k
10k
Frequency (Hz)
100k
1M
100k
1M
Input Amp. Gain vs. Frequency (4)
30
VCC = 12V
Ain → PBOUT
Bin
120µ
Gain (dB)
26
22
70µ
18
14
10
10
100
1k
10k
Frequency (Hz)
Rev.6, Dec. 2000, page 27 of 86
HA12226F/HA12227F
Encode Boost vs. Frequency
12
VCC = 12V
Dolby B-NR
−40dB
Encode Boost (dB)
10
8
−30dB
6
4
−20dB
2
−10dB
0dB
0
100
1k
Frequency (Hz)
10k
20k
Decode Cut vs. Frequency
0
0dB
−10dB
−2
Decode Cut (dB)
−20dB
−4
−6
−30dB
−8
−10
−40dB
VCC = 12V
Dolby B-NR
−12
100
Rev.6, Dec. 2000, page 28 of 86
1k
Frequency (Hz)
10k
20k
HA12226F/HA12227F
Signal Handling (1)
30
REC mode
Rin → RECOUT = 300mVrms = 0dB
f = 1kHz, T.H.D. ≈ 1%
NR-OFF
NR-ON
Vomax (dB)
25
20
15
11
12
13
Supply Voltage (V)
14
15
14
15
Signal Handling (2)
25
Ain
→ PBOUT = 580mVrms = 0dB
Bin
f = 1kHz, T.H.D. ≈ 1%
NR-OFF
PB mode
NR-ON
PASS mode
Vomax (dB)
20
15
10
11
12
13
Supply Voltage (V)
Rev.6, Dec. 2000, page 29 of 86
HA12226F/HA12227F
Signal to Noise Ratio vs. Split Supply Voltage (1)
85
A, Bin, PB mode, NR-ON
Signal to Noise Ratio (dB)
Rin, REC mode, NR-OFF
80
A, Bin, PASS mode, PBOUT
A, Bin, PB mode, NR-OFF
75
f = 1kHz, CCIR/ARM filter
Rin → RECOUT = 300mVrms = 0dB
Ain
→ PBOUT = 580mVrms = 0dB
Bin
Rin, PEC mode, NR-ON
70
65
11
12
13
Supply Voltage (V)
14
15
Total Harmonic Distortion vs. Supply Voltage (1)
(REC mode, NR-OFF)
1.0
T.H.D. (%)
REC mode, NR-OFF
Rin → RECOUT = 300mVrms
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 80kHz LPF)
Rin → PBOUT = 580mVrms
1kHz (400Hz HPF + 30kHz LPF)
0.1
0.01
11
Rev.6, Dec. 2000, page 30 of 86
12
13
Supply Voltage (V)
14
15
HA12226F/HA12227F
1.0
Total Harmonic Distortion vs. Supply Voltage (2)
(REC mode, NR-ON)
T.H.D. (%)
REC mode, NR-ON
Rin → RECOUT = 300mVrms
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 80kHz LPF)
Rin → PBOUT = 580mVrms
1kHz (400Hz HPF + 30kHz LPF)
0.1
0.01
11
T.H.D. (%)
1.0
12
13
Supply Voltage (V)
15
14
Total Harmonic Distortion vs. Supply Voltage (3)
(PB mode, NR-OFF)
PB mode, NR-OFF
Ain
→ PBOUT = 580mVrms
Bin
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 80kHz LPF)
Ain
→ RECOUT = 300mVrms
Bin
1kHz (400Hz HPF + 30kHz LPF)
0.1
0.01
11
12
13
Supply Voltage (V)
14
15
Rev.6, Dec. 2000, page 31 of 86
HA12226F/HA12227F
Total Harmonic Distortion vs. Supply Voltage (4)
(PB mode, NR-ON)
T.H.D. (%)
1.0
PB mode, NR-ON
Ain
→ PBOUT = 580mVrms
Bin
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 80kHz LPF)
Ain
→ RECOUT = 300mVrms
Bin
1kHz (400Hz HPF + 30kHz LPF)
0.1
0.01
11
12
13
Supply Voltage (V)
14
15
Total Harmonic Distortion vs. Supply Voltage (5)
(PASS mode, NR-OFF)
1.0
PASS mode, NR
Ain
Bin
ON
OFF
→ PBOUT = 580mVrms
T.H.D. (%)
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 80kHz LPF)
0.1
0.01
11
Rev.6, Dec. 2000, page 32 of 86
12
13
Supply Voltage (V)
14
15
HA12226F/HA12227F
Total Harmonic Distortion vs. Output Level (1)
(REC mode, NR-OFF)
10
REC mode, NR-OFF
VCC = 12V
100Hz
1kHz
10kHz
Rin
RECOUT = 300mVrms = 0dB
T.H.D. (%)
1.0
0.1
0.01
10
5
0
5
10
Output Level Vout (dB)
15
20
Total Harmonic Distortion vs. Output Level (2)
(REC mode, NR-ON)
10
REC mode, NR-ON
VCC = 12V
100Hz
1kHz
10kHz
Rin
RECOUT = 300mVrms = 0dB
T.H.D. (%)
1.0
0.1
0.01
10
5
0
5
10
Output Level Vout (dB)
15
20
Rev.6, Dec. 2000, page 33 of 86
HA12226F/HA12227F
