HITACHI HA12215F

HA12215F
Audio Signal Processor for Cassette Deck
(Dolby B-type NR with Recording System)
ADE-207-253D (Z)
Target Specification
5th Edition
Oct. 1999
Description
1
HA12215F is silicon monolithic bipolar IC providing Dolby noise reduction system* , music sensor
system, REC equalizer system and each electronic control switch in one chip.
Note: 1. Dolby is a trademark of Dolby Laboratories Licensing Corporation.
A license from Dolby Laboratories Licensing Corporation is required for the use of this IC.
Functions
• Dolby B-NR
× 2 channel
• REC equalizer × 2 channel
• Music sensor
× 1 channel
• Pass amp.
× 2 channel
• Each electronic control switch to change REC equalizer, bias, etc.
Features
• REC equalizer is very small number of external parts and have 6 types of frequency characteristics
built-in.
• 2 types of input for PB, 1 type of input for REC.
• 70µ - PB equalizer changing system built-in.
• Dolby NR with dubbing double cassette decks.
Unprocessed signal output available from recording out terminals during PB mode.
• Provide stable music sensor system, available to design music sensing time and level.
• Controllable from direct micro-computer output.
• Bias oscillator control switch built-in.
• NR ON / OFF and REC / PB fully electronic control switching built-in.
• Normal-speed / high-speed, Normal / Crom / Metal and PB equalizer fully electronic control switching
built-in.
• Available to reduce substrate-area because of high integration and small external parts.
HA12215F
Ordering Information
Operating Voltage
Product
VCC (V)
VEE (V)
Note
HA12215F
+6.0 to +7.5
–7.5 to –6.0
| VCC + VEE | < 1.0 V
Standard Level
Product
Package
PB-OUT Level
REC-OUT Level
Dolby Level
HA12215F
FP-56
580 mVrms
300 mVrms
300 mVrms
Function
Product
Dolby B-NR
REC-EQ
Music
Sensor
Pass Amp.
REC / PB
Selection
ALC
HA12215F
❍
❍
❍
❍
❍
❍
Note: Depending on the employed REC / PB head and test tape characteristics, there is a rare case that
the REC-EQ characteristics of this LSI can not be matched to the required characteristics because of
built-in resistors which determined the REC-EQ parameters in this case, please inquire the
responsible agent because the adjustment built-in resistor is necessary.
Rev.5, Oct. 1999, page 2 of 69
HA12215F
Pin Description, Equivalent Circuit (VCC = ±7 V, A system of split supply voltage,
Ta = 25°C, No Signal, The value in the show typical value.)
Pin No.
Terminal Name
Note
51
AIN (R)
V = GND
Equivalent Circuit
Pin Description
PB A Deck input
V
100k
GND
48
AIN (L)
53
BIN (R)
46
BIN (L)
56
RIN (R)
43
RIN (L)
5
EQIN (R)
38
EQIN (L)
1
DET (R)
V = GND
PB B Deck input
V = GND
REC input
V = GND
REC equalizer input
V = VEE+2.7V
VCC
Time constant pin for
Dolby-NR
V
VEE
42
DET (L)
2
BIAS1
V = VEE+0.6V
Dolby bias current
input
V
41
BIAS2
VEE
V = VEE+1.3V
REC equalizer bias
current input
V
VEE
Rev.5, Oct. 1999, page 3 of 69
HA12215F
Pin Description, Equivalent Circuit (VCC = ±7 V, A system of split supply voltage,
Ta = 25°C, No Signal, The value in the show typical value.) (cont)
Pin No.
Terminal Name
Note
3
PBOUT (R)
V = GND
Equivalent Circuit
Pin Description
VCC
PB output
V
VEE
40
PBOUT (L)
4
RECOUT (R)
39
RECOUT (L)
7
EQOUT (R)
36
EQOUT (L)
28
8
V = GND
REC output
V = GND
REC equalizer output
MAOUT
V = GND
MS Amp. output *
ROUT (R)
V = GND
Input Amp. output
35
ROUT (L)
52
ABO (R)
R1 = 15 k
R2 = 12 k
VCC
V
R1
1
Time constant pin for
PB equalizer (70µ)
R2
VEE
47
ABO (L)
6
BOOST (R)
37
BOOST (L)
31
BIAS (M)
R1 = 4.8 k
R2 = 4.8 k
V = VCC – 0.7V
Time constant pin for
low boost
VCC
V
32
BIAS (C)
33
BIAS (N)
Note:
1. MS: Music Sensor
Rev.5, Oct. 1999, page 4 of 69
REC bias current
output
HA12215F
Pin Description, Equivalent Circuit (VCC = ±7 V, A system of split supply voltage,
Ta = 25°C, No Signal, The value in the show typical value.) (cont)
Pin No.
Terminal Name
Note
Equivalent Circuit
Pin Description
21
VCC
V = VCC
Power supply
49
GND
V = 0V
GND pin
50
VEE
V = VEE
Negative power
supply
45, 54
NC
No connection
No connection
15
ALC ON/OFF
I = 50 µA
Mode control input
I
V
22 k
100 k
GND
16
PB A/B
17
A 120/70
18
NORM/HIGH
19
B NORM/CROM/
METAL
20
BIAS ON/OFF
22
RM ON/OFF
23
NR ON/OFF
25
LM ON/OFF
24
REC/PB/PASS
2.5 V
Mode control input
+
−
100 k
100 k
22 k
V
26
MSOUT
I = 0 µA
V
MS output (to MPU) *
VCC
I
1
MSGND
VEE
Note:
1. MS: Music Sensor
Rev.5, Oct. 1999, page 5 of 69
HA12215F
Pin Description, Equivalent Circuit (VCC = ±7 V, A system of split supply voltage,
Ta = 25°C, No Signal, The value in the show typical value.) (cont)
Pin No.
Terminal Name
Note
10
GPCAL
R = 110 kΩ
Equivalent Circuit
Pin Description
R
2.5 V
GP gain calibration
terminal
11
RECCAL
R = 110 kΩ
REC gain calibration
terminal
12
ALCCAL
R = 140 kΩ
ALC operation level
calibration terminal
14
MSDET
n=6
0 µA
VCC
n
Time constant pin for
1
MS *
VEE
13
ALCDET
n=2
27
MSIN
R = 50 kΩ
MS input *
VCC
1
V
R
GND
9
ALCIN (R)
34
ALCIN (L)
30
MAI
R = 100 kΩ
V = GND
MAOUT
VCC
MS Amp. input *
1
100 k
V
8.2 k
GND
29
MS GND
I = ±100 µA
MS output voltage
1
level control pin *
I
55
ALC (R)
V = GND
V
44
Note:
ALC (L)
1. MS: Music Sensor
Rev.5, Oct. 1999, page 6 of 69
Variable impedance
for attenuation
HA12215F
MSGND
MAI
BIAS (M)
BIAS (C)
BIAS (N)
ALCIN (L)
ROUT (L)
EQOUT (L)
BOOST (L)
EQIN (L)
RECOUT (L)
PBOUT (L)
BIAS2
DET (L)
Block Diagram
42 41 40 39 38 37 36 35 34 33 32 31 30 29
RIN (L)
43
ALC (L)
44
EQ
BIAS
Dolby
B-NR
NC 45
28
MAOUT
27
MSIN
26
MSOUT
MS
BIN (L)
46
25
LM ON / OFF
ABO (L)
47
24
REC / PB / PASS
AIN (L)
48
23
NR ON / OFF
GND
49
22
RM ON / OFF
+
−
+
LPF
VEE
50
21
VCC
AIN (R)
51
20
BIAS ON / OFF
ABO (R)
52
19
B NORM / CROM / METAL
BIN (R)
53
18
NORM / HIGH
17
A 120 / 70
16
PB A / B
15
ALC ON / OFF
ALC
NC 54
5
6
7
8
9
10 11 12 13 14
EQIN (R)
BOOST (R)
EQOUT (R)
ROUT (R)
ALCIN (R)
GPCAL
MSDET
4
ALCDET
3
ALCCAL
2
RECCAL
1
RECOUT (R)
EQ
PBOUT (R)
56
BIAS1
55
RIN (R)
DET (R)
ALC (R)
Dolby
B-NR
Rev.5, Oct. 1999, page 7 of 69
HA12215F
Parallel-Data Format
Pin No.
Pin Name
Lo
15
ALC ON/OFF
ALC ON
16
PB A/B
17
MODE
“Pin Open”
Mid
Hi
—
ALC OFF
Lo
Ain *
—
1
Bin *
Lo
A 120/70
*1
—
*1
Lo
22
RM ON/OFF
REC MUTE ON
—
REC MUTE OFF
Lo
20
BIAS ON/OFF
BIAS OFF
—
BIAS ON
Lo
23
NR ON/OFF
NR OFF
—
NR ON
Lo
24
REC/PB/PASS
REC MODE
PB MODE
REC MODE PASS
Mid
25
LM ON/OFF
LINE MUTE OFF
—
LINE MUTE ON
Lo
18
NORM/HIGH
Normal speed
19
B NORM/CROM/
METAL
Note:
1
—
1
REC EQ Normal *
Bias Normal
High speed
1
REC EQ CROM *
Bias CROM
Lo
1
REC EQ METAL *
Bias METAL
1. PB EQ logic
PB EQ Logic
PB
A 120/70
120
B NORM / CROM / METAL
Lo
Hi
Lo
Lo
FLAT
FLAT
Lo
Hi or Mid
FLAT
70 µ
Hi
Lo
70 µ
FLAT
Hi
Hi or Mid
70 µ
70 µ
Rev.5, Oct. 1999, page 8 of 69
Lo
HA12215F
Functional Description
Power Supply Range
HA12215F is designed to operate on split supply.
Table 1
Supply Voltage
Product
VCC (V)
VEE (V)
Note
HA12215F
+6.0 to +7.5
–7.5 to –6.0
| VCC + VEE | < 1.0 V
Note: The lower limit of supply voltage depends on the line output reference level.
The minimum value of the overload margin is specified as 12 dB by Dolby Laboratories.
Reference Voltage
The reference voltage are provided for the left channel and the right channel separately. The block diagram
is shown as figure 1.
21
VCC
VCC
+
−
GND
+
−
VEE
+
−
L channel reference
49
VEE
Music sensor reference
50
R channel reference
Figure 1 Reference Voltage
Rev.5, Oct. 1999, page 9 of 69
HA12215F
Operating Mode Control
HA12215F provide fully electronic switching circuits. And each operating mode control is controlled by
parallel data (DC voltage).
Table 2
Control Voltage
Pin No.
Lo
Mid
Hi
Unit
15, 16, 17, 18,
20, 22, 23, 25
–0.2 to 1.0
—
4.0 to VCC
V
19, 24
–0.2 to 1.0
2.0 to 3.0
4.0 to VCC
V
Test Condition
Input Pin
Measure
Notes: 1. Each pins are on pulled down with 100 kΩ internal resistor.
Therefore, it will be low-level when each pins are open.
But pin 24 is mid-level when it is open.
2. Over shoot level and under shoot level of input signal must be the standardized (High: VCC,
Low: –0.2 V).
3. For reduction of pop noise, connect 1 µF to 22 µF capacitor with mode control pins.
But it is impossible to reduce completely in regard to Line mute, therefore, use external mute at
the same time.
Input Block Diagram and Level Diagram
