HA12226F/HA12227F Audio Signal Processor for Cassette Deck (Dolby B-type NR with Recording System) ADE-207-270E (Z) 6th Edition Dec. 2000 Description The HA12226F/HA12227F are silicon monolithic bipolar IC providing Dolby noise reduction system*1, music sensor system, REC equalizer system and each electronic control switch in one chip. Note: 1. Dolby is a trademark of Dolby Laboratories Licensing Corporation. A license from Dolby Laboratories Licensing Corporation is required for the use of this IC. The HA12227F is not built-in Dolby B-NR. Functions • Dolby B-NR*2 × 2 channel • REC equalizer × 2 channel • Music sensor × 1 channel • Pass amp. × 2 channel • Each electronic control switch to change REC equalizer, bias, etc. Note: 2. The HA12227F is not built-in Dolby B-NR. Features • REC equalizer is very small number of external parts and have 4 types of frequency characteristics built-in. • 2 types of input for PB, 1 type of input for REC. • 70µ - PB equalizer changing system built-in. • Dolby NR*2 with dubbing double cassette decks. Unprocessed signal output available from recording out terminals during PB mode. • Provide stable music sensor system, available to design music sensing time and level. • Controllable from direct micro-computer output. • Bias oscillator control switch built-in. • NR ON / OFF and REC / PB fully electronic control switching built-in. • Normal-speed / high-speed, Normal / Crom and PB equalizer fully electronic control switching built-in. • Available to reduce substrate-area because of high integration and small external parts. HA12226F/HA12227F Ordering Information Operating Voltage Product Power Supply Range (Single Supply) HA12226F 11.0 V to 15.0 V HA12227F 9.5 V to 15.0 V Standard Level Product Package PB-OUT Level REC-OUT Level Dolby Level HA12226F FP-56A 580 mVrms 300 mVrms 300 mVrms HA12227F Function Product Dolby B-NR REC-EQ Music Sensor Pass Amp. REC / PB Selection ALC HA12226F ❍ ❍ ❍ ❍ ❍ ❍ HA12227F × ❍ ❍ ❍ ❍ ❍ Note: Depending on the employed REC / PB head and test tape characteristics, there is a rare case that the REC-EQ characteristics of this LSI can not be matched to the required characteristics because of built-in resistors which determined the REC-EQ parameters in this case, please inquire the responsible agent because the adjustment built-in resistor is necessary. Difference of HA12215F and HA12226F/HA12227F Tape Correspondence Product Supply Voltage NORM CROM METAL HA12226F/HA12227F Single supply voltage ❍ ❍ × HA12215F Split supply voltage ❍ ❍ ❍ Note: The HA12226F/HA12227F became single power supply for the HA12215F and deleted metal correspondence. The HA12227F is not built-in Dolby B-NR. Other characteristic aspects are similar as the HA12215F. 2 HA12226F/HA12227F Pin Description, Equivalent Circuit (V CC = 12 V, A system of single supply voltage, Ta = 25°C, No Signal, The value in the show typical value.) Pin No. Terminal Name Note 51 AIN (R) V = VCC / 2 Equivalent Circuit Pin Description PB A Deck input V 100k VCC/2 48 AIN (L) 53 BIN (R) 46 BIN (L) 56 RIN (R) 43 RIN (L) 5 EQIN (R) 38 PB B Deck input REC input REC equalizer input EQIN (L) 2 1* DET (R) V = 2.7 V VCC Time constant pin for Dolby-NR V GND 2 42 * DET (L) 49 RIP 3 2* BIAS1 Ripple filter V = 0.6 V Dolby bias current input V 41 BIAS2 GND V = 1.3 V REC equalizer bias current input V GND 3 HA12226F/HA12227F Pin Description, Equivalent Circuit (V CC = 12 V, A system of single supply voltage, Ta = 25°C, No Signal, The value in the show typical value.) (cont) Pin No. Terminal Name Note 3 PBOUT (R) V = VCC / 2 Equivalent Circuit Pin Description VCC PB output V GND 40 PBOUT (L) 4 RECOUT (R) 39 RECOUT (L) 7 EQOUT (R) 36 EQOUT (L) 28 MAOUT MS Amp. output * 1 8 ROUT (R) Input Amp. output 35 ROUT (L) 52 ABO (R) REC output REC equalizer output R1 = 15 k R2 = 12 k V = VCC / 2 VCC V R1 Time constant pin for PB equalizer (70µ) R2 GND 47 ABO (L) 6 BOOST (R) 37 BOOST (L) 32 BIAS (C) R1 = 4.8 k R2 = 4.8 k V = VCC / 2 V = VCC − 0.7 V Time constant pin for low boost VCC V 33 4 BIAS (N) REC bias current output HA12226F/HA12227F Pin Description, Equivalent Circuit (V CC = 12 V, A system of single supply voltage, Ta = 25°C, No Signal, The value in the show typical value.) (cont) Pin No. Terminal Name Note Equivalent Circuit Pin Description 21 VCC V = VCC Power supply 50 GND V=0V GND pin 31, 45, 54 NC No connection No connection 15 ALC ON/OFF I = 20 µA Mode control input I V 22 k 100 k GND 16 PB A/B 17 A 120/70 18 NORM/HIGH 19 B NORM/CROM 20 BIAS ON/OFF RM ON/OFF 22 2 23 * NR ON/OFF 25 LM ON/OFF 24 REC/PB/PASS 2.5 V 100 k Mode control input + − 100 k 22 k V 26 MSOUT I = 0 µA V MS output (to MPU) * 1 VCC I D GND 5 HA12226F/HA12227F Pin Description, Equivalent Circuit (V CC = 12 V, A system of single supply voltage, Ta = 25°C, No Signal, The value in the show typical value.) (cont) Pin No. Terminal Name Note 10 GPCAL R = 110 kΩ Equivalent Circuit Pin Description R 2.5 V GP gain calibration terminal 11 RECCAL R = 110 kΩ REC gain calibration terminal 12 ALCCAL R = 140 kΩ ALC operation level calibration terminal 14 MSDET n=6 0 µA VCC n Time constant pin for MS *1 GND 13 ALCDET n=2 27 MSIN R = 50 kΩ MS input * 1 VCC V R VCC/2 9 ALCIN (R) 34 ALCIN (L) 30 MAI R = 100 kΩ V = VCC / 2 MAOUT VCC MS Amp. input *1 100 k V MAI 8.2 k VCC/2 29 MS GND V=0V MS output voltage level control pin * 1 55 ALC (R) V=0V Variable impedance for attenuation 44 ALC (L) Note: 6 1. MS: Music Sensor 2. Non connection regarding the HA12227F. 3. Test pin regarding the HA12227F. HA12226F/HA12227F Block Diagram MSGND MAI NC BIAS (C) BIAS (N) ALCIN (L) ROUT (L) EQOUT (L) BOOST (L) EQIN (L) RECOUT (L) PBOUT (L) BIAS2 DET (L) HA12226F 42 41 40 39 38 37 36 35 34 33 32 31 30 29 RIN (L) 43 ALC (L) 44 EQ BIAS Dolby B-NR 28 MAOUT 27 MSIN 26 MSOUT MS NC 45 BIN (L) 46 25 LM ON / OFF ABO (L) 47 24 REC / PB / PASS AIN (L) 48 23 NR ON / OFF 22 RM ON / OFF RIP − + 49 + LPF GND 50 21 VCC AIN (R) 51 20 BIAS ON / OFF ABO (R) 52 19 B NORM / CROM BIN (R) 53 18 NORM / HIGH NC 54 17 A 120 / 70 ALC (R) 55 16 PB A / B RIN (R) 56 15 ALC ON / OFF ALC Dolby B-NR 5 6 7 8 9 10 11 12 13 14 BIAS1 PBOUT (R) RECOUT (R) EQIN (R) BOOST (R) EQOUT (R) ROUT (R) ALCIN (R) GPCAL MSDET 4 ALCDET 3 ALCCAL 2 RECCAL 1 DET (R) EQ 7 HA12226F/HA12227F MSGND MAI NC BIAS (C) BIAS (N) ALCIN (L) ROUT (L) EQOUT (L) BOOST (L) EQIN (L) RECOUT (L) PBOUT (L) BIAS2 NC HA12227F 42 41 40 39 38 37 36 35 34 33 32 31 30 29 RIN (L) 43 ALC (L) 44 NC 45 BIN (L) EQ BIAS 28 MAOUT 27 MSIN 26 MSOUT 46 25 LM ON / OFF ABO (L) 47 24 REC / PB / PASS AIN (L) 48 23 NC 22 RM ON / OFF MS RIP 49 + 8 − + LPF GND 50 21 VCC AIN (R) 51 20 BIAS ON / OFF ABO (R) 52 19 B NORM / CROM BIN (R) 53 18 NORM / HIGH NC 54 17 A 120 / 70 ALC (R) 55 16 PB A / B RIN (R) 56 15 ALC ON / OFF ALC 