Stratix V Device Handbook Volume 1: Device Interfaces and Integration Subscribe Send Feedback SV-5V1 2015.06.12 101 Innovation Drive San Jose, CA 95134 www.altera.com TOC-2 Stratix V Device Handbook Volume 1: Device Interfaces and Integration Contents Logic Array Blocks and Adaptive Logic Modules in Stratix V Devices............. 1-1 LAB ............................................................................................................................................................... 1-1 MLAB ................................................................................................................................................1-2 Local and Direct Link Interconnects ............................................................................................1-3 Shared Arithmetic Chain and Carry Chain Interconnects ....................................................... 1-4 LAB Control Signals........................................................................................................................ 1-5 ALM Resources ............................................................................................................................... 1-6 ALM Output .................................................................................................................................... 1-7 ALM Operating Modes .............................................................................................................................. 1-8 Normal Mode .................................................................................................................................. 1-8 Extended LUT Mode .................................................................................................................... 1-10 Arithmetic Mode ...........................................................................................................................1-11 Shared Arithmetic Mode ............................................................................................................. 1-12 LAB Power Management Techniques ................................................................................................... 1-14 Document Revision History.....................................................................................................................1-14 Embedded Memory Blocks in Stratix V Devices................................................ 2-1 Types of Embedded Memory..................................................................................................................... 2-1 Embedded Memory Capacity in Stratix V Devices.....................................................................2-2 Embedded Memory Design Guidelines for Stratix V Devices.............................................................. 2-2 Guideline: Consider the Memory Block Selection...................................................................... 2-2 Guideline: Implement External Conflict Resolution.................................................................. 2-3 Guideline: Customize Read-During-Write Behavior................................................................. 2-3 Guideline: Consider Power-Up State and Memory Initialization............................................ 2-7 Guideline: Control Clocking to Reduce Power Consumption.................................................. 2-7 Embedded Memory Features..................................................................................................................... 2-7 Embedded Memory Configurations............................................................................................. 2-9 Mixed-Width Port Configurations................................................................................................2-9 Embedded Memory Modes...................................................................................................................... 2-10 Embedded Memory Clocking Modes..................................................................................................... 2-12 Clocking Modes for Each Memory Mode.................................................................................. 2-12 Asynchronous Clears in Clocking Modes.................................................................................. 2-13 Output Read Data in Simultaneous Read/Write....................................................................... 2-13 Independent Clock Enables in Clocking Modes....................................................................... 2-14 Parity Bit in Memory Blocks.................................................................................................................... 2-14 Byte Enable in Embedded Memory Blocks............................................................................................ 2-14 Byte Enable Controls in Memory Blocks....................................................................................2-14 Data Byte Output........................................................................................................................... 2-15 RAM Blocks Operations............................................................................................................... 2-16 Memory Blocks Packed Mode Support.................................................................................................. 2-16 Memory Blocks Address Clock Enable Support....................................................................................2-16 Memory Blocks Asynchronous Clear..................................................................................................... 2-18 Altera Corporation Stratix V Device Handbook Volume 1: Device Interfaces and Integration TOC-3 Memory Blocks Error Correction Code Support.................................................................................. 2-19 Error Correction Code Truth Table............................................................................................2-19 Document Revision History.....................................................................................................................2-20 Variable Precision DSP Blocks in Stratix V Devices.......................................... 3-1 Features......................................................................................................................................................... 3-1 Supported Operational Modes in Stratix V Devices............................................................................... 3-2 Resources.......................................................................................................................................................3-4 Design Considerations................................................................................................................................ 3-5 Operational Modes.......................................................................................................................... 3-5 Internal Coefficient and Pre-Adder...............................................................................................3-5 Accumulator..................................................................................................................................... 3-6 Chainout Adder................................................................................................................................3-6 Block Architecture....................................................................................................................................... 3-6 Input Register Bank......................................................................................................................... 3-8 Pre-Adder........................................................................................................................................3-10 Internal Coefficient........................................................................................................................3-10 Multipliers.......................................................................................................................................3-11 Accumulator and Chainout Adder..............................................................................................3-11 Systolic Registers............................................................................................................................ 3-12 Output Register Bank.................................................................................................................... 3-12 Operational Mode Descriptions.............................................................................................................. 3-12 Independent Multiplier Mode..................................................................................................... 3-12 Independent Complex Multiplier Mode.................................................................................... 3-17 Multiplier Adder Sum Mode........................................................................................................3-21 Sum of Square Mode..................................................................................................................... 3-24 18 x 18 Multiplication Summed with 36-Bit Input Mode........................................................3-25 Systolic FIR Mode.......................................................................................................................... 3-26 Variable Precision DSP Block Control Signals.......................................................................... 3-27 Document Revision History.....................................................................................................................3-28 Clock Networks and PLLs in Stratix V Devices.................................................. 4-1 Clock Networks............................................................................................................................................ 4-1 Clock Resources in Stratix V Devices............................................................................................4-1 Types of Clock Networks................................................................................................................ 4-2 Clock Sources Per Quadrant........................................................................................................ 4-10 Types of Clock Regions.................................................................................................................4-11 Clock Network Sources.................................................................................................................4-12 Clock Output Connections...........................................................................................................4-14 Clock Control Block...................................................................................................................... 4-14 Clock Power Down........................................................................................................................ 4-17 Clock Enable Signals......................................................................................................................4-17 Stratix V PLLs.............................................................................................................................................4-19 PLL Physical Counters in Stratix V Devices.............................................................................. 4-20 PLL Locations in Stratix V Devices............................................................................................. 4-20 PLL Migration Guidelines ........................................................................................................... 4-26 Fractional PLL Architecture......................................................................................................... 4-27 Altera Corporation TOC-4 Stratix V Device Handbook Volume 1: Device Interfaces and Integration PLL Cascading................................................................................................................................ 4-28 PLL External Clock I/O Pins........................................................................................................ 4-28 PLL Control Signals.......................................................................................................................4-29 Clock Feedback Modes..................................................................................................................4-30 Clock Multiplication and Division.............................................................................................. 4-38 Programmable Phase Shift............................................................................................................4-39 Programmable Duty Cycle........................................................................................................... 4-39 Clock Switchover........................................................................................................................... 4-39 PLL Reconfiguration and Dynamic Phase Shift........................................................................ 4-44 Document Revision History.....................................................................................................................4-44 I/O Features in Stratix V Devices........................................................................5-1 I/O Standards Support in Stratix V Devices.............................................................................................5-2 I/O Standards Support in Stratix V Devices.................................................................................5-2 I/O Standards Voltage Levels in Stratix V Devices..................................................................... 5-3 MultiVolt I/O Interface in Stratix V Devices............................................................................... 5-6 I/O Design Guidelines for Stratix V Devices........................................................................................... 5-6 Mixing Voltage-Referenced and Non-Voltage-Referenced I/O Standards............................. 5-6 Guideline: Use the Same VCCPD for All I/O Banks in a Group................................................. 5-7 Guideline: Observe Device Absolute Maximum Rating for 3.3 V Interfacing........................5-8 Guideline: Use PLL Integer Mode for LVDS Applications........................................................5-8 I/O Banks in Stratix V Devices...................................................................................................................5-9 I/O Banks Groups in Stratix V Devices.................................................................................................. 5-10 Modular I/O Banks for Stratix V E Devices............................................................................... 5-10 Modular I/O Banks for Stratix V GX Devices............................................................................5-11 Modular I/O Banks for Stratix V GS Devices............................................................................ 5-14 Modular I/O Banks for Stratix V GT Devices............................................................................5-15 I/O Element Structure in Stratix V Devices........................................................................................... 5-15 I/O Buffer and Registers in Stratix V Devices............................................................................5-16 External Memory Interfaces......................................................................................................... 5-17 High-Speed Differential I/O with DPA Support....................................................................... 5-17 Programmable IOE Features in Stratix V Devices................................................................................ 5-18 Programmable Current Strength.................................................................................................5-18 Programmable Output Slew-Rate Control.................................................................................5-19 Programmable IOE Delay.............................................................................................................5-20 Programmable Output Buffer Delay........................................................................................... 5-20 Programmable Pre-Emphasis...................................................................................................... 5-20 Programmable Differential Output Voltage.............................................................................. 5-21 Open-Drain Output.......................................................................................................................5-22 Bus-Hold Circuitry........................................................................................................................ 5-23 Pull-up Resistor..............................................................................................................................5-23 On-Chip I/O Termination in Stratix V Devices....................................................................................5-23 RS OCT without Calibration in Stratix V Devices.................................................................... 5-24 RS OCT with Calibration in Stratix V Devices.......................................................................... 5-26 RT OCT with Calibration in Stratix V Devices..........................................................................5-27 Dynamic OCT in Stratix V Devices............................................................................................ 5-29 LVDS Input RD OCT in Stratix V Devices.................................................................................5-30 OCT Calibration Block in Stratix V Devices..............................................................................5-31 Altera Corporation Stratix V Device Handbook Volume 1: Device Interfaces and Integration TOC-5 OCT Calibration in Power-Up Mode......................................................................................... 5-33 OCT Calibration in User Mode................................................................................................... 5-34 I/O Termination Schemes for Stratix V Devices................................................................................... 5-37 Single-ended I/O Termination.....................................................................................................5-38 Differential I/O Termination....................................................................................................... 5-40 Document Revision History.....................................................................................................................5-46 High-Speed Differential I/O Interfaces and DPA in Stratix V Devices.............6-1 Dedicated High-Speed Circuitries in Stratix V Devices......................................................................... 6-2 SERDES and DPA Bank Locations in Stratix V Devices............................................................ 6-2 LVDS SERDES Circuitry.................................................................................................................6-2 SERDES I/O Standards Support in Stratix V Devices.................................................................6-3 True LVDS Buffers in Stratix V Devices.......................................................................................6-5 Emulated LVDS Buffers in Stratix V Devices.............................................................................. 6-7 High-Speed I/O Design Guidelines for Stratix V Devices......................................................................6-8 PLLs and Clocking for Stratix V Devices......................................................................................6-8 LVDS Interface with External PLL Mode.....................................................................................6-9 Pin Placement Guidelines for DPA Differential Channels...................................................... 6-13 Differential Transmitter in Stratix V Devices........................................................................................ 6-20 Transmitter Blocks.........................................................................................................................6-20 Transmitter Clocking.................................................................................................................... 6-20 Serializer Bypass for DDR and SDR Operations....................................................................... 6-21 Programmable Differential Output Voltage.............................................................................. 6-22 Programmable Pre-Emphasis...................................................................................................... 6-23 Differential Receiver in Stratix V Devices.............................................................................................. 6-24 Receiver Blocks in Stratix V Devices...........................................................................................6-24 Receiver Modes in Stratix V Devices...........................................................................................6-28 Receiver Clocking for Stratix V Devices..................................................................................... 6-30 Differential I/O Termination for Stratix V Devices.................................................................. 6-31 Source-Synchronous Timing Budget...................................................................................................... 6-32 Differential Data Orientation.......................................................................................................6-32 Differential I/O Bit Position......................................................................................................... 6-32 Transmitter Channel-to-Channel Skew..................................................................................... 6-34 Receiver Skew Margin for Non-DPA Mode.............................................................................. 6-34 Document Revision History.....................................................................................................................6-37 External Memory Interfaces in Stratix V Devices.............................................. 7-1 External Memory Performance..................................................................................................................7-2 Memory Interface Pin Support in Stratix V Devices.............................................................................. 7-2 Guideline: Using DQ/DQS Pins.................................................................................................... 7-3 DQ/DQS Bus Mode Pins for Stratix V Devices........................................................................... 7-4 DQ/DQS Groups in Stratix V E..................................................................................................... 7-5 DQ/DQS Groups in Stratix V GX................................................................................................. 7-6 DQ/DQS Groups in Stratix V GS.................................................................................................. 7-8 DQ/DQS Groups in Stratix V GT..................................................................................................7-9 External Memory Interface Features in Stratix V Devices..................................................................... 7-9 UniPHY IP........................................................................................................................................ 7-9 Altera Corporation TOC-6 Stratix V Device Handbook Volume 1: Device Interfaces and Integration External Memory Interface Datapath......................................................................................... 7-10 DQS Phase-Shift Circuitry............................................................................................................7-11 PHY Clock (PHYCLK) Networks............................................................................................... 7-19 DQS Logic Block............................................................................................................................ 7-19 Leveling Circuitry.......................................................................................................................... 7-22 Dynamic OCT Control................................................................................................................. 7-23 IOE Registers.................................................................................................................................. 7-24 Delay Chains...................................................................................................................................7-26 I/O and DQS Configuration Blocks............................................................................................ 7-28 Document Revision History.....................................................................................................................7-29 Configuration, Design Security, and Remote System Upgrades in Stratix V Devices............................................................................................................. 