The each level shown above is typical value
when offering PBOUT level to PBOUT pin.
MS
300mVrms
AIN
21.3dB
BIN
PASS
REC
PB
PASS/REC,
PB=5.7dB/5.7dB
FLAT
(120µ)
300mVrms
0dB
25.9mVrms
REF
R3 70µs
12k
PB/REC,
PASS=0dB/21.4dB 300mVrms
PB
Dolby
B-NR
REC
PASS
300mVrms
R4
15k
ALC
25.5mVrms
C2
4700pF
C1
0.1µF
R1
15k
RIN
200mVrms
R2
C3
2.2k 0.1µF
Figure 2 Input Block Diagram
Rev.5, Oct. 1999, page 10 of 69
PBOUT
580mVrms
RECOUT
300mVrms
HA12215F
PB Equalizer
By switching logical input level of pin 17 (for Ain) and pin 19 (for Bin), you can equalize corresponding to
tape position at play back mode.
With the capacity C2 capacitance that we showed for figure 2 70 µs by the way figure seem to 3 they are
decided.
GV
t1 = C2 ⋅ (12k + 15k)
t2 = C2 ⋅ 15k
t1
f
t2
Figure 3 Frequency Characteristic of PB Equalizer
The Sensitivity Adjustment of Music Sensor
Adjusting MS Amp gain by external resistor, the sensitivity of music sensor can set up.
REP
D VCC
VCC
C16
1000p
R13
330k
MA
OUT
MSIN
+ C13
0.33µ
PB (L)
MAI
100k
8.2k
−6dB
−
+
RL
MS
DET
DET
MS AMP
MS OUT
Microcomputer
GND
LPF
25kHz
50k
GND
PB (R)
Figure 4 Music Sensor Block Diagram
Rev.5, Oct. 1999, page 11 of 69
HA12215F
The Sensitivity of Music Sensor
A standard level of MS input pin 25.9 mVrms, therefore, the sensitivity of music sensor (S) can request
it, by lower formulas.
A = MS Amp Gain*1
C
S = 20log
B = PB input Gain × (1/2)*2
25.9
⋅A⋅B
C = Sensed voltage
20log (A × B) = D [dB]
S = 14 − D [dB]
C = 130 [mVrms] (Intenally voltage in a standard)
PB input Gain = 21.3 [dB]
[dB]
Notes: 1. When there is not a regulation outside.
2. Case of one-sided channel input.
But necessary to consider the same attenuation quantity practically, on account of A(B) have made
frequency response.
GV
37.7dB
1
[Hz]
2π ⋅ C16 ⋅ 50k
f2 = 25k [Hz]
f1 =
f1
f
f2
Figure 5 Frequency Characteristic of MSIN
Occasion of the external component of figure 4, f1 is 3.18 kHz.
Time constant of detection
Figure 6(1) generally shows that detection time is in proportion to value of capacitor C13. But, with
2
3
Attack* and Recovery* the detection time differs exceptionally.
Notes 2. Attack
: Non- music to Music
Attack
Recovery
Attack
C13
R13
(1)
(2)
Detection time
Recovery
Detection time
Detection time
3. Recovery : Music to Non-music
Recovery
Detection level
Attack
Input level
(3)
Figure 6 Function Characteristic of MS
Like the figure 6(2), Recovery time is variably possible by value of resistor R13. But Attack time gets
about fixed value. Attack time has dependence by input level. When a large signal is inputted, Attack time
is short tendency.
Rev.5, Oct. 1999, page 12 of 69
HA12215F
Music Sensor Output (MSOUT)
As for internal circuit of music sensor block, music sensor output pin is connected to the collector of
NPN type directly, output level will be “high” when sensing no signal. And output level will be “low”
when sensing signal.
Connection with microcomputer, it is requested to use external pull up resistor (RL = 10 kΩ to 22 kΩ)
Note: Supply voltage of MSOUT pin must be less than VCC voltage.
The Tolerances of External Components
For Dolby NR precision securing, please use external components shown at figure 7. If leak-current are a
few electrolytic-capacitor, it can be applicable to C5 and C23.
VEE
C23
0.1µ
±10%
42
DET (L)
HA12215F
DET (R)
1
C5
0.1µ
±10%
BIAS1
2
R5
33k
±2%
VEE
Figure 7 Tolerance of External Components
Low-Boost
EQIN
24.6dB
4.8k
REC EQ
EQOUT
4.8k
BOOST
C9(C19)
0.47µ
+
Figure 8 Example of Low Boost Circuit
External components shown figure 8 gives frequency response to take 6 dB boost. And cut off frequency
can request it, by C9 (C19).
Rev.5, Oct. 1999, page 13 of 69
HA12215F
REC Equalizer
The outlines of REC Equalizing frequency characteristics are shown by figure 9. Those peak level can be
set up by supplying voltage. (0 V to 5 V, GND = 0 V) to pin 10 (GPCAL).
And whole band gain can be set up by supplying voltage (0 V to 5 V, GND = 0 V) to pin 11 (RECCAL).
Both setting up range are ±4.5 dB. In case that you do not need setting up, pin 10, pin 11 should be open
bias.
Note: Depending on the employed REC/PB head and test tape characteristics, there is a rare case that the
REC-EQ characteristics of this LSI can not be matched to the required characteristics because of
built-in resistors which determined the REC-EQ parameters in this care, please inquire the
responsible agent because of the adjustment of built-in resistor is necessary.
RECCAL
Gain (dB)
GPCAL
Frequency (Hz)
Figure 9 Frequency Characteristics of REC Equalizer
Bias Switch
HA12215F built-in DC voltage generator for bias oscillator and its bias switches.
External resistor R19, R20, R21 which corresponded with tape positions and bias out voltage are relater
with below.
.
Vbias =
.
R22
× (VCC − VEE − 0.7) + VEE [V]
(R19 or R20 or R21) + R22
Bias switch follows to a logic of pin 19 (B / Norm / Crom / Metal).
Note: A current that flows at bias out pin, please use it less than 5 mA.
Rev.5, Oct. 1999, page 14 of 69
HA12215F
BIAS (N)
Pin 33
BIAS (C)
Pin 32
BIAS (M)
Pin 31
R21
Vbias
R20
R19
R22
VEE
Figure 10 External Components of Bias Block
Automatic Level Control
ALC is the input decay rate variable system. It has internal variable resistors of pin 55 (pin 44) by
RECOUT signal that is inputted to pin 9 (pin 34).
The operation is similitude to MS, detected by pin 13.
The signal input pin is pin 56 (pin 43). Resistor R1, R2 and capacitor C2, external components, for the
input circuit are commended as figure 12. There are requested to use value of the block diagram figure for
performance maintenance of S/N, T.H.D. etc.
Figure 11 shows the relation with R1 front RIN point and ROUT.
ALC operation level acts for the center of +4.5 dB at tape position TYPE I, IV and the center of +2.5 dB at
tape position TYPE II, to standard level (300 mVrms).
Then, adopted maximum value circuit, ALC is operated by a large channel of a signal.
ROUT
ALC ON/OFF can switch it by pin 15. Please do ALC ON, after it does for one time ALC OFF inevitably,
for ALC time to start usefully (when switching PB → PASS, when switching PB → PASS), in order to
reset ALC circuit.
300mV
TYPE II
2.5dB
TYPE I, IV
4.5dB
RIN
Figure 11 ALC Operation Level
Rev.5, Oct. 1999, page 15 of 69
HA12215F
RIN
56
Input
C2
0.1µ
55
25.5mV
ALC
21.4dB
ROUT
300mV
8
Output
C4
ALC
R2
2.2k
9
13
ALCIN
ALCDET
R12
VCC
+
R1
15k
C12
Figure 12 ALC Block Diagram
ALC Operation Level Necessary
ALC operation level is variable to pin 12 bias (ALC-CAL: 0 to 5 V), and its range is ±4.0 dB.
Unnecessary, pin 12 is unforced.
ROUT
ALC-CAL = 5V
ALC-CAL = 0V
RIN
Figure 13 ALC-CAL Characteristics
Rev.5, Oct. 1999, page 16 of 69
HA12215F
Absolute Maximum Ratings
Item
Symbol
Rating
Unit
Max supply voltage
VCC max
16
V
Power dissipation
Pd
625
mW
Operating temperature
Topr
–40 to +75
°C
Storage temperature
Tstg
–55 to +125
°C
Note
Ta ≤ 75°C
Rev.5, Oct. 1999, page 17 of 69
Rev.5, Oct. 1999, page 18 of 69
PASS
PASS
PB
PB
PB
PB
PB
PB
REC
REC
120
120
120
70
70
120
120
120
120
120
OFF
OFF
ON
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
CROM
NORM,
METAL
NORM
NORM
NORM
NORM/
CROM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
NORM
Notes: 1. Other IC-condition : REC-MUTE OFF, Normal tape, Normal speed, Bias OFF
2. VCC = ±6.0 V
3. For inputting signal to one side channel
MS sensing level
MS output low level
MS output leak current
ALC operate level
GV PA
∆GV
MUTE
GV EQ 1k
GV EQ 10k
VON
VOL
IOH
ALC (1)
ALC (2)
A/B
A/B
A
A/B
A/B
A
A
A
A
A
120
120
120
120
120
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
120
120
120
120
120
120
120
120
120
A
A/B
A
A
A
A
A
A
A
Pass AMP. gain
Gain deviation
MUTE ATT.
70µ EQ gain
PB
PB
REC
REC
REC
REC
REC
REC
REC
A
A/B
A
A/B
A
OFF
OFF
OFF
ON
ON
ON
ON
ON
ON
ON
REC
OFF
PB
OFF REC
OFF
PB
OFF REC/PB
Symbol
IQ
GV PB
GV REC
ENC 2k (1)
ENC 2k (2)
ENC 5k (1)
ENC 5k (2)
Vo max
S/N
Total Harmonic Distortion THD
Channel separation
CTRL (1)
CTRL (2)
Crosstalk
CT A/B
CT R/P
Signal handling
Signal to noise ratio
B-type
Encode boost
Item
Quiescent current
Input AMP. gain
IC Condition *1
NR REC/PB
120µ/ LINE
B
ON/OFF /PASS A/B
70µ MUTE N/C/M
Test Condition
1k
1k
1k
1k
10k
5k


