HA12215F Audio Signal Processor for Cassette Deck (Dolby B-type NR with Recording System) ADE-207-253D (Z) Target Specification 5th Edition Oct. 1999 Description 1 HA12215F is silicon monolithic bipolar IC providing Dolby noise reduction system* , music sensor system, REC equalizer system and each electronic control switch in one chip. Note: 1. Dolby is a trademark of Dolby Laboratories Licensing Corporation. A license from Dolby Laboratories Licensing Corporation is required for the use of this IC. Functions • Dolby B-NR × 2 channel • REC equalizer × 2 channel • Music sensor × 1 channel • Pass amp. × 2 channel • Each electronic control switch to change REC equalizer, bias, etc. Features • REC equalizer is very small number of external parts and have 6 types of frequency characteristics built-in. • 2 types of input for PB, 1 type of input for REC. • 70µ - PB equalizer changing system built-in. • Dolby NR with dubbing double cassette decks. Unprocessed signal output available from recording out terminals during PB mode. • Provide stable music sensor system, available to design music sensing time and level. • Controllable from direct micro-computer output. • Bias oscillator control switch built-in. • NR ON / OFF and REC / PB fully electronic control switching built-in. • Normal-speed / high-speed, Normal / Crom / Metal and PB equalizer fully electronic control switching built-in. • Available to reduce substrate-area because of high integration and small external parts. HA12215F Ordering Information Operating Voltage Product VCC (V) VEE (V) Note HA12215F +6.0 to +7.5 –7.5 to –6.0 | VCC + VEE | < 1.0 V Standard Level Product Package PB-OUT Level REC-OUT Level Dolby Level HA12215F FP-56 580 mVrms 300 mVrms 300 mVrms Function Product Dolby B-NR REC-EQ Music Sensor Pass Amp. REC / PB Selection ALC HA12215F ❍ ❍ ❍ ❍ ❍ ❍ Note: Depending on the employed REC / PB head and test tape characteristics, there is a rare case that the REC-EQ characteristics of this LSI can not be matched to the required characteristics because of built-in resistors which determined the REC-EQ parameters in this case, please inquire the responsible agent because the adjustment built-in resistor is necessary. Rev.5, Oct. 1999, page 2 of 69 HA12215F Pin Description, Equivalent Circuit (VCC = ±7 V, A system of split supply voltage, Ta = 25°C, No Signal, The value in the show typical value.) Pin No. Terminal Name Note 51 AIN (R) V = GND Equivalent Circuit Pin Description PB A Deck input V 100k GND 48 AIN (L) 53 BIN (R) 46 BIN (L) 56 RIN (R) 43 RIN (L) 5 EQIN (R) 38 EQIN (L) 1 DET (R) V = GND PB B Deck input V = GND REC input V = GND REC equalizer input V = VEE+2.7V VCC Time constant pin for Dolby-NR V VEE 42 DET (L) 2 BIAS1 V = VEE+0.6V Dolby bias current input V 41 BIAS2 VEE V = VEE+1.3V REC equalizer bias current input V VEE Rev.5, Oct. 1999, page 3 of 69 HA12215F Pin Description, Equivalent Circuit (VCC = ±7 V, A system of split supply voltage, Ta = 25°C, No Signal, The value in the show typical value.) (cont) Pin No. Terminal Name Note 3 PBOUT (R) V = GND Equivalent Circuit Pin Description VCC PB output V VEE 40 PBOUT (L) 4 RECOUT (R) 39 RECOUT (L) 7 EQOUT (R) 36 EQOUT (L) 28 8 V = GND REC output V = GND REC equalizer output MAOUT V = GND MS Amp. output * ROUT (R) V = GND Input Amp. output 35 ROUT (L) 52 ABO (R) R1 = 15 k R2 = 12 k VCC V R1 1 Time constant pin for PB equalizer (70µ) R2 VEE 47 ABO (L) 6 BOOST (R) 37 BOOST (L) 31 BIAS (M) R1 = 4.8 k R2 = 4.8 k V = VCC – 0.7V Time constant pin for low boost VCC V 32 BIAS (C) 33 BIAS (N) Note: 1. MS: Music Sensor Rev.5, Oct. 1999, page 4 of 69 REC bias current output HA12215F Pin Description, Equivalent Circuit (VCC = ±7 V, A system of split supply voltage, Ta = 25°C, No Signal, The value in the show typical value.) (cont) Pin No. Terminal Name Note Equivalent Circuit Pin Description 21 VCC V = VCC Power supply 49 GND V = 0V GND pin 50 VEE V = VEE Negative power supply 45, 54 NC No connection No connection 15 ALC ON/OFF I = 50 µA Mode control input I V 22 k 100 k GND 16 PB A/B 17 A 120/70 18 NORM/HIGH 19 B NORM/CROM/ METAL 20 BIAS ON/OFF 22 RM ON/OFF 23 NR ON/OFF 25 LM ON/OFF 24 REC/PB/PASS 2.5 V Mode control input + − 100 k 100 k 22 k V 26 MSOUT I = 0 µA V MS output (to MPU) * VCC I 1 MSGND VEE Note: 1. MS: Music Sensor Rev.5, Oct. 1999, page 5 of 69 HA12215F Pin Description, Equivalent Circuit (VCC = ±7 V, A system of split supply voltage, Ta = 25°C, No Signal, The value in the show typical value.) (cont) Pin No. Terminal Name Note 10 GPCAL R = 110 kΩ Equivalent Circuit Pin Description R 2.5 V GP gain calibration terminal 11 RECCAL R = 110 kΩ REC gain calibration terminal 12 ALCCAL R = 140 kΩ ALC operation level calibration terminal 14 MSDET n=6 0 µA VCC n Time constant pin for 1 MS * VEE 13 ALCDET n=2 27 MSIN R = 50 kΩ MS input * VCC 1 V R GND 9 ALCIN (R) 34 ALCIN (L) 30 MAI R = 100 kΩ V = GND MAOUT VCC MS Amp. input * 1 100 k V 8.2 k GND 29 MS GND I = ±100 µA MS output voltage 1 level control pin * I 55 ALC (R) V = GND V 44 Note: ALC (L) 1. MS: Music Sensor Rev.5, Oct. 1999, page 6 of 69 Variable impedance for attenuation HA12215F MSGND MAI BIAS (M) BIAS (C) BIAS (N) ALCIN (L) ROUT (L) EQOUT (L) BOOST (L) EQIN (L) RECOUT (L) PBOUT (L) BIAS2 DET (L) Block Diagram 42 41 40 39 38 37 36 35 34 33 32 31 30 29 RIN (L) 43 ALC (L) 44 EQ BIAS Dolby B-NR NC 45 28 MAOUT 27 MSIN 26 MSOUT MS BIN (L) 