8-1 Enhanced Configuration and Configuration via Protocol.....................................................................8-1 MSEL Pin Settings........................................................................................................................................8-2 Configuration Sequence..............................................................................................................................8-4 Power Up...........................................................................................................................................8-5 Reset................................................................................................................................................... 8-5 Configuration................................................................................................................................... 8-6 Configuration Error Handling....................................................................................................... 8-6 Initialization......................................................................................................................................8-6 User Mode.........................................................................................................................................8-6 Configuration Timing Waveforms............................................................................................................8-7 FPP Configuration Timing............................................................................................................. 8-7 AS Configuration Timing............................................................................................................... 8-9 PS Configuration Timing..............................................................................................................8-10 Device Configuration Pins....................................................................................................................... 8-10 Configuration Pin Options in the Quartus II Software............................................................ 8-12 Fast Passive Parallel Configuration......................................................................................................... 8-13 Fast Passive Parallel Single-Device Configuration....................................................................8-13 Fast Passive Parallel Multi-Device Configuration.....................................................................8-14 Transmitting Configuration Data............................................................................................... 8-16 Active Serial Configuration...................................................................................................................... 8-17 DATA Clock (DCLK)....................................................................................................................8-17 Active Serial Single-Device Configuration.................................................................................8-18 Active Serial Multi-Device Configuration..................................................................................8-19 Estimating the Active Serial Configuration Time..................................................................... 8-21 Using EPCS and EPCQ Devices.............................................................................................................. 8-21 Controlling EPCS and EPCQ Devices........................................................................................ 8-21 Trace Length and Loading Guideline..........................................................................................8-21 Programming EPCS and EPCQ Devices.................................................................................... 8-22 Passive Serial Configuration.....................................................................................................................8-27 Passive Serial Single-Device Configuration Using an External Host..................................... 8-27 Passive Serial Single-Device Configuration Using an Altera Download Cable.................... 8-28 Passive Serial Multi-Device Configuration................................................................................ 8-29 JTAG Configuration..................................................................................................................................8-32 JTAG Single-Device Configuration.............................................................................................8-33 JTAG Multi-Device Configuration............................................................................................. 8-35 Altera Corporation Stratix V Device Handbook Volume 1: Device Interfaces and Integration TOC-7 CONFIG_IO JTAG Instruction...................................................................................................8-36 Configuration Data Compression........................................................................................................... 8-36 Enabling Compression Before Design Compilation.................................................................8-36 Enabling Compression After Design Compilation................................................................... 8-36 Using Compression in Multi-Device Configuration................................................................ 8-37 Remote System Upgrades......................................................................................................................... 8-37 Configuration Images....................................................................................................................8-38 Configuration Sequence in the Remote Update Mode.............................................................8-39 Remote System Upgrade Circuitry..............................................................................................8-39 Enabling Remote System Upgrade Circuitry............................................................................. 8-40 Remote System Upgrade Registers.............................................................................................. 8-40 Remote System Upgrade State Machine.....................................................................................8-42 User Watchdog Timer...................................................................................................................8-42 Design Security...........................................................................................................................................8-43 Altera Unique Chip ID IP Core................................................................................................... 8-44 JTAG Secure Mode........................................................................................................................ 8-44 Security Key Types.........................................................................................................................8-44 Security Modes............................................................................................................................... 8-45 Design Security Implementation Steps.......................................................................................8-46 Document Revision History.....................................................................................................................8-46 SEU Mitigation for Stratix V Devices................................................................. 9-1 Error Detection Features.............................................................................................................................9-1 Configuration Error Detection.................................................................................................................. 9-1 User Mode Error Detection........................................................................................................................9-2 Internal Scrubbing....................................................................................................................................... 9-2 Specifications................................................................................................................................................ 9-2 Minimum EMR Update Interval................................................................................................... 9-3 Error Detection Frequency............................................................................................................. 9-3 CRC Calculation Time For Entire Device.................................................................................... 9-4 Using Error Detection Features in User Mode........................................................................................9-5 Enabling Error Detection and Internal Scrubbing...................................................................... 9-5 CRC_ERROR Pin.............................................................................................................................9-6 Error Detection Registers................................................................................................................9-6 Error Detection Process.................................................................................................................. 9-9 Testing the Error Detection Block...............................................................................................9-10 Document Revision History.....................................................................................................................9-11 JTAG Boundary-Scan Testing in Stratix V Devices......................................... 10-1 BST Operation Control ............................................................................................................................10-1 IDCODE .........................................................................................................................................10-1 Supported JTAG Instruction .......................................................................................................10-3 JTAG Secure Mode ....................................................................................................................... 10-7 JTAG Private Instruction .............................................................................................................10-7 I/O Voltage for JTAG Operation ............................................................................................................10-7 Performing BST .........................................................................................................................................10-8 Enabling and Disabling IEEE Std. 1149.1 BST Circuitry .................................................................... 10-8 Altera Corporation TOC-8 Stratix V Device Handbook Volume 1: Device Interfaces and Integration Guidelines for IEEE Std. 1149.1 Boundary-Scan Testing.....................................................................10-9 IEEE Std. 1149.1 Boundary-Scan Register .............................................................................................10-9 Boundary-Scan Cells of a Stratix V Device I/O Pin................................................................ 10-10 IEEE Std. 1149.6 Boundary-Scan Register........................................................................................... 10-12 Document Revision History...................................................................................................................10-14 Power Management in Stratix V Devices..........................................................11-1 Power Consumption..................................................................................................................................11-1 Dynamic Power Equation.............................................................................................................11-2 Programmable Power Technology.......................................................................................................... 11-2 Temperature Sensing Diode.....................................................................................................................11-3 Internal Temperature Sensing Diode..........................................................................................11-3 External Temperature Sensing Diode......................................................................................... 11-4 Hot-Socketing Feature.............................................................................................................................. 11-5 Hot-Socketing Implementation............................................................................................................... 11-6 Power-Up Sequence.................................................................................................................................. 11-7 Power-On Reset Circuitry........................................................................................................................ 11-8 Power Supplies Monitored and Not Monitored by the POR Circuitry............................... 11-10 Document Revision History...................................................................................................................11-10 Altera Corporation 1 Logic Array Blocks and Adaptive Logic Modules in Stratix V Devices 2015.06.12 SV51002 Subscribe Send Feedback This chapter describes the features of the logic array block (LAB) in the Stratix® V core fabric. The LAB is composed of basic building blocks known as adaptive logic modules (ALMs) that you can configure to implement logic functions, arithmetic functions, and register functions. You can use half of the available LABs in the Stratix V devices as a memory LAB (MLAB). The Quartus® II software and other supported third-party synthesis tools, in conjunction with parameter‐ ized functions such as the library of parameterized modules (LPM), automatically choose the appropriate mode for common functions such as counters, adders, subtractors, and arithmetic functions. This chapter contains the following sections: • LAB • ALM Operating Modes Related Information Stratix V Device Handbook: Known Issues Lists the planned updates to the Stratix V Device Handbook chapters. LAB The LABs are configurable logic blocks that consist of a group of logic resources. Each LAB contains dedicated logic for driving control signals to its ALMs. MLAB is a superset of the LAB and includes all the LAB features. © 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. www.altera.com 101 Innovation Drive, San Jose, CA 95134 ISO 9001:2008 Registered 1-2 SV51002 2015.06.12 MLAB Figure 1-1: LAB Structure and Interconnects Overview in Stratix V Devices This figure shows an overview of the Stratix V LAB and MLAB structure with the LAB interconnects. C4 C14 Row Interconnects of Variable Speed and Length R24 R3/R6 ALMs Direct-Link Interconnect from Adjacent Block Direct-Link Interconnect from Adjacent Block Direct-Link Interconnect to Adjacent Block Direct-Link Interconnect to Adjacent Block Local Interconnect LAB MLAB Local Interconnect is Driven from Either Side by Columns and LABs, and from Above by Rows Column Interconnects of Variable Speed and Length MLAB Each MLAB supports a maximum of 640 bits of simple dual-port SRAM. You can configure each ALM in an MLAB as either a 64 × 1 or a 32 × 2 block, resulting in a configuration of either a 64 × 10 or a 32 × 20 simple dual-port SRAM block. Altera Corporation Logic Array Blocks and Adaptive Logic Modules in Stratix V Devices Send Feedback SV51002 2015.06.12 Local and Direct Link Interconnects 1-3 Figure 1-2: LAB and MLAB Structure for Stratix V Devices You can use an MLAB ALM as a regular LAB ALM or configure it as a dual-port SRAM. LUT-Based-64 x 1 Simple Dual-Port SRAM ALM LUT-Based-64 x 1 Simple Dual-Port SRAM ALM LUT-Based-64 x 1 Simple Dual-Port SRAM ALM LUT-Based-64 x 1 Simple Dual-Port SRAM ALM LUT-Based-64 x 1 Simple Dual-Port SRAM ALM LAB Control Block You can use an MLAB ALM as a regular LAB ALM or configure it as a dual-port SRAM. LAB Control Block LUT-Based-64 x 1 Simple Dual-Port SRAM ALM LUT-Based-64 x 1 Simple Dual-Port SRAM ALM LUT-Based-64 x 1 Simple Dual-Port SRAM ALM LUT-Based-64 x 1 Simple Dual-Port SRAM ALM LUT-Based-64 x 1 Simple Dual-Port SRAM ALM MLAB LAB Local and Direct Link Interconnects Each LAB can drive 30 ALMs through fast-local and direct-link interconnects. Ten ALMs are in any given LAB and ten ALMs are in each of the adjacent LABs. The local interconnect can drive ALMs in the same LAB using column and row interconnects and ALM outputs in the same LAB. Neighboring LABs, MLABs, M20K blocks, or digital signal processing (DSP) blocks from the left or right can also drive the LAB’s local interconnect using the direct link connection. The direct link connection feature minimizes the use of row and column interconnects, providing higher performance and flexibility. Logic Array Blocks and Adaptive Logic Modules in Stratix V Devices Send Feedback Altera Corporation 1-4 SV51002 2015.06.12 Shared Arithmetic Chain and Carry Chain Interconnects Figure 1-3: LAB Fast Local and Direct Link Interconnects for Stratix V Devices Direct-Link Interconnect from the Right LAB, MLAB/M20K Memory Block, DSP Block, or IOE Output Direct-Link Interconnect from the Left LAB, MLAB/M20K Memory Block, DSP Block, or IOE Output ALMs ALMs Direct-Link Interconnect to Left Direct-Link Interconnect to Right Local Interconnect MLAB LAB Shared Arithmetic Chain and Carry Chain Interconnects There are two dedicated paths between ALMs—carry chain and shared arithmetic chain. Stratix V devices include an enhanced interconnect structure in LABs for routing shared arithmetic chains and carry chains for efficient arithmetic functions. These ALM-to-ALM connections bypass the local interconnect. The Quartus II Compiler automatically takes advantage of these resources to improve utilization and perform‐ ance. Altera Corporation Logic Array Blocks and Adaptive Logic Modules in Stratix V Devices Send Feedback SV51002 2015.06.12 LAB Control Signals 1-5 Figure 1-4: Shared Arithmetic Chain and Carry Chain Interconnects Local Interconnect Routing among ALMs in the LAB ALM 1 ALM 2 Local Interconnect ALM 3 Carry Chain and Shared Arithmetic Chain Routing to Adjacent ALM ALM 4 ALM 5 ALM 6 ALM 7 ALM 8 ALM 9 ALM 10 LAB Control Signals Each LAB contains dedicated logic for driving the control signals to its ALMs, and has two unique clock sources and three clock enable signals. The LAB control block generates up to three clocks using the two clock sources and three clock enable signals. Each clock and the clock enable signals are linked. De-asserting the clock enable signal turns off the corresponding LAB-wide clock. The LAB row clocks [5..0] and LAB local interconnects generate the LAB-wide control signals. The MultiTrack interconnect’s inherent low skew allows clock and control signal distribution in addition to data. The MultiTrack interconnect consists of continuous, performance-optimized routing lines of different lengths and speeds used for inter- and intra-design block connectivity. Clear and Preset Logic Control LAB-wide signals control the logic for the register’s clear signal. The ALM directly supports an asynchro‐ nous clear function. You can achieve the register preset through the NOT-gate push-back logic option in the Quartus II software. Each LAB supports up to two clears. Stratix V devices provide a device-wide reset pin (DEV_CLRn) that resets all the registers in the device. An option set before compilation in the Quartus II software controls this pin. This device-wide reset overrides all other control signals. Logic Array Blocks and Adaptive Logic Modules in Stratix V Devices Send Feedback Altera Corporation 1-6 SV51002 2015.06.12 ALM Resources Figure 1-5: LAB-Wide Control Signals for Stratix V Devices This figure shows the clock sources and clock enable signals in a LAB. There are two unique clock signals per LAB. 6 Dedicated Row LAB Clocks 6 6 Local Interconnect Local Interconnect Local Interconnect Local Interconnect Local Interconnect Local Interconnect labclk0 labclk1 labclkena0 or asyncload or labpreset labclr1 syncload labclk2 labclkena1 labclkena2 labclr0 synclr ALM Resources Each ALM contains a variety of LUT-based resources that can be divided between two combinational adaptive LUTs (ALUTs) and four registers. With up to eight inputs for the two combinational ALUTs, one ALM can implement various combina‐ tions of two functions. This adaptability allows an ALM to be completely backward-compatible with fourinput LUT architectures. One ALM can also implement any function with up to six inputs and certain seven-input functions. One ALM contains four programmable registers. Each register has the following ports: • • • • Data Clock Synchronous and asynchronous clear Synchronous load Global signals, general-purpose I/O (GPIO) pins, or any internal logic can drive the clock and clear control signals of an ALM register. GPIO pins or internal logic drives the clock enable signal. Altera Corporation Logic Array Blocks and Adaptive Logic Modules in Stratix V Devices Send Feedback SV51002 2015.06.12 ALM Output 1-7 For combinational functions, the registers are bypassed and the output of the look-up table (LUT) drives directly to the outputs of an ALM. Note: The Quartus II software automatically configures the ALMs for optimized performance. Figure 1-6: ALM High-Level Block Diagram for Stratix V Devices shared_arith_in carry_in Combinational/ Memory ALUT0 dataf0 datae0 dataa 6-Input LUT labclk adder0 reg0 datab reg1 datac datad datae1 To General or Local Routing adder1 6-Input LUT reg2 dataf1 Combinational/ Memory ALUT1 shared_arith_out carry_out reg3 ALM Output The general routing outputs in each ALM drive the local, row, and column routing resources. Two ALM outputs can drive column, row, or direct link routing connections, and one of these ALM outputs can also drive local interconnect resources. The LUT, adder, or register output can drive the ALM outputs. The LUT or adder can drive one output while the register drives another output. Register packing improves device utilization by allowing unrelated register and combinational logic to be packed into a single ALM. Another mechanism to improve fitting is to allow the register output to feed back into the look-up table (LUT) of the same ALM so that the register is packed with its own fan-out LUT. The ALM can also drive out registered and unregistered versions of the LUT or adder output. Logic Array Blocks and Adaptive Logic Modules in Stratix V Devices Send Feedback Altera Corporation 1-8 SV51002 2015.06.12 ALM Operating Modes Figure 1-7: ALM Connection Details for Stratix V Devices syncload aclr[1:0] clk[2:0] sclr shared_arith_in carry_in dataf0 datae0 dataa datab datac0 GND 4-Input LUT 3-Input LUT + D CLR Q Row, Column Direct Link Routing Q Row, Column Direct Link Routing Q Row, Column Direct Link Routing Q Row, Column Direct Link Routing 3 3-Input LUT D 4-Input LUT datac1 3-Input LUT CLR 3 D + 3-Input LUT D VCC CLR CLR datae1 dataf1 shared_arith_out carry_out ALM Operating Modes The Stratix V ALM operates in any of the following modes: • • • • Normal mode Extended LUT mode Arithmetic mode Shared arithmetic mode Normal Mode Normal mode allows two functions to be implemented in one Stratix V ALM, or a single function of up to six inputs. Altera Corporation Logic Array Blocks and Adaptive Logic Modules in Stratix V Devices Send Feedback SV51002 2015.06.12 Normal Mode 1-9 Up to eight data inputs from the LAB local interconnect are inputs to the combinational logic. The ALM can support certain combinations of completely independent functions and various combina‐ tions of functions that have common inputs. Figure 1-8: ALM in Normal Mode Combinations of functions with fewer inputs than those shown are also supported. For example, combinations of functions with the following number of inputs are supported: 4 and 3, 3 and 3, 3 and 2, and 5 and 2. dataf0 datae0 datac dataa 4-Input LUT combout0 datab datad datae1 dataf1 4-Input LUT combout1 dataf0 datae0 datac dataa datab 5-Input LUT combout0 datad datae1 dataf1 dataf0 datae0 datac dataa datab datad datae1 dataf1 3-Input LUT 5-Input LUT 4-Input LUT dataf0 datae0 datac dataa datab 5-Input LUT combout0 5-Input LUT combout1 dataf0 datae0 dataa datab datac datad 6-Input LUT combout0 dataf0 datae0 dataa datab datac datad 6-Input LUT combout0 6-Input LUT combout1 datad datae1 dataf1 combout1 combout0 combout1 datae1 dataf1 For the packing of 2 five-input functions into one ALM, the functions must have at least two common inputs. The common inputs are dataa and datab. The combination of a four-input function with a fiveinput function requires one common input (either dataa or datab). Logic Array Blocks and Adaptive Logic Modules in Stratix V Devices Send Feedback Altera Corporation 1-10 SV51002 2015.06.12 Extended LUT Mode In the case of implementing 2 six-input functions in one ALM, four inputs must be shared and the combinational function must be the same. In a sparsely used device, functions that could be placed in one ALM may be implemented in separate ALMs by the Quartus II software to achieve the best possible performance. As a device begins to fill up, the Quartus II software automatically uses the full potential of the Stratix V ALM. The Quartus II Compiler automatically searches for functions using common inputs or completely independent functions to be placed in one ALM to make efficient use of device resources. In addition, you can manually control resource use by setting location assignments. You can implement any six-input function using inputs dataa, datab, datac, datad, and either datae0 and dataf0 or datae1 and dataf1. If you use datae0 and dataf0, the output is either driven to register0, register0 is bypassed, or the output driven to register0 and register0 is bypassed, and the data drives out to the interconnect using the top set of output drivers as shown in the following figure. If you use datae1 and dataf1, the output either drives to register1 or bypasses register1, and drives to the interconnect using the bottom set of output drivers. The Quartus II Compiler automatically selects the inputs to the LUT. ALMs in normal mode support register packing. Figure 1-9: Input Function in Normal Mode If you use datae1 and dataf1 as inputs to a six-input function, datae0 and dataf0 are available for register packing. The dataf1 input is available for register packing only if the six-input function is unregistered. dataf0 datae0 dataa datab datac datad 6-Input LUT D To General or Local Routing reg0 datae1 dataf1 These inputs are available for register packing. Q D labclk Q reg1 Extended LUT Mode In this mode, if the 7-input function is unregistered, the unused eighth input is available for register packing. Functions that fit into the template, as shown in the following figure, often appear in designs as “if-else” statements in Verilog HDL or VHDL code. Altera Corporation Logic Array Blocks and Adaptive Logic Modules in Stratix V Devices Send Feedback SV51002 2015.06.12 Arithmetic Mode 1-11 Figure 1-10: Template for Supported 7-Input Functions in Extended LUT Mode for Stratix V Devices datae0 datac dataa datab datad dataf0 datae1 5-Input LUT combout0 5-Input LUT D Q To General or Local Routing reg0 dataf1 This input is available for register packing. Arithmetic Mode The ALM in arithmetic mode uses two sets of two 4-input LUTs along with two dedicated full adders. The dedicated adders allow the LUTs to perform pre-adder logic; therefore, each adder can add the output of two 4-input functions. The ALM supports simultaneous use of the adder’s carry output along with combinational logic outputs. The adder output is ignored in this operation. Using the adder with the combinational logic output provides resource savings of up to 50% for functions that can use this mode. Arithmetic mode also offers clock enable, counter enable, synchronous up and down control, add and subtract control, synchronous clear, and synchronous load. The LAB local interconnect data inputs generate the clock enable, counter enable, synchronous up/down, and add/subtract control signals. These control signals are good candidates for the inputs that are shared between the four LUTs in the ALM. