PS9402 Data Sheet

A Business Partner of Renesas Electronics Corporation.
Preliminary
PS9402
Data Sheet
R08DS0014EJ0100
Rev.1.00
Jun 22, 2012
2.5 A OUTPUT CURRENT, HIGH CMR, IGBT, POWER MOS FET GATE DRIVE, 16-PIN SSOP PHOTOCOUPLER
DESCRIPTION
The PS9402 is an optically coupled isolator containing a GaAlAs LED on the input side and a photo diode, a signal
processing circuit and a power output transistor on the output side on one chip.
The PS9402 is designed specifically for high common mode transient immunity (CMR), high output current and high
switching speed.
The PS9402 includes desaturation detection and active miller clamping functions.
The PS9402 is suitable for driving IGBTs and Power MOS FETs.
The PS9402 is in a 16-pin plastic SSOP (Shrink Small Outline Package). And the PS9402 is able to high-density
(surface) mounting.
FEATURES
<R>
•
•
•
•
•
•
•
•
•
•
Long creepage distance (8 mm MIN.)
Large peak output current (2.5 A MAX., 2.0 A MIN.)
High speed switching (tPLH, tPHL = 200 ns MAX.)
UVLO (Under Voltage Lock Out) protection with hysteresis
Desaturation detection
Miller clamping
High common mode transient immunity (|CMH|, |CML| = 25 kV/μs MIN.)
Embossed tape product: PS9402-E3: 850 pcs/reel
Pb-Free product
Safety standards
• UL approved: No. E72422
• CSA approved: No. CA 101391 (CA5A, CAN/CSA-C22.2 60065, 60950)
• DIN EN60747-5-2 (VDE0884 Part2) approved: No. 40024069 (Option)
PIN CONNECTION
(Top View)
1 VS
VE 16
2 VCC1
VLED 15
3 Fault
Desat 14
4 VS
5 Cathode
VCC2 13
VEE 12
6 Anode
VO 11
7 Anode
Vclamp 10
8 Cathode
VEE 9
APPLICATIONS
•
•
•
IGBT, Power MOS FET Gate Driver
Industrial inverter
Uninterruptible Power Supply (UPS)
The mark <R> shows major revised points.
The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
Page 1 of 22
A Business Partner of Renesas Electronics Corporation.
PS9402
Chapter Title
PACKAGE DIMENSIONS (UNIT: mm)
10.31±0.5
1.27
0.46±0.1
0.25 M
10.36±0.4
0.2±0.15
3.5±0.2
7.49+0.5
–0.1
0.64 MIN.
0.71±0.3
PHOTOCOUPLER CONSTRUCTION
Parameter
Air Distance
Outer Creepage Distance
Isolation Distance
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
Unit (MIN.)
8 mm
8 mm
0.4 mm
Page 2 of 22
A Business Partner of Renesas Electronics Corporation.
PS9402
Chapter Title
BLOCK DIAGRAM (UNIT: mm)
VS
VE
SHIELD
VCC1
VLED
Fault
Desat
VS
VCC2
UVLO
VEE
Cathode
VO
Anode
DESAT
Vclamp
Anode
CLAMP
Cathode
<R>
<R>
<R>
<R>
<R>
<R>
VEE
SHIELD
IF
UVLO (VCC2 − VEE)
OFF
ON
ON
ON
OFF
Not Active ( > VUVLO+)
Not Active ( > VUVLO+)
Not Active ( > VUVLO+)
Active ( < VUVLO–)
Active ( < VUVLO–)
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
DESAT
(Pin 14: DESAT pin
input)
Not active
Low ( < VDESATth)
High ( > VDESATth)
Not Active
Not Active
FAULT
(Pin 3: FAULT pin
output)
High
High
Low (FAULT)
High
High
VO
Low
High
Low
Low
Low
Page 3 of 22
A Business Partner of Renesas Electronics Corporation.
PS9402
<R>
Chapter Title
MARKING EXAMPLE
No. 1 pin
Mark
R
9402
NT231
Company Initial
Type Number
Assembly Lot
N T 2 31
Week Assembled
Year Assembled
(Last 1 Digit)
In-house Code
(T: Pb-Free)
Rank Code
ORDERING INFORMATION
Part Number
<R>
<R>
Order Number
PS9402
PS9402-E3
PS9402-AX
PS9402-E3-AX
PS9402-V
PS9402-V-E3
PS9402-V-AX
PS9402-V-E3-AX
Note:
Solder Plating
Specification
Pb-Free
(Ni/Pd/Au)
Packing Style
10 pcs (Tape 10 pcs cut)
Embossed Tape 850
pcs/reel
10 pcs (Tape 10 pcs cut)
Embossed Tape 850
pcs/reel
Safety Standard
Approval
Standard products
(UL and CSA
Approved)
DIN EN60747-5-2
(VDE0884 Part2)
Approved
(Option)
Application
*1
Part Number
PS9402
*1. For the application of the Safety Standard, following part number should be used.
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
Page 4 of 22
A Business Partner of Renesas Electronics Corporation.