1k
1k
1k
1k
1k
1k
1k

1k
1k
2k
2k
5k
5k
1k
1k
0
0
+12
0
0



+12
+12
0
+12
+12
+12
+12

0
0
−20
−30
−20
−30


fin RECOUT
(Hz) level (dB)
0.05 0.3
80.0 
85.0 
80.0 
80.0 

70.0
70.0
70.0
70.0
43
48/46
43
48/46
48/43
4
3
3
3
3
dB 51/53 48/46 3
dB 51/53 48/46 3
dB 51 48
3
dB 51/53 48/46 3
51/53 48/46 3
dB 51 48 
51 48 
V
 
µA 
dB 56 43
4
56 43
4
%
56
dB 51/53
56
dB 51/53
51/56
40
40
40
40
40



39
39
39
40
40
40
40















3
L COM Remark


40

40

39

39

39

39

2
39

39

Output
Max Unit R
L
R
 
35.0 mA 
28.5 dB 51/53 48/46 3
28.0
3
56 43
5.8 dB 56 43
4
56 43
4
10.0
56 43
4
4.7
56 43
4
9.7
dB 56 43

4
dB 56 43

4
Typ

27.0
26.5
4.3
8.5
3.2
8.2
13.0
70.0
Min

25.5
25.0
2.8
7.0
1.7
6.7
12.0
64.0
GV PA − GV PB 25.5 27.0 28.5
−1.0 0.0 1.0
70.0 80.0 
24.0 25.5 27.0
20.8 22.3 23.8
−26.0 −22.0 −18.0
 1.0 1.5

 2.0
2.0 4.5 7.0
0.0 2.5 5.0
THD=1%
Rg=5.1kΩ,
CCIR/ARM
Other
No signal
Input
Application Terminal
(Ta = 25°C, VCC = ±7 V, Dolby Level = REC-OUT Level = 300 mVrms = 0 dB)
HA12215F
Electrical Characteristics
Symbol
S/N (EQ)
Test Condition
TAPE SPEED
NORM NORM Rg = 5.1kΩ, A-WTG Filter
(0dB = −5dBs at EQOUT)
Equalizer maximum input Vin max (EQ) NORM NORM f = 1kHz, THD = 1%,
Vin = −26dBs = 0dB
Equalizer total harmonic T.H.D.1 (EQ) NORM NORM f = 1kHz, Vin = −26dBs
distortion
f = 1kHz, Vin = −30dBs
T.H.D.2 (EQ)
Equalizer offset voltage Vofs (EQ)
NORM NORM No-Signal
Equalizer
GVEQ-NN1
NORM NORM f = 3kHz, Vin = −46dBs
frequency response
f = 8kHz, Vin = −46dBs
G
VEQ-NN2
(NORM - NORM)
f = 12kHz, Vin = −46dBs
GVEQ-NN3
GVEQ-CN1
Equalizer
CROM NORM f = 3kHz, Vin = −46dBs
frequency response
f = 8kHz, Vin = −46dBs
GVEQ-CN2
(CROM - NORM)
f = 12kHz, Vin = −46dBs
GVEQ-CN3
METAL NORM f = 3kHz, Vin = −46dBs
Equalizer
GVEQ-MN1
frequency response
f = 8kHz, Vin = −46dBs
GVEQ-MN2
(METAL - NORM)
GVEQ-MN3
f = 12kHz, Vin = −46dBs
Equalizer
GVEQ-NH1
NORM HIGH f = 5kHz, Vin = −46dBs
frequency response
f = 15kHz, Vin = −46dBs
GVEQ-NH2
(NORM - High)
f = 20kHz, Vin = −46dBs
GVEQ-NH3
Equalizer
GVEQ-CH1
CROM HIGH f = 5kHz, Vin = −46dBs
frequency Response
f = 15kHz, Vin = −46dBs
GVEQ-CH2
(CROM - High)
f = 20kHz, Vin = −46dBs
GVEQ-CH3
METAL HIGH f = 5kHz, Vin = −46dBs
Equalizer
GVEQ-MH1
frequency response
f = 15kHz, Vin = −46dBs
GVEQ-MH2
(METAL - High)
GVEQ-MH3
f = 20kHz, Vin = −46dBs
REC-MUTE attenuation REC-MUTE NORM NORM f = 1kHz, Vin = −14dBs
Item
Equalizer S/N
23.9 dB
28.4 dB
22.9 dB
27.7 dB
31.9 dB
24.4 dB
26.0 dB
28.5 dB
dB

