Enpirion Power Datasheet

Enpirion® Power Datasheet
EN6310QI 1A PowerSoC
Voltage Mode Synchronous
PWM Buck with Integrated Inductor
Description
Features
The EN6310QI is a member of Altera Enpirion’s high
efficiency EN6300 family of PowerSoCs. It can
support up to 1A of continuous output current and has
an input voltage range of 2.7V to 5.5V.
The EN6310QI employs Altera Enpirion’s EDMOS
MOSFET technology for monolithic integration and
very low switching loss. The device switches at
2.2MHz in fixed PWM operation to eliminate the low
frequency noise that is created by pulse frequency
modulation operating modes. The MOSFET ratios are
optimized to offer high conversion efficiency for lower
VOUT settings.
Output voltage settings are programmable via a
simple resistor divider circuit. Output voltage can be
programmed from as low as 0.6V to 3.3V. The
device has a programmable soft-start ramp rate to
accommodate sequencing and to prevent un-wanted
current inrush at start up. A Power OK (POK) flag is
provided to indicate a fault condition.
The Altera Enpirion power solution significantly helps
in system design and productivity by offering greatly
simplified board design, layout and manufacturing
requirements. In addition, a reduction in the number
of vendors required for the complete power solution
helps to enable an overall system cost savings.
• Integrated inductor, MOSFET and Controller
All Enpirion products are RoHS compliant and leadfree manufacturing environment compatible.
• Enterprise Grade Solid State Drive (SSD)
• Small 4mm x 5mm x 1.85mm QFN
• High Efficiency up to 96%
• Solution Footprint Less than 65mm
2
• 1A Continuous Output Current
• VIN Range of 2.7V to 5.5V
• VOUT Range from 0.6V to 3.3V
• Programmable Soft Start and Power OK Flag
• Fast Transient Response and Recovery Time
• Low Noise and Low Output Ripple; 4mV Typical
• 2.2MHz Switching Frequency
• Under Voltage Lock-out (UVLO), Short Circuit, Over
Current and Thermal Protection
Applications
• Altera FPGAs (MAX, ARRIA, CYCLONE, STRATIX)
• Low Power FPGA Applications
• All SERDES and IO Supplies Requiring Low Noise
• Applications Requiring High Efficiency
• Noise Sensitive Wireless and RF Applications
Efficiency vs. Output Current
VOUT
VIN
VOUT
PVIN
95
EN6310QI
RAVIN
CIN1 20Ω
100pF
ON
OFF
90
COUT
47µF
0805
ENABLE
AVIN
RA
CAVIN
0.47µF
CA
RCA
VFB
SS
10nF
85
80
75
70
VOUT = 2.5V
65
VOUT = 1.0V
PGND
PGND
CSS
EFFICIENCY (%)
CIN2
4.7µF
100
RB
AGND
CONDITIONS
VIN = 3.3V
60
0
Figure 1. Simplified Applications Circuit
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
OUTPUT CURRENT (A)
1
Figure 2. Highest Efficiency in Smallest Solution Size
www.altera.com/enpirion
09644
June 26, 2015
Rev C
EN6310QI
Ordering Information
Part Number
EN6310QI
EVB-EN6310QI
Package Markings
N6310
N6310
T A (°C)
-40 to +85
Package Description
30-pin (4mm x 5mm x 1.85mm) QFN T&R
QFN Evaluation Board
Packing and Marking Information: www.altera.com/support/reliability/packing/rel-packing-and-marking.html
NC(SW)
NC(SW)
NC(SW)
NC(SW)
NC(SW)
NC(SW)
NC(SW)
PVIN
PVIN
Pin Assignments (Top View)
30
29
28
27
26
25
24
23
22
NC(SW)
1
21
PGND
NC(SW)
2
20
PGND
PGND
3
19
AVIN
PGND
4
18
ENABLE
VOUT
5
17
POK
VOUT
6
16
CSS
31
PGND
Bottom Pad
7
8
9
10
11
12
13
14
15
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
VFB
AGND
NC
Figure 3: Pin Out Diagram (Top View)
NOTE A: NC pins are not to be electrically connected to each other or to any external signal, ground, or voltage.
However, they must be soldered to the PCB. Failure to follow this guideline may result in part malfunction or damage.
NOTE B: White ‘dot’ on top left is pin 1 indicator on top of the device package.
www.altera.com/enpirion, Page 2
09644
June 26, 2015
Rev C
EN6310QI
Pin Description
PIN
NAME
1, 2, 2430
NC(SW)
3, 4
PGND
5-12
VOUT
15
NC
13
14
16
VFB
AGND
CSS
17
POK
18
ENABLE
19
AVIN
20, 21
PGND
22, 23
PVIN
31
PGND
Bottom
Pad
FUNCTION
NO CONNECT. Do not connect to any signal, voltage, or ground. These pins are connected
internally to the MOSFET common switch node.
Power ground. The output filter capacitor ground terminal should be connected to these pins.