46 25 LM ON / OFF ABO (L) 47 24 REC / PB / PASS AIN (L) 48 23 NR ON / OFF GND 49 22 RM ON / OFF + − + LPF VEE 50 21 VCC AIN (R) 51 20 BIAS ON / OFF ABO (R) 52 19 B NORM / CROM / METAL BIN (R) 53 18 NORM / HIGH 17 A 120 / 70 16 PB A / B 15 ALC ON / OFF ALC NC 54 5 6 7 8 9 10 11 12 13 14 EQIN (R) BOOST (R) EQOUT (R) ROUT (R) ALCIN (R) GPCAL MSDET 4 ALCDET 3 ALCCAL 2 RECCAL 1 RECOUT (R) EQ PBOUT (R) 56 BIAS1 55 RIN (R) DET (R) ALC (R) Dolby B-NR Rev.5, Oct. 1999, page 7 of 69 HA12215F Parallel-Data Format Pin No. Pin Name Lo 15 ALC ON/OFF ALC ON 16 PB A/B 17 MODE “Pin Open” Mid Hi — ALC OFF Lo Ain * — 1 Bin * Lo A 120/70 *1 — *1 Lo 22 RM ON/OFF REC MUTE ON — REC MUTE OFF Lo 20 BIAS ON/OFF BIAS OFF — BIAS ON Lo 23 NR ON/OFF NR OFF — NR ON Lo 24 REC/PB/PASS REC MODE PB MODE REC MODE PASS Mid 25 LM ON/OFF LINE MUTE OFF — LINE MUTE ON Lo 18 NORM/HIGH Normal speed 19 B NORM/CROM/ METAL Note: 1 — 1 REC EQ Normal * Bias Normal High speed 1 REC EQ CROM * Bias CROM Lo 1 REC EQ METAL * Bias METAL 1. PB EQ logic PB EQ Logic PB A 120/70 120 B NORM / CROM / METAL Lo Hi Lo Lo FLAT FLAT Lo Hi or Mid FLAT 70 µ Hi Lo 70 µ FLAT Hi Hi or Mid 70 µ 70 µ Rev.5, Oct. 1999, page 8 of 69 Lo HA12215F Functional Description Power Supply Range HA12215F is designed to operate on split supply. Table 1 Supply Voltage Product VCC (V) VEE (V) Note HA12215F +6.0 to +7.5 –7.5 to –6.0 | VCC + VEE | < 1.0 V Note: The lower limit of supply voltage depends on the line output reference level. The minimum value of the overload margin is specified as 12 dB by Dolby Laboratories. Reference Voltage The reference voltage are provided for the left channel and the right channel separately. The block diagram is shown as figure 1. 21 VCC VCC + − GND + − VEE + − L channel reference 49 VEE Music sensor reference 50 R channel reference Figure 1 Reference Voltage Rev.5, Oct. 1999, page 9 of 69 HA12215F Operating Mode Control HA12215F provide fully electronic switching circuits. And each operating mode control is controlled by parallel data (DC voltage). Table 2 Control Voltage Pin No. Lo Mid Hi Unit 15, 16, 17, 18, 20, 22, 23, 25 –0.2 to 1.0 — 4.0 to VCC V 19, 24 –0.2 to 1.0 2.0 to 3.0 4.0 to VCC V Test Condition Input Pin Measure Notes: 1. Each pins are on pulled down with 100 kΩ internal resistor. Therefore, it will be low-level when each pins are open. But pin 24 is mid-level when it is open. 2. Over shoot level and under shoot level of input signal must be the standardized (High: VCC, Low: –0.2 V). 3. For reduction of pop noise, connect 1 µF to 22 µF capacitor with mode control pins. But it is impossible to reduce completely in regard to Line mute, therefore, use external mute at the same time. Input Block Diagram and Level Diagram The each level shown above is typical value when offering PBOUT level to PBOUT pin. MS 300mVrms AIN 21.3dB BIN PASS REC PB PASS/REC, PB=5.7dB/5.7dB FLAT (120µ) 300mVrms 0dB 25.9mVrms REF R3 70µs 12k PB/REC, PASS=0dB/21.4dB 300mVrms PB Dolby B-NR REC PASS 300mVrms R4 15k ALC 25.5mVrms C2 4700pF C1 0.1µF R1 15k RIN 200mVrms R2 C3 2.2k 0.1µF Figure 2 Input Block Diagram Rev.5, Oct. 1999, page 10 of 69 PBOUT 580mVrms RECOUT 300mVrms HA12215F PB Equalizer By switching logical input level of pin 17 (for Ain) and pin 19 (for Bin), you can equalize corresponding to tape position at play back mode. With the capacity C2 capacitance that we showed for figure 2 70 µs by the way figure seem to 3 they are decided. GV t1 = C2 ⋅ (12k + 15k) t2 = C2 ⋅ 15k t1 f t2 Figure 3 Frequency Characteristic of PB Equalizer The Sensitivity Adjustment of Music Sensor Adjusting MS Amp gain by external resistor, the sensitivity of music sensor can set up. REP D VCC VCC C16 1000p R13 330k MA OUT MSIN + C13 0.33µ PB (L) MAI 100k 8.2k −6dB − + RL MS DET DET MS AMP MS OUT Microcomputer GND LPF 25kHz 50k GND PB (R) Figure 4 Music Sensor Block Diagram Rev.5, Oct. 1999, page 11 of 69 HA12215F The Sensitivity of Music Sensor A standard level of MS input pin 25.9 mVrms, therefore, the sensitivity of music sensor (S) can request it, by lower formulas. A = MS Amp Gain*1 C S = 20log B = PB input Gain × (1/2)*2 25.9 ⋅A⋅B C = Sensed voltage 20log (A × B) = D [dB] S = 14 − D [dB] C = 130 [mVrms] (Intenally voltage in a standard) PB input Gain = 21.3 [dB] [dB] Notes: 1. When there is not a regulation outside. 2. Case of one-sided channel input. But necessary to consider the same attenuation quantity practically, on account of A(B) have made frequency response. GV 37.7dB 1 [Hz] 2π ⋅ C16 ⋅ 50k f2 = 25k [Hz] f1 = f1 f f2 Figure 5 Frequency Characteristic of MSIN Occasion of the external component of figure 4, f1 is 3.18 kHz. Time constant of detection Figure 6(1) generally shows that detection time is in proportion to value of capacitor C13. But, with 2 3 Attack* and Recovery* the detection time differs exceptionally. Notes 2. Attack : Non- music to Music Attack Recovery Attack C13 R13 (1) (2) Detection time Recovery Detection time Detection time 3. Recovery : Music to Non-music Recovery Detection level Attack Input level (3) Figure 6 Function Characteristic of MS Like the figure 6(2), Recovery time is variably possible by value of resistor R13. But Attack time gets about fixed value. Attack time has dependence by input level. When a large signal is inputted, Attack time is short tendency. Rev.5, Oct. 1999, page 12 of 69 HA12215F Music Sensor Output (MSOUT) As for internal