21.9
25.9
21.4
25.7
29.4
22.9
24.0
26.0
70
SW22 (L), SW23 (R) OFF
SW22 (L), SW23 (R) OFF
SW22 (L), SW23 (R) OFF
SW22 (L), SW23 (R) OFF
SW22 (L), SW23 (R) OFF
SW22 (L), SW23 (R) OFF
SW22 (L), SW23 (R) OFF
SW22 (L), SW23 (R) OFF
SW22 (L), SW23 (R) OFF
19.9
23.4
19.9
23.7
26.9
21.4
22.0
23.5
60
0.5 %
%
0.5
500 mV
21.8 dB
27.9 dB
35.1 dB
26.3 dB
32.5 dB
39.0 dB
27.1 dB
29.9 dB
33.3 dB
18.0 dB
SW22 (L), SW23 (R) OFF  0.2
SW22 (L), SW23 (R) OFF  0.2
SW22 (L), SW23 (R) OFF −500 0
SW22 (L), SW23 (R) OFF 18.8 20.3
SW22 (L), SW23 (R) OFF 23.9 25.9
SW22 (L), SW23 (R) OFF 30.1 32.6
SW22 (L), SW23 (R) OFF 23.3 24.8
SW22 (L), SW23 (R) OFF 28.5 30.5
SW22 (L), SW23 (R) OFF 34.0 36.5
SW22 (L), SW23 (R) OFF 24.1 25.6
SW22 (L), SW23 (R) OFF 25.9 27.9
SW22 (L), SW23 (R) OFF 28.3 30.8
SW22 (L), SW23 (R) OFF 15.0 16.5
dB

Min Typ Max Unit
dB
55 58

SW22 (L), SW23 (R) OFF 10.5 12.5
SW22 (L), SW23 (R) OFF
(Ta = 25°C, VCC = ±7 V)
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
38
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
38
5
5
5
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36
36























Application Terminal
Input
Output
R
L
R
L COM Remark
5
38
7
36

HA12215F
Electrical Characteristics (cont)
Rev.5, Oct. 1999, page 19 of 69
−0.2
2.0
4.0
RL = 2.4kΩ + 270Ω
Bias off
VIL
Rev.5, Oct. 1999, page 20 of 69
VIM
VIH
1.0
3.0
5.3



Typ
4.5
−4.5
4.5
−4.5
−4.0
4.0
V
V
V
Max Unit
6.0 dB
−3.0 dB
6.0 dB
−3.0 dB
−3.0 dB

dB
VCC VCC
V
−1.4 −0.7 
VEE
VEE
−0.1 VEE
+0.1 V
Min
GV EQ-NN1 = 0dB 3.0
−6.0
GV EQ-NN3 = 0dB 3.0
−6.0
ALC (1) = 0dB

3.0
Bias out offset
VREC-CAL = 5V
VREC-CAL = 0V
VGP-CAL = 0V
VGP-CAL = 5V
Control voltage
Bias out maximum level
ALC CAL response
GP CAL response
Vin = −46dBs,
Vin = −46dBs,
Vin = −46dBs,
Vin = −46dBs,
VALC-CAL = 0V
VALC-CAL = 5V
Test Condition
TAPE SPEED
NORM NORM f = 3kHz,
f = 3kHz,
NORM NORM f = 12kHz,
f = 12kHz,
NORM NORM f = 1kHz,
f = 1kHz,
RL = 2.4kΩ + 270Ω
Symbol
R-CAL1
R-CAL2
GP-CAL1
GP-CAL2
ALC-CAL1
ALC-CAL2
Bias on
Item
REC CAL response
(Ta = 25°C, VCC = ±7 V)




















15 to 20
22 to 25
19, 24
15 to 20
22 to 25
31 to 33
Application Terminal
Input
Output
R
L
R
L COM Remark
5
38
7
36

5
38
7
36

5
38
7
36

5
38
7
36

56 43
4
39

56 43
4
39


 