Refer to application details for proper layout and ground routing.
Regulated output. Connect output capacitors from these pins to PGND (pins 3, 4).
NO CONNECT. Do not connect to any signal, voltage, or ground. These pins may be
connected internally.
Output feed-back node. Connect to center of VOUT resistor divider.
Quiet analog ground for control circuits. Connect to system ground plane.
Soft Start startup time programming pin. Connect C SS capacitor from this pin to AGND.
Power OK is an open drain transistor (pulled up to AVIN or similar voltage) used for power
system state indication. POK is logic high when VOUT is above 90% of VOUT nominal. Leave
this pin floating if not used.
Output enable;
Enable = logic high, Disable = logic low.
Quiet input supply for circuitry.
Power ground. The input filter capacitor ground terminal should be connected to these pins.
Refer to application details for proper layout and ground routing.
Input supply voltage for high side MOSFET Switch. Connect input filter capacitor from this pin
to PGND.
Device thermal pad to be connected to the system GND plane. See Layout Recommendations
section.
www.altera.com/enpirion, Page 3
09644
June 26, 2015
Rev C
EN6310QI
Absolute Maximum Ratings
CAUTION: Absolute Maximum ratings are stress ratings only. Functional operation beyond the recommended operating
conditions is not implied. Stress beyond the absolute maximum ratings may impair device life. Exposure to absolute
maximum rated conditions for extended periods may affect device reliability.
MIN
MAX
UNITS
Voltages on : PVIN, AVIN, VOUT
PARAMETER
SYMBOL
-0.3
6.6
V
Voltages on: ENABLE, POK
-0.3
V IN +0.3
V
Voltages on: VFB, SS
-0.3
2.7
V
-65
150
°C
150
°C
Reflow Temp, 10 Sec, MSL3 JEDEC J-STD-020A
260
°C
ESD Rating (based on Human Body Model)
2000
V
ESD Rating (based on CDM)
500
V
Storage Temperature Range
T STG
Maximum Operating Junction Temperature
T J-ABS Max
Recommended Operating Conditions
PARAMETER
SYMBOL
MIN
MAX
UNITS
V IN
2.7
5.5
V
Output Voltage Range
V OUT
0.60
3.3
V
Output Current
I OUT
1
A
Input Voltage Range
Operating Ambient Temperature
TA
-40
+85
°C
Operating Junction Temperature
TJ
-40
+125
°C
Thermal Characteristics
PARAMETER
SYMBOL
TYP
UNITS
Thermal Shutdown
T SD
140
°C
Thermal Shutdown Hysteresis
T SDH
20
°C
θ JA
60
°C/W
Thermal Resistance: Junction to Ambient (0 LFM) (Note 1)
Thermal Resistance: Junction to Case (0 LFM)
3
°C/W
θ JC
Note 1: Based on 2oz. external copper layers and proper thermal design in line with EIJ/JEDEC JESD51-7 standard for
high thermal conductivity boards.
www.altera.com/enpirion, Page 4
09644
June 26, 2015
Rev C
EN6310QI
Electrical Characteristics
NOTE: V IN (PVIN and AVIN) = 5.0V, Minimum and Maximum values are over operating ambient temperature range
unless otherwise noted. Typical values are at T A = 25°C.
PARAMETER
Input Voltage Range
Under Voltage Lockout VIN
Rising
Under Voltage Lockout VIN
Falling
Output Voltage Range
Maximum Duty Cycle
Feedback Pin Voltage
Initial Accuracy
SYMBOL
VIN
MAX
5.5
UNITS
V
V
UVLO_F
1.9
V
V OUT
D MAX
VFB
ENABLE Pin Input Current
ENABLE Lock-out
ENLO
Switching Frequency
Soft Start Time
Allowable Soft Start Capacitor
Range
TYP
2.3
I VFB
I OUT
I OCP
I SD
I SD
I OCP
EN LOW
EN HIGH
I ENABLE
ENABLE Pin Logic Threshold
MIN
2.7V
UVLO_R
Output Voltage
DC Accuracy
Feedback Pin Input Current
Continuous Output Current
Over Current Trip Point
AVIN Shut-Down Current
PVIN Shut-Down Current
OCP Threshold
TEST CONDITIONS
VIN = AVIN = PVIN
0.6
3.3
V
%
0.606
V
-2.0
+2.25
%
-2.0
+2.0
%
-3.0
+2.0
%
85
TA = 25°C, VIN = 5.0V,
I LOAD = 100mA;
VIN = 3.3V; 0A ≤ I OUT ≤ 1.0A;
-40°C ≤ T A ≤ +85°C
VIN = 5.0V; 0A ≤ IOUT ≤ 1.0A;
-20°C ≤ T A ≤ +85°C
VIN = 5.0V; 0A ≤ IOUT ≤ 1.0A;
-40°C ≤ T A ≤ +85°C
(Note 3)
0.594
0.60
100
5
nA
A
A
µA
µA
A
V
V
µA
12.5
ms
1
1.2
ENABLE = Low,
ENABLE = Low,
2.7 ≤ VIN ≤ 5.5V
Pin = Low
Pin = High
ENABLE = High
Time before enable will re-assert
internally after being pulled low
1.8
175
2.2
1.2
0.0
1.8
f SW
T SS
CSS = 10nF (Note 2 and 3)
5.2
C SS
(Note 3)
0.47
0.4
VIN
2.2
6.5
7.8
MHz
ms
10
nF
Note 2: Soft Start Time range does not include capacitor tolerances.