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. You can individually disable or enable these signals for each register. The Quartus II software automatically places any registers that are not used by the counter into other LABs. Logic Array Blocks and Adaptive Logic Modules in Stratix V Devices Send Feedback Altera Corporation 1-12 SV51002 2015.06.12 Shared Arithmetic Mode Figure 1-11: ALM in Arithmetic Mode for Stratix V Devices datae0 dataf0 datac datab dataa datad datae1 dataf1 carry_in adder0 4-Input LUT reg0 4-Input LUT adder1 4-Input LUT reg1 To General or Local Routing reg2 4-Input LUT carry_out reg3 Carry Chain The carry chain provides a fast carry function between the dedicated adders in arithmetic or shared arithmetic mode. The two-bit carry select feature in Stratix V devices halves the propagation delay of carry chains within the ALM. Carry chains can begin in either the first ALM or the fifth ALM in a LAB. The final carry-out signal is routed to an ALM, where it is fed to local, row, or column interconnects. To avoid routing congestion in one small area of the device when a high fan-in arithmetic function is implemented, the LAB can support carry chains that only use either the top half or bottom half of the LAB before connecting to the next LAB. This leaves the other half of the ALMs in the LAB available for implementing narrower fan-in functions in normal mode. Carry chains that use the top five ALMs in the first LAB carry into the top half of the ALMs in the next LAB in the column. Carry chains that use the bottom five ALMs in the first LAB carry into the bottom half of the ALMs in the next LAB within the column. You can bypass the top-half of the LAB columns and bottom-half of the MLAB columns. The Quartus II Compiler creates carry chains longer than 20 ALMs (10 ALMs in arithmetic or shared arithmetic mode) by linking LABs together automatically. For enhanced fitting, a long carry chain runs vertically, allowing fast horizontal connections to the TriMatrix memory and DSP blocks. A carry chain can continue as far as a full column. Shared Arithmetic Mode The ALM in shared arithmetic mode can implement a 3-input add in the ALM. Altera Corporation Logic Array Blocks and Adaptive Logic Modules in Stratix V Devices Send Feedback SV51002 2015.06.12 Shared Arithmetic Mode 1-13 This mode configures the ALM with four 4-input LUTs. Each LUT either computes the sum of three inputs or the carry of three inputs. The output of the carry computation is fed to the next adder using a dedicated connection called the shared arithmetic chain. Figure 1-12: ALM in Shared Arithmetic Mode for Stratix V Devices shared_arith_in carry_in labclk 4-Input LUT datae0 datac datab dataa datad datae1 reg0 4-Input LUT reg1 4-Input LUT To General or Local Routing reg2 4-Input LUT reg3 shared_arith_out carry_out Shared Arithmetic Chain The shared arithmetic chain available in enhanced arithmetic mode allows the ALM to implement a 3-input adder. This significantly reduces the resources necessary to implement large adder trees or correlator functions. The shared arithmetic chain can begin in either the first or sixth ALM in a LAB. Similar to carry chains, the top and bottom half of the shared arithmetic chains in alternate LAB columns can be bypassed. This capability allows the shared arithmetic chain to cascade through half of the ALMs in an LAB while leaving the other half available for narrower fan-in functionality. In every LAB, the column is top-half bypassable; while in MLAB, columns are bottom-half bypassable. The Quartus II Compiler creates shared arithmetic chains longer than 20 ALMs (10 ALMs in arithmetic or shared arithmetic mode) by linking LABs together automatically. To enhance fitting, a long shared arithmetic chain runs vertically, allowing fast horizontal connections to the TriMatrix memory and DSP blocks. A shared arithmetic chain can continue as far as a full column. Logic Array Blocks and Adaptive Logic Modules in Stratix V Devices Send Feedback Altera Corporation 1-14 SV51002 2015.06.12 LAB Power Management Techniques LAB Power Management Techniques The following techniques are used to manage static and dynamic power consumption within the LAB: • To save AC power, the Quartus II software forces all adder inputs low when the ALM adders are not in use. • Stratix V LABs operate in high-performance mode or low-power mode. The Quartus II software automatically chooses the appropriate mode for the LAB, based on your design and to optimize speed versus leakage trade-offs. • Clocks represent a significant portion of dynamic power consumption because of their high switching activity and long paths. The LAB clock that distributes a clock signal to registers within a LAB is a significant contributor to overall clock power consumption. Each LAB’s clock and clock enable signals are linked. For example, a combinational ALUT or register in a particular LAB using the labclk1 signal also uses the labclkena1 signal. To disable a LAB-wide clock power consumption without disabling the entire clock tree, use the LAB-wide clock enable to gate the LAB-wide clock. The Quartus II software automatically promotes register-level clock enable signals to the LAB-level. All registers within the LAB that share a common clock and clock enable are controlled by a shared, gated clock. To take advantage of these clock enables, use a clock-enable construct in your HDL code for the registered logic. Related Information Power Optimization chapter, Quartus II Handbook Provides more information about implementing static and dynamic power consumption within the LAB. Document Revision History Date Version January 2014 2014.01.10 Changes Added multiplexers for the bypass paths and register outputs in the following diagrams: • ALM High-Level Block Diagram for Stratix V Devices • Input Function in Normal Mode • Template for Supported 7-Input Functions in Extended LUT Mode for Stratix V Devices • ALM in Arithmetic Mode for Stratix V Devices • ALM in Shared Arithmetic Mode for Stratix V Devices May 2013 2013.05.06 • • • • December 2012 2012.12.28 Reorganized content and updated template. Altera Corporation Added link to the known document issues in the Knowledge Base. Updated the available LABs to use as a MLAB. Removed register chain outputs information in ALM output section. Moved all links to the Related Information section of respective topics for easy reference. Logic Array Blocks and Adaptive Logic Modules in Stratix V Devices Send Feedback SV51002 2015.06.12 Document Revision History Date Version Changes June 2012 1.4 • Updated Figure 1–5, Figure 1–6, and Figure 1–12. • Removed register chain expression. • Minor text edits. November 2011 1.3 • Updated Figure 1–1, Figure 1–4, and Figure 1–6. • Removed “Register Chain” section. May 2011 1.2 • Chapter moved to volume 2 for the 11.0 release. • Updated Figure 1–6. • Minor text edits. December 2010 1.1 No changes to the content of this chapter for the Quartus II software 10.1. July 2010 1.0 Initial release. Logic Array Blocks and Adaptive Logic Modules in Stratix V Devices Send Feedback 1-15 Altera Corporation Embedded Memory Blocks in Stratix V Devices 2 2015.06.12 SV51003 Subscribe Send Feedback The embedded memory blocks in the devices are flexible and designed to provide an optimal amount of small- and large-sized memory arrays to fit your design requirements. Related Information Stratix V Device Handbook: Known Issues Lists the planned updates to the Stratix V Device Handbook chapters. Types of Embedded Memory The Stratix V devices contain two types of memory blocks: • 20 Kb M20K blocks—blocks of dedicated memory resources. The M20K blocks are ideal for larger memory arrays while still providing a large number of independent ports. • 640 bit memory logic array blocks (MLABs)—enhanced memory blocks that are configured from dualpurpose logic array blocks (LABs). The MLABs are ideal for wide and shallow memory arrays. The MLABs are optimized for implementation of shift registers for digital signal processing (DSP) applica‐ tions, wide shallow FIFO buffers, and filter delay lines. Each MLAB is made up of ten adaptive logic modules (ALMs). In the Stratix V devices, you can configure these ALMs as ten 32 x 2 blocks, giving you one 32 x 20 simple dual-port SRAM block per MLAB. You can also configure these ALMs as ten 64 x 1 blocks, giving you one 64 x 10 simple dual-port SRAM block per MLAB. © 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. www.altera.com 101 Innovation Drive, San Jose, CA 95134 ISO 9001:2008 Registered 2-2 SV51003 2015.06.12 Embedded Memory Capacity in Stratix V Devices Embedded Memory Capacity in Stratix V Devices Table 2-1: Embedded Memory Capacity and Distribution in Stratix V Devices Variant Stratix V GX Stratix V GT Stratix V GS Stratix V E M20K MLAB Member Code Block RAM Bit (Kb) Block RAM Bit (Kb) Total RAM Bit (Kb) A3 957 19,140 6,415 4,009 23,149 A4 1,900 38,000 7,925 4,953 42,953 A5 2,304 46,080 9,250 5,781 51,861 A7 2,560 51,200 11,736 7,335 58,535 A9 2,640 52,800 15,850 9,906 62,706 AB 2,640 52,800 17,960 11,225 64,025 B5 2,100 42,000 9,250 5,781 47,781 B6 2,660 53,200 11,270 7,043 60,243 B9 2,640 52,800 15,850 9,906 62,706 BB 2,640 52,800 17,960 11,225 64,025 C5 2,304 46,080 8,020 5,012 51,092 C7 2,560 51,200 11,735 7,334 58,534 D3 688 13,760 4,450 2,781 16,541 D4 957 19,140 6,792 4,245 23,385 D5 2,014 40,280 8,630 5,393 45,673 D6 2,320 46,400 11,000 6,875 53,275 D8 2,567 51,340 13,120 8,200 59,540 E9 2,640 52,800 15,850 9,906 62,706 EB 2,640 52,800 17,960 11,225 64,025 Embedded Memory Design Guidelines for Stratix V Devices There are several considerations that require your attention to ensure the success of your designs. Unless noted otherwise, these design guidelines apply to all variants of this device family. Guideline: Consider the Memory Block Selection The Quartus II software automatically partitions the user-defined memory into the memory blocks based on your design's speed and size constraints. For example, the Quartus II software may spread out the memory across multiple available memory blocks to increase the performance of the design. To assign the memory to a specific block size manually, use the RAM megafunction in the MegaWizard™ Plug-In Manager. Altera Corporation Embedded Memory Blocks in Stratix V Devices Send Feedback SV51003 2015.06.12 Guideline: Implement External Conflict Resolution 2-3 For the memory logic array blocks (MLAB), you can implement single-port SRAM through emulation using the Quartus II software. Emulation results in minimal additional use of logic resources. Because of the dual-purpose architecture of the MLAB, only data input and output registers are available in the block. The MLABs gain read address registers from the ALMs. However, the write address and read data registers are internal to the MLABs. Guideline: Implement External Conflict Resolution In the true dual-port RAM mode, you can perform two write operations to the same memory location. However, the memory blocks do not have internal conflict resolution circuitry. To avoid unknown data being written to the address, implement external conflict resolution logic to the memory block. Guideline: Customize Read-During-Write Behavior Customize the read-during-write behavior of the memory blocks to suit your design requirements. Figure 2-1: Read-During-Write Data Flow This figure shows the difference between the two types of read-during-write operations available—same port and mixed port. Port A data in FPGA Device Port B data in Mixed-port data flow Same-port data flow Port A data out Port B data out Same-Port Read-During-Write Mode The same-port read-during-write mode applies to a single-port RAM or the same port of a true dual-port RAM. Table 2-2: Output Modes for Embedded Memory Blocks in Same-Port Read-During-Write Mode This table lists the available output modes if you select the embedded memory blocks in the same-port readduring-write mode. Output Mode "new data" Memory Type M20K The new data is available on the rising edge of the same clock cycle on which the new data is written. MLAB The RAM outputs "don't care" values for a read-during-write operation. (flow-through) "don't care" Embedded Memory Blocks in Stratix V Devices Send Feedback Description Altera Corporation 2-4 SV51003 2015.06.12 Mixed-Port Read-During-Write Mode Figure 2-2: Same-Port Read-During-Write: New Data Mode This figure shows sample functional waveforms of same-port read-during-write behavior in the “new data” mode. clk_a 0A address 0B rden wren byteena data_a q_a (asynch) 11 B456 A123 A123 DDDD C789 B456 C789 EEEE DDDD FFFF EEEE FFFF Mixed-Port Read-During-Write Mode The mixed-port read-during-write mode applies to simple and true dual-port RAM modes where two ports perform read and write operations on the same memory address using the same clock—one port reading from the address, and the other port writing to it. Table 2-3: Output Modes for RAM in Mixed-Port Read-During-Write Mode Output Mode "new data" Memory Type MLAB Description A read-during-write operation to different ports causes the MLAB registered output to reflect the “new data” on the next rising edge after the data is written to the MLAB memory. This mode is available only if the output is registered. "old data" M20K, MLAB A read-during-write operation to different ports causes the RAM output to reflect the “old data” value at the particular address. For MLAB, this mode is available only if the output is registered. Altera Corporation Embedded Memory Blocks in Stratix V Devices Send Feedback SV51003 2015.06.12 Mixed-Port Read-During-Write Mode Output Mode "don't care" Memory Type 2-5 Description M20K, MLAB The RAM outputs “don’t care” or “unknown” value. • For M20K memory, the Quartus II software does not analyze the timing between write and read operations. • For MLAB, the Quartus II software analyzes the timing between write and read operations by default. To disable this behavior, turn on the Do not analyze the timing between write and read operation. Metastability issues are prevented by never writing and reading at the same address at the same time option. "constrained don't care" MLAB The RAM outputs “don’t care” or “unknown” value. The Quartus II software analyzes the timing between write and read operations in the MLAB. Figure 2-3: Mixed-Port Read-During-Write: New Data Mode This figure shows a sample functional waveform of mixed-port read-during-write behavior for the “new data” mode. clk_a&b wren_a A0 address_a data_a AAAA A1 BBBB CCCC DDDD EEEE FFFF 11 byteena_a rden_b address_b q_b (registered) Embedded Memory Blocks in Stratix V Devices Send Feedback A0 XXXX A1 AAAA BBBB CCCC DDDD EEEE FFFF Altera Corporation 2-6 SV51003 2015.06.12 Mixed-Port Read-During-Write Mode Figure 2-4: Mixed-Port Read-During-Write: Old Data Mode This figure shows a sample functional waveform of mixed-port read-during-write behavior for the “old data” mode. clk_a&b wren_a A0 address_a data_a AAAA A1 BBBB CCCC DDDD EEEE FFFF 11 byteena_a rden_b address_b q_b (registered) A0 XXXX A1 A0 (old data) AAAA BBBB A1 (old data) DDDD EEEE Figure 2-5: Mixed-Port Read-During-Write: Don’t Care or Constrained Don’t Care Mode This figure shows a sample functional waveform of mixed-port read-during-write behavior for the “don’t care” or “constrained don’t care” mode. clk_a&b wren_a address_a data_a byteena_a A1 A0 AAAA BBBB CCCC 11 01 10 DDDD EEEE FFFF 11 rden_b address_b q_b (asynch) A1 A0 XXXX (unknown data) In the dual-port RAM mode, the mixed-port read-during-write operation is supported if the input registers have the same clock. The output value during the operation is “unknown.” Related Information Embedded Memory (RAM: 1-PORT, RAM: 2-PORT, ROM: 1-PORT, and ROM: 2-PORT) IP Core User Guide Provides more information about the RAM megafunction that controls the read-during-write behavior. Altera Corporation Embedded Memory Blocks in Stratix V Devices Send Feedback SV51003 2015.06.12 Guideline: Consider Power-Up State and Memory Initialization 2-7 Guideline: Consider Power-Up State and Memory Initialization Consider the power up state of the different types of memory blocks if you are designing logic that evaluates the initial power-up values, as listed in the following table. Table 2-4: Initial Power-Up Values of Embedded Memory Blocks Memory Type Output Registers Power Up Value Used Zero (cleared) Bypassed Read memory contents Used Zero (cleared) Bypassed Zero (cleared) MLAB M20K By default, the Quartus II software initializes the RAM cells in Stratix V devices to zero unless you specify a .mif. All memory blocks support initialization with a .mif. You can create .mif files in the Quartus II software and specify their use with the RAM megafunction when you instantiate a memory in your design. Even if a memory is pre-initialized (for example, using a .mif), it still powers up with its output cleared. Related Information • Embedded Memory (RAM: 1-PORT, RAM: 2-PORT, ROM: 1-PORT, and ROM: 2-PORT) IP Core User Guide Provides more information about .mif files. • Quartus II Handbook Provides more information about .mif files. Guideline: Control Clocking to Reduce Power Consumption Reduce AC power consumption in your design by controlling the clocking of each memory block: • Use the read-enable signal to ensure that read operations occur only when necessary. If your design does not require read-during-write, you can reduce your power consumption by deasserting the readenable signal during write operations, or during the period when no memory operations occur. • Use the Quartus II software to automatically place any unused memory blocks in low-power mode to reduce static power. Embedded Memory Features Table 2-5: Memory Features in Stratix V Devices This table summarizes the features supported by the embedded memory blocks. Features Maximum operating frequency Capacity per block (including parity bits) Embedded Memory Blocks in Stratix V Devices Send Feedback M20K MLAB 600 MHz 600 MHz 20,480 640 Altera Corporation 2-8 SV51003 2015.06.12 Embedded Memory Features Features M20K MLAB Parity bits Supported Supported Byte enable Supported Supported Packed mode Supported — Address clock enable Supported Supported Simple dual-port mixed width Supported — True dual-port mixed width Supported — FIFO buffer mixed width Supported — Memory Initialization File (.mif) Supported Supported Mixed-clock mode Supported Supported Fully synchronous memory Supported Supported — Only for flow-through read memory operations. Asynchronous memory Power-up state Output ports are cleared. • Registered output ports— Cleared. • Unregistered output ports— Read memory contents. Asynchronous clears Output registers and output latches Output registers and output latches Write/read operation triggering Rising clock edges Rising clock edges Same-port read-during-write Output ports set to "new data". Output ports set to "don't care". Mixed-port read-during-write Output ports set to "old data" or "don't care". Output ports set to "old data", "new data", "don't care", or "constrained don't care". ECC support Soft IP support using the Quartus II software. Soft IP support using the Quartus II software. Built-in support in x32-wide simple dualport mode. Related Information Embedded Memory (RAM: 1-PORT, RAM: 2-PORT, ROM: 1-PORT, and ROM: 2-PORT) IP Core User Guide Provides more information about the embedded memory features. Altera Corporation Embedded Memory Blocks in Stratix V Devices Send Feedback SV51003 2015.06.12 2-9 Embedded Memory Configurations Embedded Memory Configurations Table 2-6: Supported Embedded Memory Block Configurations for Stratix V Devices This table lists the maximum configurations supported for the embedded memory blocks. The information is applicable only to the single-port RAM and ROM modes. Memory Block MLAB M20K Depth (bits) Programmable Width 32 x16, x18, or x20 64 x8, x9, x10 512 x40, x32 1K x20, x16 2K x10, x8 4K x5, x4 8K x2 16K x1 Mixed-Width Port Configurations The mixed-width port configuration is supported in the simple dual-port RAM and true dual-port RAM memory modes. Note: MLABs do not support mixed-width port configurations. Related Information Embedded Memory (RAM: 1-PORT, RAM: 2-PORT, ROM: 1-PORT, and ROM: 2-PORT) IP Core User Guide Provides more information about dual-port mixed width support. M20K Blocks Mixed-Width Configurations The following table lists the mixed-width configurations of the M20K blocks in the simple dual-port RAM mode. Table 2-7: M20K Block Mixed-Width Configurations (Simple Dual-Port RAM Mode) Write Port Read Port 16K x 1 8K x 2 4K x 4 4K x 5 2K x 8 2K x 10 1K x 16 1K x 20 512 x 3 2 512 x 40 16K x 1 Yes Yes Yes — Yes — Yes — Yes — 8K x 2 Yes Yes Yes — Yes — Yes — Yes — 4K x 4 Yes Yes Yes — Yes — Yes — Yes — 4K x 5 — — — Yes — Yes — Yes — Yes 2K x 8 Yes Yes Yes — Yes — Yes — Yes — 2K x 10 — — — Yes — Yes — Yes — Yes Embedded Memory Blocks in Stratix V Devices Send Feedback Altera Corporation 2-10 SV51003 2015.06.12 Embedded Memory Modes Write Port Read Port 16K x 1 8K x 2 4K x 4 4K x 5 2K x 8 2K x 10 1K x 16 1K x 20 512 x 3 2 512 x 40 1K x 16 Yes Yes Yes — Yes — Yes — Yes — 1K x 20 — — — Yes — Yes — Yes — Yes 512 x 32 Yes Yes Yes — Yes — Yes — Yes — 512 x 40 — — — Yes — Yes — Yes — Yes The following table lists the mixed-width configurations of the M20K blocks in true dual-port mode. Table 2-8: M20K Block Mixed-Width Configurations (True Dual-Port Mode) Port A Port B 16K x 1 8K x 2 4K x 4 4K x 5 2K x 8 2K x 10 1K x 16 1K x 20 16K x 1 Yes Yes Yes — Yes — Yes — 8K x 2 Yes Yes Yes — Yes — Yes — 4K x 4 Yes Yes Yes — Yes — Yes — 4K x 5 — — — Yes — Yes — Yes 2K x 8 Yes Yes Yes — Yes — Yes — 2K x 10 — — — Yes — Yes — Yes 1K x 16 Yes Yes Yes — Yes — Yes — 1K x 20 — — — Yes — Yes — Yes Embedded Memory Modes Caution: To avoid corrupting the memory contents, do not violate the setup or hold time on any of the memory block input registers during read or write operations. This is applicable if you use the memory blocks in single-port RAM, simple dual-port RAM, true dual-port RAM, or ROM mode. Altera Corporation Embedded Memory Blocks in Stratix V Devices Send Feedback SV51003 2015.06.12 Embedded Memory Modes 2-11 Table 2-9: Memory Modes Supported in the Embedded Memory Blocks This table lists and describes the memory modes that are supported in the Stratix V embedded memory blocks. Memory Mode Single-port RAM M20K Support MLAB Support Yes Yes Description You can perform only one read or one write operation at a time. Use the read enable port to control the RAM output ports behavior during a write operation: • To retain the previous values that are held during the most recent active read enable—create a read-enable port and perform the write operation with the read enable port deasserted. • To show the new data being written, the old data at that address, or a "Don't Care" value when read-during-write occurs at the same address location—do not create a readenable signal, or activate the read enable during a write operation. Simple dual-port