circuit of music sensor block, music sensor output pin is connected to the collector of NPN type directly, output level will be “high” when sensing no signal. And output level will be “low” when sensing signal. Connection with microcomputer, it is requested to use external pull up resistor (RL = 10 kΩ to 22 kΩ) Note: Supply voltage of MSOUT pin must be less than VCC voltage. The Tolerances of External Components For Dolby NR precision securing, please use external components shown at figure 7. If leak-current are a few electrolytic-capacitor, it can be applicable to C5 and C23. VEE C23 0.1µ ±10% 42 DET (L) HA12215F DET (R) 1 C5 0.1µ ±10% BIAS1 2 R5 33k ±2% VEE Figure 7 Tolerance of External Components Low-Boost EQIN 24.6dB 4.8k REC EQ EQOUT 4.8k BOOST C9(C19) 0.47µ + Figure 8 Example of Low Boost Circuit External components shown figure 8 gives frequency response to take 6 dB boost. And cut off frequency can request it, by C9 (C19). Rev.5, Oct. 1999, page 13 of 69 HA12215F REC Equalizer The outlines of REC Equalizing frequency characteristics are shown by figure 9. Those peak level can be set up by supplying voltage. (0 V to 5 V, GND = 0 V) to pin 10 (GPCAL). And whole band gain can be set up by supplying voltage (0 V to 5 V, GND = 0 V) to pin 11 (RECCAL). Both setting up range are ±4.5 dB. In case that you do not need setting up, pin 10, pin 11 should be open bias. Note: Depending on the employed REC/PB head and test tape characteristics, there is a rare case that the REC-EQ characteristics of this LSI can not be matched to the required characteristics because of built-in resistors which determined the REC-EQ parameters in this care, please inquire the responsible agent because of the adjustment of built-in resistor is necessary. RECCAL Gain (dB) GPCAL Frequency (Hz) Figure 9 Frequency Characteristics of REC Equalizer Bias Switch HA12215F built-in DC voltage generator for bias oscillator and its bias switches. External resistor R19, R20, R21 which corresponded with tape positions and bias out voltage are relater with below. . Vbias = . R22 × (VCC − VEE − 0.7) + VEE [V] (R19 or R20 or R21) + R22 Bias switch follows to a logic of pin 19 (B / Norm / Crom / Metal). Note: A current that flows at bias out pin, please use it less than 5 mA. Rev.5, Oct. 1999, page 14 of 69 HA12215F BIAS (N) Pin 33 BIAS (C) Pin 32 BIAS (M) Pin 31 R21 Vbias R20 R19 R22 VEE Figure 10 External Components of Bias Block Automatic Level Control ALC is the input decay rate variable system. It has internal variable resistors of pin 55 (pin 44) by RECOUT signal that is inputted to pin 9 (pin 34). The operation is similitude to MS, detected by pin 13. The signal input pin is pin 56 (pin 43). Resistor R1, R2 and capacitor C2, external components, for the input circuit are commended as figure 12. There are requested to use value of the block diagram figure for performance maintenance of S/N, T.H.D. etc. Figure 11 shows the relation with R1 front RIN point and ROUT. ALC operation level acts for the center of +4.5 dB at tape position TYPE I, IV and the center of +2.5 dB at tape position TYPE II, to standard level (300 mVrms). Then, adopted maximum value circuit, ALC is operated by a large channel of a signal. ROUT ALC ON/OFF can switch it by pin 15. Please do ALC ON, after it does for one time ALC OFF inevitably, for ALC time to start usefully (when switching PB → PASS, when switching PB → PASS), in order to reset ALC circuit. 300mV TYPE II 2.5dB TYPE I, IV 4.5dB RIN Figure 11 ALC Operation Level Rev.5, Oct. 1999, page 15 of 69 HA12215F RIN 56 Input C2 0.1µ 55 25.5mV ALC 21.4dB ROUT 300mV 8 Output C4 ALC R2 2.2k 9 13 ALCIN ALCDET R12 VCC + R1 15k C12 Figure 12 ALC Block Diagram ALC Operation Level Necessary ALC operation level is variable to pin 12 bias (ALC-CAL: 0 to 5 V), and its range is ±4.0 dB. Unnecessary, pin 12 is unforced. ROUT ALC-CAL = 5V ALC-CAL = 0V RIN Figure 13 ALC-CAL Characteristics Rev.5, Oct. 1999, page 16 of 69 HA12215F Absolute Maximum Ratings Item Symbol Rating Unit Max supply voltage VCC max 16 V Power dissipation Pd 625 mW Operating temperature Topr –40 to +75 °C Storage temperature Tstg –55 to +125 °C Note Ta ≤ 75°C Rev.5, Oct. 1999, page 17 of 69 Rev.5, Oct. 1999, page 18 of 69 PASS PASS PB PB PB PB PB PB REC REC 120 120 120 70 70 120 120 120 120 120 OFF OFF ON OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF CROM NORM, METAL NORM NORM NORM NORM/ CROM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM Notes: 1. Other IC-condition : REC-MUTE OFF, Normal tape, Normal speed, Bias OFF 2. VCC = ±6.0 V 3. For inputting signal to one side channel MS sensing level MS output low level MS output leak current ALC operate level GV PA ∆GV MUTE GV EQ 1k GV EQ 10k VON VOL IOH ALC (1) ALC (2) A/B A/B A A/B A/B A A A A A 120 120 120 120 120 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF 120 120 120 120 120 120 120 120 120 A A/B A A A A A A A Pass AMP. gain Gain deviation MUTE ATT. 70µ EQ gain PB PB REC REC REC REC REC REC REC A A/B A A/B A OFF OFF OFF ON ON ON ON ON ON ON REC OFF PB OFF REC OFF PB OFF REC/PB Symbol IQ GV PB GV REC ENC 2k (1) ENC 2k (2) ENC 5k (1) ENC 5k (2) Vo max S/N Total Harmonic Distortion THD Channel separation CTRL (1) CTRL (2) Crosstalk CT A/B CT R/P Signal handling Signal to noise ratio B-type Encode boost Item Quiescent current Input AMP. gain IC Condition *1 NR REC/PB 120µ/ LINE B