5 6 7 8 9 10 11 12 13 14 Test mode pin PBOUT (R) RECOUT (R) EQIN (R) BOOST (R) EQOUT (R) ROUT (R) ALCIN (R) GPCAL MSDET 4 ALCDET 3 ALCCAL 2 RECCAL 1 NC EQ HA12226F/HA12227F Parallel-Data Format Pin No. Pin Name Lo 15 ALC ON/OFF ALC ON 1 MODE “Pin Open” Mid Hi ALC OFF Lo 1 Bin * Lo 16 PB A/B Ain * 17 A 120/70 *1 *1 Lo 22 RM ON/OFF REC MUTE ON REC MUTE OFF Lo BIAS ON/OFF BIAS OFF BIAS ON Lo 23 * NR ON/OFF NR OFF NR ON Lo 24 REC/PB/PASS REC MODE PB MODE REC MODE PASS Mid 25 LM ON/OFF LINE MUTE OFF LINE MUTE ON Lo 18 NORM/HIGH Normal speed 20 2 19 Note: B NORM/CROM 1 REC EQ Normal * Bias Normal High speed 1 REC EQ CROM * Bias CROM Lo 1 REC EQ CROM * Bias CROM Lo 1. PB EQ logic PB A 120/70 B NORM / CROM Lo Hi Lo Lo FLAT FLAT Lo Mid or Hi FLAT 70 µ Hi Lo 70 µ FLAT Hi Mid or Hi 70 µ 70 µ 2. The HA12226F only. 9 HA12226F/HA12227F Functional Description Power Supply Range These ICs are designed to operate on single supply. Table 1 Supply Voltage Product Power Supply Range (Single Supply) HA12226F 11.0 V to 15.0 V HA12227F 9.5 V to 15.0 V Note: The lower limit of supply voltage depends on the line output reference level. The minimum value of the overload margin is specified as 12 dB by Dolby Laboratories (Dolby IC HA12226F). Reference Voltage The reference voltage are provided for the left channel and the right channel separately. The block diagram is shown as figure 1. 21 VCC + − L channel reference + − VCC Music sensor reference + − R channel reference 50 GND 49 RIP + 1µ Unit C: F Figure 1 Reference Voltage 10 HA12226F/HA12227F Operating Mode Control The HA12226F/HA12227F provide fully electronic switching circuits. And each operating mode control is controlled by parallel data (DC voltage). Table 2 Control Voltage Pin No. Lo Mid Hi Unit 15, 16, 17, 18, 20, 22, 23* 4, 25 −0.2 to 1.0 4.0 to VCC V 19, 24 −0.2 to 1.0 2.0 to 3.0 4.0 to VCC V Test Condition Input Pin Measure Notes: 1. Each pins are on pulled down with 100 kΩ internal resistor. Therefore, it will be low-level when each pins are open. But pin 24 is mid-level when it is open. 2. Over shoot level and under shoot level of input signal must be the standardized (High: VCC, Low: −0.2 V). 3. For reduction of pop noise, connect 1 µF to 22 µF capacitor with mode control pins. But it is impossible to reduce completely in regard to Line mute, therefore, use external mute at the same time. 4. Non connection regarding the HA12227F. Input Block Diagram and Level Diagram The each level shown above is typical value when offering PBOUT level to PBOUT pin. MS 300mVrms AIN 21.3dB BIN 25.9mVrms REF PASS REC PB PASS/REC, PB=5.7dB/5.7dB FLAT (120µ) 300mVrms 0dB R3 70µs 12k PB/REC, PASS=0dB/21.4dB 300mVrms PB Dolby *1 B-NR REC PASS 300mVrms R4 15k PBOUT 580mVrms RECOUT 300mVrms ALC 25.5mVrms C2 4700pF C1 0.1µF R1 15k RIN 200mVrms R2 C3 2.2k 0.1µF Note: 1. The HA12227F is not built-in Dolby B-NR. Figure 2 Input Block Diagram 11 HA12226F/HA12227F PB Equalizer By switching logical input level of pin 17 (for Ain) and pin 19 (for Bin), you can equalize corresponding to tape position at play back mode. GV t1 = C2 ⋅ (12k + 15k) t2 = C2 ⋅ 15k t1 f t2 Figure 3 Frequency Characteristic of PB Equalizer The Sensitivity Adjustment of Music Sensor Adjusting MS Amp gain by external resistor, the sensitivity of music sensor can set up. REP D VCC VCC R13 330k MA OUT MSIN + C13 0.33µ + C16 1000p PB (L) MAI 100k 8.2k −6dB − + RL MS DET DET MS AMP MS OUT Microcomputer GND LPF 25kHz 50k PB (R) Figure 4 Music Sensor Block Diagram 12 GND HA12226F/HA12227F The Sensitivity of Music Sensor A standard level of MS input pin 25.9 mVrms, therefore, the sensitivity of music sensor (S) can request it, by lower formulas. A = MS Amp Gain*1 C S = 20log B = PB input Gain × (1/2)*2 25.9 ⋅A⋅B C = Sensed voltage 20log (A × B) = D [dB] S = 14 − D [dB] C = 130 [mVrms] (Intenally voltage in a standard) PB input Gain = 21.3 [dB] [dB] Notes: 1. When there is not a regulation outside. 2. Case of one-sided channel input. But necessary to consider the same attenuation quantity practically, on account of A(B) have made frequency response. GV 37.7dB 1 [Hz] 2π ⋅ C16 ⋅ 50k f2 = 25k [Hz] f1 = f1 f f2 Figure 5 Frequency Characteristic of MSIN Occasion of the external component of figure 4, f1 is 3.18 kHz. Time constant of detection Attack Recovery Attack C13 R13 (1) (2) Detection time Recovery Detection time Detection time Figure 6(1) generally shows that detection time is in proportion to value of capacitor C13. But, with Attack* 2 and Recovery*3 the detection time differs exceptionally. Notes 2. Attack : Non-music to Music 3. Recovery : Music to Non-music Recovery Detection level Attack Input level (3) Figure 6 Function Characteristic of MS Like the figure 6(2), Recovery time is variably possible by value of resistor R13. But Attack time gets about fixed value. Attack time has dependence by input level. When a large signal is inputted, Attack time is short tendency. 13 HA12226F/HA12227F Music Sensor Output (MSOUT) As for internal circuit of music sensor block, music sensor output pin is connected to the collector of NPN type directly, output level will be “high” when sensing no signal. And output level will be “low” when sensing signal. Connection with microcomputer, it is requested to use external pull up resistor (RL = 10 kΩ to 22 kΩ) Note: Supply voltage of MSOUT pin must be less than VCC voltage. The Tolerances of External Components for Dolby NR-Block (Only the HA12226F) For Dolby NR precision securing, please use external components shown at figure 7. If leak-current are a few electrolytic-capacitor, it can be applicable to C5 and C23. C23 0.1µ ±10% 42 DET (L) HA12226F DET (R) 1 C5 0.1µ ±10% BIAS1 2 R5 33k ±2% Figure 7 Tolerance of External Components Low-Boost EQIN 24.6dB 4.8k REC EQ EQOUT 4.8k BOOST C9(C19) 0.47µ + Figure 8 Example of Low Boost Circuit External components shown figure 8 gives frequency response to take 6 dB boost. And cut off frequency can request it, by C9 (C19). 