PS9402
Chapter Title
ABSOLUTE MAXIMUM RATINGS (TA = 25°C, unless otherwise specified)
<R>
<R>
<R>
Parameter
Forward Current *1
Peak Transient Forward Current
(Pulse Width < 1 μs)
Reverse Voltage
Input Supply Voltage
Input IC Power Dissipation *2
High Level Peak Output Current *3
Low Level Peak Output Current *3
FAULT Output Current
FAULT Pin Voltage
Total Output Supply Voltage
Negative Output Supply Voltage
Output Voltage
Peak Clamping Sinking Current
Miller Clamping Pin Voltage
DESAT Voltage
Output IC Power Dissipation *4
Isolation Voltage *5
Operating Ambient Temperature
Storage Temperature
Notes: *1.
*2.
*3.
*4.
*5.
Symbol
IF
Ratings
25
1.0
Unit
mA
A
VR
VCC1
PI
5
0 to 5.5
80
2.5
2.5
8
0 to VCC1
0 to 33
0 to 15
0 to VCC2
1.7
0 to VCC2
VE to VE + 10
300
5 000
−40 to +110
−55 to +125
V
V
mW
A
A
mA
V
V
V
V
A
V
V
mW
Vr.m.s.
°C
°C
IF (TRAN)
IOH (PEAK)
IOL (PEAK)
IFAULT
VFAULT
(VCC2 − VEE)
(VE − VEE)
VO
IClamp
VClamp
VDESAT
PO
BV
TA
Tstg
Reduced to 0.52 mA/°C at TA = 85°C or more.
Reduced to 1.6 mW/°C at TA = 75°C or more.
Maximum pulse width = 10 μs, Maximum duty cycle = 0.2%
Reduced to 5.5 mW/°C at TA = 70°C or more.
AC voltage for 1 minute at TA = 25°C, RH = 60% between input and output.
Pins 1-8 shorted together, 9-16 shorted together.
RECOMMENDED OPERATING CONDITIONS
Parameter
Total Output Supply Voltage
Negative Output Supply Voltage
Positive Output Supply Voltage
Forward Current (ON)
Forward Voltage (OFF)
Operating Ambient Temperature
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
Symbol
(VCC2 − VEE)
(VE − VEE)
(VCC2 − VE)
IF (ON)
VF (OFF)
TA
MIN.
15
0
15
8
−2
−40
MAX.
30
15
30 − (VE − VEE)
12
0.8
110
Unit
V
V
V
mA
V
°C
Page 5 of 22
A Business Partner of Renesas Electronics Corporation.
PS9402
<R>
Chapter Title
ELECTRICAL CHARACTERISTICS (DC) (at RECOMMENDED OPERATING CONDITIONS,
VEE = VE = GND, unless otherwise specified)
Parameter
Symbol
Conditions
IFAULT = 1.1 mA, VCC1 = 5.5 V
FAULT Logic High Output
Current
High Level Output Current
IFAULTH
Low Level Output Current
IOL
Low Level Output Current
During Fault Condition
High Level Output Voltage
IOLF
VFAULT = 5.5 V, VCC1 = 5.5 V,
TA = 25°C
VO = (VCC2 − 4 V) *2
VO = (VCC2 − 15 V) *3
VO = (VEE + 2.5 V) *2
VO = (VEE + 15 V) *3
VO – VEE = 14 V
FAULT Logic Low Output
Voltage
Low Level Output Voltage
Clamp Pin Threshold Voltage
Clamp Low Level Sinking
Current
High Level Supply Current
Low Level Supply Current
Blanking Capacitor Charging
Current
Blanking Capacitor Discharging
Current
DESAT Threshold
UVLO Threshold
UVLO Hysteresis
Threshold Input Current
(L
H)
Threshold Input Voltage
(H
L)
Input Forward Voltage
Input Reverse Current
Input Capacitance
VFAULTL
IOH
VOH
VOL
VtClamp
ICL
ICC2H
ICC2L
IO = 100 mA *4
IO = −650 μA *4
IO = 100 mA
VtClamp = VEE + 2.5 V
MIN.
−0.5
−2.0
0.5
2.0
90
TYP. *1
0.1
Unit
V
0.5
μA
−1.5
A
1.5
A
140
VCC2 − 3.0 VCC2 − 1.3
VCC2 − 2.5 VCC2 − 0.8
0.15
2.0
0.35
1.5
ICHG
IO = 0 mA
IO = 0 mA
VDESAT = 2 V
−0.13
2
2
−0.24
IDSCHG
VDESAT = 7 V
10
30
IFLH
VCC2 − VE > VUVLO−, VO < 5 V
VO > 5 V
VO < 5 V
(VUVLO+) − (VUVLO−)
IO = 0 mA, VO > 5 V
6.0
11.0
9.8
0.4
6.9
12.6
11.3
1.3
1.5
VFHL
IO = 0 mA, VO < 5 V
0.8
VF
IR
CIN
IF = 10 mA, TA = 25°C
VR = 3 V, TA = 25°C
f = 1 MHz, VF = 0 V
1.2
VDESATth
VUVLO+
VUVLO−
UVLOHYS
MAX.
230
mA
V
0.5
V
V
A
3
3
−0.33
mA
mA
mA
mA
7.5
13.5
12.3
5
V
V
V
mA
V
1.56
30
1.8
10
V
μA
pF
Notes: *1. Typical values at TA = 25°C.
*2. Maximum pulse width = 50 μs, Maximum duty cycle = 0.5%
*3. Maximum pulse width = 10 μs, Maximum duty cycle = 0.2%
*4. VOH is measured with the DC load current in this testing (Maximum pulse width = 1 ms, Maximum duty cycle =
20%).
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
Page 6 of 22
A Business Partner of Renesas Electronics Corporation.