Note 3: Parameter not production tested but is guaranteed by design.
www.altera.com/enpirion, Page 5
09644
June 26, 2015
Rev C
EN6310QI
Typical Performance Curves
Efficiency vs. Output Current
100
95
95
90
90
85
85
EFFICIENCY (%)
EFFICIENCY (%)
Efficiency vs. Output Current
100
80
75
VOUT = 2.5V
70
VOUT = 1.8V
65
VOUT = 1.5V
60
VOUT = 1.2V
55
VOUT = 1.0V
80
75
VOUT = 3.3V
70
VOUT = 2.5V
VOUT = 1.8V
65
VOUT = 1.5V
60
CONDITIONS
VIN = 3.3V
VOUT = 1.2V
55
50
VOUT = 1.0V
CONDITIONS
VIN = 5.0V
50
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
OUTPUT CURRENT (A)
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
OUTPUT CURRENT (A)
1
Output Voltage vs. Output Current
Output Voltage vs. Output Current
1.220
1.030
VIN = 5V
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
VIN = 3.3V
1.020
1.010
1.000
0.990
CONDITIONS
VOUT = 1.0V
0.980
VIN = 3.3V
1.210
VIN = 5.0V
1.200
1.190
1.180
CONDITIONS
VOUT = 1.2V
1.170
0.970
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
OUTPUT CURRENT (A)
0
1
1
Output Voltage vs. Output Current
Output Voltage vs. Output Current
1.820
1.520
1.510
OUTPUT VOLTAGE (V)
VIN = 3.3V
OUTPUT VOLTAGE (V)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
OUTPUT CURRENT (A)
VIN = 5.0V
1.500
1.490
1.480
CONDITIONS
VOUT = 1.5V
VIN = 3.3V
1.810
VIN = 5.0V
1.800
1.790
1.780
1.770
CONDITIONS
VOUT = 1.8V
1.760
1.750
1.470
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
OUTPUT CURRENT (A)
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
OUTPUT CURRENT (A)
1
www.altera.com/enpirion, Page 6
09644
June 26, 2015
Rev C
EN6310QI
Typical Performance Curves (Continued)
Output Voltage vs. Output Current
Output Voltage vs. Output Current
3.320
VIN = 5.0V
VIN = 3.3V
2.530
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
2.540
VIN = 5.0V
2.520
2.510
2.500
2.490
CONDITIONS
VOUT = 2.5V
2.480
3.310
3.300
3.290
3.280
CONDITIONS
VOUT = 3.3V
3.270
2.470
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
OUTPUT CURRENT (A)
0
1
1.020
CONDITIONS
VIN = 3.3V
VOUT_NOM = 1.0V
1.015
1.010
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
1
Output Voltage vs. Temperature
Output Voltage vs. Temperature
1.020
1.005
1.000
LOAD = 0.05A
0.995
LOAD = 0.2A
0.990
LOAD = 0.4A
LOAD = 0.8A
0.985
CONDITIONS
VIN = 5.0V
VOUT_NOM = 1.0V
1.015
1.010
1.005
1.000
LOAD = 0.05A
0.995
LOAD = 0.2A
0.990
LOAD = 0.4A
LOAD = 0.8A
0.985
LOAD = 1A
0.980
LOAD = 1A
0.980
-40
-15
10
35
60
AMBIENT TEMPERATURE (°C)
85
-40
-15
10
35
60
AMBIENT TEMPERATURE (°C)
85
Output Voltage vs. Temperature
Output Voltage vs. Temperature
3.360
2.560
CONDITIONS
VIN = 3.3V
VOUT_NOM = 2.5V
2.540
2.520
OUTPUT VOLTAGE (V)
OUTPUT VOLTAGE (V)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
OUTPUT CURRENT (A)
2.500
2.480
LOAD = 0.05A
2.460
LOAD = 0.2A
2.440
LOAD = 0.4A
2.420
LOAD = 0.8A
CONDITIONS
VIN = 5.0V
VOUT_NOM = 3.3V
3.340
3.320
3.300
3.280
LOAD = 0.05A
LOAD = 0.2A
3.260
LOAD = 0.4A
3.240
LOAD = 0.8A
LOAD = 1A
LOAD = 1A
2.400
3.220
-40
-15
10
35
60
AMBIENT TEMPERATURE (°C)
85
-40
-15
10
35
60
AMBIENT TEMPERATURE (°C)
85
www.altera.com/enpirion, Page 7
09644
June 26, 2015
Rev C
EN6310QI
Typical Performance Curves (Continued)
Output Voltage vs. Input Voltage
OUTPUT VOLTAGE (V)
1.820
1.815
1.810
1.805
1.800
1.795
1.790
LOAD = 0A
LOAD = 0.05A
LOAD = 0.25A
LOAD = 0.5A
LOAD = 1A
1.785
1.780
1.775
CONDITIONS
VOUT_NOM = 1.8V
TA = 25°C
1.770
2.5
3
3.5
4
4.5
INPUT VOLTAGE (V)
5
5.5
www.altera.com/enpirion, Page 8
09644
June 26, 2015
Rev C
EN6310QI
Typical Performance Characteristics
Output Ripple at 20MHz Bandwidth
Output Ripple at 20MHz Bandwidth
VOUT
(AC Coupled)
CONDITIONS
VIN = 3.3V
VOUT = 1.2V
IOUT = 0A
CIN = 4.7µF (0603) + 100pF