14 HA12226F/HA12227F REC Equalizer The outlines of REC Equalizing frequency characteristics are shown by figure 9. Those peak level can be set up by supplying voltage. (0 V to 5 V, GND = 0 V) to pin 10 (GPCAL). And whole band gain can be set up by supplying voltage (0 V to 5 V, GND = 0 V) to pin 11 (RECCAL). Both setting up range are ±4.5 dB. In case that you do not need setting up, pin 10, pin 11 should be open bias. Note: Depending on the employed REC/PB head and test tape characteristics, there is a rare case that the REC-EQ characteristics of this LSI can not be matched to the required characteristics because of built-in resistors which determined the REC-EQ parameters in this care, please inquire the responsible agent because of the adjustment of built-in resistor is necessary. RECCAL Gain (dB) GPCAL Frequency (Hz) Figure 9 Frequency Characteristics of REC Equalizer Bias Switch The HA12215F built-in DC voltage generator for bias oscillator and its bias switches. External resistor R20, R21 which corresponded with tape positions and bias out voltage are relater with below. . Vbias = . R22 × (VCC − 0.7) [V] (R20 or R21) + R22 Bias switch follows to a logic of pin 19 (B / Norm / Crom). Note: A current that flows at bias out pin, please use it less than 5 mA. 15 HA12226F/HA12227F BIAS (N) Pin 33 BIAS (C) Pin 32 R21 Vbias R20 R22 Figure 10 External Components of Bias Block Automatic Level Control ALC is the input decay rate variable system. It has internal variable resistors of pin 55 (pin 44) by RECOUT signal that is inputted to pin 9 (pin 34). The operation is similitude to MS, detected by pin 13. The signal input pin is pin 56 (pin 43). Resistor R1, R2 and capacitor C2, external components, for the input circuit are commended as figure 12. There are requested to use value of the block diagram figure for performance maintenance of S/N, T.H.D. etc. Figure 11 shows the relation with R1 front RIN point and ROUT. ALC operation level acts for the center of +4.5 dB at tape position TYPE I and the center of +2.5 dB at tape position TYPE II, to standard level (300 mVrms). Then, adopted maximum value circuit, ALC is operated by a large channel of a signal. ROUT ALC ON/OFF can switch it by pin 15. Please do ALC ON, after it does for one time ALC OFF inevitably, for ALC time to start usefully (when switching PB → PASS, when switching PB → PASS), in order to reset ALC circuit. 300mV TYPE II 2.5dB TYPE I 4.5dB RIN Figure 11 ALC Operation Level 16 HA12226F/HA12227F RIN 56 Input C2 0.1µ 55 25.5mV ALC 21.4dB ROUT 300mV 8 Output ALC 9 C4 R2 2.2k 13 ALCIN ALCDET R12 VCC + R1 15k C12 Figure 12 ALC Block Diagram ALC Operation Level Necessary ALC operation level is variable to pin 12 bias (ALC-CAL: 0 to 5 V), and its range is ±4.0 dB. Unnecessary, pin 12 is unforced. ROUT ALC-CAL = 5V ALC-CAL = 0V RIN Figure 13 ALC-CAL Characteristics About a Test Pin (Pin 2) The HA12227F does for testing exclusive terminal for pin 2. In mount circuit, this terminal is open or connected to GND with a resistor of 33 kΩ. 17 HA12226F/HA12227F Absolute Maximum Ratings Item Symbol Rating Unit Max supply voltage VCC max 16 V Power dissipation Pd 625 mW Operating temperature Topr −40 to +75 °C Storage temperature Tstg −55 to +125 °C 18 Note Ta ≤ 75°C PB PB REC REC REC REC REC REC REC OFF OFF OFF OFF OFF OFF OFF OFF ON ON PASS PASS PB PB PB PB PB PB REC REC OFF REC OFF PB OFF REC OFF PB OFF REC/PB OFF OFF OFF OFF OFF OFF OFF OFF OFF A/B A/B A A A A A A A A A A A A/B A A/B A A A A A A A A 120 120 120 70 70 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 OFF OFF ON OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF B N/C NORM NORM NORM CROM CROM NORM NORM NORM NORM CROM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM NORM Notes: 1. Other IC-condition : REC-MUTE OFF, Normal tape, Normal speed, Bias OFF 2. VCC = 11.0 V 3. For inputting signal to one side channel MS sensing level MS output low level MS output leak current ALC operate level OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF GV PA ∆GV MUTE GV EQ 1k GV EQ 10k VON VOL IOH ALC (1) ALC (2) Pass AMP. gain Gain deviation MUTE ATT. 70µ EQ gain OFF OFF ON ON ON ON ON ON OFF ON OFF OFF OFF OFF IQ GV PB GV REC ENC 2k (1) ENC 2k (2) ENC 5k (1) ENC 5k (2) Vo max S/N Symbol Total Harmonic Distortion THD CTRL (1) Channel separation CTRL (2) CT A/B Crosstalk CT R/P Signal handling Signal to noise ratio B-type Encode boost Input AMP. gain Item Quiescent current IC Condition *1 NR ALC REC/PB 120µ/ LINE ON/OFF ON/OFF /PASS A/B 70µ MUTE Test Condition 1k 1k 1k 1k 10k 5k 1k 1k 1k 1k 1k 1k 1k 1k 1k 2k 2k 5k 5k 1k 1k 0 0 +12 0 0 +12 +12 0 +12 +12 +12 +12 0 0 −20 −30 −20 −30 fin RECOUT (Hz) level (dB) 70.0 70.0 70.0 70.0 0.05 0.3 80.0 85.0 80.0 80.0 43 48 43 48/46 48/43 4 3 3 3 3 dB 51/53 48/46 3 dB 51/53 48/46 3 dB 51 48 3 dB 51 48 3 51 48 3 dB 51 48 3 51 48 V µA dB 56 43 4 56 43 4 56 51 56 dB 51/53 51/56 % dB Min Typ Max Unit R L R 18.0 26.0 35.0 mA 25.5 27.0 28.5 dB 51/53 48/46 3 25.0 26.5 28.0 3 56 43 2.8 4.3 5.8 dB 56 43 4 7.0 8.5 10.0 56 43 4 1.7 3.2 4.7 56 43 4 6.7 8.2 9.7 56 43 4 12.0 13.0 4 dB 56 43 64.0 70.0 4 dB 56 43 25.5 27.0 28.5 GV PA − GV PB −1.0 0.0 1.0 70.0 80.0 24.0 25.5 27.0 20.8 22.3 23.8 −26.0 −22.0 −18.0 1.0 1.5 2.0 2.0 4.5 7.0 0.0 2.5 5.0 THD=1% Rg=5.1kΩ, CCIR/ARM Other No signal 40 40 40 40 40 40 39 39 39 40 40 40 40 26 26 26 3 L COM Remark 21 40 40 39 39 39 39 39 2 39 Application Terminal Input Output (Ta = 25°C, VCC = 12 V, Dolby Level = REC-OUT Level = 300 mVrms = 0 dB) HA12226F/HA12227F Electrical Characteristics HA12226F 19 20 0.1 1.0 3.0 VCC −0.1 0.0 −0.2 2.0 4.0 RL = 2.2kΩ VIL VIM VIH V V V V dB dB V −4.0 −3.0 3.0 4.0 VCC VCC −1.4 −0.7 Bias off Bias out maximum level ALC CAL response Bias out offset ALC (1) = 0dB dB dB dB −6.0 −4.5 −3.0 6.0 Control voltage f = 12kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF VGP-CAL = 5V 4.5 −6.0 −4.5 −3.0 NORM NORM f = 12kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF GV EQ-NN3 = 0dB 3.0 VGP-CAL = 0V SW22 (L), SW23 (R) OFF NORM NORM f = 1kHz, VALC-CAL = 0V f = 1kHz, VALC-CAL = 5V RL = 2.2kΩ GP-CAL2 GP-CAL1 f = 3kHz, Vin = −46dBs, VREC-CAL = 0V 21.9 25.9 21.2 25.5 29.0 70 4.5 19.9 23.4 19.7 23.5 26.5 60 3.0 23.9 dB 28.4 dB 22.7 dB 27.5 dB 31.5 dB dB 6.0 dB 0.5 % % 0.5 500 mV 21.8 dB 27.9 dB 35.1 dB 26.3 dB 32.5 dB 39.0 dB 18.0 dB 0.2 0.2 0 20.3 25.9 32.6 24.8 30.5 36.5 16.5 −500 18.8 23.9 30.1 23.3 28.5 34.0 15.0 dB 10.5 12.5 Min Typ Max Unit dB 55 58 ALC-CAL1 ALC-CAL2 Bias on GP CAL response R-CAL2 Symbol S/N (EQ) Test Condition TAPE SPEED NORM NORM Rg = 5.1kΩ, A-WTG Filter SW22 (L), SW23 (R) OFF (0dB = −5dBs at EQOUT) Equalizer maximum input Vin max (EQ) NORM NORM f = 1kHz, THD = 1%, SW22 (L), SW23 (R) OFF Vin = −26dBs = 0dB Equalizer total harmonic T.H.D.1 (EQ) NORM NORM f = 1kHz, Vin = −26dBs SW22 (L), SW23 (R) OFF distortion f = 1kHz, Vin = −30dBs SW22 (L), SW23 (R) OFF T.H.D.2 (EQ) Equalizer offset voltage Vofs (EQ) NORM NORM No-Signal SW22 (L), SW23 (R) OFF Equalizer SW22 (L), SW23 (R) OFF GVEQ-NN1 NORM NORM f = 3kHz, Vin = −46dBs frequency response f = 8kHz, Vin = −46dBs GVEQ-NN2 SW22 (L), SW23 (R) OFF (NORM - NORM) f = 12kHz, Vin = −46dBs SW22 (L), SW23 (R) OFF GVEQ-NN3 SW22 (L), SW23 (R) OFF CROM NORM f = 3kHz, Vin = −46dBs GVEQ-CN1 Equalizer frequency response SW22 (L), SW23 (R) OFF f = 8kHz, Vin = −46dBs GVEQ-CN2 (CROM - NORM) f = 12kHz, Vin = −46dBs GVEQ-CN3 SW22 (L), SW23 (R) OFF Equalizer GVEQ-NH1 SW22 (L), SW23 (R) OFF NORM HIGH f = 5kHz, Vin = −46dBs frequency response f = 15kHz, Vin = −46dBs GVEQ-NH2 