PS9402
<R>
Chapter Title
SWITCHING CHARACTERISTICS (AC) (at RECOMMENDED OPERATING
CONDITIONS, VEE = VE = GND, unless otherwise specified)
Parameter
Symbol
Propagation Delay Time (L
H)
tPLH
Propagation Delay Time (H
L)
tPHL
Pulse Width Distortion (PWD)
|tPHL−tPLH|
tPHL−tPLH
Propagation Delay Time
(Difference Between Any Two
Products)
Rise Time
tr
Fall Time
tf
CMH
Common Mode Transient
*3
Immunity at High Level Output
Common Mode Transient
*4
Immunity at Low Level Output
CML
DESAT Sense to 90% VO Delay
tDESAT
DESAT Sense to 10% VO Delay
tDESAT
DESAT Sense to Low Level
FAULT Signal Delay
DESAT Sense to DESAT Low
Propagation Delay
DESAT Input Mute *5
RESET to High Level FAULT
Signal Delay
(90%)
(10%)
tDESAT
Conditions
Rg = 10 Ω, Cg = 10 nF,
f = 10 kHz,
Duty Cycle = 50% *2,
IF = 10 mA,
VCC2 = 30 V
MIN.
50
50
−100
TA = 25°C, IF = 10 mA,
VCC2 = 30 V, VCM = 1.5 kV,
CDESAT = 100 pF,
RF = 2.1 kΩ, VCC1 = 5 V
25
TA = 25°C, VF = 0 V,
VCC2 = 30 V,
VCM = 1.5 kV, RF = 2.1 kΩ,
VCC1 = 5 V
CDESAT = 100 pF,
RF = 2.1 kΩ,
Rg = 10 Ω, Cg = 10 nF
VCC2 = 30 V
1.5
(FAULT)
(LOW)
tRESET
100
50
50
VCC1 = 5.5 V
VCC1 = 3.3 V
0.3
0.5
Unit
ns
ns
ns
ns
ns
ns
kV/μs
−25
kV/μs
250
500
ns
2
3
μs
400
800
ns
ns
5
tDESAT
(FAULT)
MAX.
200
200
100
250
tDESAT
(MUTE)
TYP. *1
90
110
20
μs
1.2
1.5
3.0
4.0
μs
μs
Notes: *1. Typical values at TA = 25°C.
*2. This load condition is equivalent to the IGBT load at 1 200 V/150 A.
*3. Common mode transient immunity in the high state is the maximum tolerable dVCM/dt of the common mode
pulse, VCM, to assure that the output will remain in the high state (i.e., VO > 15 V or FAULT > 2 V). A 100 pF
and a 2.1 kΩ pull-up resistor is needed in fault detection mode.
*4. Common mode transient immunity in the low state is the maximum tolerable dVCM/dt of the common mode
pulse, VCM, to assure that the output will remain in a low state (i.e., VO < 1.0 V or FAULT < 0.8 V).
*5. During muting DESAT, even if LED (IF) input occurs, IGBT operates turn-off and Vo state is kept to low.
After unmuting this DESAT, when LED is turned on, Vo/FAULT becomes high state (with automatic reset).
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
Page 7 of 22
A Business Partner of Renesas Electronics Corporation.
PS9402
<R>
Chapter Title
TEST CIRCUIT 1
Fig. 2 IFAULTH Test Circuit
Fig. 1 VFAULTL Test Circuit
1 VS
VCC1
VFAULTL
2 VCC1
3 Fault
4 VS
5 Cathode
6 Anode
7 Anode
8 Cathode
1 VS
IF 2
VLED 15
VCC1
Desat 14
VCC2 13
VEE 12
VLED 15
3 Fault
Desat 14
4 VS
10
VEE 9
VCC2 13
VEE 12
6 Anode
VO 11
7 Anode
Vclamp 10
8 Cathode
VEE 9
Fig. 4 IOL Test Circuit
1 VS
1 VS
VE 16
VE 16
2 VCC1
VLED 15
2 VCC1
VLED 15
3 Fault
Desat 14
3 Fault
Desat 14
5 Cathode
6 Anode
7 Anode
8 Cathode
VCC2 13
VEE 12
VO 11
Vclamp 10
VEE
4 VS
VO
5 Cathode
IOH
0.1 μF
VCC2
1 VS
6 Anode
7 Anode
8 Cathode
9
Fig. 5 VOH Test Circuit
VCC2 13
VEE 12
VO 11
Vclamp 10
1 VS
VE 16
VE 16
VLED 15
2 VCC1
VLED 15
Desat 14
3 Fault
Desat 14
VCC2 13
VEE 12
6 Anode
VO 11
7 Anode
Vclamp 10
8 Cathode
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
VEE 9
VCC2
VO
Fig. 6 VOL Test Circuit
3 Fault
5 Cathode
0.1 μF
IOL
VEE 9
2 VCC1
4 VS
IF
2 VCC1
5 Cathode
VO 11
Vclamp
IFAULTH
VE 16
Fig. 3 IOH Test Circuit
4 VS
IF
VE 16
4 VS
0.1 μF
VOH
IO
5 Cathode
VCC2
VCC2 13
VEE 12
6 Anode
VO 11
7 Anode
Vclamp 10
8 Cathode
VEE 9
0.1 μF
VOL
VCC2
IO
Page 8 of 22
A Business Partner of Renesas Electronics Corporation.