COUT = 47 µF (0805)
Output Ripple at 500MHz Bandwidth
VOUT
(AC Coupled)
Output Ripple at 500MHz Bandwidth
CONDITIONS
VIN = 3.3V
VOUT = 1.2V
IOUT = 0A
CIN = 4.7µF (0603) + 100pF
COUT = 47 µF (0805)
VOUT
(AC Coupled)
Output Ripple at 500MHz Bandwidth
VOUT
(AC Coupled)
VOUT
(AC Coupled)
CONDITIONS
VIN = 3.3V
VOUT = 1.2V
IOUT = 1A
CIN = 4.7µF (0603) + 100pF
COUT = 47 µF (0805)
CONDITIONS
VIN = 3.3V
VOUT = 1.2V
IOUT = 1A
CIN = 4.7µF (0603) + 100pF
COUT = 47 µF (0805)
Output Ripple at 500MHz Bandwidth
CONDITIONS
VIN = 5V
VOUT = 1.2V
IOUT = 0A
CIN = 4.7µF (0603) + 100pF
COUT = 47 µF (0805)
VOUT
(AC Coupled)
CONDITIONS
VIN = 5V
VOUT = 1.2V
IOUT = 1A
CIN = 4.7µF (0603) + 100pF
COUT = 47 µF (0805)
www.altera.com/enpirion, Page 9
09644
June 26, 2015
Rev C
EN6310QI
Typical Performance Characteristics (Continued)
Output Ripple at 500MHz Bandwidth
VOUT
(AC Coupled)
Output Ripple at 500MHz Bandwidth
CONDITIONS
VIN = 5V
VOUT = 3.3V
IOUT = 0A
CIN = 4.7µF (0603) + 100pF
COUT = 47 µF (0805)
Load Transient from 0A to 1A
Load Transient from 0A to 1A
VOUT = 1.8V
(AC Coupled)
50mV / DIV
VOUT = 1V
(AC Coupled)
50mV / DIV
CONDITIONS
VIN = 3.3V, VOUT = 1V
CIN = 4.7µF (0603) + 100pF
COUT = 47µF (0805)
Using Datasheet Recommended Components
LOAD
CONDITIONS
VIN = 3.3V, VOUT = 1.8V
CIN = 4.7µF (0603) + 100pF
COUT = 47µF (0805)
Using Datasheet Recommended Components
LOAD
Load Transient from 0A to 1A
Load Transient from 0A to 1A
VOUT = 1.0V
(AC Coupled)
50mV / DIV
VOUT = 2.5V
(AC Coupled)
50mV / DIV
LOAD
VOUT
(AC Coupled)
CONDITIONS
VIN = 5V
VOUT = 3.3V
IOUT = 1A
CIN = 4.7µF (0603) + 100pF
COUT = 47 µF (0805)
CONDITIONS
VIN = 3.3V, VOUT = 2.5V
CIN = 4.7µF (0603) + 100pF
COUT = 47µF (0805)
Using Datasheet Recommended Components
LOAD
CONDITIONS
VIN = 5.0V, VOUT = 1.0V
CIN = 4.7µF (0603) + 100pF
COUT = 47µF (0805)
Using Datasheet Recommended Components
www.altera.com/enpirion, Page 10
09644
June 26, 2015
Rev C
EN6310QI
Typical Performance Characteristics (Continued)
Load Transient from 0A to 1A
Load Transient from 0A to 1A
VOUT = 1.8V
(AC Coupled)
50mV / DIV
VOUT = 1.8V
(AC Coupled)
50mV / DIV
LOAD
CONDITIONS
VIN = 5.0V, VOUT = 1.8V
CIN = 4.7µF (0603) + 100pF
COUT = 47µF (0805)
Using Datasheet Recommended Components
LOAD
CONDITIONS
VIN = 5.0V, VOUT = 3.3V
CIN = 4.7µF (0603) + 100pF
COUT = 47µF (0805)
Using Datasheet Recommended Components
Enable Startup/Shutdown Waveform (0A)
Enable Startup/Shutdown Waveform (1A)
ENABLE
ENABLE
VOUT
VOUT
POK
POK
CONDITIONS
VIN = 5V, VOUT = 1.8V, No Load, Css = 10nF
CIN = 4.7µF (0603) + 100pF, COUT = 47 µF (0805)
LOAD
LOAD
Enable Startup Waveform (0A)
CONDITIONS
VIN = 5V, VOUT = 1.8V, 1A Load, Css = 10nF
CIN = 4.7µF (0603) + 100pF, COUT = 47 µF (0805)
Enable Shutdown Waveform (0A)
ENABLE
ENABLE
VOUT
VOUT
POK
POK
CONDITIONS
VIN = 5V, VOUT = 1.8V, No Load, Css = 10nF
CIN = 4.7µF (0603) + 100pF, COUT = 47 µF (0805)
CONDITIONS
VIN = 5V, VOUT = 1.8V, No Load, Css = 10nF
CIN = 4.7µF (0603) + 100pF, COUT = 47 µF (0805)
LOAD
LOAD
www.altera.com/enpirion, Page 11
09644
June 26, 2015
Rev C
EN6310QI
Functional Block Diagram
PVIN
UVLO
Thermal Limit
Current Limit
NC(SW)
P-Drive
(-)
PWM
Comp
(+)
Logic
VOUT
N-Drive
PGND
PLL/Sawtooth
Generator
Compensation
Network
(-)
Error
Amp
(+)
VFB
Power
OK
POK
ENABLE
Soft Start
Internal
Reference
CSS
Internal
Regulator
AGND
AVIN
Figure 4: Functional Block Diagram
www.altera.com/enpirion, Page 12
09644
June 26, 2015
Rev C
EN6310QI
Functional Description
Functional Overview
Integration for Low-Noise Low-EMI
The EN6310QI is a synchronous buck converter
with integrated MOSFET switches and Inductor.
The device can deliver up to 1A of continuous load
current. The EN6310QI has a programmable soft