Total Harmonic Distortion vs. Output Level (3)
(PB mode, NR-OFF)
10
T.H.D. (%)
1.0
PB mode, NR-OFF
VCC = 12V
100Hz
1kHz
10kHz
Ain
→ PBOUT = 580mVrms = 0dB
Bin
0.1
0.01
−10
−5
15
20
Total Harmonic Distortion vs. Output Level (4)
(PB mode, NR-ON)
10
PB mode, NR-ON
VCC = 12V
100Hz
1kHz
10kHz
Ain
→ PBOUT = 580mVrms = 0dB
Bin
T.H.D. (%)
1.0
0
5
10
Output Level Vout (dB)
0.1
0.01
−10
Rev.6, Dec. 2000, page 34 of 86
−5
0
5
10
Output Level Vout (dB)
15
20
HA12226F/HA12227F
10
PASS mode, NR-OFF
VCC = 12V
100Hz
1kHz
10kHz
Ain
→ PBOUT = 580mVrms = 0dB
Bin
T.H.D. (%)
1.0
Total Harmonic Distortion vs. Output Level (5)
(PASS mode, NR-OFF)
0.1
0.01
−10
−5
0
5
10
Output Level Vout (dB)
15
20
Total Harmonic Distortion vs. Frequency (1)
T.H.D. (%)
REC mode, NR-OFF, VCC = 12V
Rin → RECOUT = 300mVrms
−10dB
0dB
10dB
0.1
0.01
100
1k
Frequency (Hz)
10k
100k
Rev.6, Dec. 2000, page 35 of 86
HA12226F/HA12227F
Total Harmonic Distortion vs. Frequency (2)
T.H.D. (%)
REC mode, NR-ON, VCC = 12V
Rin → RECOUT = 300mVrms
−10dB
0dB
10dB
0.1
0.01
100
1k
Frequency (Hz)
10k
100k
Total Harmonic Distortion vs. Frequency (3)
T.H.D. (%)
PB mode, NR-OFF, VCC = 12V
Ain
→ PBOUT = 580mVrms
Bin
−10dB
0dB
10dB
0.1
0.01
100
Rev.6, Dec. 2000, page 36 of 86
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Total Harmonic Distortion vs. Frequency (4)
T.H.D. (%)
PB mode, NR-ON, VCC = 12V
Ain
→ PBOUT = 580mVrms
Bin
−10dB
0dB
10dB
0.1
0.01
100
1k
Frequency (Hz)
10k
100k
Total Harmonic Distortion vs. Frequency (5)
T.H.D. (%)
PASS mode, NR-OFF, VCC = 12V
Ain
→ PBOUT = 580mVrms
Bin
−10dB
0dB
10dB
0.1
0.01
100
1k
Frequency (Hz)
10k
100k
Rev.6, Dec. 2000, page 37 of 86
HA12226F/HA12227F
Channel Separation vs. Frequency (R → L) (1)
−40
VCC = 11V, 12V, 15V
Rin → RECOUT, Vin = +12dB
REC mode, R → L
Channel Separation (dB)
−60
−80
NR-ON
−100
NR-OFF
−120
−140
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (R → L) (2)
−40
VCC = 11V, 12V, 15V
Rin → PBOUT, Vin = +12dB
REC mode, R → L
Channel Separation (dB)
−60
NR-ON/OFF
−80
−100
−120
−140
10
Rev.6, Dec. 2000, page 38 of 86
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Channel Separation vs. Frequency (L → R) (3)
−40
VCC = 11V, 12V, 15V
Rin → RECOUT, Vin = +12dB
REC mode, L → R
Channel Separation (dB)
−60
NR-ON
−80
−100
NR-OFF
−120
−140
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L → R) (4)
−40
VCC = 11V, 12V, 15V
Rin → PBOUT, Vin = +12dB
REC mode, L → R
Channel Separation (dB)
−60
−80
NR-ON/OFF
−100
−120
−140
10
100
1k
Frequency (Hz)
10k
100k
Rev.6, Dec. 2000, page 39 of 86
HA12226F/HA12227F
Channel Separation vs. Frequency (R → L) (1)
−20
VCC = 11V, 12V, 15V
Ain → PBOUT, Vin = +10dB
R→L
Channel Separation (dB)
−40
−60
NR-OFF
−80
NR-ON
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (R → L) (2)
−20
VCC = 11V, 12V, 15V
Ain → RECOUT, Vin = +10dB
R→L
Channel Separation (dB)
−40
−60
NR-ON/OFF
−80
−100
−120
10
Rev.6, Dec. 2000, page 40 of 86
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Channel Separation vs. Frequency (R → L) (3)
−20
VCC = 11V, 12V, 15V
Bin → PBOUT, Vin = +10dB
R→L
Channel Separation (dB)
−40
−60
NR-OFF
−80
NR-ON
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (R → L) (4)
−20
VCC = 11V, 12V, 15V
Bin → RECOUT, Vin = +10dB
R→L