PS9402
<R>
Chapter Title
TEST CIRCUIT 2
Fig. 8 ICC2L Test Circuit
Fig. 7 ICC2H Test Circuit
1 VS
1 VS
VLED 15
2 VCC1
VLED 15
3 Fault
Desat 14
3 Fault
Desat 14
5 Cathode
VCC2 13
VEE 12
6 Anode
VO 11
7 Anode
Vclamp 10
8 Cathode
ICC2H
4 VS
0.1 μF
5 Cathode
VCC2
VEE 9
1 VS
VLED 15
3 Fault
Desat 14
4 VS
5 Cathode
VCC2 13
VEE 12
6 Anode
VO 11
7 Anode
Vclamp 10
8 Cathode
VO 11
7 Anode
Vclamp 10
1 VS
2V
ICHG
VLED 15
3 Fault
Desat 14
0.1 μF
5 Cathode
VCC2
VEE 12
6 Anode
VO 11
7 Anode
Vclamp 10
8 Cathode
VEE 9
VCC2 13
VE 16
1 VS
2 VCC1
VLED 15
3 Fault
Desat 14
8 Cathode
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
VCC2 13
4 VS
VEE 12
0.1 μF
VO 11
ICL
2.5 V
Vclamp 10
VEE 9
0.1 μF
VCC2
VE 16
VLED 15
7 Anode
IDSCHG
Fig. 12 VDESAT Test Circuit
Desat 14
6 Anode
7V
VEE 9
3 Fault
5 Cathode
VCC2
VE 16
2 VCC1
4 VS
0.1 μF
VEE 9
2 VCC1
4 VS
Fig. 11 ICL Test Circuit
1 VS
VEE 12
ICC2L
Fig. 10 IDSCHG Test Circuit
VE 16
2 VCC1
VCC2 13
6 Anode
8 Cathode
Fig. 9 ICHG Test Circuit
IF
VE 16
2 VCC1
4 VS
IF
VE 16
5 Cathode
VCC2
IF
VCC2 13
VEE 12
6 Anode
VO 11
7 Anode
Vclamp 10
8 Cathode
VDESAT
0.1 μF
VCC2
VEE 9
Page 9 of 22
A Business Partner of Renesas Electronics Corporation.
PS9402
<R>
Chapter Title
TEST CIRCUIT 3
Fig. 14 IFLH Test Circuit
Fig. 13 VUVLO Test Circuit
1 VS
VLED 15
2 VCC1
VLED 15
3 Fault
Desat 14
3 Fault
Desat 14
5 Cathode
6 Anode
7 Anode
8 Cathode
VCC2 13
1 VS
VEE 12
VO 11
IF
VEE 9
3 Fault
Desat 14
5 Cathode
6 Anode
VO 11
7 Anode
Vclamp 10
8 Cathode
VEE 9
VCC1 = 5 V
2.1 kΩ
VLED 15
3 Fault
Desat 14
4 VS
5 Cathode
IF
6 Anode
VO 11
7 Anode
Vclamp 10
8 Cathode
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
VEE 9
Vclamp 10
VCC2
VEE 9
10 Ω
tr
tf
90%
50%
10%
tPLH
tPHL
VCC2
10 nF
Fig. 18 tDESAT Test Wave Forms
VDESAT
−
100 pF
+
VCC2 13
VEE 12
7 Anode
VOUT
0.1 μF
VE 16
2 VCC1
VO 11
IF
Fig. 17 tDESAT Test Circuit
1 VS
6 Anode
Fig. 17 tPLH/tPHL Test Wave Forms
VCC2 13
VEE 12
0.1 μF
VEE 12
8 Cathode
VE 16
VLED 15
4 VS
5 Cathode
VCC2
Vclamp 10
2 VCC1
VCC2 13
4 VS
0.1 μF
Fig. 15 tPLH/tPHL Test Circuit
IF
VE 16
1 VS
2 VCC1
4 VS
IF
VE 16
10 nF
tDESET (LOW)
VDESET
50%
tDESET (10%)
90%
VOUT
0.1 μF
10 Ω
IF
VCC2
tDESET (90%)
FAULT
tDESET (FAULT)
10%
50%
tDESET (MUTE)
50%
tRESET (FAULT)
Page 10 of 22
A Business Partner of Renesas Electronics Corporation.