start rise time and a power OK (POK) signal. The
device operates in a fixed 2.2MHz PWM mode to
eliminate noise associated with pulse frequency
modulation schemes. The control topology is a low
complexity type IV voltage mode providing high
noise immunity and stability over the entire
operating range. Output voltage is set with a
simple resistor divider.
The high switching
frequency enables the use of small MLCC input
and output filter capacitors. Figure 4 shows the
EN6310QI block diagram.
The EN6310QI utilizes a proprietary low loss
integrated inductor. The integration of the inductor
greatly simplifies the power supply design process.
The inherent shielding and compact construction of
the integrated inductor reduces the conducted and
radiated noise that can couple into the traces of the
printed circuit board. Furthermore, the package
layout is optimized to reduce the electrical path
length for the high di/dt input AC ripple currents that
are a major source of radiated emissions from DCDC converters. Careful package and IC design
minimize common mode noise that can be difficult
to mitigate otherwise. The integrated inductor
provides the optimal solution to the complexity,
output ripple, and noise that plague low power
DCDC converter design.
Protection Features:
The EN6310QI has the following protection
features.
.
• Over-current protection (to protect the IC from
excessive load current)
• Short-Circuit protection
• Thermal shutdown with hysteresis
• Under-voltage lockout circuit to disable the
converter output when the input voltage is
below a pre-defined level
Additional Features:
•
Soft-start circuit, limiting the in-rush current
when the converter is initially powered up. The
soft start time is programmable with appropriate
choice of soft start capacitor value
High Efficiency Technology
The key enabler of this revolutionary integration is
Enpirion’s proprietary power MOSFET technology.
The advanced MOSFET switches are implemented
in deep-submicron CMOS to supply very low
switching loss at high switching frequencies and to
allow a high level of integration. The semiconductor
process allows seamless integration of all
switching, control, and compensation circuitry.
The proprietary magnetics design provides highdensity/high-value magnetics in a very small
footprint. Enpirion magnetics are carefully matched
to the control and compensation circuitry yielding
an optimal solution with assured performance over
the entire operating range.
Control Topology
The EN6310QI utilizes an internal type IV voltage
mode compensation scheme. Voltage mode control
provides a high degree of noise immunity at light
load currents so that low ripple and high accuracy
are maintained over the entire load range. The
high switching frequency allows for a very wide
control loop bandwidth and hence excellent
transient performance. The EN6310QI is optimized
for fast transient recovery for applications with
demanding transient performance. Voltage mode
control enables a high degree of stability over the
entire operating range.
Enable
The EN6310QI ENABLE pin enables and disables
operation of the device. A logic low will disable the
converter and cause it to shut down. A logic high
will enable the converter and initiate a normal soft
start operation. When ENABLE is pulled low, the
Power MOSFETs stop switching and the output is
discharged in a controlled manner with a soft pull
down MOSFET. Once the enable pin is pulled low,
there is a lockout period before the device can be
re-enabled. The lock out period can be found in the
Electrical Characteristics Table. Do not leave
ENABLE pin floating or it will be in an unknown
random state.