Channel Separation (dB)
−40
−60
NR-ON/OFF
−80
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Rev.6, Dec. 2000, page 41 of 86
HA12226F/HA12227F
Channel Separation vs. Frequency (L → R) (5)
−20
VCC = 11V, 12V, 15V
Ain → PBOUT, Vin = +10dB
L→R
Channel Separation (dB)
−40
−60
NR-OFF
−80
NR-ON
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L → R) (6)
−20
VCC = 11V, 12V, 15V
Ain → RECOUT, Vin = +10dB
L→R
Channel Separation (dB)
−40
−60
NR-ON/OFF
−80
−100
−120
10
Rev.6, Dec. 2000, page 42 of 86
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Channel Separation vs. Frequency (L → R) (7)
−20
VCC = 11V, 12V, 15V
Bin → PBOUT, Vin = +10dB
L→R
Channel Separation (dB)
−40
−60
NR-OFF
−80
NR-ON
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L → R) (8)
−20
VCC = 11V, 12V, 15V
Bin → RECOUT, Vin = +10dB
L→R
Channel Separation (dB)
−40
−60
NR-ON/OFF
−80
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Rev.6, Dec. 2000, page 43 of 86
HA12226F/HA12227F
Channel Separation vs. Frequency (R → L) (1)
−20
Channel Separation (dB)
−40
VCC = 11V, 12V, 15V
Ain
→ PBOUT, Vin = +10dB
Bin
PASS mode, R → L
−60
Ain
−80
Bin
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L → R) (2)
−20
Channel Separation (dB)
−40
VCC = 11V, 12V, 15V
Ain
→ PBOUT, Vin = +10dB
Bin
PASS mode, L → R
−60
Ain
−80
Bin
−100
−120
10
Rev.6, Dec. 2000, page 44 of 86
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Crosstalk vs. Frequency (Ain → Bin) (1)
−40
VCC = 11V, 12V, 15V
PB mode, PBOUT
Vin = +12dB, Ain → Bin
Crosstalk (dB)
−60
NR-OFF
−80
NR-ON
−100
−120
−140
10
100
1k
Frequency (Hz)
10k
100k
Crosstalk vs. Frequency (Bin → Ain) (2)
−40
VCC = 11V, 12V, 15V
PB mode, PBOUT
Vin = +12dB, Bin → Ain
Crosstalk (dB)
−60
NR-OFF
−80
NR-ON
−100
−120
−140
10
100
1k
Frequency (Hz)
10k
100k
Rev.6, Dec. 2000, page 45 of 86
HA12226F/HA12227F
Crosstalk vs. Frequency (PB mode → PASS mode) (1)
−20
Crosstalk (dB)
−40
VCC = 11V, 12V, 15V
Ain → RECOUT
Vin = +12dB
PB mode → PASS mode
−60
−80
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Crosstalk vs. Frequency (PB mode → PASS mode) (2)
−20
Crosstalk (dB)
−40
VCC = 11V, 12V, 15V
Bin → RECOUT
Vin = +12dB
PB mode → PASS mode
−60
−80
−100
−120
10
Rev.6, Dec. 2000, page 46 of 86
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Line Mute vs. Frequency
−20
Line Mute (dB)
VCC = 12V
Ain
→ PBOUT
Bin
Vin = +12dB
−40 PB mode
−60
−80
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
REC Mute Attenuation vs. Frequency
80
Crosstalk (dB)
40
VCC = 12V
EQIN → EQOUT
Vin = +14dB
Norm speed, Norm tape
0
−40
−80
−120
10
100
1k
Frequency (Hz)
10k
100k
Rev.6, Dec. 2000, page 47 of 86
HA12226F/HA12227F
Ripple Rejection Ratio vs. Frequency (REC mode) (1)
20
Ripple Rejection Ratio R.R.R. (dB)
VCC = 12V
REC mode
EQOUT
0
RECOUT
NR-ON
−20
−40
RECOUT
NR-OFF
PBOUT
−60
−80
10
100
1k
Frequency (Hz)
10k
100k
Ripple Rejection Ratio vs. Frequency (PB mode) (2)
20
VCC = 12V
PB mode
Ripple Rejection Ratio R.R.R. (dB)
EQOUT
0
−20
PBOUT
NR-OFF
−40
RECOUT
PBOUT
NR-ON
−60
−80
10
Rev.6, Dec. 2000, page 48 of 86
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Ripple Rejection Ratio vs. Frequency (PASS mode) (3)
20
Ripple Rejection Ratio R.R.R. (dB)
VCC = 12V
PASS mode
EQOUT
0
RECOUT
NR-ON
−20
−40
PBOUT