PS9402
<R>
Chapter Title
TEST CIRCUIT 4
Fig. 20 CML Test Circuit (LED1 OFF)
Fig. 19 CMH Test Circuit (LED1 ON)
1 VS
VE 16
1 VS
2 VCC1
VLED 15
2 VCC1
VLED 15
3 Fault
Desat 14
3 Fault
Desat 14
VCC2 13
4 VS
5 Cathode
VEE 12
6 Anode
VO 11
7 Anode
Vclamp 10
VEE 9
8 Cathode
+
0.1 μF
SCOPE
5 Cathode
VCC2
10 Ω
10 nF
VCC1
SCOPE
2 VCC1
VLED 15
3 Fault
Desat 14
VCC2 13
5 Cathode
0.1 μF
VEE 12
6 Anode
VO 11
7 Anode
Vclamp 10
VEE 9
8 Cathode
7 Anode
Vclamp 10
VEE 9
8 Cathode
2.1 kΩ
100 pF
VCC1
SCOPE
0.1 μF
10 Ω
0.1 μF
10 nF
1 VS
Fig. 23 CMH, CML Test Wave Forms
(LED1 ON, OFF)
tr
VO
(CMH: IF = 10 mA)
VO
(CML: IF = 0 mA)
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
tf
10 Ω
10 nF
VE 16
2 VCC1
VLED 15
3 Fault
Desat 14
VCC2 13
4 VS
5 Cathode
VCC2
90%
VCC2
−
VEE 12
6 Anode
VO 11
7 Anode
Vclamp 10
VEE 9
8 Cathode
0.1 μF
VCC2
10 Ω
10 nF
+
−
VCM
0.1 μF
SCOPE
Fig. 22 CML Test Circuit (LED2 OFF)
+
−
0V
VO 11
+
VE 16
4 VS
VEE 12
6 Anode
−
1 VS
VCC2 13
4 VS
Fig. 21 CMH Test Circuit (LED2 ON)
2.1 kΩ
VE 16
Fig. 24 CMH, CML Test Wave Forms
(LED2 ON, OFF)
1 500 V
90%
VCM
10%
0V
VOH
15 V
1V
VOL
VFAULT
(CMH: IF = 10 mA, DESAT)
VFAULT
(CML: IF = 0 mA, DESAT)
tr
tf
1 500 V
10%
GND
2V
0.8 V
OPEN
Page 11 of 22
A Business Partner of Renesas Electronics Corporation.
PS9402
TYPICAL CHARACTERISTICS (TA = 25°C, unless otherwise specified)
Input IC Power Dissipation PI (mW)
Output IC Power Dissipation PO (mW)
INPUT IC POWER DISSIPATION
vs. AMBIENT TEMPERATURE
120
100
80
60
40
20
0
0
25
50
75
100
125
Forward Current IF (mA)
200
150
100
50
0
0
5
TA = +100°C
+85°C
+50°C
+25°C
0°C
−40°C
1.2
1.4
1.6
1.8
2.0
2.2
25
50
75
100
125
VCC2 = 30 V,
VEE = GND,
VO > 5 V
4
3
2
1
0
−40
2.4
0
−20
20
40
60
80
100
Forward Voltage VF (V)
Ambient Temperature TA (°C)
OUTPUT VOLTAGE vs.
FORWARD CURRENT
HIGH LEVEL OUTPUT VOLTAGE – OUTPUT SUPPLY
VOLTAGE vs. HIGH LEVEL OUTPUT CURRENT
0.0
High Level Output Voltage – Output
Supply Voltage VOH – VCC 2 (V)
VCC = 30 V,
VEE = GND
25
20
15
10
5
0
250
THRESHOLD INPUT CURRENT vs.
AMBIENT TEMPERATURE
0.1
30
300
FORWARD CURRENT vs.
FORWARD VOLTAGE
1.0
35
350
Ambient Temperature TA (°C)
10
0.01
1.0
400
OUTPUT IC POWER DISSIPATION
vs. AMBIENT TEMPERATURE
Ambient Temperature TA (°C)
Threshold Input Current IFLH (mA)
100
Output Voltage VO (V)
<R>
Chapter Title
1
2
3
4
5
Forward Current IF (mA)
VCC = 30 V,
VEE = GND,
IF = 10 mA
−1.0
−2.0
−40°C
−3.0
−4.0
−5.0
−2.5
TA = 110°C
25°C
−2.0
−1.5
−1.0
−0.5
0.0
High Level Output Current IOH (A)
Remark The graphs indicate nominal characteristics.
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
Page 12 of 22
A Business Partner of Renesas Electronics Corporation.
Chapter Title
VCC = 30 V,
VEE = GND,
4.0 IF = 0 mA
3.0
2.0
−40°C
1.0
0.0
0
Propagation Delay Time tPHL, tPLH (ns),
Pulse Width Distortion (PWD) tPHL – tPLH (ns)
25°C
TA = 110°C
0.5
1.0
1.5
2.0
2.5
PROPAGATION DELAY TIME,
PULSE WIDTH DISTORTION
vs. FORWARD CURRENT
200
VCC2 = 30 V, VEE = GND,
Rg = 10 Ω, Cg = 10 nF,
f = 10 kHz, Duty cycle = 50%
150
tPHL
100
tPLH
50
PWD
0
7
10
PROPAGATION DELAY TIME,
PULSE WIDTH DISTORTION
vs. OUTPUT SUPPLY VOLTAGE
PROPAGATION DELAY TIME,
PULSE WIDTH DISTORTION
vs. LOAD CAPACITANCE
VEE = GND, IF = 10 mA,
Rg = 10 Ω, Cg = 10 nF,
f = 10 kHz, Duty cycle = 50%
150
tPHL
100
tPLH
50
PWD
0
15
20
25
30
200
VCC2 = 30 V, VEE = GND,
IF = 10 mA, Rg = 10 Ω,
f = 10 kHz, Duty cycle = 50%
150
tPHL
100
tPLH
50
PWD
0
0
10
VCC2 = 30 V, VEE = GND,
IF = 10 mA, Cg = 10 nF,
f = 10 kHz, Duty cycle = 50%
150
tPHL
100
tPLH
50
PWD
10
20
30
40
50
Load Resistance Rg (Ω)
Propagation Delay Time tPHL, tPLH (ns),
Pulse Width Distortion (PWD) tPHL – tPLH (ns)
PROPAGATION DELAY TIME,
PULSE WIDTH DISTORTION
vs. LOAD RESISTANCE
200
30
20
40
50
Load Capacitance Cg (nF)
Output Supply Voltage VCC2 (V)
Propagation Delay Time tPHL, tPLH (ns),
Pulse Width Distortion (PWD) tPHL – tPLH (ns)
16
Forward Current IF (mA)
200
0
0
13
Low Level Output Current IOL (A)
Propagation Delay Time tPHL, tPLH (ns),
Pulse Width Distortion (PWD) tPHL – tPLH (ns)
Low Level Output Voltage VOL (V)
5.0
LOW LEVEL OUTPUT VOLTAGE vs.