RAM Yes Yes You can simultaneously perform one read and one write operations to different locations where the write operation happens on port A and the read operation happens on port B. True dual-port RAM Yes — You can perform any combination of two port operations: two reads, two writes, or one read and one write at two different clock frequencies. Shift-register Yes Yes You can use the memory blocks as a shift-register block to save logic cells and routing resources. This is useful in DSP applications that require local data storage such as finite impulse response (FIR) filters, pseudo-random number generators, multi-channel filtering, and auto- and cross- correlation functions. Traditionally, the local data storage is implemented with standard flip-flops that exhaust many logic cells for large shift registers. The input data width (w), the length of the taps (m), and the number of taps (n) determine the size of a shift register (w × m × n). You can cascade memory blocks to implement larger shift registers. Embedded Memory Blocks in Stratix V Devices Send Feedback Altera Corporation 2-12 SV51003 2015.06.12 Embedded Memory Clocking Modes Memory Mode ROM M20K Support MLAB Support Yes Yes Description You can use the memory blocks as ROM. • Initialize the ROM contents of the memory blocks using a .mif or .hex. • The address lines of the ROM are registered on M20K blocks but can be unregistered on MLABs. • The outputs can be registered or unregistered. • The output registers can be asynchronously cleared. • The ROM read operation is identical to the read operation in the single-port RAM configuration. FIFO Yes Yes You can use the memory blocks as FIFO buffers. Use the SCFIFO and DCFIFO megafunctions to implement single- and dual-clock asynchronous FIFO buffers in your design. For designs with many small and shallow FIFO buffers, the MLABs are ideal for the FIFO mode. However, the MLABs do not support mixed-width FIFO mode. Related Information • Embedded Memory (RAM: 1-PORT, RAM: 2-PORT, ROM: 1-PORT, and ROM: 2-PORT) IP Core User Guide Provides more information memory modes. • RAM-Based Shift Register (ALTSHIFT_TAPS) IP Core User Guide Provides more information about implementing the shift register mode. • SCFIFO and DCFIFO IP Cores User Guide Provides more information about implementing FIFO buffers. Embedded Memory Clocking Modes This section describes the clocking modes for the Stratix V memory blocks. Caution: To avoid corrupting the memory contents, do not violate the setup or hold time on any of the memory block input registers during read or write operations. Clocking Modes for Each Memory Mode Table 2-10: Memory Blocks Clocking Modes Supported for Each Memory Mode Memory Mode Clocking Mode Single-Port Simple DualPort True DualPort ROM FIFO Single clock mode Yes Yes Yes Yes Yes Read/write clock mode — Yes — — Yes Altera Corporation Embedded Memory Blocks in Stratix V Devices Send Feedback SV51003 2015.06.12 2-13 Single Clock Mode Memory Mode Clocking Mode Single-Port Simple DualPort True DualPort ROM FIFO Input/output clock mode Yes Yes Yes Yes — Independent clock mode — — Yes Yes — Note: The clock enable signals are not supported for write address, byte enable, and data input registers on MLAB blocks. Single Clock Mode In the single clock mode, a single clock, together with a clock enable, controls all registers of the memory block. Read/Write Clock Mode In the read/write clock mode, a separate clock is available for each read and write port. A read clock controls the data-output, read-address, and read-enable registers. A write clock controls the data-input, write-address, write-enable, and byte enable registers. Input/Output Clock Mode In input/output clock mode, a separate clock is available for each input and output port. An input clock controls all registers related to the data input to the memory block including data, address, byte enables, read enables, and write enables. An output clock controls the data output registers. Independent Clock Mode In the independent clock mode, a separate clock is available for each port (A and B). Clock A controls all registers on the port A side; clock B controls all registers on the port B side. Note: You can create independent clock enable for different input and output registers to control the shut down of a particular register for power saving purposes. From the parameter editor, click More Options (beside the clock enable option) to set the available independent clock enable that you prefer. Asynchronous Clears in Clocking Modes In all clocking modes, asynchronous clears are available only for output latches and output registers. For the independent clock mode, this is applicable on both ports. Output Read Data in Simultaneous Read/Write If you perform a simultaneous read/write to the same address location using the read/write clock mode, the output read data is unknown. If you require the output read data to be a known value, use single-clock or input/output clock mode and select the appropriate read-during-write behavior in the MegaWizard™ Plug-In Manager. Note: MLAB memory blocks only support simultaneous read/write operations when operating in single clock mode. Embedded Memory Blocks in Stratix V Devices Send Feedback Altera Corporation 2-14 SV51003 2015.06.12 Independent Clock Enables in Clocking Modes Independent Clock Enables in Clocking Modes Independent clock enables are supported in the following clocking modes: • Read/write clock mode—supported for both the read and write clocks. • Independent clock mode—supported for the registers of both ports. To save power, you can control the shut down of a particular register using the clock enables. Related Information Guideline: Control Clocking to Reduce Power Consumption on page 2-7 Parity Bit in Memory Blocks Table 2-11: Parity Bit Support for the Embedded Memory Blocks This table describes the parity bit support for the memory blocks. M20K MLAB • The parity bit is the fifth bit associated with each • The parity bit is the ninth bit associated with 4 data bits in data widths of 5, 10, 20, and 40 each byte. (bits 4, 9, 14, 19, 24, 29, 34, and 39). • The ninth bit can store a parity bit or serve as an • In non-parity data widths, the parity bits are additional bit. skipped during read or write operations. • Parity function is not performed on the parity • Parity function is not performed on the parity bit. bit. Byte Enable in Embedded Memory Blocks The embedded memory blocks support byte enable controls: • The byte enable controls mask the input data so that only specific bytes of data are written. The unwritten bytes retain the values written previously. • The write enable (wren) signal, together with the byte enable (byteena) signal, control the write operations on the RAM blocks. By default, the byteena signal is high (enabled) and only the wren signal controls the writing. • The byte enable registers do not have a clear port. • If you are using parity bits, on the M20K blocks, the byte enable function controls 8 data bits and 2 parity bits; on the MLABs, the byte enable function controls all 10 bits in the widest mode. • The LSB of the byteena signal corresponds to the LSB of the data bus. • The byte enables are active high. Byte Enable Controls in Memory Blocks Table 2-12: byteena Controls in x20 Data Width byteena[1:0] 11 (default) Altera Corporation Data Bits Written [19:10] [9:0] Embedded Memory Blocks in Stratix V Devices Send Feedback SV51003 2015.06.12 Data Byte Output byteena[1:0] 2-15 Data Bits Written 10 [19:10] — 01 — [9:0] Table 2-13: byteena Controls in x40 Data Width byteena[3:0] Data Bits Written 1111 (default) [39:30] [29:20] [19:10] [9:0] 1000 [39:30] — — — 0100 — [29:20] — — 0010 — — [19:10] — 0001 — — — [9:0] Note: If you use the ECC feature on the M20K blocks, you cannot use the byte enable feature. Data Byte Output In M20K blocks or MLABs, when you de-assert a byte-enable bit during a write cycle, the corresponding data byte output appears as either a “don't care” value or the current data at that location. You can control the output value for the masked byte in the M20K blocks or MLABs by using the Quartus II software. Embedded Memory Blocks in Stratix V Devices Send Feedback Altera Corporation 2-16 SV51003 2015.06.12 RAM Blocks Operations RAM Blocks Operations Figure 2-6: Byte Enable Functional Waveform This figure shows how the wren and byteena signals control the operations of the RAM blocks. inclock wren address data byteena contents at a0 an a0 a1 XXXXXXXX XXXX a2 1000 0100 0010 XXXXXXXX 0001 1111 XXXX FFCDFFFF FFFFFFFF contents at a3 a0 ABFFFFFF FFFFFFFF contents at a2 a4 ABCDEF12 FFFFFFFF contents at a1 a3 FFFFEFFF FFFFFFFF contents at a4 FFFFFF12 ABCDEF12 FFFFFFFF don’t care: q (asynch) doutn ABXXXXXX XXCDXXXX XXXXEFXX XXXXXX12 ABCDEF12 ABFFFFFF current data: q (asynch) doutn ABFFFFFF FFCDFFFF FFFFEFFF FFFFFF12 ABCDEF12 ABFFFFFF Memory Blocks Packed Mode Support The M20K memory blocks support packed mode. The packed mode feature packs two independent single-port RAM blocks into one memory block. The Quartus II software automatically implements packed mode where appropriate by placing the physical RAM block in true dual-port mode and using the MSB of the address to distinguish between the two logical RAM blocks. The size of each independent single-port RAM must not exceed half of the target block size. Memory Blocks Address Clock Enable Support The embedded memory blocks support address clock enable, which holds the previous address value for as long as the signal is enabled (addressstall = 1). When the memory blocks are configured in dualport mode, each port has its own independent address clock enable. The default value for the address clock enable signal is low (disabled). Altera Corporation Embedded Memory Blocks in Stratix V Devices Send Feedback SV51003 2015.06.12 Memory Blocks Address Clock Enable Support 2-17 Figure 2-7: Address Clock Enable This figure shows an address clock enable block diagram. The address clock enable is referred to by the port name addressstall. address[0] 1 0 address[0] register address[N] 1 0 address[N] register address[0] address[N] addressstall clock Figure 2-8: Address Clock Enable During Read Cycle Waveform This figure shows the address clock enable waveform during the read cycle. inclock rdaddress a0 a1 a2 a3 a4 a5 a6 rden addressstall latched address (inside memory) an q (synch) doutn-1 q (asynch) doutn Embedded Memory Blocks in Stratix V Devices Send Feedback a1 a0 doutn dout0 dout0 a4 dout4 dout1 dout1 a5 dout4 dout5 Altera Corporation 2-18 SV51003 2015.06.12 Memory Blocks Asynchronous Clear Figure 2-9: Address Clock Enable During the Write Cycle Waveform This figure shows the address clock enable waveform during the write cycle. inclock wraddress a0 a1 a2 a3 a4 a5 a6 data 00 01 02 03 04 05 06 wren addressstall latched address (inside memory) contents at a0 contents at a1 an a1 a0 a5 00 XX XX 01 02 contents at a2 XX contents at a3 XX contents at a4 a4 04 XX contents at a5 03 XX 05 Memory Blocks Asynchronous Clear The M20K memory blocks support asynchronous clear on output latches and output registers. If your RAM does not use output registers, clear the RAM outputs using the output latch asynchronous clear. The clear is an asynchronous signal and it is generated at any time. The internal logic extends the clear pulse until the next rising edge of the output clock. When the clear is asserted, the outputs are cleared and stay cleared until the next read cycle. Altera Corporation Embedded Memory Blocks in Stratix V Devices Send Feedback SV51003 2015.06.12 Memory Blocks Error Correction Code Support 2-19 Figure 2-10: Output Latch Clear in Stratix V Devices clk rden aclr clr at latch D 0 out D 2 D 1 Memory Blocks Error Correction Code Support ECC allows you to detect and correct data errors at the output of the memory. ECC can perform singleerror correction, double-adjacent-error correction, and triple-adjacent-error detection in a 32-bit word. However, ECC cannot detect four or more errors. The M20K blocks have built-in support for ECC when in x32-wide simple dual-port mode: • The M20K runs slower than non-ECC simple-dual port mode when ECC is engaged. However, you can enable optional ECC pipeline registers before the output decoder to achieve the same performance as non-ECC simple-dual port mode at the expense of one cycle of latency. • The M20K ECC status is communicated with two ECC status flag signals—e (error) and ue (uncorrectable error). The status flags are part of the regular output from the memory block. When ECC is engaged, you cannot access two of the parity bits because the ECC status flag replaces them. Error Correction Code Truth Table Table 2-14: ECC Status Flags Truth Table Status e (error) ue (uncorrectable error) eccstatus[1] eccstatus[0] 0 0 No error. 0 1 Illegal. 1 0 A correctable error occurred and the error has been corrected at the outputs; however, the memory array has not been updated. Embedded Memory Blocks in Stratix V Devices Send Feedback Altera Corporation 2-20 SV51003 2015.06.12 Document Revision History e (error) ue (uncorrectable error) eccstatus[1] eccstatus[0] 1 1 Status An uncorrectable error occurred and uncorrectable data appears at the outputs. If you engage ECC: • You cannot use the byte enable feature. • Read-during-write old data mode is not supported. Figure 2-11: ECC Block Diagram for M20K Memory Status Flag Generation 2 40 8 32 Input Register 32 ECC Encoder 8 40 Memory Array 40 Optional Pipeline Register 40 ECC Decoder 40 Output Register Document Revision History Date Version January 2015 2015.01.23 • Reword Total RAM bits in Memory Features in Stratix V Devices table to Capacity per Block. June 2014 2014.06.30 Removed the term "one-hot" fashion for byte enables operation. The term one-hot indicates that only one bit can be active at a time. Altera Corporation Changes Embedded Memory Blocks in Stratix V Devices Send Feedback SV51003 2015.06.12 Document Revision History Date Version 2-21 Changes May 2013 2013.05.06 • Moved all links to the Related Information section of respective topics for easy reference. • Added link to the known document issues in the Knowledge Base. • Corrected the description about the "don't care" output mode for RAM in mixed-port read-during-write. • Reorganized the structure of the supported memory configurations topics (single-port and mixed-width dual-port) to improve clarity about maximum data widths supported for each configuration. • Added a description to the table listing the maximum embedded memory configurations to clarify that the information applies only to the single port or ROM mode. • Removed the topic about mixed-width configurations for MLABs and added a note to clarify that MLABs do not support mixed-width configuration. December 2012 2012.12.28 • Reorganized content and updated template. • Updated memory capacity information for accuracy (kilobits instead of megabits). • Moved information about supported memory block configurations into its own table. • Removed some information that is available in the Internal Memory (RAM and ROM) User Guide. June 2012 1.4 Updated Table 2–1 and Table 2–2. November 2011 1.3 • Updated Table 2–1 and Table 2–2. • Updated “Mixed-Port Read-During-Write Mode” section. May 2011 1.2 • • • • • December 2010 1.1 No changes to the content of this chapter for the Quartus II software 10.1. July 2010 1.0 Initial release. Embedded Memory Blocks in Stratix V Devices Send Feedback Chapter moved to volume 2 for the 11.0 release. Updated Table 2–1, Table 2–2, and Table 2–5. Updated Figure 2–1 and Figure 2–8. Updated “Read-During-Write Behavior” section. Minor text edits. Altera Corporation 3 Variable Precision DSP Blocks in Stratix V Devices 2015.06.12 SV51004 Subscribe Send Feedback This chapter describes how the variable-precision digital signal processing (DSP) blocks in Stratix V devices are optimized to support higher bit precision in high-performance DSP applications. Related Information Stratix V Device Handbook: Known Issues Lists the planned updates to the Stratix V Device Handbook chapters. Features Each Stratix V variable precision DSP block spans one logic array block (LAB) row height. The Stratix V variable precision DSP blocks offer the following features: • • • • • • • High-performance, power-optimized, and fully registered multiplication operations 9-bit, 18-bit, 27-bit, and 36-bit word lengths 18 x 25 complex multiplications for FFTs Floating-point arithmetic formats Built-in addition, subtraction, and 64-bit accumulation unit to combine multiplication results Cascading 18-bit and 27-bit input bus to form the tap-delay line for filtering applications Cascading 64-bit output bus to propagate output results from one block to the next block without external logic support • Hard pre-adder supported in 18-bit and 27-bit mode for symmetric filters • Supports 18-bit and 27-bit with internal coefficient register bank for filter implementation • 18-bit and 27-bit systolic finite impulse response (FIR) filters with distributed output adder Related Information Stratix V Device Overview Provides more information about the number of multipliers in each Stratix V device. © 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. www.altera.com 101 Innovation Drive, San Jose, CA 95134 ISO 9001:2008 Registered 3-2 SV51004 2015.06.12 Supported Operational Modes in Stratix V Devices Supported Operational Modes in Stratix V Devices Table 3-1: Variable Precision DSP Blocks Operational Modes for Stratix V Devices Variable Precision DSP Block Resources 1 variable precision DSP block (1) Operational Mode Supported Instance Pre-adder Support Coefficient Support Input Cascade Support Chainout Support Independen t9x9 multiplicati on 3 No No No No Independen t 16 x 16 multiplicati on 2 Yes Yes Yes No Independen t 18 x 18 partial multiplicati on (32-bit) 2 Yes Yes Yes No Independen t 18 x 18 multiplicati on 1 Yes Yes Yes No Independen t 27 x 27 multiplicati on 1 Yes Yes Yes Yes Independen t 36 x 18 multiplicati on 1 No Yes No Yes Two 18 x 18 multiplier adder 1 Yes Yes Yes Yes Two 16 x 16 multiplier adder 1 Yes Yes Yes Yes Sum of 2 square 1 Yes(1) No No Yes 18 x 18 multiplicati on summed with 36-bit input 1 No No No Yes The pre-adder feature for this mode is automatically enabled. Altera Corporation Variable Precision DSP Blocks in Stratix V Devices Send Feedback SV51004 2015.06.12 3-3 Supported Operational Modes in Stratix V Devices Variable Precision DSP Block Resources Operational Mode Supported Instance Pre-adder Support Coefficient Support Input Cascade Support Chainout Support Independen t 18 x 18 multiplicati on 3 No No No No Independen t 36 x 36 multiplicati on 1 No No No No Complex 18 x 18 multiplicati on 1 Yes Yes Yes Yes Four 18 x 18 multiplier adder 1 Yes Yes Yes No Two 27 x 27 multiplier adder 1 Yes Yes Yes No Two 18 x 36 multiplier adder 1 No Yes No No 3 variable precision DSP blocks Complex 18 x 25 multiplicati on 1 Yes(1) No No No 4 variable precision DSP blocks Complex 27 x 27 multiplicati on 1 Yes Yes Yes No 2 variable precision DSP blocks Variable Precision DSP Blocks in Stratix V Devices Send Feedback Altera Corporation 3-4 SV51004 2015.06.12 Resources Resources Table 3-2: Number of Multipliers in Stratix V Devices The table lists the variable-precision DSP resources by bit precision for each Stratix V device. Variant Member Variable Code precisio n DSP Block Stratix V GX Stratix V GT Stratix V GS Stratix V E Altera Corporation Independent Input and Output 18 x 18 Multiplications Operator 9x9 16 x 16 18 x 18 27 x 27 36 x 18 Multipli er Multipli er Multipli Multiplier Multiplier er with 32-bit Resoluti on 18 x 18 Multipli Multiplier er Adder Summed with Mode 36-bit Input A3 256 768 512 512 256 256 512 256 A4 256 768 512 512 256 256 512 256 A5 256 768 512 512 256 256 512 256 A7 256 768 512 512 256 256 512 256 A9 352 1,056 704 704 352 352 704 352 AB 352 1,056 704 704 352 352 704 352 B5 399 1,197 798 798 399 399 798 399 B6 399 1,197 798 798 399 399 798 399 B9 352 1,056 704 704 352 352 704 352 BB 352 1,056 704 704 352 352 704 352 C5 256 768 512 512 256 256 512 256 C7 256 768 512 512 256 256 512 256 D3 600 1,800 1,200 1,200 600 600 1,200 600 D4 1,044 3,132 2,088 2,088 1,044 1,044 2,088 1,044 D5 1,590 4,770 3,180 3,180 1,590 1,590 3,180 1,590 D6 1,775 5,325 3,550 3,550 1,775 1,775 3,550 1,775 D8 1,963 5,889 3,926 3,926 1,963 1,963 3,926 1,963 E9 352 1,056 704 704 352 352 704 352 EB 352 1,056 704 704 352 352 704 352 Variable Precision DSP Blocks in Stratix V Devices Send Feedback SV51004 2015.06.12 Design Considerations 3-5 Design Considerations You should consider the following elements in your design: • • • • Operational modes Internal coefficient and pre-adder Accumulator Chainout adder Operational Modes The Quartus II software includes megafunctions that you can use to control the operation mode of the multipliers. After entering the parameter settings with the MegaWizard Plug-In Manager, the Quartus II software automatically configures the variable precision DSP block. Altera provides two methods for implementing various modes of the Stratix V variable precision DSP block in a design—using the Quartus II DSP megafunction and HDL inferring. The following Quartus II megafunctions are supported for the Stratix V variable precision DSP blocks implementation: • LPM_MULT • ALTERA_MULT_ADD • ALTMULT_COMPLEX Related Information • • • • Introduction to Altera IP Cores Integer Arithmetic IP Cores User Guide Floating-Point IP Cores User Guide Quartus II Software Help Internal Coefficient and Pre-Adder Mode Stratix V 18-bit The coefficient feature must be enabled when the pre-adder feature is enabled. 27-bit The coefficient feature and pre-adder feature can be used independently. With pre-adder enabled: • If the multiplicand input comes from dynamic input due to input limitations—the input data width is restricted to 22 bits. • If the multiplicand input comes from the internal coefficients—the data width of the multiplicand is 27 bits. Note: When you enable the pre-adder feature, all input data must have the same clock setting. Variable Precision DSP Blocks in Stratix V Devices Send Feedback Altera Corporation 3-6 SV51004 2015.06.12 Accumulator Accumulator The accumulator feature is applicable to the following modes: • • • • • One sum of two 18 x 18 multipliers 27 x 27 independent multiplier 36 x 18 independent multiplier 18 x 18 multiplication summed with 36-bit input mode Sum of square mode Chainout Adder You can use the output chaining path to add results from other DSP blocks. Block Architecture The Stratix V variable precision DSP block consists of the following elements: • • • • • • • Altera Corporation Input register bank Pre-adder Internal coefficient Multipliers Accumulator and chainout adder Systolic registers Output register bank Variable Precision DSP Blocks in Stratix V Devices Send Feedback SV51004 2015.06.12 Block Architecture 3-7 Figure 3-1: Variable Precision DSP Block Architecture in 18 x 18 Mode for Stratix V Devices CLK[2..0] ENA[2..0] scanin [17..0] chainin[63..0] ACLR[1..0] ACCUMULATE LOADCONST NEGATE SUB dataa_0[17..0] 18 +/- 18 Systolic Registers x +/- Input Register Bank COEFSELA[2..0] Internal Coefficient Multiplier +/- Pre-Adder datab_1[17..0] dataa_1[17..0] 18 + Chainout adder/ accumulator x +/- 18 +/- Output Register Bank datab_0[17..0] Constant Systolic Register Multplier Pre-Adder 64 Result[65..0] Adder COEFSELB[2..0] Internal Coefficient chainout[63..0] scanout[17..0] Variable Precision DSP Blocks in Stratix V Devices Send Feedback Altera Corporation 3-8 SV51004 2015.06.12 Input Register Bank Figure 3-2: Variable Precision DSP Block Architecture in 27 x 27 Mode for Stratix V Devices CLK[2..0] ENA[2..0] scanin [26..0] chainin[63..0] ACLR[1..0] ACCUMULATE LOADCONST NEGATE datac_0[24..0] 27 25 COEFSELA[2..0] +/x +/Internal Coefficient + Chainout adder/ accumulator Output Register Bank dataa_0[26..0] 27 Input Register Bank datab_0[26..0] Constant Multiplier Pre-Adder 64 Result[65..0] scanout[26..0] chainout[63..0] Input Register Bank The input register bank consists of data, dynamic control signals, and two sets of delay registers. All the registers in the DSP blocks are positive-edge triggered and cleared on power up. Each multiplier operand can feed an input register or a multiplier directly, bypassing the input registers. The following variable precision DSP block signals control the input registers within the variable precision DSP block: • CLK[2..0] • ENA[2..0] • ACLR[0] In 18 x 18 mode, you can use the delay registers to balance the latency requirements when you use both the input cascade and chainout features. One feature of the input register bank is to support a tap delay line; therefore, you can drive the top leg of the multiplier input (B) from general routing or from the cascade chain, as shown in the following figures. The Stratix V variable precision DSP block supports 18-bit and 27-bit input cascading. Altera Corporation Variable Precision DSP Blocks in Stratix V Devices Send Feedback SV51004 2015.06.12 Input Register Bank 3-9 Figure 3-3: Input Register of a Variable Precision DSP Block in 18 x 18 Mode for Stratix V Devices The figures show the data registers only. Registers for the control signals are not shown. CLK[2..0] ENA[2..0] scanin[17..0] ACLR[0] datab_0[17..0] dataa_0[17..0] Delay registers datab_1[17..0] dataa_1[17..0] Delay registers scanout[17..0] Variable Precision DSP Blocks in Stratix V Devices Send Feedback Altera Corporation 3-10 SV51004 2015.06.12 Pre-Adder Figure 3-4: Input Register of a Variable Precision DSP Block in 27x 27 Mode for Stratix V Devices The figures show the data registers only. Registers for the control signals are not shown. CLK[2..0] ENA[2..0] scanin[26..0] ACLR[0] datab_0[26..0] dataa_0[26..0] datac_0[24..0] scanout[26..0] Pre-Adder Stratix V Devices The pre-adder supports both addition and subtraction, which you must choose during compilation time. Each variable precision DSP block has two 18-bit pre-adders. You can configure these pre-adders in the following configurations: • Two independent 18-bit adders for 18-bit applications • One 26-bit adder for 27-bit applications Internal Coefficient The Stratix V variable precision DSP block has the flexibility of selecting the multiplicand from either the dynamic input or the internal coefficient. The internal coefficient can support up to eight constant coefficients for the multiplicands in 18-bit and 27-bit modes. When you enable the internal coefficient feature, COEFSELA/COEFSELB are used to control the selection of the coefficient multiplexer. Altera Corporation Variable Precision DSP Blocks in Stratix V Devices Send Feedback SV51004 2015.06.12 Multipliers 3-11 Multipliers A single variable precision DSP block can perform many multiplications in parallel, depending on the data width of the multiplier. There are two multipliers (upper multiplier and bottom multiplier) per variable precision DSP block. You can configure these two multipliers in several operational modes: • One 27 x 27 multiplier • Two 18 x 18 multipliers • Three 9 x 9 multipliers Related Information Operational Mode Descriptions on page 3-12 Provides more information about the operational modes of the multipliers. Accumulator and Chainout Adder The Stratix V variable precision DSP block supports a 64-bit accumulator and a 64-bit adder. For Stratix V devices, you can use the 64-bit adder as full adder. The following signals can dynamically control the function of the accumulator: • NEGATE • LOADCONST • ACCUMULATE Table 3-3: Accumulator Functions and Dynamic Control Signals for 64-Bit Accumulator in Stratix V Devices Function Description NEGATE LOADCONST ACCUMULATE Zeroing Disables the accumulator. 