ON/OFF /PASS A/B 70µ MUTE N/C/M Test Condition 1k 1k 1k 1k 10k 5k 1k 1k 1k 1k 1k 1k 1k 1k 1k 2k 2k 5k 5k 1k 1k 0 0 +12 0 0 +12 +12 0 +12 +12 +12 +12 0 0 −20 −30 −20 −30 fin RECOUT (Hz) level (dB) 0.05 0.3 80.0 85.0 80.0 80.0 70.0 70.0 70.0 70.0 43 48/46 43 48/46 48/43 4 3 3 3 3 dB 51/53 48/46 3 dB 51/53 48/46 3 dB 51 48 3 dB 51/53 48/46 3 51/53 48/46 3 dB 51 48 51 48 V µA dB 56 43 4 56 43 4 % 56 dB 51/53 56 dB 51/53 51/56 40 40 40 40 40 39 39 39 40 40 40 40 3 L COM Remark 40 40 39 39 39 39 2 39 39 Output Max Unit R L R 35.0 mA 28.5 dB 51/53 48/46 3 28.0 3 56 43 5.8 dB 56 43 4 56 43 4 10.0 56 43 4 4.7 56 43 4 9.7 dB 56 43 4 dB 56 43 4 Typ 27.0 26.5 4.3 8.5 3.2 8.2 13.0 70.0 Min 25.5 25.0 2.8 7.0 1.7 6.7 12.0 64.0 GV PA − GV PB 25.5 27.0 28.5 −1.0 0.0 1.0 70.0 80.0 24.0 25.5 27.0 20.8 22.3 23.8 −26.0 −22.0 −18.0 1.0 1.5 2.0 2.0 4.5 7.0 0.0 2.5 5.0 THD=1% Rg=5.1kΩ, CCIR/ARM Other No signal Input Application Terminal (Ta = 25°C, VCC = ±7 V, Dolby Level = REC-OUT Level = 300 mVrms = 0 dB) HA12215F Electrical Characteristics Symbol S/N (EQ) Test Condition TAPE SPEED NORM NORM Rg = 5.1kΩ, A-WTG Filter (0dB = −5dBs at EQOUT) Equalizer maximum input Vin max (EQ) NORM NORM f = 1kHz, THD = 1%, Vin = −26dBs = 0dB Equalizer total harmonic T.H.D.1 (EQ) NORM NORM f = 1kHz, Vin = −26dBs distortion f = 1kHz, Vin = −30dBs T.H.D.2 (EQ) Equalizer offset voltage Vofs (EQ) NORM NORM No-Signal Equalizer GVEQ-NN1 NORM NORM f = 3kHz, Vin = −46dBs frequency response f = 8kHz, Vin = −46dBs G VEQ-NN2 (NORM - NORM) f = 12kHz, Vin = −46dBs GVEQ-NN3 GVEQ-CN1 Equalizer CROM NORM f = 3kHz, Vin = −46dBs frequency response f = 8kHz, Vin = −46dBs GVEQ-CN2 (CROM - NORM) f = 12kHz, Vin = −46dBs GVEQ-CN3 METAL NORM f = 3kHz, Vin = −46dBs Equalizer GVEQ-MN1 frequency response f = 8kHz, Vin = −46dBs GVEQ-MN2 (METAL - NORM) GVEQ-MN3 f = 12kHz, Vin = −46dBs Equalizer GVEQ-NH1 NORM HIGH f = 5kHz, Vin = −46dBs frequency response f = 15kHz, Vin = −46dBs GVEQ-NH2 (NORM - High) f = 20kHz, Vin = −46dBs GVEQ-NH3 Equalizer GVEQ-CH1 CROM HIGH f = 5kHz, Vin = −46dBs frequency Response f = 15kHz, Vin = −46dBs GVEQ-CH2 (CROM - High) f = 20kHz, Vin = −46dBs GVEQ-CH3 METAL HIGH f = 5kHz, Vin = −46dBs Equalizer GVEQ-MH1 frequency response f = 15kHz, Vin = −46dBs GVEQ-MH2 (METAL - High) GVEQ-MH3 f = 20kHz, Vin = −46dBs REC-MUTE attenuation REC-MUTE NORM NORM f = 1kHz, Vin = −14dBs Item Equalizer S/N 23.9 dB 28.4 dB 22.9 dB 27.7 dB 31.9 dB 24.4 dB 26.0 dB 28.5 dB dB 21.9 25.9 21.4 25.7 29.4 22.9 24.0 26.0 70 SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF SW22 (L), SW23 (R) OFF 19.9 23.4 19.9 23.7 26.9 21.4 22.0 23.5 60 0.5 % % 0.5 500 mV 21.8 dB 27.9 dB 35.1 dB 26.3 dB 32.5 dB 39.0 dB 27.1 dB 29.9 dB 33.3 dB 18.0 dB SW22 (L), SW23 (R) OFF 0.2 SW22 (L), SW23 (R) OFF 0.2 SW22 (L), SW23 (R) OFF −500 0 SW22 (L), SW23 (R) OFF 18.8 20.3 SW22 (L), SW23 (R) OFF 23.9 25.9 SW22 (L), SW23 (R) OFF 30.1 32.6 SW22 (L), SW23 (R) OFF 23.3 24.8 SW22 (L), SW23 (R) OFF 28.5 30.5 SW22 (L), SW23 (R) OFF 34.0 36.5 SW22 (L), SW23 (R) OFF 24.1 25.6 SW22 (L), SW23 (R) OFF 25.9 27.9 SW22 (L), SW23 (R) OFF 28.3 30.8 SW22 (L), SW23 (R) OFF 15.0 16.5 dB Min Typ Max Unit dB 55 58 SW22 (L), SW23 (R) OFF 10.5 12.5 SW22 (L), SW23 (R) OFF (Ta = 25°C, VCC = ±7 V) 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 38 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 Application Terminal Input Output R L R L COM Remark 5 38 7 36 HA12215F Electrical Characteristics (cont) Rev.5, Oct. 1999, page 19 of 69 −0.2 2.0 4.0 RL = 2.4kΩ + 270Ω Bias off VIL Rev.5, Oct. 1999, page 20 of 69 VIM VIH 1.0 3.0 5.3 Typ 4.5 −4.5 4.5 −4.5 −4.0 4.0 V V V Max Unit 6.0 dB −3.0 dB 6.0 dB −3.0 dB −3.0 dB dB VCC VCC V −1.4 −0.7 VEE VEE −0.1 VEE +0.1 V Min GV EQ-NN1 = 0dB 3.0 −6.0 GV EQ-NN3 = 0dB 3.0 −6.0 ALC (1) = 0dB 3.0 Bias out offset VREC-CAL = 5V VREC-CAL = 0V VGP-CAL = 0V VGP-CAL = 5V Control voltage Bias out maximum level ALC CAL response GP CAL response Vin = −46dBs, Vin = −46dBs, Vin = −46dBs, Vin = −46dBs, VALC-CAL = 0V VALC-CAL = 5V Test Condition TAPE SPEED NORM NORM f = 3kHz, f = 3kHz, NORM NORM f = 12kHz, f = 12kHz, NORM NORM f = 1kHz, f = 1kHz, RL = 2.4kΩ + 270Ω Symbol R-CAL1 R-CAL2 GP-CAL1 GP-CAL2 ALC-CAL1 ALC-CAL2 Bias on Item REC CAL response (Ta = 25°C, VCC = ±7 V) 15 to 20 22 to 25 19, 24 15 to 20 22 to 25 31 to 33 Application Terminal Input Output R L R L COM Remark 5 38 7 36 5 38 7 36 5 38 7 36 5 38 7 36 56 43 4 39 56 43 4 39 31 to 33 HA12215F Electrical Characteristics (cont) OFF ON SW2 Rch SW4 SW3 R32 10k B R RIN (R) R B R2 10k C2 0.0047µ AIN (R) C1 0.47µ C27 0.47µ VEE C26 0.0047µ C25 0.47µ BIN (L) R31 2.2k R4 13k C4 0.1µ R3 2.2k ALC (R) C3 0.47µ + EQ A BIN (R) R1 10k R33 10k AIN (L) A EQ C24 0.1µ 56 55 54 53 52 51 50 49 48 47 46 45 44 43 RIN (L) + Notes: 1. Resistor tolerance are ±1%. 2. Capacitor tolerance are ±1%. 