LOW LEVEL OUTPUT CURRENT
Propagation Delay Time tPHL, tPLH (ns),
Pulse Width Distortion (PWD) tPHL – tPLH (ns)
PS9402
PROPAGATION DELAY TIME,
PULSE WIDTH DISTORTION
vs. AMBIENT TEMPERATURE
200
VCC2 = 30 V, VEE = GND,
IF = 10 mA,
Rg = 10 Ω, Cg = 10 nF,
f = 10 kHz, Duty cycle = 50%
150
tPHL
100
tPLH
50
PWD
0
−40
−20
0
20
40
60
80
100
Ambient Temperature TA (°C)
Remark The graphs indicate nominal characteristics.
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
Page 13 of 22
A Business Partner of Renesas Electronics Corporation.
PS9402
Chapter Title
VCC2 = 30 V,
VEE = GND,
VO = OPEN
2.5
ICC2H (IF = 10 mA)
2.0
ICC2L (IF = 0 mA)
1.5
1.0
0.5
−40
−20
0
20
40
60
80
High Level Supply Current ICCH (mA),
Low Level Supply Current ICCL (mA)
High Level Supply Current ICCH (mA),
Low Level Supply Current ICCL (mA)
3.0
HIGH LEVEL SUPPLY CURRENT,
LOW LEVEL SUPPLY CURRENT vs.
AMBIENT TEMPERATURE
100
3.0
HIGH LEVEL SUPPLY CURRENT,
LOW LEVEL SUPPLY CURRENT vs.
OUTPUT SUPPLY VOLTAGE
VEE = GND,
VO = OPEN
2.5
ICC2H (IF = 10 mA)
2.0
ICC2L (IF = 0 mA)
1.5
1.0
0.5
15
HIGH LEVEL OUTPUT VOLTAGE –
OUTPUT SUPPLY VOLTAGE vs.
AMBIENT TEMPERATURE
−1.0
–100 mA
−1.5
−2.0
−2.5
−3.0
−40 −20
0
20
60
80
30
LOW LEVEL OUTPUT VOLTAGE vs.
AMBIENT TEMPERATURE
VCC2 = 30 V, VEE = GND,
IF = 10 mA, IO = 100 mA
0.4
0.3
0.2
0.1
0
−40 −20
100
0
20
40
60
80
100
Ambient Temperature TA (°C)
Ambient Temperature TA (°C)
HIGH LEVEL OUTPUT CURRENT vs.
AMBIENT TEMPERATURE
LOW LEVEL OUTPUT CURRENT vs.
AMBIENT TEMPERATURE
0
High Level Output Current IOH (A)
40
Low Level Output Voltage VOL (V)
IO = –650 μ A
0.5
VCC2 = 30 V, VEE = GND,
IF = 10 mA
−1
−2
VO = VCC2 −4 V
−3
−4
−5
VCC2 −15 V
−6
−7
−40 −20
0
20
40
60
80
100
Ambient Temperature TA (°C)
5
Low Level Output Current IOL (A)
High Level Output Voltage – Output
Supply Voltage VOH – VCC2 (V)
−0.5
VCC2 = 30 V, VEE = GND,
IF = 10 mA
25
Output Supply Voltage VCC2 (V)
Ambient Temperature TA (°C)
0.0
20
VCC2 = 30 V, VEE = GND,
IF = 10 mA
4
VO = VEE +15 V
3
2
VEE +2.5 V
1
0
−40 −20
0
20
40
60
80
100
Ambient Temperature TA (°C)
Remark The graphs indicate nominal characteristics.
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
Page 14 of 22
A Business Partner of Renesas Electronics Corporation.
Chapter Title
4
VCC2 = 30 V,
VEE = VE = GND,
VtClamp = 2.5 V
3
BLANKING CAPACITOR CHARGING
CURRENT vs. AMBIENT TEMPERATURE
−0.10
VCC2 = 30 V, VEE = VE = GND,
IF = 10 mA, VDESAT = 2 V
−0.15
−0.20
2
−0.25
1
0
−40 −20
−0.30
0
20
40
60
80
100
−0.35
−40 −20
0
20
40
60
80
Ambient Temperature TA (°C)
Ambient Temperature TA (°C)
BLANKING CAPACITOR DISCHARGING
CURRENT vs. AMBIENT TEMPERATURE
DESAT THRESHOLD vs.
AMBIENT TEMPERATURE
VCC2 = 30 V, VEE = VE = GND,
IF = 0 mA, VDESAT = 7 V
50
40
30
20
−40 −20
0
20
40
60
80
7.5
DESAT Threshold VDESATth (V)
60
100
VEE = VE = GND,
VCC2 > VUVLO−, VO < 5 V,
IF = 10 mA
7.2
6.9
6.6
6.3
6.0
−40 −20
100
0
20
40
60
80
100
Ambient Temperature TA (°C)
Ambient Temperature TA (°C)
DESAT SENSE TO 90% VO DELAY vs.