SW22 (L), SW23 (R) OFF (NORM - High) f = 20kHz, Vin = −46dBs GVEQ-NH3 SW22 (L), SW23 (R) OFF Equalizer GVEQ-CH1 SW22 (L), SW23 (R) OFF CROM HIGH f = 5kHz, Vin = −46dBs frequency Response f = 15kHz, Vin = −46dBs GVEQ-CH2 SW22 (L), SW23 (R) OFF (CROM - High) f = 20kHz, Vin = −46dBs GVEQ-CH3 SW22 (L), SW23 (R) OFF REC-MUTE attenuation REC-MUTE NORM NORM f = 1kHz, Vin = −14dBs SW22 (L), SW23 (R) OFF NORM NORM f = 3kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF GV EQ-NN1 = 0dB R-CAL1 REC CAL response VREC-CAL = 5V Item Equalizer S/N 38 38 38 38 38 5 5 5 5 5 43 43 38 38 56 56 5 5 38 38 38 38 38 38 38 38 38 38 38 5 5 5 5 5 5 5 5 5 5 5 38 38 5 5 38 Input L R 38 5 5 (Ta = 25°C, VCC = 12 V) 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 32, 33 39 39 32, 33 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 19, 24 15 to 20 22 to 25 15 to 20 22 to 25 Output R L COM Remark 7 36 Application Terminal HA12226F/HA12227F HA12226F (cont) A A/B A A A A A A A/B A A/B A/B A A A A A A A A OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF ON ON PASS GV PA PASS ∆GV PB MUTE PB GV EQ 1k PB GV EQ 10k PB VON PB VOL PB IOH REC ALC (1) REC ALC (2) Symbol PB PB REC REC REC REC PB REC PB REC/PB IQ 120 120 120 70 70 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 OFF OFF ON OFF OFF OFF OFF OFF OFF OFF NORM NORM NORM CROM CROM NORM NORM NORM NORM CROM OFF NORM OFF NORM OFF NORM OFF NORM OFF NORM OFF NORM OFF NORM OFF NORM OFF NORM OFF NORM B N/C Notes: 1. Other IC-condition : REC-MUTE OFF, Normal tape, Normal speed, Bias OFF 2. VCC = 11.0 V 3. For inputting signal to one side channel MS sensing level MS output low level MS output leak current ALC operate level Pass AMP. gain Gain deviation MUTE ATT. 70µ EQ gain GV PB GV REC Vo max Signal handling S/N Signal to noise ratio Total Harmonic Distortion THD CTRL (1) Channel separation CTRL (2) CT A/B Crosstalk CT R/P Item Quiescent current Input AMP. gain IC Condition *1 REC/PB ALC 120µ/ LINE /PASS ON/OFF A/B 70µ MUTE 1k 1k 1k 1k 10k 5k 1k 1k 1k 1k 1k 1k 1k 1k 1k 1k 1k 0 0 +12 0 0 +12 +12 0 0 0 +12 +12 +12 +12 fin RECOUT (Hz) level (dB) Test Condition GV PA − GV PB 25.5 27.0 28.5 −1.0 0.0 1.0 70.0 80.0 24.0 25.5 27.0 20.8 22.3 23.8 −26.0 −22.0 −18.0 1.0 1.5 2.0 2.0 4.5 7.0 0.0 2.5 5.0 dB 51/53 48/46 3 dB 51/53 48/46 3 3 dB 51 48 3 dB 51 48 51 48 3 3 dB 51 48 51 48 V µA 4 dB 56 43 4 56 43 40 40 40 40 40 40 39 39 40 40 39 39 39 40 40 40 40 26 26 26 3 2 L COM Remark 21 Output Min Typ Max Unit R L R 14.0 22.0 30.0 mA 25.5 27.0 28.5 dB 51/53 48/46 3 25.0 26.5 28.0 56 43 3 12.0 13.0 dB 56 43 4 THD=1% 4 dB 56 43 Rg=5.1kΩ, CCIR/ARM 64.0 70.0 0.05 0.3 % 4 56 43 70.0 80.0 3 dB 51 48 70.0 85.0 3 56 43 70.0 80.0 dB 51/53 48/46 3 70.0 80.0 51/56 48/43 3 Other No signal Input Application Terminal (Ta = 25°C, VCC = 12 V, Dolby Level = REC-OUT Level = 300 mVrms = 0 dB) HA12226F/HA12227F HA12227F 21 22 0.1 1.0 3.0 VCC −0.1 0.0 −0.2 2.0 4.0 RL = 2.2kΩ VIL VIM VIH V V V V dB dB V −4.0 −3.0 3.0 4.0 VCC VCC −1.4 −0.7 Bias off Bias out maximum level ALC CAL response Bias out offset ALC (1) = 0dB dB −6.0 −4.5 −3.0 Control voltage f = 12kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF VGP-CAL = 5V dB dB 6.0 4.5 −6.0 −4.5 −3.0 NORM NORM f = 12kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF GV EQ-NN3 = 0dB 3.0 VGP-CAL = 0V SW22 (L), SW23 (R) OFF NORM NORM f = 1kHz, VALC-CAL = 0V f = 1kHz, VALC-CAL = 5V RL = 2.2kΩ GP-CAL2 GP-CAL1 f = 3kHz, Vin = −46dBs, VREC-CAL = 0V 21.9 25.9 21.2 25.5 29.0 70 4.5 19.9 23.4 19.7 23.5 26.5 60 3.0 23.9 dB 28.4 dB 22.7 dB 27.5 dB 31.5 dB dB 6.0 dB 0.5 % % 0.5 500 mV 21.8 dB 27.9 dB 35.1 dB 26.3 dB 32.5 dB 39.0 dB 18.0 dB 0.2 0.2 0 20.3 25.9 32.6 24.8 30.5 36.5 16.5 −500 18.8 23.9 30.1 23.3 28.5 34.0 15.0 dB 10.5 12.5 Min Typ Max Unit dB 55 58 ALC-CAL1 ALC-CAL2 Bias on GP CAL response R-CAL2 Symbol S/N (EQ) Test Condition TAPE SPEED NORM NORM Rg = 5.1kΩ, A-WTG Filter SW22 (L), SW23 (R) OFF (0dB = −5dBs at EQOUT) Equalizer maximum input Vin max (EQ) NORM NORM f = 1kHz, THD = 1%, SW22 (L), SW23 (R) OFF Vin = −26dBs = 0dB Equalizer total harmonic T.H.D.1 (EQ) NORM NORM f = 1kHz, Vin = −26dBs SW22 (L), SW23 (R) OFF distortion f = 1kHz, Vin = −30dBs SW22 (L), SW23 (R) OFF T.H.D.2 (EQ) Equalizer offset voltage Vofs (EQ) NORM NORM No-Signal SW22 (L), SW23 (R) OFF Equalizer SW22 (L), SW23 (R) OFF GVEQ-NN1 NORM NORM f = 3kHz, Vin = −46dBs frequency response f = 8kHz, Vin = −46dBs GVEQ-NN2 SW22 (L), SW23 (R) OFF (NORM - NORM) f = 12kHz, Vin = −46dBs SW22 (L), SW23 (R) OFF GVEQ-NN3 SW22 (L), SW23 (R) OFF CROM NORM f = 3kHz, Vin = −46dBs GVEQ-CN1 Equalizer frequency response SW22 (L), SW23 (R) OFF f = 8kHz, Vin = −46dBs GVEQ-CN2 (CROM - NORM) f = 12kHz, Vin = −46dBs GVEQ-CN3 SW22 (L), SW23 (R) OFF Equalizer GVEQ-NH1 SW22 (L), SW23 (R) OFF NORM HIGH f = 5kHz, Vin = −46dBs frequency response f = 15kHz, Vin = −46dBs GVEQ-NH2 SW22 (L), SW23 (R) OFF (NORM - High) f = 20kHz, Vin = −46dBs GVEQ-NH3 SW22 (L), SW23 (R) OFF Equalizer GVEQ-CH1 SW22 (L), SW23 (R) OFF CROM HIGH f = 5kHz, Vin = −46dBs frequency Response f = 15kHz, Vin = −46dBs GVEQ-CH2 SW22 (L), SW23 (R) OFF (CROM - High) f = 20kHz, Vin = −46dBs GVEQ-CH3 SW22 (L), SW23 (R) OFF REC-MUTE attenuation REC-MUTE NORM NORM f = 1kHz, Vin = −14dBs SW22 (L), SW23 (R) OFF NORM NORM f = 3kHz, Vin = −46dBs, SW22 (L), SW23 (R) OFF GV EQ-NN1 = 0dB R-CAL1 REC CAL response VREC-CAL = 5V Item Equalizer S/N 38 38 38 38 38 5 5 5 5 5 43 43 38 38 56 56 5 5 38 38 38 38 38 38 38 38 38 38 38 5 5 5 5 5 5 5 5 5 5 5 38 38 5 5 38 Input L R 38 5 5 (Ta = 25°C, VCC = 12 V) 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 32, 33 39 39 32, 33 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 19, 24 15 to 20 22 to 25 15 to 20 22 to 25 Output R L COM Remark 7 36 Application Terminal HA12226F/HA12227F HA12227F (cont) OFF ON SW2 Rch SW4 EQ R2 10k RIN (R) R B C27 0.47µ C30 1µ C2 0.0047µ C1 0.47µ R4 13k C4 0.1µ R3 2.2k ALC (R) C3 0.47µ + A BIN (R) C26 0.0047µ C25 0.47µ + R1 10k AIN (R) R33 10k R31 2.2k 56 55 54 53 52 51 50 49 48 47 46 45 44 C5 0.1µ GND RIP 2.2µ 0.47µ C20 JP3 OFF SW 22 ON C18 2.2µ EQ C17 0.47µ R22 2.4k R21 2k C R20 910 SW21 N 1 R5 33k REC R6 10k + 3 C6 2.2µ EQ R8 7.5k R9 16k R10 5.1k PB SW8 REC R11 10k EQ 8 6 7 5 + SW ON 23 0.47µ JP1 OFF + + C10 C9 2.2µ 0.47µ R7 20k + C8 4 C7 2.2µ 9 C11 0.47µ LPF ROUT (R) PB SW6 2 EQ Dolby B-NR + Dolby B-NR EQ ALC − + MS R12 1M C12 10µ R13 330k 10 11 12 13 14 BIAS 42 41 40 39 38 37 36 35 34 33 32 31 30 29 2.2µ R25 16k C21 R24 5.1k R27 20k C19 0.47µ REC SW7 PB ALCDET Notes: 1. Resistor tolerance are ±1%. 2. Capacitor tolerance are ±1%. 