 31 to 33
HA12215F
Electrical Characteristics (cont)
OFF
ON SW2
Rch
SW4
SW3
R32
10k
B
R
RIN (R)
R
B
R2
10k
C2
0.0047µ
AIN (R)
C1
0.47µ
C27
0.47µ
VEE
C26
0.0047µ
C25
0.47µ
BIN (L)
R31
2.2k
R4
13k
C4
0.1µ
R3
2.2k ALC (R)
C3
0.47µ
+
EQ
A
BIN (R)
R1
10k
R33
10k
AIN (L)
A
EQ
C24
0.1µ
56
55
54
53
52
51
50
49
48
47
46
45
44
43
RIN (L)
+
Notes: 1. Resistor tolerance are ±1%.
2. Capacitor tolerance are ±1%.
3. Unit R: Ω, C: F.
AC VM1
SW1
Lch
C29
100µ
+
Audio
SG
+
DC −7V
SOURCE2
R30
13k
+
C5
0.1µ
2.2µ
2.2µ
0.47µ
C20
JP3 OFF
SW
22 ON
C18
2.2µ
C17
0.47µ
R22
2.4k
R21
2k
C
R20
910
SW21
N
R19
270
M
1
R5
33k
5
REC
R6
10k
EQ
R8
7.5k
R9
16k
R7
20k
ON
R10
5.1k
PB
SW8
REC
R11
10k
+
7
OFF
+ C10
C9 2.2µ
0.47µ
6
+ C8 + SW
23
0.47µ JP1
4
+
C7
2.2µ
3
C6
2.2µ
8
ROUT (R)
EQ
9
C11
0.47µ
LPF
−
+
MS
R12
1M
C12
10µ
R13
330k
10 11 12 13 14
ALC
BIAS
ALCDET
PB
SW6
2
EQ
Dolby
B-NR
+
Dolby
B-NR
EQ
42 41 40 39 38 37 36 35 34 33 32 31 30 29
R29
22k
R25
16k
C21
R24
5.1k
R27
20k C19
0.47µ
REC
EQ
+
C23
0.1µ
+
R28
10k
C22
+
R26
7.5k
+
REC
SW7
PB
ROUT (L)
C15
22µ
VCC
C14
22µ
C13
0.33µ
15
SW9
16 SW10
17 SW11
18 SW12
19 SW13
20 SW14
21
22
23
24 SW17
MAOUT
R18
3.9k
DC VM2
ON
B
OFF
120
A
N
70
OFF
M
C
N
H
ON
ALC ON / OFF
PB A / B
A 120 / 70
NORM / HIGH
B NORM / CROM / METAL
BIAS ON / OFF
OFF LM ON / OFF
PASS
PB
REC REC / PB / PASS
R17
ON
22k
SW16 OFF NR ON / OFF
R16
OFF
22k
RM ON / OFF
SW15 ON
ON
C16
1000p
MSOUT
MSIN
25 SW18
26
27
28
+
ALCIN (L)
+
+
EQ
MSDET
+
+
SW5
PB
SW20
Rch
Lch
DC VM1
JP2
DC +7V
+ SOURCE1
R14
10k
R15
10k
DC +5V
SOURCE4
DC +2.5V
SOURCE3
C28
100µ
BIAS
Rch
Lch
AC VM2
Oscillo
scope
Distortion
analyzer
Noise
meter
noise meter
with ccir/arm filter
and a-wtg filter
SW20
HA12215F
Test Circuit
ALCCAL
RECCAL
GPCAL
ALCIN (R)
Rev.5, Oct. 1999, page 21 of 69
HA12215F
Characteristic Curves
Quiescent Current vs. Split Supply Voltage (REC mode)
35
Quiescent Current IQ (mA)
RECmode
NR-OFF, ALC ON, REC-MUTE ON, BIAS OFF
NR-OFF, ALC ON, REC-MUTE OFF, BIAS OFF
NR-ON, ALC OFF, REC-MUTE OFF, BIAS ON
Other switch is all Low
30
25
20
5
6
7
8
Split Supply Voltage (V)
9
Quiescent Current vs. Split Supply Voltage (PB mode)
35
Quiescent Current IQ (mA)
PBmode
NR-OFF, LINE-MUTE OFF, BIAS OFF
NR-ON, LINE-MUTE ON, BIAS OFF
NR-ON, LINE-MUTE OFF, BIAS ON
Other switch is all Low
30
25
20
5
Rev.5, Oct. 1999, page 22 of 69
6
7
8
Split Supply Voltage (V)
9
HA12215F
Input Amp. Gain vs. Frequency (1)
40
VS = ±7.0V
AIN → RECOUT
BIN
Gain (dB)
30
NR-ON
20
NR-OFF
10
0
−10
10
100
1k
10k
Frequency (Hz)
100k
1M
Input Amp. Gain vs. Frequency (2)
40
VS = ±7.0V
AIN → PBOUT
BIN
30
Gain (dB)
PASSmode
20
PBmode
10
0
−10
10
100
1k
10k
Frequency (Hz)
100k
1M
Rev.5, Oct. 1999, page 23 of 69
HA12215F
Input Amp. Gain vs. Frequency (3)
40
VS = ±7.0V
RECmode
30
PBOUT
Gain (dB)
RECOUT
20
10
0
−10
10
100
1k
10k
Frequency (Hz)
100k
1M
100k
1M
Input Amp. Gain vs. Frequency (4)
40
VS = ±7.0V
AIN → PBOUT
BIN
30
120µ
Gain (dB)
70µ
20
10
0
−10
10
100
Rev.5, Oct. 1999, page 24 of 69
1k
10k
Frequency (Hz)
HA12215F
Encode Boost vs. Frequency
12
VS = ±7.0V
Dolby B-NR
−40dB
Encode Boost (dB)
10
8
−30dB
6
4
−20dB
2
−10dB
0dB
0
100
1k
Frequency (Hz)
10k
20k
Decode Cut vs. Frequency
0
0dB
−10dB
−2
Decode Cut (dB)
−20dB
−4
−6
−30dB
−8
−40dB
−10
VS = ±7.0V
Dolby B-NR
−12
100
1k
Frequency (Hz)
10k
20k
Rev.5, Oct. 1999, page 25 of 69
HA12215F
Signal Handling (1)
30
RECmode
Rin → RECOUT = 300mVrms = 0dB
f = 1kHz, T.H.D. ⋅=⋅ 1%
NR-OFF
NR-ON
Vomax (dB)
25
20
15
5
6
7
8
Split Supply Voltage (V)
9
Signal Handling (2)
25
AIN
→ PBOUT = 580mVrms = 0dB
BIN
f = 1kHz, T.H.D. ⋅=⋅ 1%
NR-OFF
PBmode
NR-ON
PASSmode
Vomax (dB)
20
15
10
5
Rev.5, Oct. 1999, page 26 of 69
6
7
8
Split Supply Voltage (V)
9
HA12215F
Signal to Noise Ratio vs. Split Supply Voltage (1)
Signal to Noise Ratio (dB)
85
80
f = 1kHz, RECmode
Rin → RECOUT = 300mVrms = 0dB
Rin → PBOUT = 580mVrms = 0dB
NR-OFF
RECOUT
NR-ON
NR-OFF
PBOUT
NR-ON
CCIR/ARM filter
75
70
65
5
6
9
7
8
Split Supply Voltage (V)
Signal to Noise Ratio vs. Split Supply Voltage (2)
Signal to Noise Ratio (dB)
85
80
75
f = 1kHz, PBmode
AIN
→ PBOUT = 580mVrms = 0dB
BIN
AIN, NR-OFF
BIN, NR-OFF
AIN, NR-ON
BIN, NR-ON
CCIR/ARM filter
70
65
5
6
7
8
Split Supply Voltage (V)
9
Rev.5, Oct. 1999, page 27 of 69
HA12215F
Signal to Noise Ratio vs. Split Supply Voltage (3)
Signal to Noise Ratio (dB)
85
80
75
f = 1kHz, PBmode
AIN
→ RECOUT = 300mVrms = 0dB
BIN
AIN, NR-OFF
BIN, NR-OFF
AIN, NR-ON
BIN, NR-ON
CCIR/ARM filter
70
65
5
6
7
8
Split Supply Voltage (V)
9
Signal to Noise Ratio vs. Split Supply Voltage (4)
Signal to Noise Ratio (dB)
85
80
75
f = 1kHz, PASSmode
AIN
→ PBOUT = 580mVrms = 0dB
BIN
AIN, Lch
BIN, Lch
AIN, Rch
BIN, Rch
CCIR/ARM filter
70
65
5
Rev.5, Oct. 1999, page 28 of 69
6
7
8
Split Supply Voltage (V)
9
HA12215F
Total Harmonic Distortion vs. Split Supply Voltage (1)
(RECmode, NR-OFF)
1.0
T.H.D. (%)
RECmode, NR-OFF
RIN → RECOUT = 300mVrms
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 80kHz LPF)
RIN → PBOUT = 580mVrms
1kHz (400Hz HPF + 30kHz LPF)
0.1
0.01
5
6
9
7
8
Split Supply Voltage (V)
Total Harmonic Distortion vs. Split Supply Voltage (2)
(RECmode, NR-ON)
1.0
T.H.D. (%)
RECmode, NR-ON
RIN → RECOUT = 300mVrms
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 80kHz LPF)
RIN → PBOUT = 580mVrms
1kHz (400Hz HPF + 30kHz LPF)
0.1
0.01
5
6
7
8
Split Supply Voltage (V)
9
Rev.5, Oct. 1999, page 29 of 69
HA12215F
Total Harmonic Distortion vs. Split Supply Voltage (3)
(PBmode, NR-OFF)
T.H.D. (%)
1.0
PBmode, NR-OFF
AIN
→ PBOUT = 580mVrms
BIN
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 80kHz LPF)
AIN
→ RECOUT = 300mVrms
BIN
1kHz (400Hz HPF + 30kHz LPF)
0.1
0.01
5
7
8
Split Supply Voltage (V)
9
Total Harmonic Distortion vs. Split Supply Voltage (4)
(PBmode, NR-ON)
1.0
T.H.D. (%)
6
PBmode, NR-ON
AIN
→ PBOUT = 580mVrms