AMBIENT TEMPERATURE
DESAT SENSE TO 10% VO DELAY vs.
AMBIENT TEMPERATURE
500
VEE = VE = GND, Rg = 10 Ω,
Cg = 10 nF, RF = 2.1 kΩ,
CDESAT = 100 pF, VCC1 = 5 V
400
VCC2 = 30 V
300
200
15 V
100
0
−40 −20
0
20
40
60
80
100
Ambient Temperature TA (°C)
DESAT Sense to 10% VO Delay tDESAT (10%) ( μ s)
DESAT Sense to 90% VO Delay tDESAT (90%) (ns)
Blanking Capacitor Discharging Current IDSCHG (mA)
Clamp Low Level Sinking Current ICL (A)
CLAMP LOW LEVEL SINKING CURRENT
vs. AMBIENT TEMPERATURE
Blanking Capacitor Charging Current ICHG (mA)
PS9402
3.0
2.5
VCC2 = 30 V
2.0
1.5
1.0
0.5
15 V
VCC1 = 5 V, VEE = VE = GND, Rg = 10 Ω,
Cg = 10 nF, RF = 2.1 kΩ, CDESAT = 100 pF
0.0
−40 −20
0
20
40
60
80
100
Ambient Temperature TA (°C)
Remark The graphs indicate nominal characteristics.
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
Page 15 of 22
A Business Partner of Renesas Electronics Corporation.
Chapter Title
DESAT SENSE TO 10% VO DELAY vs.
LOAD RESISTANCE
3.0
2.5
VCC1 = 5 V, VEE = VE = GND, Cg = 10 nF,
RF = 2.1 kΩ, CDESAT = 100 pF
VCC2 = 30 V
2.0
1.5
15 V
1.0
0.5
0.0
10
20
30
40
50
DESAT Sense to 10% VO Delay tDESAT (10%) ( μ s)
DESAT Sense to 10% VO Delay tDESAT (10%) (μs)
PS9402
12.0
9.0
VCC1 = 5 V, VEE = VE = GND,
RF = 2.1 kΩ, Rg = 10 Ω,
CDESAT = 100 pF
VCC2 = 30 V
6.0
15 V
3.0
0.0
0
10
20
30
40
50
Load Resistance Rg (Ω)
Load Capacitance Cg (nF)
OUTPUT VOLTAGE vs. SUPPLY VOLTAGE
POWER CONSUMPTION PER CYCLE vs.
LOAD RESISTANCE
14
10
8
UVLOHYS
6
4
2
0
0
VUVLO+
(12.6 V)
VUVLO−
(11.3 V)
5
10
15
20
Supply Voltage VCC2 – VEE (V)
Power Consumption Per Cycle ESW ( μ J)
8
12
Output Voltage VO (V)
DESAT SENSE TO 10% VO DELAY vs.
LOAD CAPACITANCE
IF = 10 mA, VEE = GND
7
6
5
Qg = 1 000 nC
4
3
Qg = 500 nC
2
1
0
0
Qg = 100 nC
10
20
30
40
50
Load Resistance Rg (Ω)
Remark The graphs indicate nominal characteristics.
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
Page 16 of 22
PS9402
Chapter Title
TAPING SPECIFICATIONS (UNIT: mm)
2.0±0.1
4.0±0.1
1.75±0.1
Outline and Dimensions (Tape)
φ 1.5+0.1
–0
4.5±0.1
φ 3.5
10.8±0.1
24±0.3
11.5±0.1
3.8±0.1
0.35
φ 1.55±0.1
16±0.1
10.9±0.1
Tape Direction
PS9402-E3
Outline and Dimensions (Reel)
2.0±0.5
φ 21.0±0.8
φ 100±1.0
R 1.0
φ 330±2.0
2.0±0.5
φ13.0±0.2
25.5±1.0
29.5±1.0
Packing: 850 pcs/reel
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
23.9 to 27.4
Outer edge of
flange
Page 17 of 22
PS9402
RECOMMENDED MOUNT PAD DIMENSIONS (UNIT: mm)
C
D
B
<R>
Chapter Title
A
Part Number
PS9402
Lead Bending
lead bending type (Gull-wing)
for surface mount
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
A
B
C
D
9.85
1.27
0.96
1.65
Page 18 of 22
PS9402
Chapter Title
NOTES ON HANDLING
1. Recommended soldering conditions
(1) Infrared reflow soldering
• Peak reflow temperature
• Time of peak reflow temperature
• Time of temperature higher than 220°C
• Time to preheat temperature from 120 to 180°C
• Number of reflows
• Flux
260°C or below (package surface temperature)
10 seconds or less
60 seconds or less
120±30 s
Th ree
Rosin flux containing small amount of chlorine (The flux
with a maximum chlorine content of 0.2 Wt% is
recommended.)
Package Surface Temperature T (°C)
Recommended Temperature Profile of Infrared Reflow
(heating)
to 10 s
260°C MAX.
220°C
to 60 s
180°C
120°C
120±30 s
(preheating)
Time (s)
(2) Wave soldering
• Temperature
• Time
• Preheating conditions
• Number of times
• Flux
260°C or below (molten solder temperature)
10 seconds or less
120°C or below (package surface temperature)
One (Allowed to be dipped in solder including plastic mold portion.)