3. Unit R: Ω, C: F. AC VM1 SW1 BIN (L) R32 10k B AIN (L) A R + Audio SG Lch SW3 EQ 43 RIN (L) ALC (L) C24 0.1µ R30 13k + + C23 0.1µ R28 10k C22 + R29 22k R26 7.5k + REC + EQ + + C15 22µ C14 22µ VCC C13 0.33µ 15 SW9 16 SW10 17 SW11 18 SW12 19 SW13 20 SW14 21 22 23 24 SW17 MAOUT R18 3.9k DC VM2 ON A OFF 120 B N 70 OFF C C N H ON ALC ON / OFF PB A / B A 120 / 70 NORM / HIGH B NORM / CROM BIAS ON / OFF SW19 Rch Lch DC VM1 JP2 DC +12V SOURCE1 R14 10k R15 10k DC +5V SOURCE4 DC +2.5V SOURCE3 C28 100µ BIAS OFF LM ON / OFF PASS PB REC REC / PB / PASS R17 ON 22k SW16 OFF NR ON / OFF R16 OFF 22k RM ON / OFF SW15 ON ON C16 1000p MSOUT MSIN 25 SW18 26 27 28 + ROUT (L) + ALCIN (L) + MSDET + + SW5 PB Lch Rch AC VM2 Oscillo scope Distortion analyzer Noise meter noise meter with ccir/arm filter and a-wtg filter SW20 HA12226F/HA12227F Test Circuit HA12226F ALCCal RECCal GPCal ALCIN (R) 23 Rch SW4 EQ RIN (R) R B R2 10k C30 1µ C2 0.0047µ C1 0.47µ R4 13k C4 0.1µ R3 2.2k ALC (R) C3 0.47µ + A BIN (R) C27 0.47µ + R1 10k AIN (R) C26 0.0047µ C25 0.47µ + OFF ON SW2 R33 10k R31 2.2k + 56 55 54 53 52 51 50 49 48 47 46 45 44 43 GND RIP JP3 OFF SW 22 ON 1 REC R6 10k + 3 C6 2.2µ PB SW6 2 C17 0.47µ EQ R8 7.5k R9 16k R10 5.1k PB SW8 REC R11 10k EQ 8 6 9 C11 0.47µ LPF 7 5 + + SW ON 23 0.47µ JP1 OFF + + C10 C9 2.2µ 0.47µ R7 20k + C8 4 C7 2.2µ EQ EQ ROUT (R) Notes: 1. Resistor tolerance are ±1%. 2. Capacitor tolerance are ±1%. 3. Unit R: Ω, C: F. SW1 BIN (L) R32 10k B R AIN (L) A EQ + AC VM1 Audio SG Lch SW3 ALC (L) C24 0.1µ RIN (L) 0.47µ C20 C18 2.2µ EQ R22 2.4k R21 2k C R20 910 SW21 N ALC − + MS R12 1M C12 10µ R13 330k 10 11 12 13 14 BIAS ALCDET + R30 13k 2.2µ R25 16k C21 R24 5.1k R27 20k C19 0.47µ REC SW7 PB 42 41 40 39 38 37 36 35 34 33 32 31 30 29 2.2µ R28 10k C22 + R29 22k R26 7.5k + REC + EQ ROUT (L) VCC C14 22µ C13 0.33µ 15 SW9 16 SW10 17 SW11 18 SW12 19 SW13 20 SW14 21 22 23 24 SW17 MAOUT ON A OFF 120 B N 70 OFF C C N H ON ON OFF ALC ON / OFF PB A / B A 120 / 70 NORM / HIGH SW19 Rch Lch DC VM1 JP2 DC +12V SOURCE1 R14 10k R15 10k DC +5V SOURCE4 DC +2.5V SOURCE3 C28 100µ BIAS RM ON / OFF B NORM / CROM BIAS ON / OFF R16 22k SW15 R18 3.9k DC VM2 OFF LM ON / OFF PASS PB REC REC / PB / PASS ON C16 1000p MSOUT MSIN 25 SW18 26 27 28 + ALCIN (L) + MSDET + + 24 + SW5 PB Rch Lch AC VM2 Oscillo scope Distortion analyzer Noise meter noise meter with ccir/arm filter and a-wtg filter SW20 HA12226F/HA12227F HA12227F ALCCal RECCal GPCal ALCIN (R) HA12226F/HA12227F Characteristic Curves HA12226F Quiescent Current vs. Supply Voltage (REC mode) 35 Quiescent Current IQ (mA) REC mode NR-OFF, REC-MUTE ON, BIAS OFF NR-OFF, REC-MUTE OFF, BIAS OFF NR-ON, REC-MUTE OFF, BIAS ON Other switch is all Low 30 25 20 11 12 13 Supply Voltage (V) 14 15 Quiescent Current vs. Supply Voltage (PB mode) 35 Quiescent Current IQ (mA) PB mode NR-OFF, BIAS OFF NR-ON, BIAS OFF NR-ON, BIAS ON Other switch is all Low 30 25 20 11 12 13 Supply Voltage (V) 14 15 25 HA12226F/HA12227F Input Amp. Gain vs. Frequency (1) 40 VCC = 12V Ain → RECOUT Bin Gain (dB) 30 NR-ON 20 NR-OFF 10 0 −10 10 100 1k 10k Frequency (Hz) 100k 1M Input Amp. Gain vs. Frequency (2) 40 VCC = 12V Ain → PBOUT Bin 30 Gain (dB) PASS mode 20 PB mode 10 0 −10 10 26 100 1k 10k Frequency (Hz) 100k 1M HA12226F/HA12227F Input Amp. Gain vs. Frequency (3) 40 VCC = 12V REC mode 30 Gain (dB) PBOUT 20 RECOUT 10 0 −10 10 100 1k 10k Frequency (Hz) 100k 1M 100k 1M Input Amp. Gain vs. Frequency (4) 30 VCC = 12V Ain → PBOUT Bin 120µ Gain (dB) 26 22 70µ 18 14 10 10 100 1k 10k Frequency (Hz) 27 HA12226F/HA12227F Encode Boost vs. Frequency 12 VCC = 12V Dolby B-NR −40dB Encode Boost (dB) 10 8 −30dB 6 4 −20dB 2 −10dB 0dB 0 100 1k Frequency (Hz) 10k 20k Decode Cut vs. Frequency 0 0dB −10dB −2 Decode Cut (dB) −20dB −4 −6 −30dB −8 −10 −40dB VCC = 12V Dolby B-NR −12 100 28 1k Frequency (Hz) 10k 20k HA12226F/HA12227F Signal Handling (1) 30 REC mode Rin → RECOUT = 300mVrms = 0dB f = 1kHz, T.H.D. ≈ 1% NR-OFF NR-ON Vomax (dB) 25 20 15 11 12 13 Supply Voltage (V) 14 15 14 15 Signal Handling (2) 25 Ain → PBOUT = 580mVrms = 0dB Bin f = 1kHz, T.H.D. ≈ 1% NR-OFF PB mode NR-ON PASS mode Vomax (dB) 20 15 10 11 12 13 Supply Voltage (V) 29 HA12226F/HA12227F Signal to Noise Ratio vs. Split Supply Voltage (1) 85 A, Bin, PB mode, NR-ON Signal to Noise Ratio (dB) Rin, REC mode, NR-OFF 80 A, Bin, PASS mode, PBOUT A, Bin, PB mode, NR-OFF 75 f = 1kHz, CCIR/ARM filter Rin → RECOUT = 300mVrms = 0dB Ain → PBOUT = 580mVrms = 0dB Bin Rin, PEC mode, NR-ON 70 65 11 1.0 12 13 Supply Voltage (V) 14 15 Total Harmonic Distortion vs. Supply Voltage (1) (REC mode, NR-OFF) T.H.D. (%) REC mode, NR-OFF Rin → RECOUT = 300mVrms 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) Rin → PBOUT = 580mVrms 1kHz (400Hz HPF + 30kHz LPF) 0.1 0.01 11 30 12 13 Supply Voltage (V) 14 15 HA12226F/HA12227F 1.0 Total Harmonic Distortion vs. Supply Voltage (2) (REC mode, NR-ON) T.H.D. (%) REC mode, NR-ON Rin → RECOUT = 300mVrms 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) Rin → PBOUT = 580mVrms 1kHz (400Hz HPF + 30kHz LPF) 0.1 0.01 11 T.H.D. (%) 1.0 12 13 Supply Voltage (V) 14 15 Total Harmonic Distortion vs. Supply Voltage (3) (PB mode, NR-OFF) PB mode, NR-OFF Ain → PBOUT = 580mVrms Bin 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) Ain → RECOUT = 300mVrms Bin 1kHz (400Hz HPF + 30kHz LPF) 0.1 0.01 11 12 13 Supply Voltage (V) 14 15 31 HA12226F/HA12227F T.H.D. (%) 1.0 Total Harmonic Distortion vs. Supply Voltage (4) (PB mode, NR-ON) PB mode, NR-ON Ain → PBOUT = 580mVrms Bin 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) Ain → RECOUT = 300mVrms Bin 1kHz (400Hz HPF + 30kHz LPF) 0.1 0.01 11 1.0 12 13 Supply Voltage (V) 14 15 Total Harmonic Distortion vs. Supply Voltage (5) (PASS mode, NR-OFF) PASS mode, NR Ain Bin ON OFF → PBOUT = 580mVrms T.H.D. (%) 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) 0.1 0.01 11 32 12 13 Supply Voltage (V) 14 15 HA12226F/HA12227F 10 Total Harmonic Distortion vs. Output Level (1) (REC mode, NR-OFF) REC mode, NR-OFF VCC = 12V 100Hz 1kHz 10kHz Rin → RECOUT = 300mVrms = 0dB T.H.D. (%) 1.0 0.1 0.01 −10 10 −5 0 5 10 Output Level Vout (dB) 15 20 Total Harmonic Distortion vs. Output Level (2) (REC mode, NR-ON) REC mode, NR-ON VCC = 12V 100Hz 1kHz 10kHz Rin → RECOUT = 300mVrms = 0dB T.H.D. (%) 1.0 0.1 0.01 −10 −5 0 5 10 Output Level Vout (dB) 15 20 33 HA12226F/HA12227F 10 PB mode, NR-OFF VCC = 12V 100Hz 1kHz 10kHz Ain → PBOUT = 580mVrms = 0dB Bin T.H.D. (%) 1.0 Total Harmonic Distortion vs. Output Level (3) (PB mode, NR-OFF) 0.1 0.01 −10 10 0 5 10 Output Level Vout (dB) 15 20 Total Harmonic Distortion vs. Output Level (4) (PB mode, NR-ON) PB mode, NR-ON VCC = 12V 100Hz 1kHz 10kHz Ain → PBOUT = 580mVrms = 0dB Bin T.H.D. (%) 1.0 −5 0.1 0.01 −10 34 −5 0 5 10 Output Level Vout (dB) 15 20 HA12226F/HA12227F 10 PASS mode, NR-OFF VCC = 12V 100Hz 1kHz 10kHz Ain → PBOUT = 580mVrms = 0dB Bin T.H.D. (%) 1.0 Total Harmonic Distortion vs. Output Level (5) (PASS mode, NR-OFF) 