RECOUT
NR-OFF
−60
−80
10
100
1k
Frequency (Hz)
10k
100k
Equalizer Amp. Gain vs. Frequency (1)
55
50
VCC = 12V
Norm speed
45
REC-EQ Gain (dB)
40
35
30
Crom
25
20
Norm
15
10
5
10
100
1k
Frequency (Hz)
10k
100k
Rev.6, Dec. 2000, page 49 of 86
HA12226F/HA12227F
Equalizer Amp. Gain vs. Frequency (2)
55
50
VCC = 12V
High speed
45
REC-EQ Gain (dB)
40
35
30
Crom
25
20
15
Norm
10
5
10
100
1k
Frequency (Hz)
10k
100k
Equalizer Amp. Gain vs. Frequency (REC-cal)
55
REC-cal = 5V
50
45
REC-EQ Gain (dB)
40
35
30
25
20
REC-cal = 2.5V
15
REC-cal = 0V
10
5
10
Rev.6, Dec. 2000, page 50 of 86
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Equalizer Amp. Gain vs. Frequency (GP-cal)
55
GP-cal = 0V
50
45
35
30
GP-cal = 2.5V
25
20
GP-cal = 5V
15
10
5
10
100
1k
Frequency (Hz)
10k
100k
Equalizer Signal to Noise Ratio vs. Supply Voltage (1)
70
f = 1kHz
A-WTG filter
Norm speed
NN
NC
REC-EQ S/N (dB)
REC-EQ Gain (dB)
40
65
60
55
11
12
13
Supply Voltage (V)
14
15
Rev.6, Dec. 2000, page 51 of 86
HA12226F/HA12227F
Equalizer Signal to Noise Ratio vs. Supply Voltage (2)
70
REC-EQ S/N (dB)
f = 1kHz
A-WTG filter
High speed
HN
HC
65
60
55
11
12
13
Supply Voltage (V)
15
14
REC-cal Correction vs. VREC-cal
5
f = 3kHz
GP-cal open
VCC = 12V
Norm speed
Norm tape
4
REC-cal Correction (dB)
3
2
1
0
−1
−2
−3
−4
−5
0
Rev.6, Dec. 2000, page 52 of 86
1
2
3
VREC-cal (V)
4
5
HA12226F/HA12227F
GP-cal Correction vs. VGP-cal
5
4
GP-cal Correction (dB)
3
2
1
0
−1
−2
f = 12kHz
REC-cal open
VCC = 12V
Norm speed
Norm tape
−3
−4
−5
0
1
2
3
VGP-cal (V)
5
4
ALC Operate Level vs. Input Level
Output Level RECOUT (dB) 0dB ≈ 300mVrms
10
8
f = 1kHz, VCC = 12V, Both channel input (L, Rch)
Rin → RECOUT,
Cal = 5V
Norm
Crom
Cal = 5V
6
Cal = 2.5V
4
Cal = 2.5V
2
Cal = 0V
0
−2
−5
Cal = 0V
0
10
20
5
15
25
Input Level Vin (dB) 0dB ≈ 221mVrms
30
35
Rev.6, Dec. 2000, page 53 of 86
HA12226F/HA12227F
ALC Total Harmonic Distortion vs. Input Level (1)
f = 1kHz, VCC = 12V
Norm tape
Cal = 0V
Cal = 2.5V
Cal = 5V
ALC T.H.D. (%)
1.0
0.1
0.01
−5
0
30
5
10
15
20
25
Input Level Vin (dB) 0dB ≈ 221mVrms
(ALC-OFF, RECOUT ≈ 300mVrms)
ALC Total Harmonic Distortion vs. Input Level (2)
f = 1kHz, VCC = 12V
Crom tape
Cal = 0V
Cal = 2.5V
Cal = 5V
ALC T.H.D. (%)
1.0
0.1
0.01
−5
Rev.6, Dec. 2000, page 54 of 86
0
30
5
10
15
20
25
Input Level Vin (dB) 0dB ≈ 221mVrms
(ALC-OFF, RECOUT ≈ 300mVrms)
HA12226F/HA12227F
ALC Operate Level vs. Frequency
8
ALC-cal = 5V
6
ALC-cal = 5V
4
ALC-cal = 2.5V
2
ALC-cal = 2.5V
ALC-cal = 0V
0
ALC-cal = 0V
−2
Vin = +12dB, Both channel input (L, Rch), Rin → RECOUT
Norm
Crom
−4
100
1k
Frequency (Hz)
10k
Bias Output Voltage vs. Load Current
13
VCC = 12V
Bias ON
270Ω
31
V
Bias Output Voltage (V)
Operate Level RECOUT (dB) 0dB = 300mVrms
10
I
12
11
10
0
1
2
3
4
5
Load Current I (mA)
6
7
Rev.6, Dec. 2000, page 55 of 86
HA12226F/HA12227F
MS Sensing Level vs. Frequency
5
VCC = 12V, MSOUT
Ain → PBOUT = 580mVrms = 0dB
Lo → Hi
Hi → Lo
MS Sensing Level (dB)
0
−5
−10
−15
−20
−25
−30
100
1k
10k
100k
Frequency (Hz)
MS Amp. Gain vs. Frequency
40
VCC = 12V
MAOUT
Gain (dB)
30
20
10
MSIN
0
−10
10
Rev.6, Dec. 2000, page 56 of 86
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
No-Signal Sensing Time vs. Resistance
No-Signal Sensing Time (ms)
1000
VCC = 12V, f = 5kHz