BIN
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 80kHz LPF)
AIN
→ RECOUT = 300mVrms
BIN
1kHz (400Hz HPF + 30kHz LPF)
0.1
0.01
5
Rev.5, Oct. 1999, page 30 of 69
6
7
8
Split Supply Voltage (V)
9
HA12215F
Total Harmonic Distortion vs. Split Supply Voltage (5)
(PASSmode, NR-OFF)
1.0
T.H.D. (%)
PASSmode, NR-OFF
AIN → PBOUT = 580mVrms
100Hz (30kHz LPF)
1kHz (400Hz HPF + 30kHz LPF)
10kHz (400Hz HPF + 80kHz LPF)
0.1
0.01
5
10
6
9
7
8
Split Supply Voltage (V)
Total Harmonic Distortion vs. Output Level (1)
(RECmode, NR-OFF)
RECmode, NR-OFF
VS = ±7.0V
100Hz
1kHz
10kHz
RIN → RECOUT = 300mVrms = 0dB
T.H.D. (%)
1.0
0.1
0.01
−10
−5
0
5
10
15
Output Level Vout (dB)
20
25
Rev.5, Oct. 1999, page 31 of 69
HA12215F
Total Harmonic Distortion vs. Output Level (2)
(RECmode, NR-ON)
10
RECmode, NR-ON
VS = ±7.0V
100Hz
1kHz
10kHz
RIN → RECOUT = 300mVrms = 0dB
T.H.D. (%)
1.0
0.1
0.01
−10
−5
20
25
Total Harmonic Distortion vs. Output Level (3)
(PBmode, NR-OFF)
10
PBmode, NR-OFF
VS = ±7.0V
100Hz
1kHz
10kHz
AIN
→ PBOUT = 580mVrms = 0dB
BIN
T.H.D. (%)
1.0
0
5
10
15
Output Level Vout (dB)
0.1
0.01
−10
Rev.5, Oct. 1999, page 32 of 69
−5
0
5
10
15
Output Level Vout (dB)
20
25
HA12215F
10
PBmode, NR-ON
VS = ±7.0V
100Hz
1kHz
10kHz
AIN
→ PBOUT = 580mVrms = 0dB
BIN
T.H.D. (%)
1.0
Total Harmonic Distortion vs. Output Level (4)
(PBmode, NR-ON)
0.1
0.01
−10
10
0
5
10
15
Output Level Vout (dB)
20
25
Total Harmonic Distortion vs. Output Level (5)
(PASSmode, NR-OFF)
PASSmode, NR-OFF
VS = ±7.0V
100Hz
1kHz
10kHz
AIN
→ PBOUT = 580mVrms = 0dB
BIN
T.H.D. (%)
1.0
−5
0.1
0.01
−10
−5
0
5
10
15
Output Level Vout (dB)
20
25
Rev.5, Oct. 1999, page 33 of 69
HA12215F
Total Harmonic Distortion vs. Frequency (1)
RECmode, NR-OFF, VS = 7.0V
RIN
RECOUT = 300mVrms
10dB
0dB
10dB
T.H.D. (%)
0.1
0.01
100
1k
Frequency (Hz)
10k
100k
Total Harmonic Distortion vs. Frequency (2)
RECmode, NR-ON, VS = 7.0V
RIN
RECOUT = 300mVrms
10dB
0dB
10dB
T.H.D. (%)
0.1
0.01
100
Rev.5, Oct. 1999, page 34 of 69
1k
Frequency (Hz)
10k
100k
HA12215F
Total Harmonic Distortion vs. Frequency (3)
PBmode, NR-OFF, VS = ±7.0V
AIN
→ PBOUT = 580mVrms
BIN
10dB
0dB
−10dB
T.H.D. (%)
0.1
0.01
100
1k
Frequency (Hz)
10k
100k
Total Harmonic Distortion vs. Frequency (4)
PBmode, NR-ON, VS = ±7.0V
AIN
→ PBOUT = 580mVrms
BIN
10dB
0dB
−10dB
T.H.D. (%)
0.1
0.01
100
1k
Frequency (Hz)
10k
100k
Rev.5, Oct. 1999, page 35 of 69
HA12215F
Total Harmonic Distortion vs. Frequency (5)
PASSmode, NR-OFF, VS = ±7.0V
AIN
→ PBOUT = 580mVrms
BIN
10dB
0dB
−10dB
T.H.D. (%)
0.1
0.01
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (R→L) (1)
−20
VS = ±5.0V, ±7.0V, ±8.0V
RIN → RECOUT, Vin = +12dB
RECmode, R → L
Channel Separation (dB)
−40
−60
NR-ON
−80
NR-OFF
−100
−120
10
Rev.5, Oct. 1999, page 36 of 69
100
1k
Frequency (Hz)
10k
100k
HA12215F
Channel Separation vs. Frequency (R→L) (2)
−20
VS = ±5.0V, ±7.0V, ±8.0V
RIN → PBOUT, Vin = +12dB
RECmode, R → L
Channel Separation (dB)
−40
−60
−80
NR-ON / OFF
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L→R) (3)
−20
VS = ±5.0V, ±7.0V, ±8.0V
RIN → RECOUT, Vin = +12dB
RECmode, L → R
Channel Separation (dB)
−40
−60
NR-ON
−80
NR-OFF
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Rev.5, Oct. 1999, page 37 of 69
HA12215F
Channel Separation vs. Frequency (L→R) (4)
−20
VS = ±5.0V, ±7.0V, ±8.0V
RIN → PBOUT, Vin = +12dB
RECmode, L → R
Channel Separation (dB)
−40
−60
−80
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (R→L) (1)
0
VS = ±5.0V, ±7.0V, ±8.0V
AIN → PBOUT, Vin = +10dB
R→L
Channel Separation (dB)
−20
−40
−60
NR-OFF
NR-ON
−80
−100
10
Rev.5, Oct. 1999, page 38 of 69
100
1k
Frequency (Hz)
10k
100k
HA12215F
Channel Separation vs. Frequency (R→L) (2)
0
VS = ±5.0V, ±7.0V, ±8.0V
AIN → RECOUT, Vin = +10dB
R→L
Channel Separation (dB)
−20
−40
−60
NR-ON / OFF
−80
−100
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (R→L) (3)
0
VS = ±5.0V, ±7.0V, ±8.0V
BIN → PBOUT, Vin = +10dB
R→L
Channel Separation (dB)
−20
−40
−60
NR-OFF
−80
−100
10
NR-ON
100
1k
Frequency (Hz)
10k
100k
Rev.5, Oct. 1999, page 39 of 69
HA12215F
Channel Separation vs. Frequency (R→L) (4)
0
VS = ±5.0V, ±7.0V, ±8.0V
BIN → RECOUT, Vin = +10dB
R→L
Channel Separation (dB)
−20
−40
−60
NR-ON / OFF
−80
−100
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L→R) (5)
0
VS = ±5.0V, ±7.0V, ±8.0V
AIN → PBOUT, Vin = +10dB
L→R
Channel Separation (dB)
−20
−40
−60
NR-OFF
−80
−100
10
Rev.5, Oct. 1999, page 40 of 69
NR-ON
100
1k
Frequency (Hz)
10k
100k
HA12215F
Channel Separation vs. Frequency (L→R) (6)
0
VS = ±5.0V, ±7.0V, ±8.0V
AIN → RECOUT, Vin = +10dB
L→R
Channel Separation (dB)
−20
−40
−60
NR-ON / OFF
−80
−100
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L→R) (7)
0
VS = ±5.0V, ±7.0V, ±8.0V
BIN → PBOUT, Vin = +10dB
L→R
Channel Separation (dB)
−20
−40
−60
−80
NR-OFF
NR-ON
−100
10
100
1k
Frequency (Hz)
10k
100k
Rev.5, Oct. 1999, page 41 of 69
HA12215F
Channel Separation vs. Frequency (L→R) (8)
0
VS = ±5.0V, ±7.0V, ±8.0V
BIN → RECOUT, Vin = +10dB
L→R
Channel Separation (dB)
−20
−40
−60
−80
NR-ON / OFF
−100
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (R→L) (1)
0
VS = ±5.0V, ±7.0V, ±8.0V
AIN → PBOUT, Vin = +10dB
PASSmode, R → L
Channel Separation (dB)
−20
−40
−60
−80
−100
10
Rev.5, Oct. 1999, page 42 of 69
100
1k
Frequency (Hz)
10k
100k
HA12215F
Channel Separation vs. Frequency (R→L) (2)
0
VS = ±5.0V, ±7.0V, ±8.0V
BIN → PBOUT, Vin = +10dB
PASSmode, R → L
Channel Separation (dB)
−20
−40
−60
−80
−100
10
100
1k
Frequency (Hz)
10k
100k
Channel Separation vs. Frequency (L→R) (3)
0
VS = ±5.0V, ±7.0V, ±8.0V
AIN → PBOUT, Vin = +10dB
PASSmode, L → R
Channel Separation (dB)
−20
−40
−60
−80
−100
10
100
1k
Frequency (Hz)
10k
100k
Rev.5, Oct. 1999, page 43 of 69
HA12215F
Channel Separation vs. Frequency (L→R) (4)
0
VS = ±5.0V, ±7.0V, ±8.0V