0.1 0.01 −10 −5 0 5 10 Output Level Vout (dB) 15 20 Total Harmonic Distortion vs. Frequency (1) T.H.D. (%) REC mode, NR-OFF, VCC = 12V Rin → RECOUT = 300mVrms −10dB 0dB 10dB 0.1 0.01 100 1k Frequency (Hz) 10k 100k 35 HA12226F/HA12227F Total Harmonic Distortion vs. Frequency (2) T.H.D. (%) REC mode, NR-ON, VCC = 12V Rin → RECOUT = 300mVrms −10dB 0dB 10dB 0.1 0.01 100 1k Frequency (Hz) 10k 100k Total Harmonic Distortion vs. Frequency (3) T.H.D. (%) PB mode, NR-OFF, VCC = 12V Ain → PBOUT = 580mVrms Bin −10dB 0dB 10dB 0.1 0.01 100 36 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Total Harmonic Distortion vs. Frequency (4) T.H.D. (%) PB mode, NR-ON, VCC = 12V Ain → PBOUT = 580mVrms Bin −10dB 0dB 10dB 0.1 0.01 100 1k Frequency (Hz) 10k 100k Total Harmonic Distortion vs. Frequency (5) T.H.D. (%) PASS mode, NR-OFF, VCC = 12V Ain → PBOUT = 580mVrms Bin −10dB 0dB 10dB 0.1 0.01 100 1k Frequency (Hz) 10k 100k 37 HA12226F/HA12227F Channel Separation vs. Frequency (R → L) (1) −40 VCC = 11V, 12V, 15V Rin → RECOUT, Vin = +12dB REC mode, R → L Channel Separation (dB) −60 −80 NR-ON −100 NR-OFF −120 −140 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (R → L) (2) −40 VCC = 11V, 12V, 15V Rin → PBOUT, Vin = +12dB REC mode, R → L Channel Separation (dB) −60 NR-ON/OFF −80 −100 −120 −140 10 38 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Channel Separation vs. Frequency (L → R) (3) −40 VCC = 11V, 12V, 15V Rin → RECOUT, Vin = +12dB REC mode, L → R Channel Separation (dB) −60 NR-ON −80 −100 NR-OFF −120 −140 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L → R) (4) −40 VCC = 11V, 12V, 15V Rin → PBOUT, Vin = +12dB REC mode, L → R Channel Separation (dB) −60 −80 NR-ON/OFF −100 −120 −140 10 100 1k Frequency (Hz) 10k 100k 39 HA12226F/HA12227F Channel Separation vs. Frequency (R → L) (1) −20 VCC = 11V, 12V, 15V Ain → PBOUT, Vin = +10dB R→L Channel Separation (dB) −40 −60 NR-OFF −80 NR-ON −100 −120 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (R → L) (2) −20 VCC = 11V, 12V, 15V Ain → RECOUT, Vin = +10dB R→L Channel Separation (dB) −40 −60 NR-ON/OFF −80 −100 −120 10 40 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Channel Separation vs. Frequency (R → L) (3) −20 VCC = 11V, 12V, 15V Bin → PBOUT, Vin = +10dB R→L Channel Separation (dB) −40 −60 NR-OFF −80 NR-ON −100 −120 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (R → L) (4) −20 VCC = 11V, 12V, 15V Bin → RECOUT, Vin = +10dB R→L Channel Separation (dB) −40 −60 NR-ON/OFF −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k 41 HA12226F/HA12227F Channel Separation vs. Frequency (L → R) (5) −20 VCC = 11V, 12V, 15V Ain → PBOUT, Vin = +10dB L→R Channel Separation (dB) −40 −60 NR-OFF −80 NR-ON −100 −120 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L → R) (6) −20 VCC = 11V, 12V, 15V Ain → RECOUT, Vin = +10dB L→R Channel Separation (dB) −40 −60 NR-ON/OFF −80 −100 −120 10 42 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Channel Separation vs. Frequency (L → R) (7) −20 VCC = 11V, 12V, 15V Bin → PBOUT, Vin = +10dB L→R Channel Separation (dB) −40 −60 NR-OFF −80 NR-ON −100 −120 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L → R) (8) −20 VCC = 11V, 12V, 15V Bin → RECOUT, Vin = +10dB L→R Channel Separation (dB) −40 −60 NR-ON/OFF −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k 43 HA12226F/HA12227F Channel Separation vs. Frequency (R → L) (1) −20 Channel Separation (dB) −40 VCC = 11V, 12V, 15V Ain → PBOUT, Vin = +10dB Bin PASS mode, R → L −60 Ain −80 Bin −100 −120 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L → R) (2) −20 Channel Separation (dB) −40 VCC = 11V, 12V, 15V Ain → PBOUT, Vin = +10dB Bin PASS mode, L → R −60 Ain −80 Bin −100 −120 10 44 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Crosstalk vs. Frequency (Ain → Bin) (1) −40 VCC = 11V, 12V, 15V PB mode, PBOUT Vin = +12dB, Ain → Bin Crosstalk (dB) −60 NR-OFF −80 NR-ON −100 −120 −140 10 100 1k Frequency (Hz) 10k 100k Crosstalk vs. Frequency (Bin → Ain) (2) −40 VCC = 11V, 12V, 15V PB mode, PBOUT Vin = +12dB, Bin → Ain Crosstalk (dB) −60 NR-OFF −80 NR-ON −100 −120 −140 10 100 1k Frequency (Hz) 10k 100k 45 HA12226F/HA12227F Crosstalk vs. Frequency (PB mode → PASS mode) (1) −20 Crosstalk (dB) −40 VCC = 11V, 12V, 15V Ain → RECOUT Vin = +12dB PB mode → PASS mode −60 −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k Crosstalk vs. Frequency (PB mode → PASS mode) (2) −20 Crosstalk (dB) −40 VCC = 11V, 12V, 15V Bin → RECOUT Vin = +12dB PB mode → PASS mode −60 −80 −100 −120 10 46 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Line Mute vs. Frequency −20 Line Mute (dB) VCC = 12V Ain → PBOUT Bin Vin = +12dB −40 PB mode −60 −80 −100 −120 10 100 1k Frequency (Hz) 10k 100k REC Mute Attenuation vs. Frequency 80 Crosstalk (dB) 40 VCC = 12V EQIN → EQOUT Vin = +14dB Norm speed, Norm tape 0 −40 −80 −120 10 100 1k Frequency (Hz) 10k 100k 47 HA12226F/HA12227F Ripple Rejection Ratio vs. Frequency (REC mode) (1) 20 Ripple Rejection Ratio R.R.R. (dB) VCC = 12V REC mode EQOUT 0 RECOUT NR-ON −20 −40 RECOUT NR-OFF PBOUT −60 −80 10 100 1k Frequency (Hz) 10k 100k Ripple Rejection Ratio vs. Frequency (PB mode) (2) 20 VCC = 12V PB mode Ripple Rejection Ratio R.R.R. (dB) EQOUT 0 −20 −40 RECOUT PBOUT NR-ON −60 −80 10 48 PBOUT NR-OFF 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Ripple Rejection Ratio vs. Frequency (PASS mode) (3) 20 Ripple Rejection Ratio R.R.R. (dB) VCC = 12V PASS mode EQOUT 0 RECOUT NR-ON −20 −40 PBOUT RECOUT NR-OFF −60 −80 10 100 1k Frequency (Hz) 10k 100k Equalizer Amp. Gain vs. Frequency (1) 55 50 VCC = 12V Norm speed 45 REC-EQ Gain (dB) 40 35 30 Crom 25 20 Norm 15 10 5 10 100 1k Frequency (Hz) 10k 100k 49 HA12226F/HA12227F Equalizer Amp. Gain vs. Frequency (2) 55 50 VCC = 12V High speed 45 REC-EQ Gain (dB) 40 35 30 Crom 25 20 15 Norm 10 5 10 100 1k Frequency (Hz) 10k 100k Equalizer Amp. Gain vs. Frequency (REC-cal) 55 REC-cal = 5V 50 45 REC-EQ Gain (dB) 40 35 30 25 20 REC-cal = 2.5V 15 REC-cal = 0V 10 5 10 50 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Equalizer Amp. Gain vs. Frequency (GP-cal) 55 GP-cal = 0V 50 45 35 30 GP-cal = 2.5V 25 20 GP-cal = 5V 15 10 5 10 100 1k Frequency (Hz) 10k 100k Equalizer Signal to Noise Ratio vs. Supply Voltage (1) 70 f = 1kHz A-WTG filter Norm speed NN NC REC-EQ S/N (dB) REC-EQ Gain (dB) 40 65 60 55 11 12 13 Supply Voltage (V) 14 15 51 HA12226F/HA12227F Equalizer Signal to Noise Ratio vs. Supply Voltage (2) 70 REC-EQ S/N (dB) f = 1kHz A-WTG filter High speed HN HC 65 60 55 11 12 13 Supply Voltage (V) 15 14 REC-cal Correction vs. VREC-cal 5 f = 3kHz GP-cal open VCC = 12V Norm speed Norm tape 4 REC-cal Correction (dB) 3 2 1 0 −1 −2 −3 −4 −5 52 0 1 2 3 VREC-cal (V) 4 5 HA12226F/HA12227F GP-cal Correction vs. VGP-cal 5 4 GP-cal Correction (dB) 3 