The EN6310QI supports startup into a pre-biased
output of up to 1.5V. The output of the EN6310QI
can be pre-biased with a voltage up to 1.5V when it
is first enabled.
www.altera.com/enpirion, Page 13
09644
June 26, 2015
Rev C
EN6310QI
POK Operation
The POK signal is an open drain signal (requires a
pull up resistor to AVIN or similar voltage) from the
converter indicating the output voltage is within the
specified range. Typically, a 100kΩ or lower
resistance is used as the pull-up resistor. The POK
signal will be logic high (AVIN) when the output
voltage is above 90% of the programmed voltage
level. If the output voltage is below this point, the
POK signal will be a logic low. If the input voltage is
in UVLO or if the ENABLE is pulled low, the POK
will also be a logic low. The POK signal can be
used to sequence down-stream converters by tying
to their enable pins.
Programmable Soft Start Operation
Soft start is externally programmable by adjusting
the value of the C SS capacitor, which is placed
between the respective C SS pin and AGND pin.
When the enable pin is pulled high, the output will
ramp up monotonically at a rate determined by the
CSS capacitor.
Soft start ramp time is programmable over a range
of 0.5ms to 10ms. The longer ramp times allow
startup into very large bulk capacitors that may be
present in applications such as wireless broadband
or solid state storage, without triggering an Over
Current condition. The rise time is given as:
T RISE [ms] = C SS [nF] 0.65 ± 25%
NOTE: Rise time does not include capacitor
tolerances.
If a 10nF soft-start capacitor is used, then the
output voltage rise time will be around 6.5ms. The
rise time is measured from when V IN ≥ V UVLOR and
ENABLE pin voltage crosses its logic high
threshold to when V OUT reaches its programmed
value.
Over Current/Short Circuit Protection
The current limit and short-circuit protection is
achieved by sensing the current flowing through a
sense PFET. When the sensed current exceeds
the current limit, both NFET and PFET switches are
turned off and the output is discharged. After
1.6ms the device will be re-enabled and will then go
through a normal soft-start cycle. If the over
current condition persists, the device will enter a
hiccup mode.
Under Voltage Lockout
During initial power up an under voltage lockout
circuit will hold-off the switching circuitry until the
input voltage reaches a sufficient level to insure
proper operation. If the voltage drops below the
UVLO threshold, the lockout circuitry will again
disable the switching. Hysteresis is included to
prevent chattering between states.
Thermal Shutdown
When excess power is dissipated in the EN6310QI
the junction temperature will rise.
Once the
junction temperature exceeds the thermal
shutdown temperature the thermal shutdown circuit
turns off the converter output voltage thus allowing
the device to cool. When the junction temperature
decreases by 30C°, the part will go through the
normal startup process. The thermal shutdown
temperature can be found in the electrical
characteristics table.
www.altera.com/enpirion, Page 14
09644
June 26, 2015
Rev C
EN6310QI
Application Information
VOUT
Output Voltage Programming
VOUT
The EN6310QI output voltage is programmed using
a simple resistor divider network (R A and R B ). The
feedback voltage at VFB is nominally 0.6V. R A is
fixed at 200kΩ and R B can be calculated based on
Figure 5. The values recommended for C OUT , C A ,
and R CA make up the external compensation of the
EN6310QI. It will vary with each VIN and VOUT
combination to optimize on performance. Please
see Table 1 for a list of recommended R A , C A , R CA ,
and C OUT values for each solution. Since VFB is a
sensitive node, do not touch the VFB node while
the device is in operation as doing so may
introduce parasitic capacitance into the control loop
that causes the device to behave abnormally and
damage may occur.
The output voltage is set by the following formula:
𝑅𝑅𝐴𝐴
�
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ∗ �1 +
𝑅𝑅𝐵𝐵
Rearranging to solve for R B :
Where:
𝑅𝑅𝐵𝐵 = 𝑅𝑅𝐴𝐴 ∗
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
𝑘𝑘Ω
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
R A = 200kΩ
VREF = 0.60V
COUT
RCA
VFB = 0.6V
PGND
RB =
EN6310QI
120
𝑘𝑘Ω
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 − 0.6
CIN = 4.7µF/0603 + 100pF
CAVIN = 20Ω + 0.47µF
COUT = 47µF/0805 or 2x22µF/0603
R A = 200kΩ, R CA = 1kΩ, R B = 0.6R A /(V OUT – 0.6)
V IN
(V)
5.5
V OUT
(V)
Ca
(pF)
15
V IN
(V)
5.5
5
3.3
15
5
4.5
15
4.5
5.5
15
3.3
33
15
2.7
39
15
5.5
39
3.3
15
5
39
5.5
15
4.5
5
15
3.3
47
15
2.7
47
3.3
22
5.5
39
2.7
22
5
39
5.5
22
4.5
5
22
3.3
56
22
2.7
56
4.5
R A is chosen as 200kΩ to provide constant loop
gain. The output voltage can be programmed over
the range of 0.6V to 3.3V.