BIN → PBOUT, Vin = +10dB
PASSmode, L → R
Channel Separation (dB)
−20
−40
−60
−80
−100
10
100
1k
Frequency (Hz)
10k
100k
Crosstalk vs. Frequency (AIN→BIN) (1)
−20
VS = ±5.0V, ±7.0V, ±8.0V
PBmode, PBOUT
Vin = +12dB, AIN → BIN
−40
Crosstalk (dB)
NR-OFF
−60
NR-ON
−80
−100
−120
10
Rev.5, Oct. 1999, page 44 of 69
100
1k
Frequency (Hz)
10k
100k
HA12215F
Crosstalk vs. Frequency (BIN→AIN) (2)
−20
VS = ±5.0V, ±7.0V, ±8.0V
PBmode, PBOUT
Vin = +12dB, BIN → AIN
Crosstalk (dB)
−40
−60
NR-OFF
−80
NR-ON
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Crosstalk vs. Frequency (AIN→BIN) (3)
−20
VS = ±7.0
PBmode, RECOUT
Vin = +12dB, AIN → BIN
Crosstalk (dB)
−40
−60
NR-ON / OFF
−80
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Rev.5, Oct. 1999, page 45 of 69
HA12215F
Crosstalk vs. Frequency (BIN→AIN) (4)
−20
VS = ±7.0
PBmode, RECOUT
Vin = +12dB, BIN → AIN
Crosstalk (dB)
−40
−60
NR-ON / OFF
−80
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Crosstalk vs. Frequency (PBmode→PASSmode) (1)
−20
Crosstalk (dB)
−40
VS = ±5.0, ±7.0, ±8.0
AIN → RECOUT
Vin = +12dB
PBmode → PASSmode
−60
−80
−100
−120
10
Rev.5, Oct. 1999, page 46 of 69
100
1k
Frequency (Hz)
10k
100k
HA12215F
Crosstalk vs. Frequency (PBmode→PASSmode) (2)
−20
Crosstalk (dB)
−40
VS = ±5.0, ±7.0, ±8.0
BIN → RECOUT
Vin = +12dB
PBmode → PASSmode
−60
−80
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Crosstalk vs. Frequency (PASSmode→PBmode) (3)
−20
Crosstalk (dB)
−40
VS = ±5.0, ±7.0, ±8.0
RIN → RECOUT, Lch
Vin = +12dB
PASSmode → PBmode
−60
−80
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Rev.5, Oct. 1999, page 47 of 69
HA12215F
Crosstalk vs. Frequency (RECmode→PASSmode) (Rch) (1)
−20
Crosstalk (dB)
−40
VS = ±5.0, ±7.0, ±8.0
RIN → PBOUT, Rch
Vin = +12dB
RECmode → PASSmode
−60
8V
5V
−80
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Crosstalk vs. Frequency (RECmode→PASSmode) (Lch) (2)
−20
Crosstalk (dB)
−40
VS = ±5.0, ±7.0, ±8.0
RIN → PBOUT, Lch
Vin = +12dB
RECmode → PASSmode
−60
5V
−80
8V
−100
−120
10
Rev.5, Oct. 1999, page 48 of 69
100
1k
Frequency (Hz)
10k
100k
HA12215F
Crosstalk vs. Frequency (PASSmode→RECmode) (Rch) (1)
−20
Crosstalk (dB)
−40
VS = ±5.0, ±7.0, ±8.0
AIN → PBOUT, Rch
Vin = +12dB
PASSmode → RECmode
−60
5V
−80
8V
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Crosstalk vs. Frequency (PASSmode→RECmode) (Rch) (2)
−20
Crosstalk (dB)
−40
VS = ±5.0, ±7.0, ±8.0
BIN → PBOUT, Rch
Vin = +12dB
PASSmode → RECmode
−60
8V
−80
5V
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Rev.5, Oct. 1999, page 49 of 69
HA12215F
Crosstalk vs. Frequency (PASSmode→RECmode) (Lch) (3)
−20
Crosstalk (dB)
−40
VS = ±5.0, ±7.0, ±8.0
AIN → PBOUT, Lch
Vin = +12dB
PASSmode → RECmode
−60
5V
8V
−80
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Crosstalk vs. Frequency (PASSmode→RECmode) (Lch) (4)
−20
Crosstalk (dB)
−40
VS = ±5.0, ±7.0, ±8.0
BIN → PBOUT, Lch
Vin = +12dB
PASSmode → RECmode
−60
5V
−80
8V
−100
−120
10
Rev.5, Oct. 1999, page 50 of 69
100
1k
Frequency (Hz)
10k
100k
HA12215F
Line Mute vs. Frequency
−20
Line Mute (dB)
VS = ±7.0V
AIN
→ PBOUT
BIN
Vin = +12dB
−40 PBmode
−60
−80
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
REC Mute Attenuation vs. Frequency
−20
REC Mute Attenuation (dB)
−40
VS = ±7.0V
EQIN → EQOUT
Norm speed, Norm tape
Vin = +14dB
−60
−80
−100
−120
10
100
1k
Frequency (Hz)
10k
100k
Rev.5, Oct. 1999, page 51 of 69
HA12215F
Ripple Rejection Ratio vs. Frequency (RECmode) (1)
Ripple Rejection Ratio R.R.R. (dB)
20
VS = ±7.0V
VCC in
RECmode
EQOUT(NN)
0
−20
RECOUT
NR-ON
PBOUT
−40
RECOUT
NR-OFF
−60
−80
10
100
1k
Frequency (Hz)
10k
100k
Ripple Rejection Ratio vs. Frequency (RECmode) (2)
Ripple Rejection Ratio R.R.R. (dB)
20
VS = ±7.0V
VEE in
RECmode
EQOUT(NN)
0
−20
RECOUT
NR-ON
RECOUT
NR-OFF
−40
PBOUT
−60
−80
10
Rev.5, Oct. 1999, page 52 of 69
100
1k
Frequency (Hz)
10k
100k
HA12215F
Ripple Rejection Ratio vs. Frequency (PBmode) (1)
Ripple Rejection Ratio R.R.R. (dB)
20
VS = ±7.0V
VCC in
PBmode
0
EQOUT(NN)
−20
PBOUT
NR-OFF
−40
PBOUT
NR-ON
−60
−80
10
100
RECOUT
1k
Frequency (Hz)
10k
100k
Ripple Rejection Ratio vs. Frequency (PBmode) (2)
Ripple Rejection Ratio R.R.R. (dB)
20
VS = ±7.0V
VEE in
PBmode
EQOUT(NN)
PBOUT
NR-OFF
0
−20
PBOUT
NR-ON
−40
−60
−80
10
RECOUT
100
1k
Frequency (Hz)
10k
100k
Rev.5, Oct. 1999, page 53 of 69
HA12215F
Ripple Rejection Ratio vs. Frequency (PASSmode) (1)
Ripple Rejection Ratio R.R.R. (dB)
20
VS = ±7.0V
VCC in
PASSmode
EQOUT(NN)
0
−20
RECOUT
NR-ON
−40
PBOUT
RECOUT
NR-OFF
−60
−80
10
100
1k
Frequency (Hz)
10k
100k
Ripple Rejection Ratio vs. Frequency (PASSmode) (2)
Ripple Rejection Ratio R.R.R. (dB)
20
VS = ±7.0V
VEE in
PASSmode
EQOUT(NN)
0
RECOUT
NR-ON
−20
PBOUT
−40
RECOUT
NR-OFF
−60
−80
10
Rev.5, Oct. 1999, page 54 of 69
100
1k
Frequency (Hz)
10k
100k
HA12215F
Equalizer Amp. Gain vs. Frequency (1)
55
50
VS = ±7.0V
Norm speed
Crom
45
REC-EQ Gain (dB)
40
35
Metal
30
25
20
Norm
15
10
5
10
100
1k
Frequency (Hz)
10k
100k
Equalizer Amp. Gain vs. Frequency (2)
55
50
VS = ±7.0V
High speed
Crom
45
REC-EQ Gain (dB)
40
35
Metal
30
25
20
15
Norm
10
5
10
100
1k
Frequency (Hz)
10k
100k
Rev.5, Oct. 1999, page 55 of 69
HA12215F
Equalizer Amp. Gain vs. Frequency (RECcal)
55
VS = ±7.0V
REC-cal
50
Norm speed, Norm tape
45
REC-EQ Gain (dB)
40
35
30
25
20
REC-cal = 5.0V
REC-cal = 2.5V
REC-cal = 0V
15
10
5
10
100
1k
Frequency (Hz)
10k
100k
Equalizer Amp. Gain vs. Frequency (GPcal)
55
VS = ±7.0V
GP-cal
50
Norm speed, Norm tape
GP-cal = 0V
45
REC-EQ Gain (dB)
40
GP-cal = 2.5V
35
30
GP-cal = 5.0V
25
20
15
10
5
10
Rev.5, Oct. 1999, page 56 of 69
100
1k
Frequency (Hz)
10k
100k
HA12215F
Equalizer Total Harmonic Distortion vs. Output Level (1)
REC-EQ T.H.D. (%)
100
NNmode
EQIN → EQOUT
VS = ±7.0V
20Hz
1kHz
5kHz
10kHz
add BOOST C
10
1.0
0.1
−20
−15
−10
−5
0
5
Output Level Vout (dB)