0 0 0 Preload Loads an initial value to the accumulator. Only one bit of the 64-bit preload value can be “1”. It can be used as rounding the DSP result to any position of the 64-bit result. 0 1 0 Accumulation Adds the current result to the previous accumulate result. 0 0 1 Decimation This function takes the current result, converts it into two’s complement, and adds it to the previous result. 1 0 1 Variable Precision DSP Blocks in Stratix V Devices Send Feedback Altera Corporation 3-12 SV51004 2015.06.12 Systolic Registers Systolic Registers There are two systolic registers per variable precision DSP block. If the variable precision DSP block is not configured in systolic FIR mode, both systolic registers are bypassed. The first systolic register has two 18-bit registers that are used to register the upper multiplier’s two 18-bit inputs. You must clock these registers with the same clock source as the output register bank. The second set of systolic registers are used to delay the chainout output to the next variable precision DSP block. Output Register Bank The positive edge of the clock signal triggers the 64-bit bypassable output register bank and is cleared after power up. The following variable precision DSP block signals control the output register per variable precision DSP block: • CLK[2..0] • ENA[2..0] • ACLR[1] Operational Mode Descriptions This section describes how you can configure an Stratix V variable precision DSP block to efficiently support the following operational modes: • • • • • • Independent Multiplier Mode Independent Complex Multiplier Mode Multiplier Adder Sum Mode Sum of Square Mode 18 x 18 Multiplication Summed with 36-Bit Input Mode Systolic FIR Mode Independent Multiplier Mode In independent input and output multiplier mode, the variable precision DSP blocks perform individual multiplication operations for general purpose multipliers. You can configure each variable precision DSP block multiplier for 9-, 16-, 18-, 27-Bit, or 36 x 18 multiplication. For some operational modes, the unused inputs require zero padding. Table 3-4: Variable Precision DSP Block Independent Multiplier Mode Configurations Altera Corporation Configuration Multipliers per block 9x9 3 16 x 16 2 18 x 18 (partial) 2 Variable Precision DSP Blocks in Stratix V Devices Send Feedback SV51004 2015.06.12 9 x 9 Independent Multiplier Configuration Multipliers per block 18 x 18 1 27 x 27 1 36 x 18 1 3-13 9 x 9 Independent Multiplier Figure 3-5: Three 9 x 9 Independent Multiplier Mode per Variable Precision DSP Block for Stratix V Devices Three pairs of data are packed into the ax and ay ports; result contains three 18-bit products. Variable-Precision DSP Block Multiplier Input Register Bank 27 ax[x2, x1, x0] x Output Register Bank 27 ay[y2, y1, y0] 54 Result[53..0] (p2, p1, p0) 18 x 18 Independent Multiplier Figure 3-6: One 18 x 18 Independent Multiplier Mode with One Variable Precision DSP Block for Stratix V Devices datab_0[17..0] 18 18 x Output Register Bank dataa_0[17..0] Input Register Bank Multiplier 36 result[35..0] Variable Precision DSP Block Variable Precision DSP Blocks in Stratix V Devices Send Feedback Altera Corporation 3-14 SV51004 2015.06.12 18 x 18 Independent Multiplier Figure 3-7: Three 18 x 18 Independent Multiplier Mode with Two Variable Precision DSP Blocks for Stratix V Devices Multiplier dataa_0[17..0] 18 x datab_2[17..0] dataa_2[17..0] Multiplier 18 36 Output Register Bank 18 Input Register Bank datab_0[17..0] 18 result_0[35..0] result_2[17..0] x 18 Variable Precision DSP Block 1 Multiplier x 18 Input Register Bank dataa_2[17..0] 18 datab_1[17..0] dataa_1[17..0] 18 18 Multiplier 18 Output Register Bank datab_2[17..0] 36 result_2[35..18] result_1[35..0] x Variable Precision DSP Block 2 Altera Corporation Variable Precision DSP Blocks in Stratix V Devices Send Feedback SV51004 2015.06.12 3-15 16 x 16 Independent Multiplier or 18 x 18 Independent Partial Multiplier 16 x 16 Independent Multiplier or 18 x 18 Independent Partial Multiplier Figure 3-8: Two 16 x 16 Independent Multiplier Mode or Two 18 x 18 Independent Partial Multiplier Mode for Stratix V Devices In this figure, the inputs for 16-bit independent multiplier mode are data[15..0]. The unused input bits require padding with zero. For two independent 18 x 18 partial multiplier mode, only 32-bit LSB result for each multiplication operation is routed to the output. Multiplier datab_0[ ] x result_0[ ] Output Register Bank datab_1[ ] Input Register Bank dataa_0[ ] Multiplier x result_1[ ] dataa_1[ ] Variable Precision DSP Block 27 x 27 Independent Multiplier Figure 3-9: One 27 x 27 Independent Multiplier Mode per Variable Precision DSP Block for Stratix V Devices In this mode, the result can be up to 64 bits when combined with a chainout adder or accumulator. Variable-Precision DSP Block Multiplier Variable Precision DSP Blocks in Stratix V Devices Send Feedback x Output Register Bank 27 dataa_a0[26..0] Input Register Bank 27 dataa_b0[26..0] 54 Result[53..0] Altera Corporation 3-16 SV51004 2015.06.12 36 x 18 Independent Multiplier 36 x 18 Independent Multiplier Figure 3-10: One 36 x 18 Independent Multiplier Mode for Stratix V Devices Multiplier x 18 Input Register Bank dataa_0[17..0] 18 + Multiplier datab_0[17..0] dataa_0[35..18] 18 18 Output Register Bank datab_0[17..0] 54 result[53..0] x Variable Precision DSP Block 36-Bit Independent Multiplier You can efficiently construct an individual 36-bit multiplier with two adjacent variable precision DSP blocks. The 36 x 36 multiplication consists of four 18 x 18 multipliers, as shown in Figure 3-11. The 36-bit multiplier is useful for applications requiring more than 18-bit precision; for example, for the mantissa multiplication portion of very high precision fixed-point arithmetic applications. Altera Corporation Variable Precision DSP Blocks in Stratix V Devices Send Feedback SV51004 2015.06.12 Independent Complex Multiplier Mode 3-17 Figure 3-11: 36-Bit Independent Multiplier Mode with Two Variable Precision DSP Blocks for Stratix V Devices Multiplier datab_0[17..0] dataa_0[35..18] Adder x 18 Input Register Bank dataa_0[17..0] 18 + Multiplier 18 Output Register Bank datab_0[17..0] 18 result[17..0] x 18 Variable Precision DSP Block 1 Multiplier datab_0[35..18] dataa_0[35..18] x 18 18 Adder + Multiplier Output Register Bank dataa_0[17..0] Input Register Bank datab_0[35..18] 18 54 result[71..18] xx 18 Variable Precision DSP Block 2 Independent Complex Multiplier Mode The Stratix V variable precision DSP block provides the means for a complex multiplication. Figure 3-12: Sample of Complex Multiplication Equation Variable Precision DSP Blocks in Stratix V Devices Send Feedback Altera Corporation 3-18 SV51004 2015.06.12 18 x 18 Complex Multiplier The Stratix V variable precision DSP block can support the following: • one 18 x 18 complex multiplier • one 18 x 25 complex multiplier • one 27 x 27 complex multiplier 18 x 18 Complex Multiplier For 18 x 18 complex multiplication mode, you require two variable precision DSP blocks to perform this multiplication. You can implement the imaginary part [(a × d) + (b × c)] in the first variable precision DSP block, and you can implement the real part [(a × c) – (b × d)] in the second variable precision DSP block. Figure 3-13: 18 x 18 Complex Multiplier with Two Variable Precision DSP Blocks for Stratix V Devices Multiplier x 18 + Multiplier Output Register Bank 18 37 Output Register Bank d a Adder 18 Input Register Bank c b 37 Imaginary part (ad + bc) x 18 Variable Precision DSP Block 1 Multiplier b c a 18 Adder x 18 18 Input Register Bank d Multiplier x Real part (ac - bd ) 18 Variable Precision DSP Block 2 18 x 25 Complex Multiplier Stratix V devices support an individual 18 x 25 complex multiplication mode. Altera Corporation Variable Precision DSP Blocks in Stratix V Devices Send Feedback SV51004 2015.06.12 27 x 27 Complex Multiplier 3-19 A 27 x 27 multiplier allows you to implement an individual 18 x 25 complex multiplication mode with three variable precision DSP blocks only. The pre-adder feature is automatically enabled for you to implement an individual 18 x 25 complex multiplication mode efficiently. You can implement an 18 x 25 complex multiplication with three variable precision DSP blocks, as shown in Figure 3-14 Figure 3-14: 18 x 25 Complex Multiplication Equation Figure 3-15: 18 x 25 Complex Multiplier with Three Variable Precision DSP Blocks for Stratix V Devices Multiplier d[17..0] 25 Pre-adder & Coefficient Select a[24..0] x 25 Input Register Bank b[24..0] x 18 Variable Precision DSP Block 1 Multiplier x + Output Register Bank b[24..0] 18 Pre-adder & Coefficient Select c[17..0] Input Register Bank d[17..0] 44 Output Register Bank Chainout Adder 18 44 [(c + d) b + (a - b) d] 25 Variable Precision DSP Block 2 Multiplier a[24..0] 18 Pre-adder & Coefficient Select c[17..0] Chainout Adder 18 Input Register Bank d[17..0] x + [(c - d) a + (a - b) d] 25 Variable Precision DSP Block 3 27 x 27 Complex Multiplier Stratix V devices support an individual 27 x 27 complex multiplication mode. You require four variable precision DSP blocks to implement an individual 27 x 27 complex multiplication mode. Variable Precision DSP Blocks in Stratix V Devices Send Feedback Altera Corporation 3-20 SV51004 2015.06.12 27 x 27 Complex Multiplier You can implement the imaginary part [(a x d) + (b x c)] in the first and second variable precision DSP blocks, and you can implement the real part [(a x c) - (b x d)] in the third and fourth variable precision DSP blocks. You can achieve the difference of two 27 x 27 multiplications by enabling the NEGATE control signal in the fourth variable precision DSP block. Figure 3-16: 27 x 27 Complex Multiplier with Four Variable Precision Blocks for Stratix V Devices Multiplier a[26..0] 27 27 Input Register Bank d[26..0] x Variable Precision DSP Block 1 b[26..0] 27 Chainout Adder Input Register Bank c[26..0] x + Output Register Bank Multiplier 27 55 [(a × d) + (b × c)] Variable Precision DSP Block 2 Multiplier a[26..0] 27 Input Register Bank c[26..0] 27 x Variable Precision DSP Block 3 27 Input Register Bank b[26..0] 27 Chainout Adder x + Output Register Bank Multiplier d[26..0] 55 [(a × c) - (b × d)] Variable Precision DSP Block 4 Altera Corporation Variable Precision DSP Blocks in Stratix V Devices Send Feedback SV51004 2015.06.12 Multiplier Adder Sum Mode 3-21 Multiplier Adder Sum Mode Table 3-5: Variable Precision DSP Block Multiplier Adder Sum Mode Configurations for Stratix V Devices Mode Configuration Number of DSP Blocks Required 16 x 16 1 18 x 18 1 27 x 27 2 18 x 36 2 18 x 18 2 Two-multiplier Adder Sum Four-multiplier Adder Sum One Sum of Two 18 x 18 Multipliers or Two 16 x 16 Multipliers Figure 3-17: One Sum of Two 18 x 18 Multipliers or Two 16 x 16 Multipliers with One Variable Precision DSP Block for Stratix V Devices In this figure, for 18-bit multiplier adder sum mode, the input data width is 18 bits and the output data width is 37 bits. For 16-bit multiplier adder sum mode, the input data width is 16 bits and the unused input bit requires padding with zeroes. The output data width is 33 bits. SUB Multiplier datab_0[ ] x +/Multiplier Output Register Bank datab_1[ ] Input Register Bank dataa_0[ ] Result[] x dataa_1[ ] Variable Precision DSP Blocks in Stratix V Devices Send Feedback Adder Altera Corporation 3-22 SV51004 2015.06.12 One Sum of Two 27 x 27 Multipliers One Sum of Two 27 x 27 Multipliers Figure 3-18: One Sum of Two 27 x 27 Multipliers with Two Variable Precision DSP Blocks for Stratix V Devices datab_0[26..0] dataa_0[26..0] 27 27 Input Register Bank Multiplier x Chainout[53..0] Variable Precision DSP Block 1 dataa_1[26..0] 27 27 x Chainout adder +/- + Output Register Bank datab_1[26..0] Input Register Bank Multiplier 55 Result[54..0] NEGATE Variable Precision DSP Block 2 Altera Corporation Variable Precision DSP Blocks in Stratix V Devices Send Feedback SV51004 2015.06.12 One Sum of Two 36 x 18 Multipliers 3-23 One Sum of Two 36 x 18 Multipliers Figure 3-19: One Sum of Two 36 x 18 Multipliers with Two Variable Precision DSP Blocks for Stratix V Devices Multiplier dataa_0[17..0] datab_0[17..0] dataa_0[35..18] 18 18 18 Input Register Bank datab_0[17..0] x 18 Variable Precision DSP Block 1 Multiplier datab_1[17..0] dataa_1[17..0] 18 Chainout Adder 18 datab_1[17..0] dataa_1[35..18] 18 x Output Register Bank Input Register Bank + +/- 55 result[54..0] 18 NEGATE Variable Precision DSP Block 2 Variable Precision DSP Blocks in Stratix V Devices Send Feedback Altera Corporation 3-24 SV51004 2015.06.12 One Sum of Four 18 x 18 Multipliers One Sum of Four 18 x 18 Multipliers Figure 3-20: One Sum of Four 18 x 18 Multipliers with Two Variable Precision DSP Blocks for Stratix V Devices SUB Multiplier 18 datab_0[17..0] x 18 18 Input Register Bank dataa_0[17..0] +/Multiplier datab_1[17..0] x 18 Adder dataa_1[17..0] Variable Precision DSP Block 1 SUB Multiplier 18 datab_2[17..0] x Chainout adder 18 Input Register Bank dataa_2[17..0] +/Multiplier +/- + Output Register Bank 18 38 result[37..0] datab_3[17..0] x 18 dataa_3[17..0] Adder NEGATE Variable Precision DSP Block 2 Sum of Square Mode The Stratix V variable precision DSP block can implement one sum of square mode. Figure 3-21: One Sum of Square Mode Equation Altera Corporation Variable Precision DSP Blocks in Stratix V Devices Send Feedback SV51004 2015.06.12 3-25 18 x 18 Multiplication Summed with 36-Bit Input Mode You can feed the four 18-bit inputs into the pre-adder block to convert b and d input as two’s complement numbers to perform subtraction, if required. You can feed each 18-bit pre-adder block output into both multiplicand and multiplier inputs of an 18 x 18 multiplier to generate a square result. Figure 3-22: One Sum of Square Mode in a Variable Precision DSP Block for Stratix V Devices SUB Pre-Adder Multiplier 18 d[17..0] +/- 18 c[17..0] x 18 a[17..0] 18 +/Pre-Adder Multiplier +/- x Output Register Bank b[17..0] Input Register Bank Adder 37 result[36..0] Variable Precision DSP Block 18 x 18 Multiplication Summed with 36-Bit Input Mode Stratix V variable precision DSP blocks support one 18 x 18 multiplication summed to a 36-bit input. Use the upper multiplier to provide the input for an 18 x 18 multiplication, while the bottom multiplier is bypassed. The data1[17..0] and data1[35..18] signals are concatenated to produce a 36-bit input. Figure 3-23: One 18 x 18 Multiplication Summed with 36-Bit Input Mode for Stratix V Devices SUB Multiplier datab_0[17..0] 18 data_1[17..0] data_1[35..18] 18 37 Result[36..0] 18 Variable Precision DSP Block Variable Precision DSP Blocks in Stratix V Devices Send Feedback +/- Output Register Bank dataa_0[17..0] Input Register Bank x 18 Adder Altera Corporation 3-26 SV51004 2015.06.12 Systolic FIR Mode Systolic FIR Mode Stratix V variable precision DSP blocks support the following systolic FIR structures: • 18-bit • 27-bit In systolic FIR mode, the input of the multiplier can come from three different sets of sources: • Two dynamic inputs • One dynamic input and one coefficient input • One coefficient input and one pre-adder output 18-Bit Systolic FIR Mode In 18-bit systolic FIR mode, the adders are configured as dual 44-bit adders, thereby giving 8 bits of overhead when using an 18-bit operation (36-bit products). This allows a total of 256 multiplier products. Figure 3-24: 18-Bit Systolic FIR Mode with Two Dynamic Inputs for Stratix V Devices chainin[43..0] 44 COEFSELA[2..0] datab_1[17..0] dataa_1[17..0] COEFSELB[2..0] +/- 18 Systolic Registers x +/- 3 18 18 Internal Coefficient Adder Multiplier Pre-Adder + Chainout adder/ accumulator Output Register Bank dataa_0[17..0] 18 Input Register Bank datab_0[17..0] Systolic Register Multiplier Pre-Adder x +/- 44 Result[43..0] 3 Internal Coefficient 18-bit Systolic FIR 44 chainout[43..0] 27-Bit Systolic FIR Mode In 27-bit systolic FIR mode, the chainout adder or accumulator is configured for a 64-bit operation, providing 10 bits of overhead when using a 27-bit data (54-bit products). This allows a total of 1,024 multiplier products. The 27-bit systolic FIR mode allows the implementation of one stage systolic filter per DSP block. Altera Corporation Variable Precision DSP Blocks in Stratix V Devices Send Feedback SV51004 2015.06.12 3-27 Variable Precision DSP Block Control Signals Figure 3-25: 27-Bit Systolic FIR Mode for Stratix V Devices chainin[63..0] 64 Multiplier Pre-Adder datac_0[24..0] COEFSELA[2..0] +/- 27 25 3 x 27 + Internal Coefficient Chainout adder or accumulator Output Register Bank dataa_0[26..0] Input Register Bank datab_0[26..0] 27 64 chainout[63..0] 27-bit Systolic FIR Variable Precision DSP Block Control Signals The Stratix V variable precision DSP block has a total of 14 dynamic control signal inputs. The variable precision DSP block dynamic signals are user-configurable and can be set to toggle or not at run time. The Stratix V variable precision DSP block supports 18-bit and 27-bit input cascading. Table 3-6: Variable Precision DSP Block Dynamic Signals for Stratix V Devices Signal Name Function Count NEGATE Control the operation of the decimation 1 LOADCONST Preload an initial value to the accumulator 1 ACCUMULATE Enable accumulation 1 SUB This signal has two functions: 1 • Controls add or subtract of the two 18 x 18 multiplier results • Controls dynamic switch between 36 x 36 mode and complex 18 x 18 COEFSELA COEFSELB CLK0 Controls the internal coefficient select multiplexer along with select signals provided through the MSB of each 18-bit data input 2 Variable precision DSP-block-wide clock signals 3 CLK1 CLK2 Variable Precision DSP Blocks in Stratix V Devices Send Feedback Altera Corporation 3-28 SV51004 2015.06.12 Document Revision History Signal Name ENA0 Function Count Variable precision DSP-block-wide clock enable signals 3 Variable precision DSP-block-wide asynchronous clear signals 2 ENA1 ENA2 ACLR0 ACLR1 Total Count per DSP Block 14 Document Revision History Date Version Changes July 2014 2014.07.22 Reinstated input register bank and systolic registers to the block architec‐ ture. June 2014 2014.06.30 • Updated the supported megafunctions from ALTMULT_ADD and ALTMULT _ACCUM to ALTERA_MULT_ADD. • Updated modes applicable to the accumulator May 2013 2013.05.06 • Added link to the known document issues in the Knowledge Base. • Moved all links to the Related Information section of respective topics for easy reference. December 2012 2012.12.28 • • • • • • • • • • • • • Altera Corporation Added "Design Considerations" Updated Figure 3-1 changed Mult_L and Mult_H to Multiplier Updated Figure 3-6 changed Mult_L to Multiplier Updated Figure 3-7 changed Mult_L and Mult_H to Multiplier Updated Figure 3-8 changed Mult_L and Mult_H to Multiplier Updated Figure 3-10 changed Mult_L and Mult_H to Multiplier Updated Figure 3-11 changed Mult_L and Mult_H to Multiplier Updated Figure 3-13 changed Mult_L and Mult_H to Multiplier Updated Figure 3-17 changed Mult_L and Mult_H to Multiplier Updated Figure 3-19 changed 54 to 55 Updated Figure 3-20 changed 19 to 18 and deleted Chainout [38..0] Updated Figure 3-23 changed Mult_L to Multiplier Updated Figure 3-24 changed Mult_L and Mult_H to Multiplier and added 44 • Updated Figure 3-25 added 64 • Reorganized content and updated template. Variable Precision DSP Blocks in Stratix V Devices Send Feedback SV51004 2015.06.12 Document Revision History Date Version 3-29 Changes June 2012 1.4 • • • • November 2011 1.3 • Added Figure 3–21. • Updated Figure 3–1, Figure 3–2, Figure 3–11, Figure 3–12, Figure 3– 14, Figure 3–16, Figure 3–17, Figure 3–18, Figure 3–19, Figure 3–20, and Figure 3–21. • Updated Table 3–1 and Table 3–5. • Updated “Pre-Adder and Coefficient Select”, “Systolic Register”, “Systolic FIR Mode”, and “Software Support” sections. May 2011 1.2 • • • • • • • December 2010 1.1 No changes to the content of this chapter for the Quartus II software 10.1. July 2010 1.0 Initial release. Variable Precision DSP Blocks in Stratix V Devices Send Feedback Added Figure 3–2. Updated Figure 3–7, Figure 3–16, and Figure 3–18. Updated Table 3–1. Updated “Chainout Adder and Accumulator” and “18 x 25 Complex Multiplier” sections. Updated chapter for Quartus II software 11.0 release. Chapter moved to volume 2 for the 11.0 release. Updated Table 3–1, Table 3–2, and Table 3–5. Added Table 3–3. Updated all figures in the chapter. Added Figure 3–3. Updated “Software Support” section. Altera Corporation Clock Networks and PLLs in Stratix V Devices 4 2015.06.12 SV51005 Subscribe Send Feedback This chapter describes the advanced features of hierarchical clock networks and phase-locked loops (PLLs) in Stratix V devices. The Quartus II software enables the PLLs and their features without external devices. Related Information Stratix V Device Handbook: Known Issues Lists the planned updates to the Stratix V Device Handbook chapters. Clock Networks The Stratix V devices contain the following clock networks that are organized into a hierarchical structure: • Global clock (GCLK) networks • Regional clock (RCLK) networks • Periphery clock (PCLK) networks Clock Resources in Stratix V Devices Table 4-1: Clock Resources in Stratix V Devices Clock Resource Device Number of Resources Available Source of Clock Resource 48 single-ended or CLK[0..23][p,n] pins 24 differential Clock input pins All GCLK networks All 16 CLK[0..23][p,n] pins, PLL clock outputs, and logic array RCLK networks All 92 CLK[0..23][p,n] pins, PLL clock outputs, and logic array © 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. www.altera.com 101 Innovation Drive, San Jose, CA 95134 ISO 9001:2008 Registered 4-2 SV51005 2015.06.12 Types of Clock Networks Device Number of Resources Available • Stratix V GS D3 and D4 • Stratix V GX A3 (with 24 transceivers) 210 • Stratix V GS D5 • Stratix V GX A3 (with 36 transceivers), A4, B5, and A6 282 • Stratix V GS D6 and D8 • Stratix V GT C5 and C7 • Stratix V GX A5 and A7 306 • Stratix V E E9 and EB • Stratix V GX A9, AB, B9, and BB 342 Clock Resource PCLK networks Source of Clock Resource DPA clock outputs, PLDtransceiver interface clocks, I/O pins, and logic array For more information about the clock input pins connections, refer to the pin connection guidelines. Related Information • Stratix V E, GS, and GX Device Family Pin Connection Guidelines • Stratix V GT Device Family Pin Connection Guidelines Types of Clock Networks Global Clock Networks Stratix V devices provide GCLKs that can drive throughout the device. The GCLKs serve as low-skew clock sources for functional blocks, such as adaptive logic modules (ALMs), digital signal processing (DSP), embedded memory, and PLLs. Stratix V I/O elements (IOEs) and internal logic can also drive GCLKs to create internally-generated global clocks and other high fan-out control signals, such as synchronous or asynchronous clear and clock enable signals. Altera Corporation Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 Regional Clock Networks 4-3 Figure 4-1: GCLK Networks in Stratix V Devices This figure represents the top view of the silicon die that corresponds to a reverse view of the device package. GCLK[12..15] GCLK[0..3] Q1 Q4 Q2 Q3 GCLK[8..11] GCLK[4..7] Regional Clock Networks RCLK networks are only applicable to the quadrant they drive into. RCLK networks provide the lowest clock insertion delay and skew for logic contained within a single device quadrant. The Stratix V IOEs and internal logic within a given quadrant can also drive RCLKs to create internally generated regional clocks and other high fan-out control signals. Clock Networks and PLLs in Stratix V Devices Send Feedback Altera Corporation 4-4 SV51005 2015.06.12 Periphery Clock Networks Figure 4-2: RCLK Networks in Stratix V Devices This figure represents the top view of the silicon die that