VFB x RA
VOUT - VFB
Figure 5. External Compensation
4.5
𝑅𝑅𝐵𝐵 =
CA
VFB
5
Then R B is given as:
RA
4.5
2.5
1.8
1.5
3.3
27
2.7
33
V OUT
(V)
Ca
(pF)
27
27
1.2
1
0.6
33
39
47
Table 1. Compensation values. For output voltages
in between, use the values from the higher output
voltage.
www.altera.com/enpirion, Page 15
09644
June 26, 2015
Rev C
EN6310QI
Input Filter Capacitor
Output Filter Capacitor
The EN6310QI requires at least a 4.7µF/0603 and
a 100pF input capacitor near the PVIN pins. Lowcost, low-ESR ceramic capacitors should be used
as input capacitors for this converter. The dielectric
must be X5R or X7R rated. Y5V or equivalent
dielectric formulations must not be used as these
lose too much capacitance with frequency,
temperature and bias voltage. In some applications,
lower value capacitors are needed in parallel with
the larger, capacitors in order to provide high
frequency decoupling. Table 2 contains a list of
recommended input capacitors.
The EN6310QI requires at least a 47µF/0805 or
two 22µF/0603 output filter capacitors. Low ESR
ceramic capacitors are required with X5R or X7R
rated dielectric formulation. Y5V or equivalent
dielectric formulations must not be used as these
lose too much capacitance with frequency,
temperature and bias voltage. Table 3 contains a
list of recommended output capacitors.
Description
4.7µF, 10V,
X5R, 10%,
0603
4.7µF, 10V,
X5R, 10%,
0603
MFG
P/N
Murata
GRM185R61A475KE11#
Taiyo Yuden
LMK107BJ475KA-T
Table 2. Recommended Input Capacitors
Description
47µF, 6.3V,
X5R, 20%,
0805
47µF, 6.3V,
X5R, 20%,
0805
22µF, 10V,
X5R, 20%,
0603
22µF, 10V,
X5R, 20%,
0603
MFG
P/N
Murata
GRM21BR60J476ME15#
Taiyo Yuden
JMK212BBJ476MG-T
Murata
GRM188R60J226MEA0#
Taiyo Yuden
JMK107BBJ226MA-T
Table 3. Recommended Output Capacitors
www.altera.com/enpirion, Page 16
09644
June 26, 2015
Rev C
EN6310QI
Thermal Considerations
Thermal considerations are important power supply
design facts that cannot be avoided in the real
world. Whenever there are power losses in a
system, the heat that is generated by the power
dissipation needs to be accounted for. The Enpirion
PowerSoC helps alleviate some of those concerns.
The Enpirion EN6310QI DC-DC converter is
packaged in a 4x5x1.85mm 30-pin QFN package.
The QFN package is constructed with copper lead
frames that have exposed thermal pads. The
exposed thermal pad on the package should be
soldered directly on to a copper ground pad on the
printed circuit board (PCB) to act as a heat sink.
The recommended maximum junction temperature
for continuous operation is 125°C. Continuous
operation above 125°C may reduce long-term
reliability. The device has a thermal overload
protection circuit designed to turn off the device at
an approximate junction temperature value of
140°C.
The following example and calculations illustrate
the thermal performance of the EN6310QI.
η = P OUT / P IN = 91% = 0.91
P IN = P OUT / η
P IN ≈ 3.3W / 0.91 ≈ 3.63W
The power dissipation (P D ) is the power loss in the
system and can be calculated by subtracting the
output power from the input power.
P D = P IN – P OUT
≈ 3.63W – 3.3W ≈ 0.33W
With the power dissipation known, the temperature
rise in the device may be estimated based on the
theta JA value (θ JA ). The θ JA parameter estimates
how much the temperature will rise in the device for
every watt of power dissipation. The EN6310QI has
a θ JA value of 60 °C/W without airflow.
Determine the change in temperature (ΔT) based
on P D and θ JA .
ΔT = P D x θ JA
ΔT ≈ 0.33W x 60°C/W ≈ 19.8°C ≈ 20°C
V IN = 5V
The junction temperature (T J ) of the device is
approximately the ambient temperature (T A ) plus
the change in temperature. We assume the initial
ambient temperature to be 25°C.
V OUT = 3.3V
T J = T A + ΔT
I OUT = 1A
T J ≈ 25°C + 20°C ≈ 45°C
First calculate the output power.
The maximum operating junction temperature
(T JMAX ) of the device is 125°C, so the device can
operate at a higher ambient temperature. The
maximum ambient temperature (T AMAX ) allowed can
be calculated.