3. Unit R: Ω, C: F. AC VM1 SW1 Lch C29 100µ + Audio SG + DC −7V SOURCE2 R30 13k + C5 0.1µ 2.2µ 2.2µ 0.47µ C20 JP3 OFF SW 22 ON C18 2.2µ C17 0.47µ R22 2.4k R21 2k C R20 910 SW21 N R19 270 M 1 R5 33k 5 REC R6 10k EQ R8 7.5k R9 16k R7 20k ON R10 5.1k PB SW8 REC R11 10k + 7 OFF + C10 C9 2.2µ 0.47µ 6 + C8 + SW 23 0.47µ JP1 4 + C7 2.2µ 3 C6 2.2µ 8 ROUT (R) EQ 9 C11 0.47µ LPF − + MS R12 1M C12 10µ R13 330k 10 11 12 13 14 ALC BIAS ALCDET PB SW6 2 EQ Dolby B-NR + Dolby B-NR EQ 42 41 40 39 38 37 36 35 34 33 32 31 30 29 R29 22k R25 16k C21 R24 5.1k R27 20k C19 0.47µ REC EQ + C23 0.1µ + R28 10k C22 + R26 7.5k + REC SW7 PB ROUT (L) C15 22µ VCC C14 22µ C13 0.33µ 15 SW9 16 SW10 17 SW11 18 SW12 19 SW13 20 SW14 21 22 23 24 SW17 MAOUT R18 3.9k DC VM2 ON B OFF 120 A N 70 OFF M C N H ON ALC ON / OFF PB A / B A 120 / 70 NORM / HIGH B NORM / CROM / METAL BIAS ON / OFF OFF LM ON / OFF PASS PB REC REC / PB / PASS R17 ON 22k SW16 OFF NR ON / OFF R16 OFF 22k RM ON / OFF SW15 ON ON C16 1000p MSOUT MSIN 25 SW18 26 27 28 + ALCIN (L) + + EQ MSDET + + SW5 PB SW20 Rch Lch DC VM1 JP2 DC +7V + SOURCE1 R14 10k R15 10k DC +5V SOURCE4 DC +2.5V SOURCE3 C28 100µ BIAS Rch Lch AC VM2 Oscillo scope Distortion analyzer Noise meter noise meter with ccir/arm filter and a-wtg filter SW20 HA12215F Test Circuit ALCCAL RECCAL GPCAL ALCIN (R) Rev.5, Oct. 1999, page 21 of 69 HA12215F Characteristic Curves Quiescent Current vs. Split Supply Voltage (REC mode) 35 Quiescent Current IQ (mA) RECmode NR-OFF, ALC ON, REC-MUTE ON, BIAS OFF NR-OFF, ALC ON, REC-MUTE OFF, BIAS OFF NR-ON, ALC OFF, REC-MUTE OFF, BIAS ON Other switch is all Low 30 25 20 5 6 7 8 Split Supply Voltage (V) 9 Quiescent Current vs. Split Supply Voltage (PB mode) 35 Quiescent Current IQ (mA) PBmode NR-OFF, LINE-MUTE OFF, BIAS OFF NR-ON, LINE-MUTE ON, BIAS OFF NR-ON, LINE-MUTE OFF, BIAS ON Other switch is all Low 30 25 20 5 Rev.5, Oct. 1999, page 22 of 69 6 7 8 Split Supply Voltage (V) 9 HA12215F Input Amp. Gain vs. Frequency (1) 40 VS = ±7.0V AIN → RECOUT BIN Gain (dB) 30 NR-ON 20 NR-OFF 10 0 −10 10 100 1k 10k Frequency (Hz) 100k 1M Input Amp. Gain vs. Frequency (2) 40 VS = ±7.0V AIN → PBOUT BIN 30 Gain (dB) PASSmode 20 PBmode 10 0 −10 10 100 1k 10k Frequency (Hz) 100k 1M Rev.5, Oct. 1999, page 23 of 69 HA12215F Input Amp. Gain vs. Frequency (3) 40 VS = ±7.0V RECmode 30 PBOUT Gain (dB) RECOUT 20 10 0 −10 10 100 1k 10k Frequency (Hz) 100k 1M 100k 1M Input Amp. Gain vs. Frequency (4) 40 VS = ±7.0V AIN → PBOUT BIN 30 120µ Gain (dB) 70µ 20 10 0 −10 10 100 Rev.5, Oct. 1999, page 24 of 69 1k 10k Frequency (Hz) HA12215F Encode Boost vs. Frequency 12 VS = ±7.0V Dolby B-NR −40dB Encode Boost (dB) 10 8 −30dB 6 4 −20dB 2 −10dB 0dB 0 100 1k Frequency (Hz) 10k 20k Decode Cut vs. Frequency 0 0dB −10dB −2 Decode Cut (dB) −20dB −4 −6 −30dB −8 −40dB −10 VS = ±7.0V Dolby B-NR −12 100 1k Frequency (Hz) 10k 20k Rev.5, Oct. 1999, page 25 of 69 HA12215F Signal Handling (1) 30 RECmode Rin → RECOUT = 300mVrms = 0dB f = 1kHz, T.H.D. ⋅=⋅ 1% NR-OFF NR-ON Vomax (dB) 25 20 15 5 6 7 8 Split Supply Voltage (V) 9 Signal Handling (2) 25 AIN → PBOUT = 580mVrms = 0dB BIN f = 1kHz, T.H.D. ⋅=⋅ 1% NR-OFF PBmode NR-ON PASSmode Vomax (dB) 20 15 10 5 Rev.5, Oct. 1999, page 26 of 69 6 7 8 Split Supply Voltage (V) 9 HA12215F Signal to Noise Ratio vs. Split Supply Voltage (1) Signal to Noise Ratio (dB) 85 80 f = 1kHz, RECmode Rin → RECOUT = 300mVrms = 0dB Rin → PBOUT = 580mVrms = 0dB NR-OFF RECOUT NR-ON NR-OFF PBOUT NR-ON CCIR/ARM filter 75 70 65 5 6 9 7 8 Split Supply Voltage (V) Signal to Noise Ratio vs. Split Supply Voltage (2) Signal to Noise Ratio (dB) 85 80 75 f = 1kHz, PBmode AIN → PBOUT = 580mVrms = 0dB BIN AIN, NR-OFF BIN, NR-OFF AIN, NR-ON BIN, NR-ON CCIR/ARM filter 70 65 5 6 7 8 Split Supply Voltage (V) 9 Rev.5, Oct. 1999, page 27 of 69 HA12215F Signal to Noise Ratio vs. Split Supply Voltage (3) Signal to Noise Ratio (dB) 85 80 75 f = 1kHz, PBmode AIN → RECOUT = 300mVrms = 0dB BIN AIN, NR-OFF BIN, NR-OFF AIN, NR-ON BIN, NR-ON CCIR/ARM filter 70 65 5 6 7 8 Split Supply Voltage (V) 9 Signal to Noise Ratio vs. Split Supply Voltage (4) Signal to Noise Ratio (dB) 85 80 75 f = 1kHz, PASSmode AIN → PBOUT = 580mVrms = 0dB BIN AIN, Lch BIN, Lch AIN, Rch BIN, Rch CCIR/ARM filter 70 65 5 Rev.5, Oct. 1999, page 28 of 69 6 7 8 Split Supply Voltage (V) 9 HA12215F Total Harmonic Distortion vs. Split Supply Voltage (1) (RECmode, NR-OFF) 1.0 T.H.D. (%) RECmode, NR-OFF RIN → RECOUT = 300mVrms 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) RIN → PBOUT = 580mVrms 1kHz (400Hz HPF + 30kHz LPF) 0.1 0.01 5 6 9 7 8 Split Supply Voltage (V) Total Harmonic Distortion vs. Split Supply Voltage (2) (RECmode, NR-ON) 1.0 T.H.D. (%) RECmode, NR-ON RIN → RECOUT = 300mVrms 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) RIN → PBOUT = 580mVrms 1kHz (400Hz HPF + 30kHz LPF) 0.1 0.01 5 6 7 8 Split Supply Voltage (V) 9 Rev.5, Oct. 1999, page 29 of 69 HA12215F Total Harmonic Distortion vs. Split Supply Voltage (3) (PBmode, NR-OFF) T.H.D. (%) 1.0 PBmode, NR-OFF AIN → PBOUT = 580mVrms BIN 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) AIN → RECOUT = 300mVrms BIN 1kHz (400Hz HPF + 30kHz LPF) 0.1 0.01 5 7 8 Split Supply Voltage (V) 9 Total Harmonic Distortion vs. Split Supply Voltage (4) (PBmode, NR-ON) 1.0 T.H.D. (%) 6 PBmode, NR-ON AIN → PBOUT = 580mVrms BIN 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) AIN → RECOUT = 300mVrms BIN 1kHz (400Hz HPF + 30kHz LPF) 0.1 0.01 5 Rev.5, Oct. 1999, page 30 of 69 6 7 8 Split Supply Voltage (V) 9 HA12215F Total Harmonic Distortion vs. Split Supply Voltage (5) (PASSmode, NR-OFF) 1.0 T.H.D. (%) PASSmode, NR-OFF AIN → PBOUT = 580mVrms 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) 0.1 0.01 5 10 6 9 7 8 Split Supply Voltage (V) Total Harmonic Distortion vs. Output Level (1) (RECmode, NR-OFF) RECmode, NR-OFF VS = ±7.0V 100Hz 1kHz 10kHz RIN → RECOUT = 300mVrms = 0dB T.H.D. (%) 1.0 0.1 0.01 −10 −5 0 5 10 15 Output Level Vout (dB) 20 25 Rev.5, Oct. 1999, page 