Ain → PBOUT = 580mVrms
0dB
−10dB
−20dB
100
PBOUT
10
MSOUT
C13
0.33µ
14
VCC
R13
1
10k
100k
Resistance R13 (Ω)
1M
Signal Sensing Time vs. Capacitance
Signal Sensing Time (ms)
VCC = 12V, f = 5kHz
Ain → PBOUT = 580mVrms
0dB
−10dB
100
−20dB
10
PBOUT
MSOUT
1
C13
14
VCC
R13
330k
0.1
0.01
0.1
Capacitance C13 (µF)
1.0
Rev.6, Dec. 2000, page 57 of 86
HA12226F/HA12227F
HA12227F
Quiescent Current vs. Supply Voltage (REC mode)
30
Quiescent Current IQ (mA)
REC mode
REC-MUTE ON, BIAS OFF
REC-MUTE OFF, BIAS OFF
REC-MUTE OFF, BIAS ON
Other switch is all Low
25
20
15
11
12
13
Supply Voltage (V)
14
15
Quiescent Current vs. Supply Voltage (PB mode)
30
Quiescent Current IQ (mA)
PB mode
REC-MUTE ON, BIAS OFF
REC-MUTE OFF, BIAS OFF
REC-MUTE OFF, BIAS ON
Other switch is all Low
25
20
15
11
Rev.6, Dec. 2000, page 58 of 86
12
13
Supply Voltage (V)
14
15
HA12226F/HA12227F
Input Amp. Gain vs. Frequency (1)
50
Gain (dB)
40
VCC = 12V
Ain → PBOUT
Bin
PB mode
30
20
10
0
10
100
1k
10k
Frequency (Hz)
100k
1M
100k
1M
Input Amp. Gain vs. Frequency (2)
50
Gain (dB)
40
VCC = 12V
Ain → PBOUT
Bin
PASS mode
30
20
10
0
10
100
1k
10k
Frequency (Hz)
Rev.6, Dec. 2000, page 59 of 86
HA12226F/HA12227F
Input Amp. Gain vs. Frequency (3)
50
VCC = 12V
REC mode
Gain (dB)
40
30
PBOUT
20
RECOUT
10
0
10
100
1k
10k
Frequency (Hz)
100k
1M
100k
1M
Input Amp. Gain vs. Frequency (4)
50
VCC = 12V
Ain → PBOUT
Bin
Gain (dB)
40
30
120µ
70µ
20
10
0
10
100
Rev.6, Dec. 2000, page 60 of 86
1k
10k
Frequency (Hz)
HA12226F/HA12227F
Signal Handling (1)
25
Vomax (dB)
20
15
REC mode, T.H.D. ≈ 1%
Rin → RECOUT = 300mVrms = 0dB
1kHz
Rin → PBOUT = 580mVrms = 0dB
1kHz
10
11
12
13
Supply Voltage (V)
14
15
14
15
Signal Handling (2)
25
Vomax (dB)
20
15
PB mode, T.H.D. ≈ 1%
Ain
→ RECOUT = 300mVrms = 0dB
Bin
1kHz
Ain
Bin
10
11
→ PBOUT = 580mVrms = 0dB
1kHz
12
13
Supply Voltage (V)
Rev.6, Dec. 2000, page 61 of 86
HA12226F/HA12227F
Signal to Noise Ratio vs. Supply Voltage (1)
Signal to Noise Ratio (dB)
85
80
75
REC mode, CCIR/ARM filter
Rin → RECOUT = 300mVrms = 0dB
1kHz
Rin → PBOUT = 580mVrms = 0dB
1kHz
70
11
12
13
Supply Voltage (V)
14
15
Signal to Noise Ratio vs. Supply Voltage (2)
Signal to Noise Ratio (dB)
85
80
75
PB mode, CCIR/ARM filter
Ain
→ RECOUT = 300mVrms = 0dB
Bin
1kHz
Ain
Bin
70
11
Rev.6, Dec. 2000, page 62 of 86
→ PBOUT = 580mVrms = 0dB
1kHz
12
13
Supply Voltage (V)
14
15
HA12226F/HA12227F
Signal to Noise Ratio vs. Supply Voltage (3)
85
Signal to Noise Ratio (dB)
PASS mode, CCIR/ARM filter
Ain
→ PBOUT = 580mVrms = 0dB
Bin
1kHz
80
75
70
11
12
13
Supply Voltage (V)
15
14
Total Harmonic Distortion vs. Supply Voltage (1)
1.0
T.H.D. (%)
REC mode
Rin → RECOUT = 300mVrms
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 80kHz LPF)
Rin → PBOUT = 580mVrms
1kHz (400Hz HPF + 30kHz LPF)
0.1
0.01
11
12
13
Supply Voltage (V)
14
15
Rev.6, Dec. 2000, page 63 of 86
HA12226F/HA12227F
Total Harmonic Distortion vs. Supply Voltage (2)
T.H.D. (%)
1.0
PB mode, NR-OFF
Ain
→ PBOUT = 580mVrms
Bin
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 80kHz LPF)
Ain
→ RECOUT = 300mVrms
Bin
1kHz (400Hz HPF + 30kHz LPF)
0.1
0.01
11
12
13
Supply Voltage (V)
14
15
Total Harmonic Distortion vs. Supply Voltage (3)
1.0
T.H.D. (%)
PASS mode
Ain → PBOUT = 580mVrms