corresponds to a reverse view of the device package. RCLK[0..9] RCLK[10..19] RCLK[40..45] RCLK[46..51] RCLK[64..70] RCLK[71..77] Q1 Q2 Q4 Q3 RCLK[85..91] RCLK[78..84] RCLK[58..63] RCLK[52..57] RCLK[30..39] RCLK[20..29] Periphery Clock Networks Depending on the routing direction, Stratix V devices provide vertical PCLKs from the top and bottom periphery, and horizontal PCLKs from the left and right periphery. Clock outputs from the dynamic phase aligner (DPA) block, programmable logic device (PLD)transceiver interface clocks, I/O pins, and internal logic can drive the PCLK networks. PCLKs have higher skew when compared with GCLK and RCLK networks. You can use PCLKs for general purpose routing to drive signals into and out of the Stratix V device. Altera Corporation Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 Periphery Clock Networks 4-5 Figure 4-3: PCLK Networks for Stratix V GS D5 Device, and Stratix V GX A3 (with 36 transceivers) and A4 Devices Horizontal PCLK[13..26] Horizontal PCLK[27..40] Horizontal PCLK[41..53] Vertical PCLK[27..53] Clock Networks and PLLs in Stratix V Devices Send Feedback Vertical PCLK[143..161] Q1 Q2 Q4 Q3 Vertical PCLK[72..90] Horizontal PCLK[0..12] Vertical PCLK[54..71] Vertical PCLK[0..26] Vertical PCLK[162..179] This figure represents the top view of the silicon die that corresponds to a reverse view of the device package. Vertical PCLK[117..142] Horizontal PCLK[92..101] Horizontal PCLK[78..91] Horizontal PCLK[64..77] Horizontal PCLK[54..63] Vertical PCLK[91..116] Altera Corporation 4-6 SV51005 2015.06.12 Periphery Clock Networks Figure 4-4: PCLK Networks for Stratix V GX B5 and B6 Devices Horizontal PCLK[16..33] Horizontal PCLK[34..49] Horizontal PCLK[50..65] Vertical PCLK[21..41] Altera Corporation Vertical PCLK[116..128] Q1 Q2 Q4 Q3 Vertical PCLK[63..75] Horizontal PCLK[0..15] Vertical PCLK[42..62] Vertical PCLK[0..20] Vertical PCLK[129..149] This figure represents the top view of the silicon die that corresponds to a reverse view of the device package. Vertical PCLK[96..115] Horizontal PCLK[116..131] Horizontal PCLK[98..115] Horizontal PCLK[82..97] Horizontal PCLK[66..81] Vertical PCLK[76..95] Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 Periphery Clock Networks 4-7 Figure 4-5: PCLK Networks for Stratix V GT C5 and C7 Devices, and Stratix V GX A5 and A7 Devices Horizontal PCLK[17..32] Horizontal PCLK[33..48] Horizontal PCLK[49..65] Vertical PCLK[26..51] Clock Networks and PLLs in Stratix V Devices Send Feedback Vertical PCLK[139..156] Q1 Q2 Q4 Q3 Vertical PCLK[69..86] Horizontal PCLK[0..16] Vertical PCLK[52..68] Vertical PCLK[0..25] Vertical PCLK[157..173] This figure represents the top view of the silicon die that corresponds to a reverse view of the device package. Vertical PCLK[113..138] Horizontal PCLK[115..131] Horizontal PCLK[99..114] Horizontal PCLK[83..98] Horizontal PCLK[66..82] Vertical PCLK[87..112] Altera Corporation 4-8 SV51005 2015.06.12 Periphery Clock Networks Figure 4-6: PCLK Networks for Stratix V GS D3 and D4 Devices, and Stratix V GX A3 (with 24 transceivers) Device Horizontal PCLK[3..14] Horizontal PCLK[15..24] Horizontal PCLK[25..29] Vertical PCLK[23..45] Altera Corporation Vertical PCLK[118..134] Q1 Q2 Q4 Q3 Vertical PCLK[62..77] Horizontal PCLK[0..2] Vertical PCLK[46..61] Vertical PCLK[0..22] Vertical PCLK[135..149] This figure represents the top view of the silicon die that corresponds to a reverse view of the device package. Vertical PCLK[98..117] Horizontal PCLK[57..59] Horizontal PCLK[45..56] Horizontal PCLK[35..44] Horizontal PCLK[30..34] Vertical PCLK[78..97] Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 Periphery Clock Networks 4-9 Figure 4-7: PCLK Networks for Stratix V GS D6 and D8 Devices Horizontal PCLK[18..35] Horizontal PCLK[36..53] Horizontal PCLK[54..71] Vertical PCLK[24..47] Clock Networks and PLLs in Stratix V Devices Send Feedback Vertical PCLK[121..138] Q1 Q2 Q4 Q3 Vertical PCLK[65..82] Horizontal PCLK[0..17] Vertical PCLK[48..64] Vertical PCLK[0..23] Vertical PCLK[139..155] This figure represents the top view of the silicon die that corresponds to a reverse view of the device package. Vertical PCLK[102..120] Horizontal PCLK[135..152] Horizontal PCLK[113..134] Horizontal PCLK[90..112] Horizontal PCLK[72..89] Vertical PCLK[83..101] Altera Corporation 4-10 SV51005 2015.06.12 Clock Sources Per Quadrant Figure 4-8: PCLK Networks for Stratix V E E9 and EB Devices, and Stratix V GX A9, AB, BB, and B9 Devices Horizontal PCLK[21..42] Horizontal PCLK[43..64] Horizontal PCLK[65..83] Vertical PCLK[26..51] Vertical PCLK[138..154] Q1 Q2 Q4 Q3 Vertical PCLK[71..87] Horizontal PCLK[0..20] Vertical PCLK[52..70] Vertical PCLK[0..25] Vertical PCLK[155..173] This figure represents the top view of the silicon die that corresponds to a reverse view of the device package. Vertical PCLK[113..137] Horizontal PCLK[146..167] Horizontal PCLK[125..146] Horizontal PCLK[103..124] Horizontal PCLK[84..102] Vertical PCLK[88..112] Clock Sources Per Quadrant The Stratix V devices provide 33 section clock (SCLK) networks in each spine clock per quadrant. The SCLK networks can drive six row clocks in each logic array block (LAB) row, nine column I/O clocks, and two core reference clocks. The SCLKs are the clock resources to the core functional blocks, PLLs, and I/O interfaces of the device. A spine clock is another layer of routing between the GCLK, RCLK, and PCLK networks before each clock is connected to the clock routing for each LAB row. The settings for spine clocks are transparent. The Quartus II software automatically routes the spine clock based on the GCLK, RCLK, and PCLK networks. The following figure shows SCLKs driven by the GCLK, RCLK, PCLK, or the PLL feedback clock networks in each spine clock per quadrant. The GCLK, RCLK, PCLK, and PLL feedback clocks share the same routing to the SCLKs. To ensure successful design fitting in the Quartus II software, the total number of clock resources must not exceed the SCLK limits in each region. Altera Corporation Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 Types of Clock Regions 4-11 Figure 4-9: Hierarchical Clock Networks in Each Spine Clock Per Quadrant Clock output from the PLL that drives into the SCLKs. GCLK PLL Feedback Clock There are up to 88 PCLKs that can drive the SCLKs in each spine clock in the largest device. PCLK RCLK 16 5 88 23 SCLK 33 There are up to 23 RCLKs that can drive the SCLKs in each spine clock in the largest device. 9 Column I/O clock: clock that drives the column I/O core registers and I/O interfaces. 2 Core reference clock: clock that feeds into the PLL as the PLL reference clock. 6 Row clock: clock source to the LAB, memory blocks, and row I/O interfaces in the core row. Types of Clock Regions This section describes the types of clock regions in Stratix V devices. Entire Device Clock Region To form the entire device clock region, a source drives a signal in a GCLK network that can be routed through the entire device. The source is not necessarily a clock signal. This clock region has the maximum insertion delay when compared with other clock regions, but allows the signal to reach every destination in the device. It is a good option for routing global reset and clear signals or routing clocks throughout the device. Regional Clock Region To form a regional clock region, a source drives a signal in a RCLK network that you can route throughout one quadrant of the device. This clock region provides the lowest skew in a quadrant. It is a good option if all the destinations are in a single quadrant. Dual-Regional Clock Region To form a dual-regional clock region, a single source (a clock pin or PLL output) generates a dual-regional clock by driving two RCLK networks (one from each quadrant). This technique allows destinations across two adjacent device quadrants to use the same low-skew clock. The routing of this signal on an entire side has approximately the same delay as a RCLK region. Internal logic can also drive a dual-regional clock network. Clock Networks and PLLs in Stratix V Devices Send Feedback Altera Corporation 4-12 SV51005 2015.06.12 Clock Network Sources Figure 4-10: Dual-Regional Clock Region for Stratix V Devices This figure represents the top view of the silicon die that corresponds to a reverse view of the device package. Clock pins or PLL outputs can drive half of the device to create dual-regional clocking regions for improved interface timing. Clock Network Sources In Stratix V devices, clock input pins, PLL outputs, high-speed serial interface (HSSI) outputs, DPA outputs, and internal logic can drive the GCLK, RCLK, and PCLK networks. Dedicated Clock Input Pins You can use the dedicated clock input pins (CLK[0..23][p,n]) for high fan-out control signals, such as asynchronous clears, presets, and clock enables, for protocol signals through the GCLK or RCLK networks. CLK pins can be either differential clocks or single-ended clocks. When you use the CLK pins as singleended clock inputs, only the CLK<#>p pins have dedicated connections to the PLL. The CLK<#>n pins drive the PLLs over global or regional clock networks and do not have dedicated routing paths to the PLLs. Driving a PLL over a global or regional clock can lead to higher jitter at the PLL input, and the PLL will not be able to fully compensate for the global or regional clock. Altera recommends using the CLK<#>p pins for optimal performance when you use single-ended clock inputs to drive the PLLs. Internal Logic You can drive each GCLK, RCLK, and horizontal PCLK network using LAB-routing and row clock to enable internal logic to drive a high fan-out, low-skew signal. Note: Internally-generated GCLKs, RCLKs, or PCLKs cannot drive the Stratix V PLLs. The input clock to the PLL has to come from dedicated clock input pins, PLL-fed GCLKs, or PLL-fed RCLKs. Altera Corporation Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 DPA Outputs 4-13 DPA Outputs Every DPA generates one PCLK to the core. Related Information High-Speed I/O Design Guidelines for Stratix V Devices on page 6-8 Provides more information about DPA and HSSI outputs. HSSI Outputs Every three HSSI outputs generate a group of six PCLKs to the core. Related Information High-Speed I/O Design Guidelines for Stratix V Devices on page 6-8 Provides more information about DPA and HSSI outputs. PLL Clock Outputs The Stratix V PLL clock outputs can drive both GCLK and RCLK networks. Clock Input Pin Connections to GCLK and RCLK Networks Table 4-2: Dedicated Clock Input Pin Connectivity to the GCLK Networks for Stratix V Devices Clock Resources CLK (p/n Pins) GCLK[0,1,2,3] CLK[0,1,2,3,20,21,22,23] GCLK[4,5,6,7] CLK[4,5,6,7] GCLK[8,9,10,11] CLK[8,9,10,11,12,13,14,15] GCLK[12,13,14,15] CLK[16,17,18,19] Table 4-3: Dedicated Clock Input Pin Connectivity to the RCLK Networks for Stratix V Devices A given clock input pin can drive two adjacent RCLK networks to create a dual-regional clock network. Clock Resources CLK (p/n Pins) RCLK[58,59,60,61,62,63,64,68,85,89] CLK[0] RCLK[58,59,60,61,62,63,65,69,86,90] CLK[1] RCLK[58,59,60,61,62,63,66,70,87,91] CLK[2] RCLK[58,59,60,61,62,63,67,88] CLK[3] RCLK[20,24,28,30,34,38] CLK[4] RCLK[21,25,29,31,35,39] CLK[5] RCLK[22,26,32,36] CLK[6] RCLK[23,27,33,37] CLK[7] RCLK[52,53,54,55,56,57,71,75,78,82] CLK[8] RCLK[52,53,54,55,56,57,72,76,79,83] CLK[9] RCLK[52,53,54,55,56,57,73,77,80,84] CLK[10] Clock Networks and PLLs in Stratix V Devices Send Feedback Altera Corporation 4-14 SV51005 2015.06.12 Clock Output Connections Clock Resources CLK (p/n Pins) RCLK[52,53,54,55,56,57,74,81] CLK[11] RCLK[46,47,48,49,50,51,71,75,78,82] CLK[12] RCLK[46,47,48,49,50,51,72,76,79,83] CLK[13] RCLK[46,47,48,49,50,51,73,77,80,84] CLK[14] RCLK[46,47,48,49,50,51,74,81] CLK[15] RCLK[0,4,8,10,14,18] CLK[16] RCLK[1,5,9,11,15,19] CLK[17] RCLK[2,6,12,16] CLK[18] RCLK[3,7,13,17] CLK[19] RCLK[40,41,42,43,44,45,64,68,85,89] CLK[20] RCLK[40,41,42,43,44,45,65,69,86,90] CLK[21] RCLK[40,41,42,43,44,45,66,70,87,91] CLK[22] RCLK[40,41,42,43,44,45,67,88] CLK[23] Clock Output Connections For Stratix V PLL connectivity to GCLK and RCLK networks, refer to the PLL connectivity to GCLK and RCLK networks spreadsheet. Related Information PLL Connectivity to GCLK and RCLK Networks for Stratix V Devices Clock Control Block Every GCLK, RCLK, and PCLK network has its own clock control block. The control block provides the following features: • Clock source selection (dynamic selection available only for GCLKs) • Global clock multiplexing • Clock power down (static or dynamic clock enable or disable available only for GCLKs and RCLKs) Pin Mapping in Stratix V Devices Table 4-4: Mapping Between the Input Clock Pins, PLL Counter Outputs, and Clock Control Block Inputs Clock Fed by inclk[0] and inclk[1] Any of the four dedicated clock pins on the same side of the Stratix V device. inclk[2] PLL counters C0 and C2 from the two center PLLs on the same side of the Stratix V devices. inclk[3] PLL counters C1 and C3 from the two center PLLs on the same side of the Stratix V devices. Altera Corporation Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 GCLK Control Block 4-15 Note: You cannot use corner PLLs for dynamic clock control selection. GCLK Control Block You can select the clock source for the GCLK select block either statically or dynamically using internal logic to drive the multiplexer-select inputs. When selecting the clock source dynamically, you can select either PLL outputs (such as C0 or C1), or a combination of clock pins or PLL outputs. Figure 4-11: GCLK Control Block for Stratix V Devices The CLKn pin is not a dedicated clock input when used as a single-ended PLL clock input. The CLKn pin can drive the PLL using the GCLK. CLKp Pins PLL Counter Outputs When the device is in user mode, you can dynamically control the clock select signals through internal logic. 2 2 CLKSELECT[1..0] 2 CLKn Pin Internal Logic Static Clock Select This multiplexer supports user-controllable dynamic switching Enable/ Disable GCLK Internal Logic When the device is in user mode, you can only set the clock select signals through a configuration file (SRAM object file [.sof] or programmer object file [.pof]) because the signals cannot be controlled dynamically. RCLK Control Block You can only control the clock source selection for the RCLK select block statically using configuration bit settings in the configuration file (.sof or .pof) generated by the Quartus II software. Figure 4-12: RCLK Control Block for Stratix V Devices CLKp CLKn Pin Pin PLL Counter Outputs 2 Internal Logic Static Clock Select Enable/ Disable The CLKn pin is not a dedicated clock input when used as a single-ended PLL clock input. The CLKn pin can drive the PLL using the RCLK. When the device is in user mode, you can only set the clock select signals through a configuration file (.sof or .pof); they cannot be controlled dynamically. Internal Logic RCLK Clock Networks and PLLs in Stratix V Devices Send Feedback Altera Corporation 4-16 SV51005 2015.06.12 PCLK Control Block You can set the input clock sources and the clkena signals for the GCLK and RCLK network multiplexers through the Quartus II software using the ALTCLKCTRL megafunction. Note: When selecting the clock source dynamically using the ALTCLKCTRL megafunction, choose the inputs using the CLKSELECT[0..1] signal. The inputs from the clock pins feed the inclk[0..1] ports of the multiplexer, and the PLL outputs feed the inclk[2..3] ports. Related Information Clock Control Block (ALTCLKCTRL) IP Core User Guide Provides more information about ALTCLKCTRL IP core. PCLK Control Block To drive the HSSI horizontal PCLK control block, select the HSSI output or internal logic . To drive the DPA horizontal PCLK, select the DPA clock output or internal logic. You can only use the DPA clock output to generate the vertical PCLK to the core. Figure 4-13: Horizontal PCLK Control Block for Stratix V Devices HSSI Output or DPA Clock Output Internal Logic Static Clock Select Horizontal PCLK External PLL Clock Output Control Block You can enable or disable the dedicated external clock output pins using the ALTCLKCTRL megafunc‐ tion. Altera Corporation Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 Clock Power Down 4-17 Figure 4-14: External PLL Output Clock Control Block for Stratix V Devices PLL Counter Outputs 18 Static Clock Select Enable/ Disable The clock control block feeds to a multiplexer within IOE the FPLL_<#>_CLKOUT pin’s IOE. The Internal FPLL_<#>_CLKOUT pin is a dual-purpose pin. Logic Therefore, this multiplexer selects either an internal signal or the output of the clock control block. Internal Logic When the device is in user mode, you can only set the clock select signals through a configuration file (.sof or .pof); they cannot be controlled dynamically. Static Clock Select FPLL_<#>_CLKOUT pin Related Information Clock Control Block (ALTCLKCTRL) IP Core User Guide Provides more information about ALTCLKCTRL IP core. Clock Power Down You can power down the GCLK and RCLK clock networks using both static and dynamic approaches. When a clock network is powered down, all the logic fed by the clock network is in off-state, reducing the overall power consumption of the device. The unused GCLK, RCLK, and PCLK networks are automati‐ cally powered down through configuration bit settings in the configuration file (.sof or .pof) generated by the Quartus II software. The dynamic clock enable or disable feature allows the internal logic to control power-up or power-down synchronously on the GCLK and RCLK networks, including dual-regional clock regions. This feature is independent of the PLL and is applied directly on the clock network. Note: You cannot dynamically enable or disable GCLK or RCLK networks that drive PLLs. Clock Enable Signals You cannot use the clock enable and disable circuit of the clock control block if the GCLK or RCLK output drives the input of a PLL. Clock Networks and PLLs in Stratix V Devices Send Feedback Altera Corporation 4-18 SV51005 2015.06.12 Clock Enable Signals Figure 4-15: clkena Implementation with Clock Enable and Disable Circuit This figure shows the implementation of the clock enable and disable circuit of the clock control block. The R1 and R2 bypass paths are not available for the PLL external clock outputs. clkena Clock Select Multiplexer Output D Q D R1 Q R2 GCLK/ RCLK/ FPLL_<#>_CLKOUT The select line is statically controlled by a bit setting in the .sof or .pof. The clkena signals are supported at the clock network level instead of at the PLL output counter level. This allows you to gate off the clock even when you are not using a PLL. You can also use the clkena signals to control the dedicated external clocks from the PLLs. Figure 4-16: Example of clkena Signals This figure shows a waveform example for a clock output enable. The clkena signal is synchronous to the falling edge of the clock output. Clock Select Multiplexer Output Use the clkena signals to enable or disable the GCLK and RCLK networks or the FPLL_<#>_CLKOUT pins. clkena AND Gate Output with R2 Bypassed (ena Port Registered as Falling Edge of Input Clock) AND Gate Output with R2 Not Bypassed (ena Port Registered as Double Register with Input Clock) Stratix V devices have an additional metastability register that aids in asynchronous enable and disable of the GCLK and RCLK networks. You can optionally bypass this register in the Quartus II software. The PLL can remain locked, independent of the clkena signals, because the loop-related counters are not affected. This feature is useful for applications that require a low-power or sleep mode. The clkena signal can also disable clock outputs if the system is not tolerant of frequency overshoot during resynchroniza‐ tion. Altera Corporation Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 Stratix V PLLs 4-19 Stratix V PLLs PLLs provide robust clock management and synthesis for device clock management, external system clock management, and high-speed I/O interfaces. The Stratix V device family contains fractional PLLs that can function as fractional PLLs or integer PLLs. The output counters in Stratix V devices are dedicated to each fractional PLL that support integer or fractional frequency synthesis. Two adjacent PLLs share 18 C output counters. Any number of C counters can be assigned to each PLL, as long as the total number used by the two PLLs is 18 or less. The Stratix V devices offer up to 32 fractional PLLs in the larger densities. All Stratix V fractional PLLs have the same core analog structure and features support. Table 4-5: PLL Features in Stratix V Devices Feature Integer PLL Yes Fractional PLL Yes C output counters 18 M, N, C counter sizes Dedicated external clock outputs 4 single-ended or 2 single-ended and 1 differential 4 single-ended or 4 differential External feedback input pin Single-ended or differential Yes (2) Source synchronous compensation Yes Direct compensation Yes Normal compensation Yes Zero-delay buffer compensation Yes External feedback compensation Yes LVDS compensation Yes Voltage-controlled oscillator (VCO) output drives the DPA clock Yes Phase shift resolution (3) 1 to 512 Dedicated clock input pins Spread-spectrum input clock tracking (2) Support 78.125 ps (3) Programmable duty cycle Yes Power down mode Yes Provided input clock jitter is within input jitter tolerance specifications. The smallest phase shift is determined by the VCO period divided by eight. For degree increments, the Stratix V device can shift all output frequencies in increments of at least 45°. Smaller degree increments are possible depending on the frequency and divide parameters. Clock Networks and PLLs in Stratix V Devices Send Feedback Altera Corporation 4-20 SV51005 2015.06.12 PLL Physical Counters in Stratix V Devices PLL Physical Counters in Stratix V Devices The physical counters for the fractional PLLs are arranged in the following sequences: • Up-to-down • Down-to-up Figure 4-17: PLL Physical Counters Orientation for Stratix V Devices This figure represents the top view of the silicon die that corresponds to a reverse view of the device package. Physical Counter C0 PLL0 Physical Counter C17 Physical Counter C1 Physical Counter C8 Physical Counter C9 PLL1 Physical Counter C16 Physical Counter C9 Physical Counter C0 to C17 (Up-to-Down Dequence) Physical Counter C8 Physical Counter C17 to C0 (Down-to-Up Sequence) PLL0 PLL1 Physical Counter C16 Physical Counter C1 Physical Counter C17 Physical Counter C0 PLL Locations in Stratix V Devices Stratix V devices provide PLLs for the transceiver channels. These PLLs are located in a strip, where the strip refers to an area in the FPGA. The total number of PLLs in the Stratix V devices includes the PLLs in the PLL strip. However, the transceivers can only use the PLLs located in the strip. The following figures show the physical locations of the fractional PLLs. Every index represents one fractional PLL in the device. The physical locations of the fractional PLLs correspond to the coordinates in the Quartus II Chip Planner. Altera Corporation Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 PLL Locations in Stratix V Devices 4-21 Figure 4-18: PLL Locations for Stratix V GS D5 Device, and Stratix V GX A3 (with 36 transceivers) and A4 Devices This figure represents the top view of the silicon die that corresponds to a reverse view of the device package. CLK[20..23][p,n] Pins CLK[16..19][p,n] Pins 4 Logical Clocks FRACTIONALPLL_X0_Y100 FRACTIONALPLL_X0_Y91 4 CLK[12..15][p,n] Pins 4 Logical Clocks 4 Logical Clocks FRACTIONALPLL_X92_Y96 FRACTIONALPLL_X92_Y87 4 PLL Strip FRACTIONALPLL_X0_Y77 FRACTIONALPLL_X0_Y68 FRACTIONALPLL_X0_Y55 FRACTIONALPLL_X0_Y46 PLL Strip 4 4 CLK0, CLK1, CLK22, and CLK23 clock pins feed into fractional PLL FRACTIONALPLL _X0_Y46 and fractional PLL FRACTIONALPLL _X0_Y55. 2 2 FRACTIONALPLL_X0_Y31 FRACTIONALPLL_X0_Y22 4 FRACTIONALPLL_X0_Y10 FRACTIONALPLL_X0_Y1 4 CLK8, CLK9, CLK14, and CLK15 clock pins feed into fractional PLL FRACTIONALPLL_X202_Y46 and fractional PLL FRACTIONALPLL_X202_Y55. 2 FRACTIONALPLL_X92_Y11 FRACTIONALPLL_X92_Y2 4 Logical Clocks Pins CLK[0..3][p,n] Clock Networks and PLLs in Stratix V Devices Send Feedback FRACTIONALPLL_X202_Y100 FRACTIONALPLL_X202_Y91 4 Logical Clocks Pins CLK[4..7][p,n] FRACTIONALPLL_X202_Y77 FRACTIONALPLL_X202_Y68 2 FRACTIONALPLL_X202_Y55 FRACTIONALPLL_X202_Y46 4 FRACTIONALPLL_X202_Y31 FRACTIONALPLL_X202_Y22 4 FRACTIONALPLL_X202_Y10 FRACTIONALPLL_X202_Y1 4 Logical Clocks Pins CLK[8..11][p,n] Altera Corporation 4-22 SV51005 2015.06.12 PLL Locations in Stratix V Devices Figure 4-19: PLL Locations for Stratix V GX B5 and B6 Devices This figure represents the top view of the silicon die that corresponds to a reverse view of the device package. CLK[20..23][p,n] Pins CLK[16..19][p,n] Pins 4 Logical Clocks PLL Strip FRACTIONALPLL_X0_Y109 FRACTIONALPLL_X0_Y100 4 FRACTIONALPLL_X0_Y85 FRACTIONALPLL_X0_Y76 4 FRACTIONALPLL_X0_Y63 FRACTIONALPLL_X0_Y54 FRACTIONALPLL_X90_Y123 FRACTIONALPLL_X90_Y114 CLK8, CLK9, CLK14, and CLK15 clock pins feed into fractional PLL FRACTIONALPLL_X197_Y54 and fractional PLL FRACTIONALPLL_X197_Y63. 