31 of 69 HA12215F Total Harmonic Distortion vs. Output Level (2) (RECmode, NR-ON) 10 RECmode, NR-ON VS = ±7.0V 100Hz 1kHz 10kHz RIN → RECOUT = 300mVrms = 0dB T.H.D. (%) 1.0 0.1 0.01 −10 −5 20 25 Total Harmonic Distortion vs. Output Level (3) (PBmode, NR-OFF) 10 PBmode, NR-OFF VS = ±7.0V 100Hz 1kHz 10kHz AIN → PBOUT = 580mVrms = 0dB BIN T.H.D. (%) 1.0 0 5 10 15 Output Level Vout (dB) 0.1 0.01 −10 Rev.5, Oct. 1999, page 32 of 69 −5 0 5 10 15 Output Level Vout (dB) 20 25 HA12215F 10 PBmode, NR-ON VS = ±7.0V 100Hz 1kHz 10kHz AIN → PBOUT = 580mVrms = 0dB BIN T.H.D. (%) 1.0 Total Harmonic Distortion vs. Output Level (4) (PBmode, NR-ON) 0.1 0.01 −10 10 0 5 10 15 Output Level Vout (dB) 20 25 Total Harmonic Distortion vs. Output Level (5) (PASSmode, NR-OFF) PASSmode, NR-OFF VS = ±7.0V 100Hz 1kHz 10kHz AIN → PBOUT = 580mVrms = 0dB BIN T.H.D. (%) 1.0 −5 0.1 0.01 −10 −5 0 5 10 15 Output Level Vout (dB) 20 25 Rev.5, Oct. 1999, page 33 of 69 HA12215F Total Harmonic Distortion vs. Frequency (1) RECmode, NR-OFF, VS = 7.0V RIN RECOUT = 300mVrms 10dB 0dB 10dB T.H.D. (%) 0.1 0.01 100 1k Frequency (Hz) 10k 100k Total Harmonic Distortion vs. Frequency (2) RECmode, NR-ON, VS = 7.0V RIN RECOUT = 300mVrms 10dB 0dB 10dB T.H.D. (%) 0.1 0.01 100 Rev.5, Oct. 1999, page 34 of 69 1k Frequency (Hz) 10k 100k HA12215F Total Harmonic Distortion vs. Frequency (3) PBmode, NR-OFF, VS = ±7.0V AIN → PBOUT = 580mVrms BIN 10dB 0dB −10dB T.H.D. (%) 0.1 0.01 100 1k Frequency (Hz) 10k 100k Total Harmonic Distortion vs. Frequency (4) PBmode, NR-ON, VS = ±7.0V AIN → PBOUT = 580mVrms BIN 10dB 0dB −10dB T.H.D. (%) 0.1 0.01 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 35 of 69 HA12215F Total Harmonic Distortion vs. Frequency (5) PASSmode, NR-OFF, VS = ±7.0V AIN → PBOUT = 580mVrms BIN 10dB 0dB −10dB T.H.D. (%) 0.1 0.01 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (R→L) (1) −20 VS = ±5.0V, ±7.0V, ±8.0V RIN → RECOUT, Vin = +12dB RECmode, R → L Channel Separation (dB) −40 −60 NR-ON −80 NR-OFF −100 −120 10 Rev.5, Oct. 1999, page 36 of 69 100 1k Frequency (Hz) 10k 100k HA12215F Channel Separation vs. Frequency (R→L) (2) −20 VS = ±5.0V, ±7.0V, ±8.0V RIN → PBOUT, Vin = +12dB RECmode, R → L Channel Separation (dB) −40 −60 −80 NR-ON / OFF −100 −120 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L→R) (3) −20 VS = ±5.0V, ±7.0V, ±8.0V RIN → RECOUT, Vin = +12dB RECmode, L → R Channel Separation (dB) −40 −60 NR-ON −80 NR-OFF −100 −120 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 37 of 69 HA12215F Channel Separation vs. Frequency (L→R) (4) −20 VS = ±5.0V, ±7.0V, ±8.0V RIN → PBOUT, Vin = +12dB RECmode, L → R Channel Separation (dB) −40 −60 −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (R→L) (1) 0 VS = ±5.0V, ±7.0V, ±8.0V AIN → PBOUT, Vin = +10dB R→L Channel Separation (dB) −20 −40 −60 NR-OFF NR-ON −80 −100 10 Rev.5, Oct. 1999, page 38 of 69 100 1k Frequency (Hz) 10k 100k HA12215F Channel Separation vs. Frequency (R→L) (2) 0 VS = ±5.0V, ±7.0V, ±8.0V AIN → RECOUT, Vin = +10dB R→L Channel Separation (dB) −20 −40 −60 NR-ON / OFF −80 −100 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (R→L) (3) 0 VS = ±5.0V, ±7.0V, ±8.0V BIN → PBOUT, Vin = +10dB R→L Channel Separation (dB) −20 −40 −60 NR-OFF −80 −100 10 NR-ON 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 39 of 69 HA12215F Channel Separation vs. Frequency (R→L) (4) 0 VS = ±5.0V, ±7.0V, ±8.0V BIN → RECOUT, Vin = +10dB R→L Channel Separation (dB) −20 −40 −60 NR-ON / OFF −80 −100 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L→R) (5) 0 VS = ±5.0V, ±7.0V, ±8.0V AIN → PBOUT, Vin = +10dB L→R Channel Separation (dB) −20 −40 −60 NR-OFF −80 −100 10 Rev.5, Oct. 1999, page 40 of 69 NR-ON 100 1k Frequency (Hz) 10k 100k HA12215F Channel Separation vs. Frequency (L→R) (6) 0 VS = ±5.0V, ±7.0V, ±8.0V AIN → RECOUT, Vin = +10dB L→R Channel Separation (dB) −20 −40 −60 NR-ON / OFF −80 −100 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L→R) (7) 0 VS = ±5.0V, ±7.0V, ±8.0V BIN → PBOUT, Vin = +10dB L→R Channel Separation (dB) −20 −40 −60 −80 NR-OFF NR-ON −100 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 41 of 69 HA12215F Channel Separation vs. Frequency (L→R) (8) 0 VS = ±5.0V, ±7.0V, ±8.0V BIN → RECOUT, Vin = +10dB L→R Channel Separation (dB) −20 −40 −60 −80 NR-ON / OFF −100 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (R→L) (1) 0 VS = ±5.0V, ±7.0V, ±8.0V AIN → PBOUT, Vin = +10dB PASSmode, R → L Channel Separation (dB) −20 −40 −60 −80 −100 10 Rev.5, Oct. 1999, page 42 of 69 100 1k Frequency (Hz) 10k 100k HA12215F Channel Separation vs. Frequency (R→L) (2) 0 VS = ±5.0V, ±7.0V, ±8.0V BIN → PBOUT, Vin = +10dB PASSmode, R → L Channel Separation (dB) −20 −40 −60 −80 −100 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L→R) (3) 0 VS = ±5.0V, ±7.0V, ±8.0V AIN → PBOUT, Vin = +10dB PASSmode, L → R Channel Separation (dB) −20 −40 −60 −80 −100 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 43 of 69 HA12215F Channel Separation vs. Frequency (L→R) (4) 0 VS = ±5.0V, ±7.0V, ±8.0V BIN → PBOUT, Vin = +10dB PASSmode, L → R Channel Separation (dB) −20 −40 −60 −80 −100 10 100 1k Frequency (Hz) 10k 100k Crosstalk vs. Frequency (AIN→BIN) (1) −20 VS = ±5.0V, ±7.0V, ±8.0V PBmode, PBOUT Vin = +12dB, AIN → BIN −40 Crosstalk (dB) NR-OFF −60 NR-ON −80 −100 −120 10 Rev.5, Oct. 1999, page 44 of 69 100 1k Frequency (Hz) 10k 100k HA12215F Crosstalk vs. Frequency (BIN→AIN) (2) −20 