Example:
P OUT = 3.3V x 1A = 3.3W
Next, determine the input power based on the
efficiency (η) shown in Figure 6.
T AMAX = T JMAX – P D x θ JA
Efficiency vs. Output Current
100
≈ 125°C – 20°C ≈ 105°C
95
The maximum ambient temperature the device can
reach is 105°C given the input and output
conditions. Note that the efficiency will be slightly
lower at higher temperatures and this calculation is
an estimate.
EFFICIENCY (%)
90
85
80
75
70
65
60
VOUT = 3.3V
55
CONDITIONS
VIN = 5.0V
50
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
OUTPUT CURRENT (A)
1
Figure 6: Efficiency vs. Output Current
For V IN = 5V, V OUT = 3.3V at 1A, η ≈ 91%
www.altera.com/enpirion, Page 17
09644
June 26, 2015
Rev C
EN6310QI
Engineering Schematic
VOUT
VIN
VOUT
PVIN
CIN2
4.7µF
EN6310QI
RAVIN
CIN1 20Ω
100pF
ON
OFF
COUT
47µF
0805
ENABLE
AVIN
RA
CAVIN
0.47µF
CA
RCA
VFB
SS
PGND
PGND
CSS
10nF
AGND
RB
Figure 7: Typical Engineering Schematic
www.altera.com/enpirion, Page 18
09644
June 26, 2015
Rev C
EN6310QI
Layout Recommendation
Figure 8: Evaluation Board Layout Recommendations
Recommendation 1: Input and output filter
capacitors should be placed on the same side
of the PCB, and as close to the EN6310QI
package as possible. They should be
connected to the device with very short and
wide traces. Do not use thermal reliefs or
spokes when connecting the capacitor pads to
the respective nodes. The +V and GND traces
between the capacitors and the EN6310QI
should be as close to each other as possible
so that the gap between the two nodes is
www.altera.com/enpirion, Page 19
09644
June 26, 2015
Rev C
EN6310QI
minimized, even under the capacitors.
Recommendation 2: The system ground
plane should be the first layer immediately
below the surface layer. This ground plane
should be continuous and un-interrupted below
the converter and the input/output capacitors.
Please see the Gerber files on the Altera
website www.altera.com/enpirion.
Recommendation 3: The large thermal pad
underneath the component must be connected
to the system ground plane through as many
vias as possible.
The drill diameter of the vias should be
0.33mm, and the vias must have at least 1 oz.
copper plating on the inside wall, making the
finished hole size around 0.20-0.26mm. Do not
use thermal reliefs or spokes to connect the
vias to the ground plane. This connection
provides the path for heat dissipation from the
converter. See Figure 8.
Recommendation 4: Multiple small vias (the
same size as the thermal vias discussed in
recommendation 3 should be used to connect
ground terminal of the input capacitor and
output capacitors to the system ground plane.
It is preferred to put these vias under the
capacitors along the edge of the GND copper
closest to the +V copper. Please see Figure 8.
These vias connect the input/output filter
capacitors to the GND plane, and help reduce
parasitic inductances in the input and output
current loops. If the vias cannot be placed
under C IN and C OUT , then put them just outside
the capacitors along the GND slit separating
the two components. Do not use thermal reliefs
or spokes to connect these vias to the ground
plane.
Recommendation 5: AVIN is the power supply
for the internal small-signal control circuits. It
should be connected to the input voltage at a
quiet point. A good location is to place the
AVIN connection on the source side of the
input capacitor, away from the PVIN pins.
Recommendation 6: The layer 1 metal under
the device must not be more than shown in
Figure 8. See the section regarding exposed
metal on bottom of package. As with any
switch-mode DC/DC converter, try not to run
sensitive signal or control lines underneath the
converter package on other layers.
Recommendation 7: The V OUT sense point
should be just after the last output filter
capacitor. Keep the sense trace as short as
possible in order to avoid noise coupling into
the control loop.
Recommendation 8: Keep R A , C A , and R B
close to the VFB pin (see Figures 6 and 7).
The VFB pin is a high-impedance, sensitive
node. Keep the trace to this pin as short as
possible. Whenever possible, connect R B
directly to the AGND pin instead of going
through the GND plane.
www.altera.com/enpirion, Page 20
09644
June 26, 2015
Rev C
EN6310QI
Recommended PCB Footprint
Figure 9: EN6310QI PCB Footprint (Top View)
www.altera.com/enpirion, Page 21
09644
June 26, 2015
Rev C
EN6310QI
Package and Mechanical
Figure 10: EN6310QI Package Dimensions (Bottom View)
Packing and Marking Information: www.altera.com/support/reliability/packing/rel-packing-and-marking.html
Contact Information
Altera Corporation
101 Innovation Drive
San Jose, CA 95134
Phone: 408-544-7000
www.altera.com
© 2014 Altera Corporation—Confidential. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX
words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor
products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without
notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in
writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for
products or services.
www.altera.com/enpirion, Page 22
09644
June 26, 2015
Rev C