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 80kHz LPF)
0.1
0.01
11
Rev.6, Dec. 2000, page 64 of 86
12
13
Supply Voltage (V)
14
15
HA12226F/HA12227F
Total Harmonic Distortion vs. Output Level (1)
10
T.H.D. (%)
1.0
REC mode
Rin → RECOUT
0dB = 300mVrms
VCC = 12V
100Hz
1kHz
10kHz
0.1
0.01
−15
−10
−5
0
5
10
15
Output Level Vout (dB)
20
25
Total Harmonic Distortion vs. Output Level (2)
10
T.H.D. (%)
1.0
PB mode
Ain
→ PBOUT
Bin
0dB = 580mVrms
VCC = 12V
100Hz
1kHz
10kHz
0.1
0.01
−15
−10
−5
0
5
10
15
Output Level Vout (dB)
20
25
Rev.6, Dec. 2000, page 65 of 86
HA12226F/HA12227F
Total Harmonic Distortion vs. Output Level (3)
10
T.H.D. (%)
1.0
PASS mode
Ain
→ PBOUT
Bin
0dB = 580mVrms
VCC = 12V
100Hz
1kHz
10kHz
0.1
0.01
−15
−10
−5
0
5
10
15
Output Level Vout (dB)
20
25
Total Harmonic Distortion vs. Frequency (1)
T.H.D. (%)
REC mode
Rin → RECOUT
0dB = 300mVrms
−10dB
0dB
10dB
0.1
0.01
100
Rev.6, Dec. 2000, page 66 of 86
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Total Harmonic Distortion vs. Frequency (2)
T.H.D. (%)
PB mode
Ain
→ PBOUT
Bin
0dB = 580mVrms
−10dB
0dB
10dB
0.1
0.01
100
1k
Frequency (Hz)
10k
100k
Total Harmonic Distortion vs. Frequency (3)
T.H.D. (%)
PB mode
Ain
→ PBOUT
Bin
0dB = 580mVrms
−10dB
0dB
10dB
0.1
0.01
100
1k
Frequency (Hz)
10k
100k
Rev.6, Dec. 2000, page 67 of 86
HA12226F/HA12227F
Channel Separation vs. Frequency (R → L) (1)
40
VCC = 11V, 12V, 15V
Rin → RECOUT, Vin = +12dB
REC mode, R → L
Channel Separation (dB)
0
−40
−80
−120
−160
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L → R) (2)
40
VCC = 11V, 12V, 15V
Rin → RECOUT, Vin = +12dB
REC mode, L → R
Channel Separation (dB)
0
−40
−80
−120
−160
10
Rev.6, Dec. 2000, page 68 of 86
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Channel Separation vs. Frequency (R → L) (3)
40
VCC = 11V, 12V, 15V
Ain → PBOUT, Vin = +10dB
R→L
Channel Separation (dB)
0
−40
−80
−120
−160
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L → R) (4)
40
VCC = 11V, 12V, 15V
Ain → PBOUT, Vin = +10dB
L→R
Channel Separation (dB)
0
−40
−80
−120
−160
10
100
1k
Frequency (Hz)
10k
100k
Rev.6, Dec. 2000, page 69 of 86
HA12226F/HA12227F
Channel Separation vs. Frequency (R → L) (5)
40
VCC = 11V, 12V, 15V
Bin → PBOUT, Vin = +10dB
R→L
Channel Separation (dB)
0
−40
−80
−120
−160
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L → R) (6)
40
VCC = 11V, 12V, 15V
Bin → PBOUT, Vin = +10dB
L→R
Channel Separation (dB)
0
−40
−80
−120
−160
10
Rev.6, Dec. 2000, page 70 of 86
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Channel Separation vs. Frequency (R → L) (7)
40
VCC = 11V, 12V, 15V
Ain → PBOUT, Vin = +10dB
PASS mode, R → L
Channel Separation (dB)
0
−40
−80
−120
−160
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L → R) (8)
40
VCC = 11V, 12V, 15V
Ain → PBOUT, Vin = +10dB
PASS mode, L → R
Channel Separation (dB)
0
−40
−80
−120
−160
10
100
1k
Frequency (Hz)
10k
100k
Rev.6, Dec. 2000, page 71 of 86
HA12226F/HA12227F
Channel Separation vs. Frequency (R → L) (9)
40
VCC = 11V, 12V, 15V
Bin → PBOUT, Vin = +10dB
PASS mode, R → L
Channel Separation (dB)
0
−40
−80
−120
−160
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L → R) (10)
40
VCC = 11V, 12V, 15V
Bin → PBOUT, Vin = +10dB
PASS mode, L → R
Channel Separation (dB)