2 2 FRACTIONALPLL_X0_Y39 FRACTIONALPLL_X0_Y30 4 FRACTIONALPLL_X0_Y14 FRACTIONALPLL_X0_Y5 4 CLK0, CLK1, CLK22, and CLK23 clock pins feed into fractional PLL FRACTIONALPLL_X0_Y54 and fractional PLL FRACTIONALPLL_X0_Y63. FRACTIONALPLL_X90_Y11 FRACTIONALPLL_X90_Y2 4 Logical Clocks Pins CLK[0..3][p,n] Altera Corporation 4 Logical Clocks 4 Logical Clocks Pins CLK[4..7][p,n] CLK[12..15][p,n] Pins 4 Logical Clocks PLL Strip 4 FRACTIONALPLL_X197_Y109 FRACTIONALPLL_X197_Y100 4 FRACTIONALPLL_X197_Y85 FRACTIONALPLL_X197_Y76 2 2 FRACTIONALPLL_X197_Y63 FRACTIONALPLL_X197_Y54 4 FRACTIONALPLL_X197_Y39 FRACTIONALPLL_X197_Y30 4 FRACTIONALPLL_X197_Y14 FRACTIONALPLL_X197_Y5 4 Logical Clocks Pins CLK[8..11][p.n] Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 PLL Locations in Stratix V Devices 4-23 Figure 4-20: PLL Locations for Stratix V GT C5 and C7 Devices, and Stratix V GX A5 and A7 Devices This figure represents the top view of the silicon die that corresponds to a reverse view of the device package. CLK[16..19][p,n] Pins CLK[20..23][p,n] Pins 4 Logical Clocks FRACTIONALPLL_X0_Y122 FRACTIONALPLL_X0_Y113 4 4 Logical Clocks FRACTIONALPLL_X98_Y118 FRACTIONALPLL_X98_Y109 CLK[12..15][p,n] Pins 4 Logical Clocks PLL Strip PLL Strip FRACTIONALPLL_X0_Y100 FRACTIONALPLL_X0_Y91 4 FRACTIONALPLL_X0_Y75 FRACTIONALPLL_X0_Y66 4 FRACTIONALPLL_X0_Y53 FRACTIONALPLL_X0_Y44 4 FRACTIONALPLL_X0_Y29 FRACTIONALPLL_X0_Y20 4 FRACTIONALPLL_X0_Y10 FRACTIONALPLL_X0_Y1 4 4 4 4 4 FRACTIONALPLL_X98_Y11 FRACTIONALPLL_X98_Y2 4 Logical Clocks Pins CLK[0..3][p,n] Clock Networks and PLLs in Stratix V Devices Send Feedback FRACTIONALPLL_X210_Y122 FRACTIONALPLL_X210_Y113 4 4 Logical Clocks Pins CLK[4..7][p,n] 4 FRACTIONALPLL_X210_Y100 FRACTIONALPLL_X210_Y91 FRACTIONALPLL_X210_Y75 FRACTIONALPLL_X210_Y66 FRACTIONALPLL_X210_Y53 FRACTIONALPLL_X210_Y44 FRACTIONALPLL_X210_Y29 FRACTIONALPLL_X210_Y20 FRACTIONALPLL_X210_Y10 FRACTIONALPLL_X210_Y1 4 Logical Clocks Pins CLK[8..11][p,n] Altera Corporation 4-24 SV51005 2015.06.12 PLL Locations in Stratix V Devices Figure 4-21: PLL Locations for Stratix V GS D3 and D4 Devices, and Stratix V GX A3 (with 24 transceivers) Device This figure represents the top view of the silicon die that corresponds to a reverse view of the device package. CLK[20..23][p,n] CLK[16..19][p,n] Pins Pins 4 Logical Clocks FRACTIONALPLL_X0_Y81 4 4 Logical Clocks FRACTIONALPLL_X86_Y77 FRACTIONALPLL_X86_Y68 FRACTIONALPLL_X0_Y72 CLK[12..15][p,n] Pins 4 Logical Clocks 4 FRACTIONALPLL_X185_Y81 FRACTIONALPLL_X185_Y72 PLL Strip PLL Strip FRACTIONALPLL_X0_Y55 FRACTIONALPLL_X0_Y46 4 4 FRACTIONALPLL_X185_Y55 FRACTIONALPLL_X185_Y46 FRACTIONALPLL_X0_Y33 4 4 FRACTIONALPLL_X185_Y33 FRACTIONALPLL_X0_Y24 FRACTIONALPLL_X0_Y10 FRACTIONALPLL_X0_Y1 FRACTIONALPLL_X185_Y24 4 FRACTIONALPLL_X86_Y11 FRACTIONALPLL_X86_Y2 4 Logical Clocks Pins CLK[0..3][p,n] Altera Corporation 4 Logical Clocks Pins CLK[4..7][p,n] 4 FRACTIONALPLL_X185_Y10 FRACTIONALPLL_X185_Y1 4 Logical Clocks Pins CLK[8..11][p,n] Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 PLL Locations in Stratix V Devices 4-25 Figure 4-22: PLL Locations for Stratix V GS D6 and D8 Devices This figure represents the top view of the silicon die that corresponds to a reverse view of the device package. CLK[16..19][p,n] Pins CLK[20..23][p,n] Pins 4 Logical Clocks FRACTIONALPLL_X0_Y145 FRACTIONALPLL_X0_Y136 4 4 Logical Clocks FRACTIONALPLL_X96_Y141 FRACTIONALPLL_X96_Y132 CLK[12..15][p,n] Pins 4 Logical Clocks 4 PLL Strip FRACTIONALPLL_X208_Y145 FRACTIONALPLL_X208_Y136 PLL Strip FRACTIONALPLL_X0_Y112 FRACTIONALPLL_X0_Y103 4 4 FRACTIONALPLL_X208_Y112 FRACTIONALPLL_X208_Y103 FRACTIONALPLL_X0_Y87 FRACTIONALPLL_X0_Y78 4 4 FRACTIONALPLL_X208_Y87 FRACTIONALPLL_X208_Y78 FRACTIONALPLL_X0_Y65 FRACTIONALPLL_X0_Y56 4 4 FRACTIONALPLL_X208_Y65 FRACTIONALPLL_X208_Y56 FRACTIONALPLL_X0_Y41 FRACTIONALPLL_X0_Y32 4 4 FRACTIONALPLL_X208_Y41 FRACTIONALPLL_X208_Y32 FRACTIONALPLL_X0_Y10 4 4 FRACTIONALPLL_X208_Y10 FRACTIONALPLL_X96_Y11 FRACTIONALPLL_X96_Y2 FRACTIONALPLL_X0_Y1 4 Logical Clocks Pins CLK[0..3][p,n] Clock Networks and PLLs in Stratix V Devices Send Feedback 4 Logical Clocks Pins CLK[4..7][p,n] FRACTIONALPLL_X208_Y1 4 Logical Clocks Pins CLK[8..11][p,n] Altera Corporation 4-26 SV51005 2015.06.12 PLL Migration Guidelines Figure 4-23: PLL Locations for Stratix V E E9 and EB Devices, and Stratix V GX A9, AB, B9, and BB Devices This figure represents the top view of the silicon die that corresponds to a reverse view of the device package. CLK[20..23][p,n] Pins CLK[16..19][p,n] Pins 4 Logical Clocks FRACTIONALPLL_X0_Y170 FRACTIONALPLL_X0_Y161 4 4 FRACTIONALPLL_X0_Y108 FRACTIONALPLL_X0_Y99 4 FRACTIONALPLL_X0_Y86 FRACTIONALPLL_X0_Y77 4 Logical Clocks 4 Logical Clocks FRACTIONALPLL_X104_Y166 FRACTIONALPLL_X104_Y157 PLL Strip FRACTIONALPLL_X0_Y133 FRACTIONALPLL_X0_Y124 CLK[12..15][p,n] Pins 4 PLL Strip FRACTIONALPLL _X0_Y124, FRACTIONALPLL _X0_Y133, FRACTIONALPLL _X225_Y124, and FRACTIONALPLL _X225_Y133 are not available for Stratix V E E9 and EB devices, and Stratix V GX A9 and AB devices. 2 2 FRACTIONALPLL_X0_Y61 FRACTIONALPLL_X0_Y52 4 FRACTIONALPLL_X0_Y38 FRACTIONALPLL_X0_Y29 4 FRACTIONALPLL_X0_Y10 FRACTIONALPLL_X0_Y1 4 4 FRACTIONALPLL_X225_Y133 FRACTIONALPLL_X225_Y124 4 FRACTIONALPLL_X225_Y108 FRACTIONALPLL_X225_Y99 2 CLK8, CLK9, CLK14, and CLK15 clock pins feed into fractional PLL FRACTIONALPLL_X225_Y77 and fractional PLL FRACTIONALPLL_X225_Y86. CLK0, CLK1, CLK22, and CLK23 clock pins feed into fractional PLL FRACTIONALPLL_X0_Y77 and fractional PLL FRACTIONALPLL_X0_Y86. FRACTIONALPLL_X104_Y11 FRACTIONALPLL_X104_Y2 4 Logical Clocks Pins CLK[0..3][p,n] 4 Logical Clocks Pins CLK[4..7][p,n] FRACTIONALPLL_X225_Y170 FRACTIONALPLL_X225_Y161 2 FRACTIONALPLL_X225_Y86 FRACTIONALPLL_X225_Y77 4 FRACTIONALPLL_X225_Y61 FRACTIONALPLL_X225_Y52 4 FRACTIONALPLL_X225_Y38 FRACTIONALPLL_X225_Y29 4 FRACTIONALPLL_X225_Y10 FRACTIONALPLL_X225_Y1 4 Logical Clocks Pins CLK[8..11][p,n] Related Information PLL Migration Guidelines on page 4-26 Provides more information about PLL migration between Stratix V GX A5, A7, A9, AB, B9, BB, D6, and D8 devices. PLL Migration Guidelines If you plan to migrate your design between Stratix V GX A5, A7, A9, AB, B9, BB, D6, and D8 devices with 48 transceiver channels, and your design requires a PLL to drive the HSSI and clock network (GCLK or RCLK) simultaneously, use the 2 middle PLLs on the left or right side of the device. Altera Corporation Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 Fractional PLL Architecture 4-27 Table 4-6: Location of Middle PLLs for PLL Migration Variant Middle PLL Location Member Code A5 A7 Left Side Right Side FRACTIONALPLL_X0_Y53, FRACTIONALPLL_X0_Y66 FRACTIONALPLL_X210_Y53, FRACTIONALPLL_X210_Y66 FRACTIONALPLL_X0_Y77, FRACTIONALPLL_X0_Y86 FRACTIONALPLL_X225_Y77, FRACTIONALPLL_X225_Y86 FRACTIONALPLL_X0_Y65, FRACTIONALPLL_X0_Y78 FRACTIONALPLL_X208_Y65, FRACTIONALPLL_X208_Y78 A9 AB Stratix V GX B9 BB D6 D8 Related Information PLL Locations in Stratix V Devices on page 4-20 Provides more information about CLKIN pin connectivity to the middle PLLs. Fractional PLL Architecture Figure 4-24: Fractional PLL High-Level Block Diagram for Stratix V Devices To DPA Block Lock Circuit pfdena Dedicated Clock Inputs 4 GCLK/RCLK inclk0 Clock inclk1 Switchover Block ÷N PFD locked CP LF VCO 8 ÷2 ÷2, ÷4 ÷C0 8 ÷C1 8 ÷C2 clkswitch clkbad0 clkbad1 activeclock VCO Post Divider ÷C3 Cascade Input from Adjacent PLL ÷C17 Dedicated refclk Delta Sigma Modulator ÷M Direct Compensation Mode ZDB, External Feedback Modes LVDS Compensation Mode Source Synchronous, Normal Modes Casade Output to Adjacent PLL GCLKs RCLKs PLL Output Multiplexer For single-ended clock inputs, only the CLK<#>p pin has a dedicated connection to the PLL. If you use the CLK<#>n pin, a global or regional clock is used. External Clock Outputs Only C0, C2, C15, and C17 TX Serial Clock can drive the TX serial clock and C1, C3, C14, and C16 TX Load Enable can drive the TX load enable. This FBOUT port is fed by FBOUT the M counter in the PLLs. External Memory Interface DLL PMA Clocks FBIN DIFFIOCLK Network GCLK/RCLK Network Fractional PLL Usage You can configure the fractional PLL to function either in the integer or in the enhanced fractional mode. One fractional PLL can use up to 18 output counters and all external clock outputs. Two adjacent fractional PLLs share the 18 output counters. Clock Networks and PLLs in Stratix V Devices Send Feedback Altera Corporation 4-28 SV51005 2015.06.12 PLL Cascading Fractional PLLs can be used as follows: • Reduce the number of required oscillators on the board • Reduce the clock pins used in the FPGA by synthesizing multiple clock frequencies from a single reference clock source • Compensate clock network delay • Zero delay buffering • Transmit clocking for transceivers PLL Cascading Stratix V devices support two types of PLL cascading. PLL-to-PLL Cascading This cascading mode synthesizes a more precise output frequency than a single PLL in integer mode. Cascading two PLLs in integer mode expands the effective range of the pre-scale counter, N and the multiply counter, M. Stratix V devices use two types of input clock sources. • The adjpllin input clock source is used for inter-cascading between fracturable fractional PLLs. • The cclk input clock source is used for intra-cascading within fracturable fractional PLLs. Altera recommends using a low bandwidth setting for the source (upstream) PLL and a high bandwidth setting for destination (downstream) PLL. Counter-Output-to-Counter-Output Cascading This cascading mode synthesizes a lower frequency output than a single post-scale counter, C. Cascading two C counters expands the effective range of C counters. PLL External Clock I/O Pins Two adjacent corner and center fractional PLLs share four dual-purpose clock I/O pins, organized as one of the following combinations: • Four single-ended clock outputs • Two single-ended outputs and one differential clock output • Four single-ended clock outputs and two single-ended feedback inputs in the I/O driver feedback for zero delay buffer (ZDB) mode support • Two single-ended clock outputs and two single-ended feedback inputs for single-ended external feedback (EFB) mode support • One differential clock output and one differential feedback input for differential EFB support (only one of the two adjacent fractional PLLs can support differential EFB at one time while the other fractional PLL can be used for general-purpose clocking) Note: All left and right fractional PLLs in Stratix V devices do not support external clock outputs. The following figure shows that any of the output counters (C[0..17]) or the M counter on the PLLs can feed the dedicated external clock outputs. Therefore, one counter or frequency can drive all output pins available from a given PLL. Altera Corporation Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 PLL Control Signals 4-29 Figure 4-25: Dual-Purpose Clock I/O Pins Associated with PLL for Stratix V Devices Fractional PLL0 VCO 0 Fractional PLL1 VCO 1 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 M0 M1 EXTCLKOUT[0] fbin0 20 mux EXTCLKOUT[3..0] I/O / FPLL_<#>_CLKOUT0/ FPLL_<#>_CLKOUTp/ FPLL_<#>_FB0 EXTCLKOUT[1] I/O / FPLL_<#>CLKOUT1/ FPLL_<#>_CLKOUTn EXTCLKOUT[2] I/O / FPLL_<#>_CLKOUT2 / FPLL<#>_FBp / FPLL_<#>_FB1 4 fbin1 EXTCLKOUT[3] I/O / FPLL_<#>_CLKOUT3 / FPLL_<#>_FBn You can feed these clock output pins using any one of the C[17..0] or M counters. When not used as external clock outputs, these clock output pins can be used as regular user I/Os. The FPLL_<#>_CLKOUT0, FPLL_<#>_CLKOUT1, FPLL_<#>_CLKOUT2, and FPLL_<#>_CLKOUT3 pins are single-ended clock output pins. The FPLL_<#>_CLKOUTp and FPLL_<#>_CLKOUTn pins are differential output pins while the FPLL_<#>_FBp and FPLL_<#>_FBn pins are differential feedback input pins to support differential EFB only in VCO 1. The FPLL_<#>_FB0 and FPLL_<#>_FB1 pins are single-ended feedback input pins. Each pin of a single-ended output pair can be either in-phase or 180° out-of-phase. To implement the 180° out-of-phase pin in a pin pair, the Quartus II software places a NOT gate in the design into the IOE. The clock output pin pairs support the following I/O standards: • • • • Same I/O standard for the pin pairs LVDS Differential high-speed transceiver logic (HSTL) Differential SSTL Stratix V PLLs can drive out to any regular I/O pin through the GCLK or RCLK network. You can also use the external clock output pins as user I/O pins if you do not require external PLL clocking. Related Information • I/O Standards Support in Stratix V Devices on page 5-2 Provides more information about I/O standards supported by the PLL clock input and output pins. • Zero-Delay Buffer Mode on page 4-33 • External Feedback Mode on page 4-35 PLL Control Signals You can use the areset signal to control PLL operation and resynchronization, and use the locked signal to observe the status of the PLL. areset The areset signal is the reset or resynchronization input for each PLL. The device input pins or internal logic can drive these input signals. When areset is driven high, the PLL counters reset, clearing the PLL output and placing the PLL out-oflock. The VCO is then set back to its nominal setting. When areset is driven low again, the PLL resynch‐ ronizes to its input as it re-locks. Clock Networks and PLLs in Stratix V Devices Send Feedback Altera Corporation 4-30 SV51005 2015.06.12 locked You must assert the areset signal every time the PLL loses lock to guarantee the correct phase relation‐ ship between the PLL input and output clocks. You can set up the PLL to automatically reset (self-reset) after a loss-of-lock condition using the Quartus II MegaWizard Plug-In Manager. You must include the areset signal if either of the following conditions is true: • PLL reconfiguration or clock switchover is enabled in the design • Phase relationships between the PLL input and output clocks must be maintained after a loss-of-lock condition Note: If the input clock to the PLL is not toggling or is unstable after power up, assert the areset signal after the input clock is stable and within specifications. locked The locked signal output of the PLL indicates the following conditions: • The PLL has locked onto the reference clock. • The PLL clock outputs are operating at the desired phase and frequency set in the MegaWizard PlugIn Manager. The lock detection circuit provides a signal to the core logic. The signal indicates when the feedback clock has locked onto the reference clock both in phase and frequency. Clock Feedback Modes This section describes the following clock feedback modes: • • • • • • Source synchronous LVDS compensation Direct Normal compensation ZDB EFB Each mode allows clock multiplication and division, phase shifting, and programmable duty cycle. The input and output delays are fully compensated by a PLL only when using the dedicated clock input pins associated with a given PLL as the clock source. The input and output delays may not be fully compensated in the Quartus II software for the following conditions: • When a GCLK or RCLK network drives the PLL • When the PLL is driven by a dedicated clock pin that is not associated with the PLL For example, when you configure a PLL in ZDB mode, the PLL input is driven by an associated dedicated clock input pin. In this configuration, a fully compensated clock path results in zero delay between the clock input and one of the clock outputs from the PLL. However, if the PLL input is fed by a nondedicated input (using the GCLK network), the output clock may not be perfectly aligned with the input clock. Altera Corporation Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 Source Synchronous Mode 4-31 Source Synchronous Mode If the data and clock arrive at the same time on the input pins, the same phase relationship is maintained at the clock and data ports of any IOE input register. Data and clock signals at the IOE experience similar buffer delays as long as you use the same I/O standard. Altera recommends source synchronous mode for source synchronous data transfers. Figure 4-26: Example of Phase Relationship Between Clock and Data in Source Synchronous Mode Data Pin PLL Reference Clock at the Input Pin Data at the Register Clock at the Register The source synchronous mode compensates for the delay of the clock network used and any difference in the delay between the following two paths: • Data pin to the IOE register input • Clock input pin to the PLL phase frequency detector (PFD) input The Stratix V PLL can compensate multiple pad-to-input-register paths, such as a data bus when it is set to use source synchronous compensation mode. LVDS Compensation Mode The purpose of LVDS compensation mode is to maintain the same data and clock timing relationship seen at the pins of the internal serializer/deserializer (SERDES) capture register, except that the clock is inverted (180° phase shift). Thus, LVDS compensation mode ideally compensates for the delay of the LVDS clock network, including the difference in delay between the following two paths: • Data pin-to-SERDES capture register • Clock input pin-to-SERDES capture register The output counter must provide the 180° phase shift. Clock Networks and PLLs in Stratix V Devices Send Feedback Altera Corporation 4-32 SV51005 2015.06.12 Direct Mode Figure 4-27: Example of Phase Relationship Between the Clock and Data in LVDS Compensation Mode Data Pin PLL Reference Clock at the Input Pin Data at the Register Clock at the Register Direct Mode In direct mode, the PLL does not compensate for any clock networks. This mode provides better jitter performance because the clock feedback into the PFD passes through less circuitry. Both the PLL internaland external-clock outputs are phase-shifted with respect to the PLL clock input. Figure 4-28: Example of Phase Relationship Between the PLL Clocks in Direct Mode Phase Aligned PLL Reference Clock at the Input Pin The PLL clock outputs lag the PLL input clocks depending on routing delays. PLL Clock at the Register Clock Port External PLL Clock Outputs Normal Compensation Mode An internal clock in normal compensation mode is phase-aligned to the input clock pin. The external clock output pin has a phase delay relative to the clock input pin if connected in this mode. The Quartus II TimeQuest Timing Analyzer reports any phase difference between the two. In normal compensation mode, the delay introduced by the GCLK or RCLK network is fully compensated. Altera Corporation Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 Zero-Delay Buffer Mode 4-33 Figure 4-29: Example of Phase Relationship Between the PLL Clocks in Normal Compensation Mode Phase Aligned PLL Reference Clock at the Input Pin PLL Clock at the Register Clock Port Dedicated PLL Clock Outputs The external clock output can lead or lag the PLL internal clock signals. Zero-Delay Buffer Mode In ZDB mode, the external clock output pin is phase-aligned with the clock input pin for zero delay through the device. This mode is supported only on the center and corner PLLs in Stratix V devices. When using this mode, you must use the same I/O standard on the input clocks and clock outputs to guarantee clock alignment at the input and output pins. You cannot use differential I/O standards on the PLL clock input or output pins. To ensure phase alignment between the clk pin and the external clock output (CLKOUT) pin in ZDB mode, instantiate a bidirectional I/O pin in the design. The bidirectional I/O pin serves as the feedback path connecting the fbout and fbin ports of the PLL. The bidirectional I/O pin must always be assigned a single-ended I/O standard. The PLL uses this bidirectional I/O pin to mimic and compensate for the output delay from the clock output port of the PLL to the external clock output pin. Note: To avoid signal reflection when using ZDB mode, do not place board traces on the bidirectional I/O pin. Clock Networks and PLLs in Stratix V Devices Send Feedback Altera Corporation 4-34 SV51005 2015.06.12 Zero-Delay Buffer Mode Figure 4-30: ZDB Mode in Stratix V PLLs inclk ÷N inclk ÷N PFD PFD CP/LF CP/LF VCO 0 VCO 1 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 Multiplexer C10 20 4 C11 C12 C13 EXTCLKOUT[0] fbout0 fbin0 Bidirectional I/O Pin EXTCLKOUT[1] EXTCLKOUT[2] fbout1 fbin1 C14 C15 Bidirectional I/O Pin C16 C17 M0 M1 EXTCLKOUT[3] Figure 4-31: Example of Phase Relationship Between the PLL Clocks in ZDB Mode Phase Aligned PLL Reference Clock at the Input Pin The internal PLL clock output can lead or lag the external PLL clock outputs. PLL Clock at the Register Clock Port Dedicated PLL Clock Outputs Related Information PLL External Clock I/O Pins on page 4-28 Provides more information about PLL clock outputs. Altera Corporation Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 External Feedback Mode 4-35 External Feedback Mode In EFB mode, the output of the M counter (fbout) feeds back to the PLL fbin input (using a trace on the board) and becomes part of the feedback loop. One of the dual-purpose external clock outputs becomes the fbin input pin in this mode. The external feedback input pin, fbin is phase-aligned with the clock input pin. Aligning these clocks allows you to remove clock delay and skew between devices. When using EFB mode, you must use the same I/O standard on the input clock, feedback input, and clock outputs. This mode is supported only on the center and corner fractional PLLs in Stratix V devices. Figure 4-32: EFB Mode in Stratix V Devices inclk ÷N PFD CP/LF VCO 1 C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 Multiplexer C10 20 4 C11 C12 C13 EXTCLKOUT[0] EXTCLKOUT[1] fbout[p] fbin0 fbout[n] fbout0 External board connection for one differential clock output and one differential feedback input for differential EFB support. External Board Trace fbin[p] EXTCLKOUT[2] fbin1 EXTCLKOUT[3] fbin[n] fbout1 C14 C15 C16 C17 M0 M1 Clock Networks and PLLs in Stratix V Devices Send Feedback External board connection for two single-ended clock outputs and two single-ended feedback inputs for single-ended EFB support. Altera Corporation 4-36 SV51005 2015.06.12 Multiple PLLs in Normal Mode and Source Synchronous Mode Figure 4-33: Example of Phase Relationship Between the PLL Clocks in EFB Mode Phase Aligned PLL Reference Clock at the Input Pin The PLL clock outputs can lead or lag the fbin clock input. PLL Clock at the Register Clock Port Dedicated PLL Clock Outputs fbin Clock Input Pin Related Information PLL External Clock I/O Pins on page 4-28 Provides more information about PLL clock outputs. Multiple PLLs in Normal Mode and Source Synchronous Mode Normal and source synchronous compensation feedback mode require GCLK or RCLK feedback path to achieve the required phase relationship. Source synchronous mode for LVDS compensation does not require the GCLK or RCLK feedback path. The GCLK or RCLK network feedback paths are fewer than the PLLs available on the device. You cannot implement the compensation mode that requires GCLK or RCLK feedback path on all the PLLs available on the device simultaneously. Consider the following guidelines when implementing normal compensation or source synchronous compensation mode on multiple PLLs for the device: • You can implement normal compensation or source synchronous compensation mode on all the center PLLs simultaneously. • The Stratix V device has two middle PLLs on the left and right side of the device. All PLLs that reside on each side of the device can be divided equally into 2 groups as shown in the following figure. Altera Corporation Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 Multiple PLLs in Normal Mode and Source Synchronous Mode 4-37 Figure 4-34: Example of the PLL Grouping for Stratix V GX A5 and A7 Devices, and Stratix V GT C5 and C7 Devices This figure represents the top view of the silicon die that corresponds to a reverse view of the device package. FRACTIONALPLL_X0_Y122 FRACTIONALPLL_X0_Y113 FRACTIONALPLL_X0_Y100 FRACTIONALPLL_X0_Y91 FRACTIONALPLL_X98_Y118 FRACTIONALPLL_X98_Y109 FRACTIONALPLL_X0_Y75 FRACTIONALPLL_X0_Y66 FRACTIONALPLL_X210_Y122 FRACTIONALPLL_X210_Y113 FRACTIONALPLL_X210_Y100 FRACTIONALPLL_X210_Y91 FRACTIONALPLL_X210_Y75 FRACTIONALPLL_X210_Y66 Middle PLL FRACTIONALPLL_X0_Y53 FRACTIONALPLL_X0_Y44 FRACTIONALPLL_X210_Y53 FRACTIONALPLL_X210_Y44 FRACTIONALPLL_X0_Y29 FRACTIONALPLL_X0_Y20 FRACTIONALPLL_X210_Y29 FRACTIONALPLL_X210_Y20 FRACTIONALPLL_X0_Y10 FRACTIONALPLL_X0_Y1 FRACTIONALPLL_X98_Y11 FRACTIONALPLL_X98_Y2 FRACTIONALPLL_X210_Y10 FRACTIONALPLL_X210_Y1 From the PLL grouping example, the PLLs can be divided into 4 different sections (upper left, lower left, upper right, and lower right). The PLLs in each of these sections can be further divided into first and second group. The first group consists of the 2 corner PLLs and one middle PLL located in each section. The remaining PLLs in the same section are grouped into the second group. For each section, you can use up to 3 PLLs to implement source synchronous or normal compensation mode in the following combina‐ tions: • Any of the 3 PLLs in the first group • Any of the 2 PLLs in the first group and 1 PLL in the second group Table 4-7: Example of the PLL Grouping for Stratix V GX A5 and A7 Devices, and Stratix V GT C5 and C7 Devices PLL Location PLL Section First Group Second Group Upper left FRACTIONALPLL_X0_Y122, FRACTIONALPLL_X0_Y113, FRACTIONALPLL_X0_Y66 FRACTIONALPLL_X0_Y100, FRACTIONALPLL_X0_Y91, FRACTIONALPLL_X0_ Y75 Lower left FRACTIONALPLL_X0_Y53, FRACTIONALPLL_X0_Y10, FRACTIONALPLL_X0_Y1 FRACTIONALPLL_X0_Y44, FRACTIONALPLL_X0_Y29, FRACTIONALPLL_X0_ Y20 Clock Networks and PLLs in Stratix V Devices Send Feedback Altera Corporation 4-38 SV51005 2015.06.12 Clock Multiplication and Division PLL Location PLL Section First Group Second Group Upper right FRACTIONALPLL_X210_Y122, FRACTIONALPLL_X210_Y113, FRACTIONALPLL_X210_Y66 FRACTIONALPLL_X210_Y100, FRACTIONALPLL_X210_Y91, FRACTIONALPLL_X210_Y75 Lower right FRACTIONALPLL_X210_Y53, FRACTIONALPLL_X210_Y10, FRACTIONALPLL_X210_Y1 FRACTIONALPLL_X210_Y44, FRACTIONALPLL_X210_Y29, FRACTIONALPLL_ X210_Y20 Clock Multiplication and Division Each Stratix V PLL provides clock synthesis for PLL output ports using the M/(N × C) scaling factors. The input clock is divided by a pre-scale factor, N, and is then multiplied by the M feedback factor. The control loop drives the VCO to match fin × (M/N). The Quartus II software automatically chooses the appropriate scaling factors according to