10
15
Equalizer Total Harmonic Distortion vs. Output Level (2)
REC-EQ T.H.D. (%)
100
10
NCmode
EQIN → EQOUT
VS = ±7.0V
20Hz
1kHz
5kHz
10kHz
add BOOST C
1.0
0.1
−20
−15
−10
−5
0
5
Output Level Vout (dB)
10
15
Rev.5, Oct. 1999, page 57 of 69
HA12215F
Equalizer Total Harmonic Distortion vs. Output Level (3)
REC-EQ T.H.D. (%)
100
NMmode
EQIN → EQOUT
VS = ±7.0V
20Hz
1kHz
5kHz
10kHz
add BOOST C
10
1.0
0.1
−20
−15
−10
−5
0
5
Output Level Vout (dB)
10
15
Equalizer Total Harmonic Distortion vs. Output Level (4)
REC-EQ T.H.D. (%)
100
10
HNmode
EQIN → EQOUT
VS = ±7.0V
20Hz
2kHz
10kHz
20kHz
add BOOST C
1.0
0.1
−20
Rev.5, Oct. 1999, page 58 of 69
−15
−10
−5
0
5
Output Level Vout (dB)
10
15
HA12215F
Equalizer Total Harmonic Distortion vs. Output Level (5)
REC-EQ T.H.D. (%)
100
HCmode
EQIN → EQOUT
VS = ±7.0V
20Hz
2kHz
10kHz
20kHz
add BOOST C
10
1.0
0.1
−20
−15
−10
−5
0
5
Output Level Vout (dB)
10
15
Equalizer Total Harmonic Distortion vs. Output Level (6)
REC-EQ T.H.D. (%)
100
10
HMmode
EQIN → EQOUT
VS = ±7.0V
20Hz
2kHz
10kHz
20kHz
add BOOST C
1.0
0.1
−20
−15
−10
−5
0
5
Output Level Vout (dB)
10
15
Rev.5, Oct. 1999, page 59 of 69
HA12215F
Equalizer Signal to Noise Ratio vs. Split Supply Voltage (1)
REC-EQ S/N (dB)
70
65
60
f = 1kHz
A-WTG filter
Norm speed
NN
NC
NM
55
5
6
7
8
Split Supply Voltage (V)
9
Equalizer Signal to Noise Ratio vs. Split Supply Voltage (2)
REC-EQ S/N (dB)
70
65
60
f = 1kHz
A-WTG filter
High speed
HN
HC
HM
55
5
Rev.5, Oct. 1999, page 60 of 69
6
7
8
Split Supply Voltage (V)
9
HA12215F
Equalizer Vomax vs. Split Supply Voltage (1)
20
f = 1kHz
add BOOST C
NN
NC
NM
REC-EQ Vomax (dB)
15
10
5
0
5
6
9
7
8
Split Supply Voltage (V)
Equalizer Vomax vs. Split Supply Voltage (2)
20
f = 1kHz
add BOOST C
HN
HC
HM
REC-EQ Vomax (dB)
15
10
5
0
5
6
7
8
Split Supply Voltage (V)
9
Rev.5, Oct. 1999, page 61 of 69
HA12215F
RECcal Correction vs. VREC-cal
5
f = 3kHz
GP-cal OPEN
VS = ±7V
Norm speed
Norm tape
4
RECcal Correction (dB)
3
2
1
0
−1
−2
−3
−4
−5
0
1
2
3
VREC-cal (V)
4
5
GPcal Correction vs. VGP-cal
5
4
GPcal Correction (dB)
3
2
1
0
−1
−2
f = 12kHz
REC-cal OPEN
VS = ±7V
Norm speed
Norm tape
−3
−4
−5
5
Rev.5, Oct. 1999, page 62 of 69
6
7
VGP-cal (V)
8
9
HA12215F
ALC Operate Level vs. Input Level
8
f = 1kHz, VS ±7.0V, Both channel input (L, Rch)
RIN → RECOUT, RIN = 192.8mVrms = 0dB
cal = 5V
TYPE I, IV
TYPE II
cal = 5V
6
cal = 2.5V
4
cal = 2.5V
2
0dB = 192.8mVrms
cal = 0V
Vin R4
13k
0
−2
−5
0
56 RIN
C4
0.1µ
R3
2.2k
cal = 0V
10
20
5
15
25
Input Level Vin (dB) RIN = 192.8mVrms = 0dB
30
55 ALC
35
ALC Total Harmonic Distortion vs. Input Level (1)
f = 1kHz, VS = ±7.0V
TYPE I,IV
(Norm tape, Metal tape)
1.0
Cal = 0V
Cal = 2.5V
Cal = 5V
T.H.D. (%)
Output Level RECOUT (dB) 0dB = 300mVrms
10
0.1
0.01
−5
0
5
10
15
20
Input Level Vin (dB)
25
30
Rev.5, Oct. 1999, page 63 of 69
HA12215F
ALC Total Harmonic Distortion vs. Input Level (2)
T.H.D. (%)
f = 1kHz, VS = ±7.0V
TYPE II
(Crom tape)
1.0
Cal = 0V
Cal = 2.5V
Cal = 5V
0.1
0.01
−5
0
5
10
15
20
Input Level Vin (dB)
30
25
ALC Operate Level vs. Frequency
Operate Level RECOUT (dB) 0dB = 300mVrms
10
8
ALC-CAL = 5V
6
4
ALC-CAL = 2.5V
2
0
ALC-CAL = 0V
−2
−4
Vin = ±12dB, Both channel input (L, Rch), RIN → RECOUT
TYPE I, IV (Norm tape, Metal tape)
TYPE II (Crom tape)
100
Rev.5, Oct. 1999, page 64 of 69
1k
Frequency (Hz)
10k
50k
HA12215F
Bias Output Voltage vs. Load Current
8
VS = ±7.0V
Bias ON
270Ω
31
Bias Output Voltage (V)
V
I
7
6
5
0
1
2
3
4
5
Load Current I (mA)
6
7
MS Sensing Level vs. Frequency
VS = ±7.0V, MSOUT
AIN → PBOUT = 580mVrms = 0dB
Lo → Hi
Hi → Lo
MS Sensing Level (dB)
0
−10
−20
−30
100
1k
10k
100k
Frequency (Hz)
Rev.5, Oct. 1999, page 65 of 69
HA12215F
MS Amp. Gain vs. Frequency
40
VS = ±7.0V
MAOUT
Gain (dB)
30
20
MSIN
10
0
−10
10
100
1k
Frequency (Hz)
10k
100k
No-Signal Sensing Time vs. Resistance
No-Signal Sensing Time (ms)
500
VS = ±7.0V, f = 5kHz, MSOUT
AIN → PBOUT = 580mVrms
0dB
−10dB
−20dB
100
PBOUT
10
MSOUT
C13
0.33µ
14
VCC
R13
1
100k
Resistance R13 (Ω)
Rev.5, Oct. 1999, page 66 of 69
1M
HA12215F
Signal Sensing Time vs. Capacitance
Signal Sensing Time (ms)
100
VS = ±7.0V, f = 5kHz, MSOUT
AIN → PBOUT = 580mVrms
0dB
−10dB
−20dB
10
PBOUT
MSOUT
C13
1
14
VCC
R13
330k
0.01
0.1
Capacitance C13 (µF)
0.5
Rev.5, Oct. 1999, page 67 of 69
HA12215F
Package Dimensions
12.8 ± 0.3
Unit: mm
10.0
42
29
28
56
15
0.65
12.8 ± 0.3
43
1
0.35
0.10
*Dimension including the plating thickness
Base material dimension
Rev.5, Oct. 1999, page 68 of 69
0.1 +0.1
−0.09
0.775
2.20
0.13 M
*0.17 ± 0.05
0.15 ± 0.04
*0.32 ± 0.08
0.30 ± 0.06
2.54 Max
14
0.775
1.40
0° − 8°
0.60 ± 0.15
Hitachi Code
JEDEC
EIAJ
Weight (reference value)
FP-56


0.5 g
HA12215F
Disclaimer
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Sales Offices
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http://semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia
: http://sicapac.hitachi-asia.com
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic Components Group
Dornacher Straße 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 585160
Hitachi Asia Ltd.
Hitachi Tower
16 Collyer Quay #20-00,
Singapore 049318
Tel : <65>-538-6533/538-8577
Fax : <65>-538-6933/538-3877
URL : http://www.hitachi.com.sg
Hitachi Asia Ltd.
(Taipei Branch Office)
4/F, No. 167, Tun Hwa North Road,
Hung-Kuo Building,
Taipei (105), Taiwan
Tel : <886>-(2)-2718-3666
Fax : <886>-(2)-2718-8180
Telex : 23222 HAS-TP
URL : http://www.hitachi.com.tw
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower,
World Finance Centre,
Harbour City, Canton Road
Tsim Sha Tsui, Kowloon,
Hong Kong
Tel : <852>-(2)-735-9218
Fax : <852>-(2)-730-0281
URL : http://www.hitachi.com.hk
Copyright  Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.
Colophon 2.0
Rev.5, Oct. 1999, page 69 of 69