0
−40
−80
−120
−160
10
Rev.6, Dec. 2000, page 72 of 86
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Crosstalk vs. Frequency (Ain → Bin) (1)
40
VCC = 11V, 12V, 15V
PB mode, PBOUT
Vin = +12dB, Ain → Bin
Channel Separation (dB)
0
−40
−80
−120
−160
10
100
1k
Frequency (Hz)
10k
100k
Crosstalk vs. Frequency (Bin → Ain) (2)
40
VCC = 11V, 12V, 15V
PB mode, PBOUT
Vin = +12dB, Bin → Ain
Channel Separation (dB)
0
−40
−80
−120
−160
10
100
1k
Frequency (Hz)
10k
100k
Rev.6, Dec. 2000, page 73 of 86
HA12226F/HA12227F
Line Mute vs. Frequency
40
Line Mute (dB)
VCC = 12V
Ain
→ PBOUT
Bin
Vin = +12dB
0 PB mode
−40
−80
−120
−160
10
100
1k
Frequency (Hz)
10k
100k
REC Mute Attenuation vs. Frequency
40
Crosstalk (dB)
0
VCC = 12V
EQIN → EQOUT
Vin = +14dB
Norm speed, Norm tape
−40
−80
−120
−160
10
Rev.6, Dec. 2000, page 74 of 86
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Ripple Rejection Ratio vs. Frequency (REC mode) (1)
20
Ripple Rejection Ratio R.R.R. (dB)
VCC = 12V
REC mode
0
EQOUT
−20
−40
RECOUT
−60
−80
10
100
1k
Frequency (Hz)
10k
100k
Ripple Rejection Ratio vs. Frequency (PB mode) (2)
20
Ripple Rejection Ratio R.R.R. (dB)
VCC = 12V
PB mode, RECOUT
0
−20
−40
−60
−80
10
100
1k
Frequency (Hz)
10k
100k
Rev.6, Dec. 2000, page 75 of 86
HA12226F/HA12227F
Ripple Rejection Ratio vs. Frequency (PASS mode) (3)
20
Ripple Rejection Ratio R.R.R. (dB)
VCC = 12V
PASS mode, PBOUT
0
−20
−40
−60
−80
10
100
1k
Frequency (Hz)
10k
100k
Equalizer Amp. Gain vs. Frequency (1)
55
50
VCC = 12V
Norm speed
45
REC-EQ Gain (dB)
40
35
30
Crom
25
20
15
Norm
10
5
10
Rev.6, Dec. 2000, page 76 of 86
100
1k
Frequency (Hz)
10k
100k
HA12226F/HA12227F
Equalizer Amp. Gain vs. Frequency (2)
55
50
VCC = 12V
High speed
45
REC-EQ Gain (dB)
40
35
30
Crom
25
20
15
Norm
10
5
10
100
1k
Frequency (Hz)
10k
100k
Equalizer Amp. Gain vs. Frequency (REC-cal)
55
REC-cal = 5V
50
45
REC-EQ Gain (dB)
40
35
30
25
20
REC-cal = 2.5V
15
REC-cal = 0V
10
5
10
100
1k
Frequency (Hz)
10k
100k
Rev.6, Dec. 2000, page 77 of 86
HA12226F/HA12227F
Equalizer Amp. Gain vs. Frequency (GP-cal)
55
GP-cal = 0V
50
45
REC-EQ Gain (dB)
40
35
30
GP-cal = 2.5V
25
20
GP-cal = 5V
15
10
5
10
100
1k
Frequency (Hz)
10k
100k
Equalizer Signal to Noise Ratio vs. Supply Voltage (1)
70
REC-EQ S/N (dB)
f = 1kHz
A-WTG filter
Norm speed
NN
NC
65
60
55
11
Rev.6, Dec. 2000, page 78 of 86
12
13
Supply Voltage (V)
14
15
HA12226F/HA12227F
Equalizer Signal to Noise Ratio vs. Supply Voltage (2)
70
REC-EQ S/N (dB)
f = 1kHz
A-WTG filter
High speed
HN
HC
65
60
55
11
12
13
Supply Voltage (V)
15
14
REC-cal Correction vs. VREC-cal
5
f = 3kHz
GP-cal open
VCC = 12V
Norm speed
Norm tape
4
REC-cal Correction (dB)
3
2
1
0
−1
−2
−3
−4
−5
0
1
2
3
VREC-cal (V)
4
5
Rev.6, Dec. 2000, page 79 of 86
HA12226F/HA12227F
GP-cal Correction vs. VGP-cal
5
4
GP-cal Correction (dB)
3
2
1
0
−1
−2
f = 12kHz
REC-cal open
VCC = 12V
Norm speed
Norm tape
−3
−4
−5
0
1
2
3
VGP-cal (V)
4
5
ALC Operate Level vs. Input Level
Output Level RECOUT (dB) 0dB = 300mVrms
10
8
f = 1kHz, VCC = 12V, Both channel input (L, Rch)
Rin → RECOUT,
Cal = 5V
Norm
Crom
Cal = 5V
6
Cal = 2.5V
4
Cal = 2.5V
2
Cal = 0V
0
Cal = 0V
−2
−5
0
Rev.6, Dec. 2000, page 80 of 86
10
20
5
15
25
Input Level Vin (dB) 0dB = 218mVrms
30
35
HA12226F/HA12227F