2 1 0 −1 −2 f = 12kHz REC-cal open VCC = 12V Norm speed Norm tape −3 −4 −5 0 1 2 3 VGP-cal (V) 4 5 ALC Operate Level vs. Input Level Output Level RECOUT (dB) 0dB ≈ 300mVrms 10 8 f = 1kHz, VCC = 12V, Both channel input (L, Rch) Rin → RECOUT, Cal = 5V Norm Crom Cal = 5V 6 Cal = 2.5V 4 Cal = 2.5V 2 Cal = 0V 0 −2 −5 Cal = 0V 0 10 20 5 15 25 Input Level Vin (dB) 0dB ≈ 221mVrms 30 35 53 HA12226F/HA12227F ALC Total Harmonic Distortion vs. Input Level (1) f = 1kHz, VCC = 12V Norm tape Cal = 0V Cal = 2.5V Cal = 5V ALC T.H.D. (%) 1.0 0.1 0.01 −5 0 30 5 10 15 20 25 Input Level Vin (dB) 0dB ≈ 221mVrms (ALC-OFF, RECOUT ≈ 300mVrms) ALC Total Harmonic Distortion vs. Input Level (2) f = 1kHz, VCC = 12V Crom tape Cal = 0V Cal = 2.5V Cal = 5V ALC T.H.D. (%) 1.0 0.1 0.01 −5 54 0 30 5 10 15 20 25 Input Level Vin (dB) 0dB ≈ 221mVrms (ALC-OFF, RECOUT ≈ 300mVrms) HA12226F/HA12227F ALC Operate Level vs. Frequency 8 ALC-cal = 5V 6 ALC-cal = 5V 4 ALC-cal = 2.5V 2 ALC-cal = 2.5V ALC-cal = 0V 0 ALC-cal = 0V −2 Vin = +12dB, Both channel input (L, Rch), Rin → RECOUT Norm Crom −4 100 1k Frequency (Hz) 10k Bias Output Voltage vs. Load Current 13 VCC = 12V Bias ON 270Ω 31 V Bias Output Voltage (V) Operate Level RECOUT (dB) 0dB = 300mVrms 10 I 12 11 10 0 1 2 3 4 5 Load Current I (mA) 6 7 55 HA12226F/HA12227F MS Sensing Level vs. Frequency 5 VCC = 12V, MSOUT Ain → PBOUT = 580mVrms = 0dB Lo → Hi Hi → Lo MS Sensing Level (dB) 0 −5 −10 −15 −20 −25 −30 100 1k 10k 100k Frequency (Hz) MS Amp. Gain vs. Frequency 40 VCC = 12V MAOUT Gain (dB) 30 20 10 MSIN 0 −10 10 56 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F No-Signal Sensing Time vs. Resistance No-Signal Sensing Time (ms) 1000 VCC = 12V, f = 5kHz Ain → PBOUT = 580mVrms 0dB −10dB −20dB 100 PBOUT 10 MSOUT C13 0.33µ 14 VCC R13 1 10k 100k Resistance R13 (Ω) 1M Signal Sensing Time vs. Capacitance Signal Sensing Time (ms) VCC = 12V, f = 5kHz Ain → PBOUT = 580mVrms 0dB −10dB 100 −20dB 10 PBOUT MSOUT 1 C13 14 VCC R13 330k 0.1 0.01 0.1 Capacitance C13 (µF) 1.0 57 HA12226F/HA12227F HA12227F Quiescent Current vs. Supply Voltage (REC mode) 30 Quiescent Current IQ (mA) REC mode REC-MUTE ON, BIAS OFF REC-MUTE OFF, BIAS OFF REC-MUTE OFF, BIAS ON Other switch is all Low 25 20 15 11 12 13 Supply Voltage (V) 14 15 Quiescent Current vs. Supply Voltage (PB mode) 30 Quiescent Current IQ (mA) PB mode REC-MUTE ON, BIAS OFF REC-MUTE OFF, BIAS OFF REC-MUTE OFF, BIAS ON Other switch is all Low 25 20 15 11 58 12 13 Supply Voltage (V) 14 15 HA12226F/HA12227F Input Amp. Gain vs. Frequency (1) 50 Gain (dB) 40 VCC = 12V Ain → PBOUT Bin PB mode 30 20 10 0 10 100 1k 10k Frequency (Hz) 100k 1M 100k 1M Input Amp. Gain vs. Frequency (2) 50 Gain (dB) 40 VCC = 12V Ain → PBOUT Bin PASS mode 30 20 10 0 10 100 1k 10k Frequency (Hz) 59 HA12226F/HA12227F Input Amp. Gain vs. Frequency (3) 50 VCC = 12V REC mode Gain (dB) 40 30 PBOUT 20 RECOUT 10 0 10 100 1k 10k Frequency (Hz) 100k 1M 100k 1M Input Amp. Gain vs. Frequency (4) 50 VCC = 12V Ain → PBOUT Bin Gain (dB) 40 30 120µ 70µ 20 10 0 10 60 100 1k 10k Frequency (Hz) HA12226F/HA12227F Signal Handling (1) 25 Vomax (dB) 20 15 REC mode, T.H.D. ≈ 1% Rin → RECOUT = 300mVrms = 0dB 1kHz Rin → PBOUT = 580mVrms = 0dB 1kHz 10 11 12 13 Supply Voltage (V) 14 15 14 15 Signal Handling (2) 25 Vomax (dB) 20 15 PB mode, T.H.D. ≈ 1% Ain → RECOUT = 300mVrms = 0dB Bin 1kHz Ain Bin 10 11 → PBOUT = 580mVrms = 0dB 1kHz 12 13 Supply Voltage (V) 61 HA12226F/HA12227F Signal to Noise Ratio vs. Supply Voltage (1) Signal to Noise Ratio (dB) 85 80 75 REC mode, CCIR/ARM filter Rin → RECOUT = 300mVrms = 0dB 1kHz Rin → PBOUT = 580mVrms = 0dB 1kHz 70 11 12 13 Supply Voltage (V) 14 15 Signal to Noise Ratio vs. Supply Voltage (2) Signal to Noise Ratio (dB) 85 80 75 PB mode, CCIR/ARM filter Ain → RECOUT = 300mVrms = 0dB Bin 1kHz Ain Bin 70 11 62 → PBOUT = 580mVrms = 0dB 1kHz 12 13 Supply Voltage (V) 14 15 HA12226F/HA12227F Signal to Noise Ratio vs. Supply Voltage (3) 85 Signal to Noise Ratio (dB) PASS mode, CCIR/ARM filter Ain → PBOUT = 580mVrms = 0dB Bin 1kHz 80 75 70 11 12 13 Supply Voltage (V) 14 15 Total Harmonic Distortion vs. Supply Voltage (1) 1.0 T.H.D. (%) REC mode Rin → RECOUT = 300mVrms 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) Rin → PBOUT = 580mVrms 1kHz (400Hz HPF + 30kHz LPF) 0.1 0.01 11 12 13 Supply Voltage (V) 14 15 63 HA12226F/HA12227F Total Harmonic Distortion vs. Supply Voltage (2) T.H.D. (%) 1.0 PB mode, NR-OFF Ain → PBOUT = 580mVrms Bin 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) Ain → RECOUT = 300mVrms Bin 1kHz (400Hz HPF + 30kHz LPF) 0.1 0.01 11 12 13 Supply Voltage (V) 14 15 Total Harmonic Distortion vs. Supply Voltage (3) 1.0 T.H.D. (%) PASS mode Ain → PBOUT = 580mVrms 100Hz (30kHz LPF) 1kHz (400Hz HPF + 30kHz LPF) 10kHz (400Hz HPF + 80kHz LPF) 0.1 0.01 11 64 12 13 Supply Voltage (V) 14 15 HA12226F/HA12227F Total Harmonic Distortion vs. Output Level (1) 10 T.H.D. (%) 1.0 REC mode Rin → RECOUT 0dB = 300mVrms VCC = 12V 100Hz 1kHz 10kHz 0.1 0.01 −15 −10 −5 0 5 10 15 Output Level Vout (dB) 20 25 Total Harmonic Distortion vs. Output Level (2) 10 T.H.D. (%) 1.0 PB mode Ain → PBOUT Bin 0dB = 580mVrms VCC = 12V 100Hz 1kHz 10kHz 0.1 0.01 −15 −10 −5 0 5 10 15 Output Level Vout (dB) 20 25 65 HA12226F/HA12227F Total Harmonic Distortion vs. Output Level (3) 10 T.H.D. (%) 1.0 PASS mode Ain → PBOUT Bin 0dB = 580mVrms VCC = 12V 100Hz 1kHz 10kHz 0.1 0.01 −15 −10 −5 0 5 10 15 Output Level Vout (dB) 20 25 Total Harmonic Distortion vs. Frequency (1) T.H.D. (%) REC mode Rin → RECOUT 0dB = 300mVrms −10dB 0dB 10dB 0.1 0.01 100 66 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Total Harmonic Distortion vs. Frequency (2) T.H.D. (%) PB mode Ain → PBOUT Bin 0dB = 580mVrms −10dB 0dB 10dB 0.1 0.01 100 1k Frequency (Hz) 10k 100k Total Harmonic Distortion vs. Frequency (3) T.H.D. (%) PB mode Ain → PBOUT Bin 0dB = 580mVrms −10dB 0dB 10dB 0.1 0.01 100 1k Frequency (Hz) 10k 100k 67 HA12226F/HA12227F Channel Separation vs. Frequency (R → L) (1) 40 VCC = 11V, 12V, 15V Rin → RECOUT, Vin = +12dB REC mode, R → L Channel Separation (dB) 0 −40 −80 −120 −160 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L → R) (2) 40 VCC = 11V, 12V, 15V Rin → RECOUT, Vin = +12dB REC mode, L → R Channel Separation (dB) 0 −40 −80 −120 −160 10 68 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Channel Separation vs. Frequency (R → L) (3) 40 VCC = 11V, 12V, 15V Ain → PBOUT, Vin = +10dB R→L Channel Separation (dB) 0 −40 −80 −120 −160 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L → R) (4) 40 VCC = 11V, 12V, 15V Ain → PBOUT, Vin = +10dB L→R Channel Separation (dB) 0 −40 −80 −120 −160 10 100 1k Frequency (Hz) 10k 100k 69 HA12226F/HA12227F Channel Separation vs. Frequency (R → L) (5) 40 VCC = 11V, 12V, 15V Bin → PBOUT, Vin = +10dB R→L Channel