VS = ±5.0V, ±7.0V, ±8.0V PBmode, PBOUT Vin = +12dB, BIN → AIN Crosstalk (dB) −40 −60 NR-OFF −80 NR-ON −100 −120 10 100 1k Frequency (Hz) 10k 100k Crosstalk vs. Frequency (AIN→BIN) (3) −20 VS = ±7.0 PBmode, RECOUT Vin = +12dB, AIN → BIN Crosstalk (dB) −40 −60 NR-ON / OFF −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 45 of 69 HA12215F Crosstalk vs. Frequency (BIN→AIN) (4) −20 VS = ±7.0 PBmode, RECOUT Vin = +12dB, BIN → AIN Crosstalk (dB) −40 −60 NR-ON / OFF −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k Crosstalk vs. Frequency (PBmode→PASSmode) (1) −20 Crosstalk (dB) −40 VS = ±5.0, ±7.0, ±8.0 AIN → RECOUT Vin = +12dB PBmode → PASSmode −60 −80 −100 −120 10 Rev.5, Oct. 1999, page 46 of 69 100 1k Frequency (Hz) 10k 100k HA12215F Crosstalk vs. Frequency (PBmode→PASSmode) (2) −20 Crosstalk (dB) −40 VS = ±5.0, ±7.0, ±8.0 BIN → RECOUT Vin = +12dB PBmode → PASSmode −60 −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k Crosstalk vs. Frequency (PASSmode→PBmode) (3) −20 Crosstalk (dB) −40 VS = ±5.0, ±7.0, ±8.0 RIN → RECOUT, Lch Vin = +12dB PASSmode → PBmode −60 −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 47 of 69 HA12215F Crosstalk vs. Frequency (RECmode→PASSmode) (Rch) (1) −20 Crosstalk (dB) −40 VS = ±5.0, ±7.0, ±8.0 RIN → PBOUT, Rch Vin = +12dB RECmode → PASSmode −60 8V 5V −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k Crosstalk vs. Frequency (RECmode→PASSmode) (Lch) (2) −20 Crosstalk (dB) −40 VS = ±5.0, ±7.0, ±8.0 RIN → PBOUT, Lch Vin = +12dB RECmode → PASSmode −60 5V −80 8V −100 −120 10 Rev.5, Oct. 1999, page 48 of 69 100 1k Frequency (Hz) 10k 100k HA12215F Crosstalk vs. Frequency (PASSmode→RECmode) (Rch) (1) −20 Crosstalk (dB) −40 VS = ±5.0, ±7.0, ±8.0 AIN → PBOUT, Rch Vin = +12dB PASSmode → RECmode −60 5V −80 8V −100 −120 10 100 1k Frequency (Hz) 10k 100k Crosstalk vs. Frequency (PASSmode→RECmode) (Rch) (2) −20 Crosstalk (dB) −40 VS = ±5.0, ±7.0, ±8.0 BIN → PBOUT, Rch Vin = +12dB PASSmode → RECmode −60 8V −80 5V −100 −120 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 49 of 69 HA12215F Crosstalk vs. Frequency (PASSmode→RECmode) (Lch) (3) −20 Crosstalk (dB) −40 VS = ±5.0, ±7.0, ±8.0 AIN → PBOUT, Lch Vin = +12dB PASSmode → RECmode −60 5V 8V −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k Crosstalk vs. Frequency (PASSmode→RECmode) (Lch) (4) −20 Crosstalk (dB) −40 VS = ±5.0, ±7.0, ±8.0 BIN → PBOUT, Lch Vin = +12dB PASSmode → RECmode −60 5V −80 8V −100 −120 10 Rev.5, Oct. 1999, page 50 of 69 100 1k Frequency (Hz) 10k 100k HA12215F Line Mute vs. Frequency −20 Line Mute (dB) VS = ±7.0V AIN → PBOUT BIN Vin = +12dB −40 PBmode −60 −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k REC Mute Attenuation vs. Frequency −20 REC Mute Attenuation (dB) −40 VS = ±7.0V EQIN → EQOUT Norm speed, Norm tape Vin = +14dB −60 −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 51 of 69 HA12215F Ripple Rejection Ratio vs. Frequency (RECmode) (1) Ripple Rejection Ratio R.R.R. (dB) 20 VS = ±7.0V VCC in RECmode EQOUT(NN) 0 −20 RECOUT NR-ON PBOUT −40 RECOUT NR-OFF −60 −80 10 100 1k Frequency (Hz) 10k 100k Ripple Rejection Ratio vs. Frequency (RECmode) (2) Ripple Rejection Ratio R.R.R. (dB) 20 VS = ±7.0V VEE in RECmode EQOUT(NN) 0 −20 RECOUT NR-ON RECOUT NR-OFF −40 PBOUT −60 −80 10 Rev.5, Oct. 1999, page 52 of 69 100 1k Frequency (Hz) 10k 100k HA12215F Ripple Rejection Ratio vs. Frequency (PBmode) (1) Ripple Rejection Ratio R.R.R. (dB) 20 VS = ±7.0V VCC in PBmode 0 EQOUT(NN) −20 PBOUT NR-OFF −40 PBOUT NR-ON −60 −80 10 100 RECOUT 1k Frequency (Hz) 10k 100k Ripple Rejection Ratio vs. Frequency (PBmode) (2) Ripple Rejection Ratio R.R.R. (dB) 20 VS = ±7.0V VEE in PBmode EQOUT(NN) PBOUT NR-OFF 0 −20 PBOUT NR-ON −40 −60 −80 10 RECOUT 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 53 of 69 HA12215F Ripple Rejection Ratio vs. Frequency (PASSmode) (1) Ripple Rejection Ratio R.R.R. (dB) 20 VS = ±7.0V VCC in PASSmode EQOUT(NN) 0 −20 RECOUT NR-ON −40 PBOUT RECOUT NR-OFF −60 −80 10 100 1k Frequency (Hz) 10k 100k Ripple Rejection Ratio vs. Frequency (PASSmode) (2) Ripple Rejection Ratio R.R.R. (dB) 20 VS = ±7.0V VEE in PASSmode EQOUT(NN) 0 RECOUT NR-ON −20 PBOUT −40 RECOUT NR-OFF −60 −80 10 Rev.5, Oct. 1999, page 54 of 69 100 1k Frequency (Hz) 10k 100k HA12215F Equalizer Amp. Gain vs. Frequency (1) 55 50 VS = ±7.0V Norm speed Crom 45 REC-EQ Gain (dB) 40 35 Metal 30 25 20 Norm 15 10 5 10 100 1k Frequency (Hz) 10k 100k Equalizer Amp. Gain vs. Frequency (2) 55 50 VS = ±7.0V High speed Crom 45 REC-EQ Gain (dB) 40 35 Metal 30 25 20 15 Norm 10 5 10 100 1k Frequency (Hz) 10k 100k Rev.5, Oct. 1999, page 55 of 69 HA12215F Equalizer Amp. Gain vs. Frequency (RECcal) 55 VS = ±7.0V REC-cal 50 Norm speed, Norm tape 45 REC-EQ Gain (dB) 40 35 30 25 20 REC-cal = 5.0V REC-cal = 2.5V REC-cal = 0V 15 10 5 10 100 1k Frequency (Hz) 10k 100k Equalizer Amp. Gain vs. Frequency (GPcal) 55 VS = ±7.0V GP-cal 50 Norm speed, Norm tape GP-cal = 0V 45 REC-EQ Gain (dB) 40 GP-cal = 2.5V 35 30 GP-cal = 5.0V 25 20 15 10 5 10 Rev.5, Oct. 1999, page 56 of 69 100 1k Frequency (Hz) 10k 100k HA12215F Equalizer Total Harmonic Distortion vs. Output Level (1) REC-EQ T.H.D. (%) 100 NNmode EQIN → EQOUT VS = ±7.0V 20Hz 1kHz 5kHz 10kHz add BOOST C 10 1.0 0.1 −20 −15 −10 −5 0 5 Output Level Vout (dB) 10 15 Equalizer Total Harmonic Distortion vs. Output Level (2) REC-EQ T.H.D. (%) 100 10 NCmode EQIN → EQOUT VS = ±7.0V 20Hz 