ALC Total Harmonic Distortion vs. Input Level (1)
f = 1kHz, VCC = 12V
Norm tape
Cal = 0V
Cal = 2.5V
Cal = 5V
ALC T.H.D. (%)
1.0
0.1
0.01
−5
0
30
5
10
15
20
25
Input Level Vin (dB) 0dB ≈ 217mVrms
(ALC-OFF, RECOUT = 300mVrms)
ALC Total Harmonic Distortion vs. Input Level (2)
f = 1kHz, VCC = 12V
Crom tape
Cal = 0V
Cal = 2.5V
Cal = 5V
ALC T.H.D. (%)
1.0
0.1
0.01
−5
0
30
5
10
15
20
25
Input Level Vin (dB) 0dB ≈ 217mVrms
(ALC-OFF, RECOUT = 300mVrms)
Rev.6, Dec. 2000, page 81 of 86
HA12226F/HA12227F
ALC Operate Level vs. Frequency
Operate Level RECOUT (dB) 0dB = 300mVrms
10
8
ALC-cal = 5V
6
ALC-cal = 5V
ALC-cal = 2.5V
4
ALC-cal = 2.5V
2
ALC-cal = 0V
0
ALC-cal = 0V
−2
Vin = +12dB, Both channel input (L, Rch), Rin → RECOUT
Norm
Crom
−4
100
1k
Frequency (Hz)
10k
Bias Output Voltage vs. Load Current
13
VCC = 12V
Bias ON
270Ω
31
Bias Output Voltage (V)
V
I
12
11
10
0
Rev.6, Dec. 2000, page 82 of 86
1
2
3
4
5
Load Current I (mA)
6
7
HA12226F/HA12227F
MS Sensing Level vs. Frequency
5
VCC = 12V, MSOUT
Ain → PBOUT = 580mVrms = 0dB
Lo → Hi
Hi → Lo
MS Sensing Level (dB)
0
−5
−10
−15
−20
−25
−30
100
1k
10k
100k
Frequency (Hz)
MS Amp. Gain vs. Frequency
40
VCC = 12V
MAOUT
Gain (dB)
30
20
10
MSIN
0
−10
10
100
1k
Frequency (Hz)
10k
100k
Rev.6, Dec. 2000, page 83 of 86
HA12226F/HA12227F
No-Signal Sensing Time vs. Resistance
No-Signal Sensing Time (ms)
1000
VCC = 12V, f = 5kHz
Ain → PBOUT = 580mVrms
0dB
−10dB
−20dB
100
PBOUT
10
MSOUT
C13
0.33µ
14
VCC
R13
1
10k
100k
Resistance R13 (Ω)
1M
Signal Sensing Time vs. Capacitance
Signal Sensing Time (ms)
VCC = 12V, f = 5kHz
Ain → PBOUT = 580mVrms
0dB
−10dB
100
−20dB
10
PBOUT
MSOUT
1
C13
14
VCC
R13
330k
0.1
0.01
Rev.6, Dec. 2000, page 84 of 86
0.1
Capacitance C13 (µF)
1.0
HA12226F/HA12227F
Package Dimensions
Unit: mm
12.8 ± 0.3
10.0
42
29
28
0.65
12.8 ± 0.3
43
56
15
1
0.775
0.10
*Dimension including the plating thickness
Base material dimension
0.1 +0.1
–0.09
2.20
0.13 M
*0.17 ± 0.05
0.15 ± 0.04
*0.30 ± 0.08
0.27 ± 0.06
2.54 Max
14
0.775
1.40
0˚ – 8˚
0.60 ± 0.15
Hitachi Code
JEDEC
EIAJ
Mass (reference value)
FP-56A
—
—
0.5 g
Rev.6, Dec. 2000, page 85 of 86
HA12226F/HA12227F
Disclaimer
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Sales Offices
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http://semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia
: http://sicapac.hitachi-asia.com
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic Components Group
Dornacher Straße 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 585160
Hitachi Asia Ltd.
Hitachi Tower
16 Collyer Quay #20-00,
Singapore 049318
Tel : <65>-538-6533/538-8577
Fax : <65>-538-6933/538-3877
URL : http://www.hitachi.com.sg
Hitachi Asia Ltd.
(Taipei Branch Office)
4/F, No. 167, Tun Hwa North Road,
Hung-Kuo Building,
Taipei (105), Taiwan
Tel : <886>-(2)-2718-3666
Fax : <886>-(2)-2718-8180
Telex : 23222 HAS-TP
URL : http://www.hitachi.com.tw
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower,
World Finance Centre,
Harbour City, Canton Road
Tsim Sha Tsui, Kowloon,
Hong Kong
Tel : <852>-(2)-735-9218
Fax : <852>-(2)-730-0281
URL : http://www.hitachi.com.hk
Copyright  Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.
Colophon 2.0
Rev.6, Dec. 2000, page 86 of 86