Separation (dB) 0 −40 −80 −120 −160 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L → R) (6) 40 VCC = 11V, 12V, 15V Bin → PBOUT, Vin = +10dB L→R Channel Separation (dB) 0 −40 −80 −120 −160 10 70 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Channel Separation vs. Frequency (R → L) (7) 40 VCC = 11V, 12V, 15V Ain → PBOUT, Vin = +10dB PASS mode, R → L Channel Separation (dB) 0 −40 −80 −120 −160 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L → R) (8) 40 VCC = 11V, 12V, 15V Ain → PBOUT, Vin = +10dB PASS mode, L → R Channel Separation (dB) 0 −40 −80 −120 −160 10 100 1k Frequency (Hz) 10k 100k 71 HA12226F/HA12227F Channel Separation vs. Frequency (R → L) (9) 40 VCC = 11V, 12V, 15V Bin → PBOUT, Vin = +10dB PASS mode, R → L Channel Separation (dB) 0 −40 −80 −120 −160 10 100 1k Frequency (Hz) 10k 100k Channel Separation vs. Frequency (L → R) (10) 40 VCC = 11V, 12V, 15V Bin → PBOUT, Vin = +10dB PASS mode, L → R Channel Separation (dB) 0 −40 −80 −120 −160 10 72 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Crosstalk vs. Frequency (Ain → Bin) (1) 40 VCC = 11V, 12V, 15V PB mode, PBOUT Vin = +12dB, Ain → Bin Channel Separation (dB) 0 −40 −80 −120 −160 10 100 1k Frequency (Hz) 10k 100k Crosstalk vs. Frequency (Bin → Ain) (2) 40 VCC = 11V, 12V, 15V PB mode, PBOUT Vin = +12dB, Bin → Ain Channel Separation (dB) 0 −40 −80 −120 −160 10 100 1k Frequency (Hz) 10k 100k 73 HA12226F/HA12227F Line Mute vs. Frequency 40 Line Mute (dB) VCC = 12V Ain → PBOUT Bin Vin = +12dB 0 PB mode −40 −80 −120 −160 10 100 1k Frequency (Hz) 10k 100k REC Mute Attenuation vs. Frequency 40 Crosstalk (dB) 0 VCC = 12V EQIN → EQOUT Vin = +14dB Norm speed, Norm tape −40 −80 −120 −160 10 74 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Ripple Rejection Ratio vs. Frequency (REC mode) (1) 20 Ripple Rejection Ratio R.R.R. (dB) VCC = 12V REC mode 0 EQOUT −20 −40 RECOUT −60 −80 10 100 1k Frequency (Hz) 10k 100k Ripple Rejection Ratio vs. Frequency (PB mode) (2) 20 Ripple Rejection Ratio R.R.R. (dB) VCC = 12V PB mode, RECOUT 0 −20 −40 −60 −80 10 100 1k Frequency (Hz) 10k 100k 75 HA12226F/HA12227F Ripple Rejection Ratio vs. Frequency (PASS mode) (3) 20 Ripple Rejection Ratio R.R.R. (dB) VCC = 12V PASS mode, PBOUT 0 −20 −40 −60 −80 10 100 1k Frequency (Hz) 10k 100k Equalizer Amp. Gain vs. Frequency (1) 55 50 VCC = 12V Norm speed 45 REC-EQ Gain (dB) 40 35 30 Crom 25 20 15 Norm 10 5 10 76 100 1k Frequency (Hz) 10k 100k HA12226F/HA12227F Equalizer Amp. Gain vs. Frequency (2) 55 50 VCC = 12V High speed 45 REC-EQ Gain (dB) 40 35 30 Crom 25 20 15 Norm 10 5 10 100 1k Frequency (Hz) 10k 100k Equalizer Amp. Gain vs. Frequency (REC-cal) 55 REC-cal = 5V 50 45 REC-EQ Gain (dB) 40 35 30 25 20 REC-cal = 2.5V 15 REC-cal = 0V 10 5 10 100 1k Frequency (Hz) 10k 100k 77 HA12226F/HA12227F Equalizer Amp. Gain vs. Frequency (GP-cal) 55 GP-cal = 0V 50 45 REC-EQ Gain (dB) 40 35 30 GP-cal = 2.5V 25 20 GP-cal = 5V 15 10 5 10 100 1k Frequency (Hz) 10k 100k Equalizer Signal to Noise Ratio vs. Supply Voltage (1) 70 REC-EQ S/N (dB) f = 1kHz A-WTG filter Norm speed NN NC 65 60 55 11 78 12 13 Supply Voltage (V) 14 15 HA12226F/HA12227F Equalizer Signal to Noise Ratio vs. Supply Voltage (2) 70 REC-EQ S/N (dB) f = 1kHz A-WTG filter High speed HN HC 65 60 55 11 12 13 Supply Voltage (V) 15 14 REC-cal Correction vs. VREC-cal 5 f = 3kHz GP-cal open VCC = 12V Norm speed Norm tape 4 REC-cal Correction (dB) 3 2 1 0 −1 −2 −3 −4 −5 0 1 2 3 VREC-cal (V) 4 5 79 HA12226F/HA12227F GP-cal Correction vs. VGP-cal 5 4 GP-cal Correction (dB) 3 2 1 0 −1 −2 f = 12kHz REC-cal open VCC = 12V Norm speed Norm tape −3 −4 −5 0 1 2 3 VGP-cal (V) 4 5 ALC Operate Level vs. Input Level Output Level RECOUT (dB) 0dB = 300mVrms 10 8 Cal = 5V 6 Cal = 2.5V 4 Cal = 2.5V 2 Cal = 0V 0 Cal = 0V −2 −5 80 f = 1kHz, VCC = 12V, Both channel input (L, Rch) Rin → RECOUT, Cal = 5V Norm Crom 0 10 20 5 15 25 Input Level Vin (dB) 0dB = 218mVrms 30 35 HA12226F/HA12227F ALC Total Harmonic Distortion vs. Input Level (1) f = 1kHz, VCC = 12V Norm tape Cal = 0V Cal = 2.5V Cal = 5V ALC T.H.D. (%) 1.0 0.1 0.01 −5 0 30 5 10 15 20 25 Input Level Vin (dB) 0dB ≈ 217mVrms (ALC-OFF, RECOUT = 300mVrms) ALC Total Harmonic Distortion vs. Input Level (2) f = 1kHz, VCC = 12V Crom tape Cal = 0V Cal = 2.5V Cal = 5V ALC T.H.D. (%) 1.0 0.1 0.01 −5 0 30 5 10 15 20 25 Input Level Vin (dB) 0dB ≈ 217mVrms (ALC-OFF, RECOUT = 300mVrms) 81 HA12226F/HA12227F ALC Operate Level vs. Frequency Operate Level RECOUT (dB) 0dB = 300mVrms 10 8 ALC-cal = 5V 6 ALC-cal = 5V ALC-cal = 2.5V 4 ALC-cal = 2.5V 2 ALC-cal = 0V 0 ALC-cal = 0V −2 Vin = +12dB, Both channel input (L, Rch), Rin → RECOUT Norm Crom −4 100 1k Frequency (Hz) 10k Bias Output Voltage vs. Load Current 13 VCC = 12V Bias ON 270Ω 31 Bias Output Voltage (V) V I 12 11 10 0 82 1 2 3 4 5 Load Current I (mA) 6 7 HA12226F/HA12227F MS Sensing Level vs. Frequency 5 VCC = 12V, MSOUT Ain → PBOUT = 580mVrms = 0dB Lo → Hi Hi → Lo MS Sensing Level (dB) 0 −5 −10 −15 −20 −25 −30 100 1k 10k 100k Frequency (Hz) MS Amp. Gain vs. Frequency 40 VCC = 12V MAOUT Gain (dB) 30 20 10 MSIN 0 −10 10 100 1k Frequency (Hz) 10k 100k 83 HA12226F/HA12227F No-Signal Sensing Time vs. Resistance No-Signal Sensing Time (ms) 1000 VCC = 12V, f = 5kHz Ain → PBOUT = 580mVrms 0dB −10dB −20dB 100 PBOUT 10 MSOUT C13 0.33µ 14 VCC R13 1 10k 100k Resistance R13 (Ω) 1M Signal Sensing Time vs. Capacitance Signal Sensing Time (ms) VCC = 12V, f = 5kHz Ain → PBOUT = 580mVrms 0dB −10dB 100 −20dB 10 PBOUT MSOUT 1 C13 14 0.1 0.01 84 VCC R13 330k 0.1 Capacitance C13 (µF) 1.0 HA12226F/HA12227F Package Dimensions 12.8 ± 0.3 Unit: mm 10.0 42 29 28 56 15 0.65 12.8 ± 0.3 43 *0.30 ± 0.08 0.27 ± 0.06 0.775 0.10 *Dimension including the plating thickness Base material dimension 0.1 +0.1 –0.09 2.20 0.13 M *0.17 ± 0.05 0.15 ± 0.04 14 2.54 Max 1 0.775 1.40 0° – 8° 0.60 ± 0.15 Hitachi Code JEDEC EIAJ Mass (reference value) FP-56A — — 0.5 g 85 HA12226F/HA12227F Cautions 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica Europe Asia Japan : : : : http://semiconductor.hitachi.com/ http://www.hitachi-eu.com/hel/ecg http://sicapac.hitachi-asia.com http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic Components Group Dornacher Straβe 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel : <65>-538-6533/538-8577 Fax : <65>-538-6933/538-3877 URL : http://www.hitachi.com.sg Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 585160 Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building, Taipei (105), Taiwan Tel : <886>-(2)-2718-3666 Fax : <886>-(2)-2718-8180 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong Tel : <852>-(2)-735-9218 Fax : <852>-(2)-730-0281 URL : http://www.hitachi.com.hk Copyright Hitachi, Ltd., 2000. All rights reserved. Printed in Japan. Colophon 2.0 86