1kHz 5kHz 10kHz add BOOST C 1.0 0.1 −20 −15 −10 −5 0 5 Output Level Vout (dB) 10 15 Rev.5, Oct. 1999, page 57 of 69 HA12215F Equalizer Total Harmonic Distortion vs. Output Level (3) REC-EQ T.H.D. (%) 100 NMmode EQIN → EQOUT VS = ±7.0V 20Hz 1kHz 5kHz 10kHz add BOOST C 10 1.0 0.1 −20 −15 −10 −5 0 5 Output Level Vout (dB) 10 15 Equalizer Total Harmonic Distortion vs. Output Level (4) REC-EQ T.H.D. (%) 100 10 HNmode EQIN → EQOUT VS = ±7.0V 20Hz 2kHz 10kHz 20kHz add BOOST C 1.0 0.1 −20 Rev.5, Oct. 1999, page 58 of 69 −15 −10 −5 0 5 Output Level Vout (dB) 10 15 HA12215F Equalizer Total Harmonic Distortion vs. Output Level (5) REC-EQ T.H.D. (%) 100 HCmode EQIN → EQOUT VS = ±7.0V 20Hz 2kHz 10kHz 20kHz add BOOST C 10 1.0 0.1 −20 −15 −10 −5 0 5 Output Level Vout (dB) 10 15 Equalizer Total Harmonic Distortion vs. Output Level (6) REC-EQ T.H.D. (%) 100 10 HMmode EQIN → EQOUT VS = ±7.0V 20Hz 2kHz 10kHz 20kHz add BOOST C 1.0 0.1 −20 −15 −10 −5 0 5 Output Level Vout (dB) 10 15 Rev.5, Oct. 1999, page 59 of 69 HA12215F Equalizer Signal to Noise Ratio vs. Split Supply Voltage (1) REC-EQ S/N (dB) 70 65 60 f = 1kHz A-WTG filter Norm speed NN NC NM 55 5 6 7 8 Split Supply Voltage (V) 9 Equalizer Signal to Noise Ratio vs. Split Supply Voltage (2) REC-EQ S/N (dB) 70 65 60 f = 1kHz A-WTG filter High speed HN HC HM 55 5 Rev.5, Oct. 1999, page 60 of 69 6 7 8 Split Supply Voltage (V) 9 HA12215F Equalizer Vomax vs. Split Supply Voltage (1) 20 f = 1kHz add BOOST C NN NC NM REC-EQ Vomax (dB) 15 10 5 0 5 6 9 7 8 Split Supply Voltage (V) Equalizer Vomax vs. Split Supply Voltage (2) 20 f = 1kHz add BOOST C HN HC HM REC-EQ Vomax (dB) 15 10 5 0 5 6 7 8 Split Supply Voltage (V) 9 Rev.5, Oct. 1999, page 61 of 69 HA12215F RECcal Correction vs. VREC-cal 5 f = 3kHz GP-cal OPEN VS = ±7V Norm speed Norm tape 4 RECcal Correction (dB) 3 2 1 0 −1 −2 −3 −4 −5 0 1 2 3 VREC-cal (V) 4 5 GPcal Correction vs. VGP-cal 5 4 GPcal Correction (dB) 3 2 1 0 −1 −2 f = 12kHz REC-cal OPEN VS = ±7V Norm speed Norm tape −3 −4 −5 5 Rev.5, Oct. 1999, page 62 of 69 6 7 VGP-cal (V) 8 9 HA12215F ALC Operate Level vs. Input Level 8 f = 1kHz, VS ±7.0V, Both channel input (L, Rch) RIN → RECOUT, RIN = 192.8mVrms = 0dB cal = 5V TYPE I, IV TYPE II cal = 5V 6 cal = 2.5V 4 cal = 2.5V 2 0dB = 192.8mVrms cal = 0V Vin R4 13k 0 −2 −5 0 56 RIN C4 0.1µ R3 2.2k cal = 0V 10 20 5 15 25 Input Level Vin (dB) RIN = 192.8mVrms = 0dB 30 55 ALC 35 ALC Total Harmonic Distortion vs. Input Level (1) f = 1kHz, VS = ±7.0V TYPE I,IV (Norm tape, Metal tape) 1.0 Cal = 0V Cal = 2.5V Cal = 5V T.H.D. (%) Output Level RECOUT (dB) 0dB = 300mVrms 10 0.1 0.01 −5 0 5 10 15 20 Input Level Vin (dB) 25 30 Rev.5, Oct. 1999, page 63 of 69 HA12215F ALC Total Harmonic Distortion vs. Input Level (2) T.H.D. (%) f = 1kHz, VS = ±7.0V TYPE II (Crom tape) 1.0 Cal = 0V Cal = 2.5V Cal = 5V 0.1 0.01 −5 0 5 10 15 20 Input Level Vin (dB) 30 25 ALC Operate Level vs. Frequency Operate Level RECOUT (dB) 0dB = 300mVrms 10 8 ALC-CAL = 5V 6 4 ALC-CAL = 2.5V 2 0 ALC-CAL = 0V −2 −4 Vin = ±12dB, Both channel input (L, Rch), RIN → RECOUT TYPE I, IV (Norm tape, Metal tape) TYPE II (Crom tape) 100 Rev.5, Oct. 1999, page 64 of 69 1k Frequency (Hz) 10k 50k HA12215F Bias Output Voltage vs. Load Current 8 VS = ±7.0V Bias ON 270Ω 31 Bias Output Voltage (V) V I 7 6 5 0 1 2 3 4 5 Load Current I (mA) 6 7 MS Sensing Level vs. Frequency VS = ±7.0V, MSOUT AIN → PBOUT = 580mVrms = 0dB Lo → Hi Hi → Lo MS Sensing Level (dB) 0 −10 −20 −30 100 1k 10k 100k Frequency (Hz) Rev.5, Oct. 1999, page 65 of 69 HA12215F MS Amp. Gain vs. Frequency 40 VS = ±7.0V MAOUT Gain (dB) 30 20 MSIN 10 0 −10 10 100 1k Frequency (Hz) 10k 100k No-Signal Sensing Time vs. Resistance No-Signal Sensing Time (ms) 500 VS = ±7.0V, f = 5kHz, MSOUT AIN → PBOUT = 580mVrms 0dB −10dB −20dB 100 PBOUT 10 MSOUT C13 0.33µ 14 VCC R13 1 100k Resistance R13 (Ω) Rev.5, Oct. 1999, page 66 of 69 1M HA12215F Signal Sensing Time vs. Capacitance Signal Sensing Time (ms) 100 VS = ±7.0V, f = 5kHz, MSOUT AIN → PBOUT = 580mVrms 0dB −10dB −20dB 10 PBOUT MSOUT C13 1 14 VCC R13 330k 0.01 0.1 Capacitance C13 (µF) 0.5 Rev.5, Oct. 1999, page 67 of 69 HA12215F Package Dimensions 12.8 ± 0.3 Unit: mm 10.0 42 29 28 56 15 0.65 12.8 ± 0.3 43 1 0.35 0.10 *Dimension including the plating thickness Base material dimension Rev.5, Oct. 1999, page 68 of 69 0.1 +0.1 −0.09 0.775 2.20 0.13 M *0.17 ± 0.05 0.15 ± 0.04 *0.32 ± 0.08 0.30 ± 0.06 2.54 Max 14 0.775 1.40 0° − 8° 0.60 ± 0.15 Hitachi Code JEDEC EIAJ Weight (reference value) FP-56 0.5 g HA12215F Disclaimer 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Sales Offices Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http://semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia : http://sicapac.hitachi-asia.com Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic Components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 585160 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel : <65>-538-6533/538-8577 Fax : <65>-538-6933/538-3877 URL : http://www.hitachi.com.sg Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building, Taipei (105), Taiwan Tel : <886>-(2)-2718-3666 Fax : <886>-(2)-2718-8180 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong Tel : <852>-(2)-735-9218 Fax : <852>-(2)-730-0281 URL : http://www.hitachi.com.hk Copyright Hitachi, Ltd., 2000. All rights reserved. Printed in Japan. Colophon 2.0 Rev.5, Oct. 1999, page 69 of 69