Rosin flux containing small amount of chlorine (The flux with a maximum chlorine
content of 0.2 Wt% is recommended.)
(3) Soldering by Soldering Iron
• Peak Temperature (lead part temperature) 350°C or below
• Time (each pins)
3 seconds or less
• Flux
Rosin flux containing small amount of chlorine (The flux with a
maximum chlorine content of 0.2 Wt% is recommended.)
(a) Soldering of leads should be made at the point 1.5 to 2.0 mm from the root of the lead
(4) Cautions
• Fluxes
Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.
2. Cautions regarding noise
Be aware that when voltage is applied suddenly between the photocoupler’s input and output at startup, the output
transistor may enter the on state, even if the voltage is within the absolute maximum ratings.
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
Page 19 of 22
PS9402
Chapter Title
USAGE CAUTIONS
<R>
<R>
1. This product is weak for static electricity by designed with high-speed integrated circuit so protect against static
electricity when handling.
2. Board designing
(1) By-pass capacitor of more than 0.1 μF is used between VCC and GND near device. Also, ensure that the distance
between the leads of the photocoupler and capacitor is no more than 10 mm.
(2) When designing the printed wiring board, ensure that the pattern of the IGBT collectors/emitters is not too close
to the input block pattern of the photocoupler.
If the pattern is too close to the input block and coupling occurs, a sudden fluctuation in the voltage on the IGBT
output side might affect the photocoupler’s LED input, leading to malfunction or degradation of characteristics.
(If the pattern needs to be close to the input block, to prevent the LED from lighting during the off state due to
the abovementioned coupling, design the input-side circuit so that the bias of the LED is reversed, within the
range of the recommended operating conditions, and be sure to thoroughly evaluate operation.)
3. Make sure the rise/fall time of the forward current is 0.5 μs or less.
4. In order to avoid malfunctions, make sure the rise/fall slope of the VCC2 is 3 V/μs or less.
5. Avoid storage at a high temperature and high humidity.
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
Page 20 of 22
PS9402
<R>
Chapter Title
SPECIFICATION OF VDE MARKS LICENSE DOCUMENT
Parameter
Symbol
Climatic test class (IEC 60068-1/DIN EN 60068-1)
Dielectric strength
maximum operating isolation voltage
Test voltage (partial discharge test, procedure a for type test and random test)
Upr = 1.6 × UIORM., Pd < 5 pC
Spec.
Unit
40/110/21
UIORM
Upr
1 130
1 808
Vpeak
Vpeak
Upr
2 119
Vpeak
Highest permissible overvoltage
UTR
8 000
Vpeak
Comparative tracking index (IEC 60112/DIN EN 60112 (VDE 0303 Part 11))
CTI
175
Storage temperature range
Tstg
–55 to +125
°C
Ris MIN.
Ris MIN.
1012
11
10
Ω
Ω
Tsi
Isi
Psi
175
400
700
°C
mA
mW
Ris MIN.
109
Ω
Test voltage (partial discharge test, procedure b for all devices)
Upr = 1.875 × UIORM., Pd < 5 pC
Degree of pollution (DIN EN 60664-1 VDE0110 Part 1)
Material group (DIN EN 60664-1 VDE0110 Part 1)
Operating temperature range
Isolation resistance, minimum value
VIO = 500 V dc at TA = 25°C
VIO = 500 V dc at TA MAX. at least 100°C
Safety maximum ratings (maximum permissible in case of fault, see thermal
derating curve)
Package temperature
Current (input current IF, Psi = 0)
Power (output or total power dissipation)
Isolation resistance
VIO = 500 V dc at TA = Tsi
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
TA
2
III a
–40 to +110
°C
Page 21 of 22
PS9402
Caution
Chapter Title
GaAs Products
This product uses gallium arsenide (GaAs).
GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe
the following points.
• Follow related laws and ordinances when disposing of the product. If there are no applicable laws
and/or ordinances, dispose of the product as recommended below.
1. Commission a disposal company able to (with a license to) collect, transport and dispose of
materials that contain arsenic and other such industrial waste materials.
2. Exclude the product from general industrial waste and household garbage, and ensure that the
product is controlled (as industrial waste subject to special control) up until final disposal.
• Do not burn, destroy, cut, crush, or chemically dissolve the product.
• Do not lick the product or in any way allow it to enter the mouth.
R08DS0014EJ0100 Rev.1.00
Jun 22, 2012
Page 22 of 22
Revision History
PS9402 Data Sheet
Rev.
Date
Page
Description
Summary
0.01
1.00
May 09, 2011
Jun 22, 2012
−
Throughout
Throughout
p.3
p.4
p.5
p.6
p.7
pp.8 to 11
pp.12 to 16
p.18
p.20
p.21
First edition issued
Preliminary Data Sheet - > Data Sheet
Safety standards approved
Modification of BLOCK DIAGRAM
Modification of MARKING EXAMPLE
Modification of ABSOLUTE MAXIMUM RATINGS
Modification of ELECTRICAL CHARACTERISTICS (DC)
Modification of SWITCHING CHARACTERISTICS (AC)
Modification of TEST CIRCUIT
Addition of TYPICAL CHARACTERISTICS
Addition of RECOMMENDED MOUNT PAD DIMENSIONS
Modification of USAGE CAUTIONS
Addition of SPECIFICATION OF VDE MARKS LICENSE DOCUMENT
All trademarks and registered trademarks are the property of their respective owners.
C-1