the input frequency, multiplication, and division values entered into the ALTERA_PLL megafunction. VCO Post Divider A VCO post divider is inserted after the VCO. When you enable the VCO post divider, the VCO post divider divides the VCO frequency by two. When the VCO post divider is bypassed, the VCO frequency goes to the output port without being divided by two. Post-Scale Counter, C Each output port has a unique post-scale counter, C, that divides down the output from the VCO post divider. For multiple PLL outputs with different frequencies, the VCO is set to the least common multiple of the output frequencies that meets its frequency specifications. For example, if the output frequencies required from one PLL are 33 and 66 MHz, the Quartus II software sets the VCO to 660 MHz (the least common multiple of 33 and 66 MHz within the VCO range). Then the post-scale counters, C, scale down the VCO frequency for each output port. Pre-Scale Counter, N and Multiply Counter, M Each PLL has one pre-scale counter, N, and one multiply counter, M, with a range of 1 to 512 for both M and N. The N counter does not use duty-cycle control because the only purpose of this counter is to calculate frequency division. The post-scale counters have a 50% duty cycle setting. The high- and lowcount values for each counter range from 1 to 256. The sum of the high- and low-count values chosen for a design selects the divide value for a given counter. Delta-Sigma Modulator The delta-sigma modulator (DSM) is used together with the M multiply counter to enable the PLL to operate in fractional mode. The DSM dynamically changes the M counter divide value on a cycle to cycle basis. The different M counter values allow the "average" M counter value to be a non-integer. Fractional Mode In fractional mode, the M counter divide value equals to the sum of the "clock high" count, "clock low" count, and the fractional value. The fractional value is equal to K/2^X, where K is an integer between 0 and (2^X – 1), and X = 8, 16, 24, or 32. Altera Corporation Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 Programmable Phase Shift 4-39 Integer Mode For PLL operating in integer mode, M is an integer value and DSM is disabled. Related Information Altera Phase-Locked Loop (Altera PLL) IP Core User Guide Provides more information about PLL software support in the Quartus II software. Programmable Phase Shift The programmable phase shift feature allows the PLLs to generate output clocks with a fixed phase offset. The VCO frequency of the PLL determines the precision of the phase shift. The minimum phase shift increment is 1/8 of the VCO period. For example, if a PLL operates with a VCO frequency of 1000 MHz, phase shift steps of 125 ps are possible. The Quartus II software automatically adjusts the VCO frequency according to the user-specified phase shift values entered into the megafunction. Programmable Duty Cycle The programmable duty cycle allows PLLs to generate clock outputs with a variable duty cycle. This feature is supported on the PLL post-scale counters. The duty-cycle setting is achieved by a low and high time-count setting for the post-scale counters. To determine the duty cycle choices, the Quartus II software uses the frequency input and the required multiply or divide rate. The post-scale counter value determines the precision of the duty cycle. The precision is defined as 50% divided by the post-scale counter value. For example, if the C0 counter is 10, steps of 5% are possible for duty-cycle choices from 5% to 90%. If the PLL is in external feedback mode, set the duty cycle for the counter driving the fbin pin to 50%. Combining the programmable duty cycle with programmable phase shift allows the generation of precise non-overlapping clocks. Clock Switchover The clock switchover feature allows the PLL to switch between two reference input clocks. Use this feature for clock redundancy or for a dual-clock domain application where a system turns on the redundant clock if the previous clock stops running. The design can perform clock switchover automatically when the clock is no longer toggling or based on a user control signal, clkswitch. The following clock switchover modes are supported in Stratix V PLLs: • Automatic switchover—The clock sense circuit monitors the current reference clock. If the current reference clock stops toggling, the reference clock automatically switches to inclk0 or inclk1 clock. • Manual clock switchover—Clock switchover is controlled using the clkswitch signal. When the clkswitch signal goes from logic low to logic high, and stays high for at least three clock cycles, the reference clock to the PLL is switched from inclk0 to inclk1, or vice-versa. • Automatic switchover with manual override—This mode combines automatic switchover and manual clock switchover. When the clkswitch signal goes high, it overrides the automatic clock switchover function. As long as the clkswitch signal is high, further switchover action is blocked. Clock Networks and PLLs in Stratix V Devices Send Feedback Altera Corporation 4-40 SV51005 2015.06.12 Automatic Switchover Automatic Switchover Stratix V PLLs support a fully configurable clock switchover capability. Figure 4-35: Automatic Clock Switchover Circuit Block Diagram This figure shows a block diagram of the automatic switchover circuit built into the PLL. clkbad[0] clkbad[1] activeclock Clock Sense Switchover State Machine clksw Clock Switch Control Logic inclk0 inclk1 PFD N Counter Multiplexer Out clkswitch refclk fbclk When the current reference clock is not present, the clock sense block automatically switches to the backup clock for PLL reference. You can select a clock source as the backup clock by connecting it to the inclk1 port of the PLL in your design. The clock switchover circuit sends out three status signals—clkbad[0], clkbad[1], and activeclock— from the PLL to implement a custom switchover circuit in the logic array. In automatic switchover mode, the clkbad[0] and clkbad[1] signals indicate the status of the two clock inputs. When they are asserted, the clock sense block detects that the corresponding clock input has stopped toggling. These two signals are not valid if the frequency difference between inclk0 and inclk1 is greater than 20%. The activeclock signal indicates which of the two clock inputs (inclk0 or inclk1) is being selected as the reference clock to the PLL. When the frequency difference between the two clock inputs is more than 20%, the activeclock signal is the only valid status signal. Note: Glitches in the input clock may cause the frequency difference between the input clocks to be more than 20%. Use the switchover circuitry to automatically switch between inclk0 and inclk1 when the current reference clock to the PLL stops toggling. You can switch back and forth between inclk0 and inclk1 any number of times when one of the two clocks fails and the other clock is available. For example, in applications that require a redundant clock with the same frequency as the reference clock, the switchover state machine generates a signal (clksw) that controls the multiplexer select input. In this case, inclk1 becomes the reference clock for the PLL. Altera Corporation Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 Automatic Switchover with Manual Override 4-41 When using automatic clock switchover mode, the following requirements must be satisfied: • Both clock inputs must be running when the FPGA is configured. • The period of the two clock inputs can differ by no more than 20%. If the current clock input stops toggling while the other clock is also not toggling, switchover is not initiated and the clkbad[0..1] signals are not valid. If both clock inputs are not the same frequency, but their period difference is within 20%, the clock sense block detects when a clock stops toggling. However, the PLL may lose lock after the switchover is completed and needs time to relock. Note: Altera recommends resetting the PLL using the areset signal to maintain the phase relationships between the PLL input and output clocks when using clock switchover. Figure 4-36: Automatic Switchover After Loss of Clock Detection This figure shows an example waveform of the switchover feature in automatic switchover mode. In this example, the inclk0 signal is stuck low. After the inclk0 signal is stuck at low for approximately two clock cycles, the clock sense circuitry drives the clkbad[0] signal high. Since the reference clock signal is not toggling, the switchover state machine controls the multiplexer through the clkswitch signal to switch to the backup clock, inclk1. inclk0 inclk1 muxout clkbad0 clkbad1 activeclock Switchover is enabled on the falling edge of inclk0 or inclk1, depending on which clock is available. In this figure, switchover is enabled on the falling edge of inclk1. Automatic Switchover with Manual Override In automatic switchover with manual override mode, you can use the clkswitch signal for user- or system-controlled switch conditions. You can use this mode for same-frequency switchover, or to switch between inputs of different frequencies. For example, if inclk0 is 66 MHz and inclk1 is 200 MHz, you must control switchover using the clkswitch signal. The automatic clock-sense circuitry cannot monitor clock input (inclk0 and inclk1) frequencies with a frequency difference of more than 100% (2×). This feature is useful when the clock sources originate from multiple cards on the backplane, requiring a system-controlled switchover between the frequencies of operation. Clock Networks and PLLs in Stratix V Devices Send Feedback Altera Corporation 4-42 SV51005 2015.06.12 Manual Clock Switchover You must choose the backup clock frequency and set the M, N, C, and K counters so that the VCO operates within the recommended operating frequency range. The ALTERA_PLL MegaWizard Plug-in Manager notifies you if a given combination of inclk0 and inclk1 frequencies cannot meet this requirement. Figure 4-37: Clock Switchover Using the clkswitch (Manual) Control This figure shows a clock switchover waveform controlled by the clkswitch signal. In this case, both clock sources are functional and inclk0 is selected as the reference clock; the clkswitch signal goes high, which starts the switchover sequence. On the falling edge of inclk0, the counter’s reference clock, muxout, is gated off to prevent clock glitching. On the falling edge of inclk1, the reference clock multiplexer switches from inclk0 to inclk1 as the PLL reference. The activeclock signal changes to indicate the clock which is currently feeding the PLL. inclk0 inclk1 muxout clkswitch activeclock clkbad0 clkbad1 To initiate a manual clock switchover event, both inclk0 and inclk1 must be running when the clkswitch signal goes high. In automatic override with manual switchover mode, the activeclock signal mirrors the clkswitch signal. Since both clocks are still functional during the manual switch, neither clkbad signal goes high. Because the switchover circuit is positive-edge sensitive, the falling edge of the clkswitch signal does not cause the circuit to switch back from inclk1 to inclk0. When the clkswitch signal goes high again, the process repeats. The clkswitch signal and automatic switch work only if the clock being switched to is available. If the clock is not available, the state machine waits until the clock is available. Related Information Altera Phase-Locked Loop (Altera PLL) IP Core User Guide Provides more information about PLL software support in the Quartus II software. Manual Clock Switchover In manual clock switchover mode, the clkswitch signal controls whether inclk0 or inclk1 is selected as the input clock to the PLL. By default, inclk0 is selected. A clock switchover event is initiated when the clkswitch signal transitions from logic low to logic high, and being held high for at least three inclk cycles. Altera Corporation Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 Guidelines 4-43 You must bring the clkswitch signal back low again to perform another switchover event. If you do not require another switchover event, you can leave the clkswitch signal in a logic high state after the initial switch. Pulsing the clkswitch signal high for at least three inclk cycles performs another switchover event. If inclk0 and inclk1 are different frequencies and are always running, the clkswitchsignal minimum high time must be greater than or equal to three of the slower frequency inclk0 and inclk1 cycles. Figure 4-38: Manual Clock Switchover Circuitry in Stratix V PLLs clkswitch Clock Switch Control Logic inclk0 inclk1 N Counter muxout PFD refclk fbclk You can delay the clock switchover action by specifying the switchover delay in the ALTERA_PLL megafunction. When you specify the switchover delay, the clkswitch signal must be held high for at least three inclk cycles plus the number of the delay cycles that has been specified to initiate a clock switchover. Related Information Altera Phase-Locked Loop (Altera PLL) IP Core User Guide Provides more information about PLL software support in the Quartus II software. Guidelines When implementing clock switchover in Stratix V PLLs, use the following guidelines: • Automatic clock switchover requires that the inclk0 and inclk1 frequencies be within 20% of each other. Failing to meet this requirement causes the clkbad[0] and clkbad[1] signals to not function properly. • When using manual clock switchover, the difference between inclk0 and inclk1 can be more than 100% (2×). However, differences in frequency, phase, or both, of the two clock sources will likely cause the PLL to lose lock. Resetting the PLL ensures that you maintain the correct phase relationships between the input and output clocks. • Both inclk0 and inclk1 must be running when the clkswitch signal goes high to initiate the manual clock switchover event. Failing to meet this requirement causes the clock switchover to not function properly. • Applications that require a clock switchover feature and a small frequency drift must use a lowbandwidth PLL. When referencing input clock changes, the low-bandwidth PLL reacts more slowly than a high-bandwidth PLL. When switchover happens, a low-bandwidth PLL propagates the stopping of the clock to the output more slowly than a high-bandwidth PLL. However, be aware that the lowbandwidth PLL also increases lock time. Clock Networks and PLLs in Stratix V Devices Send Feedback Altera Corporation 4-44 SV51005 2015.06.12 PLL Reconfiguration and Dynamic Phase Shift • After a switchover occurs, there may be a finite resynchronization period for the PLL to lock onto a new clock. The time it takes for the PLL to relock depends on the PLL configuration. • The phase relationship between the input clock to the PLL and the output clock from the PLL is important in your design. Assert areset for at least 10 ns after performing a clock switchover. Wait for the locked signal to go high and be stable before re-enabling the output clocks from the PLL. • The VCO frequency gradually decreases when the current clock is lost and then increases as the VCO locks on to the backup clock, as shown in the following figure. Figure 4-39: VCO Switchover Operating Frequency Primary Clock Stops Running Switchover Occurs VCO Tracks Secondary Clock ∆ F vco PLL Reconfiguration and Dynamic Phase Shift For more information about PLL reconfiguration and dynamic phase shifting, refer to AN661. Related Information AN 661: Implementing Fractional PLL Reconfiguration with Altera PLL and Altera PLL Reconfig IP Cores Document Revision History Date Version January 2014 2014.01.10 Altera Corporation Changes • Removed Preliminary tags for clock resources, clock input pin connections to GCLK and RCLK networks, and PLL features tables. • Updated information on dual-regional clock region. • Added label for PLL strip in PLL locations diagrams. • Added descriptions for PLLs located in a strip. • Updated VCO post-scale counter, K, to VCO post divider. • Added information on PLL cascading. • Added information on programmable phase shift. • Updated automatic clock switchover mode requirement. Clock Networks and PLLs in Stratix V Devices Send Feedback SV51005 2015.06.12 Document Revision History Date May 2013 Version 2013.05.06 4-45 Changes • • • • • • • • • • • • • • • • Added link to the known document issues in the Knowledge Base. Updated PCLK clock sources per device quadrant. Added PCLK networks resources and diagram for Stratix V E devices. Updated PCLK clock sources in hierarchical clock networks in each spine clock per quadrant diagram. Added PCLK networks in clock network sources section. Updated dedicated clock input pins in clock network sources section. Added information on C output counters for PLLs. Added power down mode in PLL features table. Added information on PLL physical counters. Updated the PLL locations index from CEN_X<#>_Y<#>, COR_X<#>_ Y<#>, and LR_X<#>_Y<#> to FRACTIONALPLL_X<#>_Y<#>. Removed LVPECL I/O standard support for clock output pin pairs. Updated PLL support for EFB mode. Updated the scaling factors for PLL output ports. Updated the fractional value for PLL in fractional mode. Moved all links to the Related Information section of respective topics for easy reference. Reorganized content. December 2012 2012.12.28 • Added note to indicate that the figures shown are the top view of the silicon die. • Added diagram for PLL physical counter orientation. • Updated PLL locations diagrams. • Removed information on pfdena PLL control signal. • Removed information on PLL Compensation assignment in the Quartus II software. • Updated the fractional value for PLL in fractional mode. • Reorganized content and updated template. June 2012 1.4 • Added Table 4–5 and Table 4–6. • Added Figure 4–6, Figure 4–8, Figure 4–20, Figure 4–22, and Figure 4–33. • Updated Table 4–1, Table 4–2, and Table 4–3. • Updated Figure 4–3, Figure 4–5, Figure 4–17, Figure 4–18, Figure 4– 19, and Figure 4–21. • Added “PLL Migration Guidelines”, “Implementing Multiple PLLs in Normal Mode and Source Synchronous Mode”, “Clock Switchover”, and “PLL Reconfiguration and Dynamic Phase Shift” sections. • Updated “Clock Networks in Stratix V Devices”, “Clock Network Sources”, and “Clock Multiplication and Division” sections. November 2011 1.3 Updated Figure 4–19 and Figure 4–28. Clock Networks and PLLs in Stratix V Devices Send Feedback Altera Corporation 4-46 SV51005 2015.06.12 Document Revision History Date Version Changes May 2011 1.2 • Chapter moved to volume 2 for the 11.0 release. • Updated Table 4–1. • Updated Figure 4–3, Figure 4–4, Figure 4–5, Figure 4–6, Figure 4–15, Figure 4–17, Figure 4–18, Figure 4–20, Figure 4–25, and Figure 4–28. • Updated “Zero-Delay Buffer Mode” and “External Feedback Mode” sections. • Added “PLL Clock Outputs” section. December 2010 1.1 No changes to the content of this chapter for the Quartus II software 10.1. July 2010 1.0 Initial release. Altera Corporation Clock Networks and PLLs in Stratix V Devices Send Feedback 5 I/O Features in Stratix V Devices 2015.06.12 SV51006 Subscribe Send Feedback This chapter provides details about the features of the Stratix V I/O elements (IOEs) and how the IOEs work in compliance with current and emerging I/O standards and requirements. The Stratix V I/Os support the following features: • True LVDS channels in all I/O banks support SGMII, SPI-4.2, and XSBI applications • Hard dynamic phase alignment (DPA) and serializer/deserializer (SERDES) support in I/O banks on all sides of the device with DPA • Single-ended, non-voltage-referenced, and voltage-referenced I/O standards • Low-voltage differential signaling (LVDS), RSDS, mini-LVDS, HSTL, HSUL, and SSTL I/O standards across all I/O banks • Double data rate (DDR), single data rate (SDR), and half data rate input and output options • Serializer/deserializer (SERDES) • Deskew, read and write leveling, and clock-domain crossing functionality for high-performance memory interface • Programmable output current strength • Programmable slew-rate • Programmable bus-hold • Programmable pull-up resistor • Programmable pre-emphasis • Programmable I/O delay • Programmable voltage output differential (VOD) • Open-drain output • On-chip series termination (RS OCT) with and without calibration • On-chip parallel termination (RT OCT) • On-chip differential termination (RD OCT) Note: The information in this chapter is applicable to all Stratix V variants, unless noted otherwise. Related Information Stratix V Device Handbook: Known Issues Lists the planned updates to the Stratix V Device Handbook chapters. © 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. www.altera.com 101 Innovation Drive, San Jose, CA 95134 ISO 9001:2008 Registered 5-2 SV51006 2015.06.12 I/O Standards Support in Stratix V Devices I/O Standards Support in Stratix V Devices This section lists the I/O standards supported in the FPGA I/Os of Stratix V devices, the typical power supply values for each I/O standard, and the MultiVolt I/O interface feature. I/O Standards Support in Stratix V Devices Stratix V devices support a wide range of industry I/O standards. These devices support VCCIO voltage levels of 3.0, 2.5, 1.8, 1.5, 1.35, 1.25, and 1.2 V. Table 5-1: Supported I/O Standards for Stratix V Devices This table lists the I/O standards for Stratix V devices, as well as the typical applications they support. I/O Standard (4) Typical Applications Standard Support 3.3 V LVTTL/3.3 V LVCMOS(4) General purpose JESD8-B 2.5 V LVCMOS General purpose JESD8-5 1.8 V LVCMOS General purpose JESD8-7 1.5 V LVCMOS General purpose JESD8-11 1.2 V LVCMOS General purpose JESD8-12 SSTL-2 Class I DDR SDRAM JESD8-9B SSTL-2 Class II DDR SDRAM JESD8-9B SSTL-18 Class I DDR2 SDRAM JESD8-15 SSTL-18 Class II DDR2 SDRAM JESD8-15 SSTL-15 Class I DDR3 SDRAM — SSTL-15 Class II DDR3 SDRAM — 1.8 V HSTL Class I QDR II/RLDRAM II JESD8-6 1.8 V HSTL Class II QDR II/RLDRAM II JESD8-6 1.5 V HSTL Class I QDR II/QDR II+/ RLDRAM II JESD8-6 1.5 V HSTL Class II QDR II/QDR II+/ RLDRAM II JESD8-6 1.2 V HSTL Class I General purpose JESD8-16A 1.2 V HSTL Class II General purpose JESD8-16A Differential SSTL-2 Class I DDR SDRAM JESD8-9B Differential SSTL-2 Class II DDR SDRAM JESD8-9B Differential SSTL-18 Class I DDR2 SDRAM JESD8-15 Differential SSTL-18 Class II DDR2 SDRAM JESD8-15 Differential SSTL-15 Class I DDR3 SDRAM — Supported using VCCIO at 3.0 V. Altera Corporation I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 I/O Standards Voltage Levels in Stratix V Devices I/O Standard Typical Applications Standard Support Differential SSTL-15 Class II DDR3 SDRAM — Differential 1.8 V HSTL Class I Clock interfaces JESD8-6 Differential 1.8 V HSTL Class II Clock interfaces JESD8-6 Differential 1.5 V HSTL Class I Clock interfaces JESD8-6 Differential 1.5 V HSTL Class II Clock interfaces JESD8-6 Differential 1.2 V HSTL Class I Clock interfaces JESD8-16A Differential 1.2 V HSTL Class II Clock interfaces JESD8-16A LVDS High-speed communications ANSI/TIA/EIA-644 RSDS Flat panel display — Mini-LVDS Flat panel display — LVPECL Video graphics and clock distribution — SSTL-15 DDR3 SDRAM JESD79-3D SSTL-135 DDR3L SDRAM — SSTL-125 DDR3U SDRAM — SSTL-12 RLDRAM 3 — HSUL-12 LPDDR2 SDRAM — Differential SSTL-15 DDR3 SDRAM JESD79-3D Differential SSTL-135 DDR3L SDRAM — Differential SSTL-125 DDR3U SDRAM — Differential SSTL-12 RLDRAM 3 — Differential HSUL-12 LPDDR2 SDRAM — 5-3 I/O Standards Voltage Levels in Stratix V Devices Table 5-2: Stratix V I/O Standards Voltage Levels This table lists the typical power supplies for each supported I/O standards in Stratix V devices. VCCIO (V) I/O Standard 3.3 V LVTTL/3.3 V LVCMOS (5) VCCPD (V) VREF (V) VTT (V) Input(5) Output (Pre-Driver Voltage) (Input Ref Voltage) (Board Termination Voltage) 3.0/2.5 3.0 3.0 — — Input buffers for the SSTL, HSTL, Differential SSTL, Differential HSTL, LVDS, RSDS, Mini-LVDS, LVPECL, HSUL, and Differential HSUL are powered by VCCPD I/O Features in Stratix V Devices Send Feedback Altera Corporation 5-4 SV51006 2015.06.12 I/O Standards Voltage Levels in Stratix V Devices VCCIO (V) I/O Standard (5) VCCPD (V) VREF (V) VTT (V) Input(5) Output (Pre-Driver Voltage) (Input Ref Voltage) (Board Termination Voltage) 2.5 V LVCMOS 3.0/2.5 2.5 2.5 — — 1.8 V LVCMOS 1.8/1.5 1.8 2.5 — — 1.5 V LVCMOS 1.8/1.5 1.5 2.5 — — 1.2 V LVCMOS 1.2 1.2 2.5 — — SSTL-2 Class I VCCPD 2.5 2.5 1.25 1.25 SSTL-2 Class II VCCPD 2.5 2.5 1.25 1.25 SSTL-18 Class I VCCPD 1.8 2.5 0.9 0.9 SSTL-18 Class II VCCPD 1.8 2.5 0.9 0.9 SSTL-15 Class I VCCPD 1.5 2.5 0.75 0.75 SSTL-15 Class II VCCPD 1.5 2.5 0.75 0.75 1.8 V HSTL Class I VCCPD 1.8 2.5 0.9 0.9 1.8 V HSTL Class II VCCPD 1.8 2.5 0.9 0.9 1.5 V HSTL Class I VCCPD 1.5 2.5 0.75 0.75 1.5 V HSTL Class II VCCPD 1.5 2.5 0.75 0.75 1.2 V HSTL Class I VCCPD 1.2 2.5 0.6 0.6 1.2 V HSTL Class II VCCPD 1.2 2.5 0.6 0.6 Differential SSTL-2 Class I VCCPD 2.5 2.5 — 1.25 Differential SSTL-2 Class II VCCPD 2.5 2.5 — 1.25 Differential SSTL-18 Class I VCCPD 1.8 2.5 — 0.9 Differential SSTL-18 Class II VCCPD 1.8 2.5 — 0.9 Differential SSTL-15 Class I VCCPD 1.5 2.5 — 0.75 Differential SSTL-15 Class II VCCPD 1.5 2.5 — 0.75 Differential 1.8 V HSTL Class I VCCPD 1.8 2.5 — 0.9 Differential 1.8 V HSTL Class II VCCPD 1.8 2.5 — 0.9 Input buffers for the SSTL, HSTL, Differential SSTL, Differential HSTL, LVDS, RSDS, Mini-LVDS, LVPECL, HSUL, and Differential HSUL are powered by VCCPD Altera Corporation I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 I/O Standards Voltage Levels in Stratix V Devices VCCIO (V) I/O Standard VCCPD (V) VREF (V) VTT (V) 5-5 Input(5) Output (Pre-Driver Voltage) (Input Ref Voltage) (Board Termination Voltage) Differential 1.5 V HSTL Class I VCCPD 1.5 2.5 — 0.75 Differential 1.5 V HSTL Class II VCCPD 1.5 2.5 — 0.75 Differential 1.2 V HSTL Class I VCCPD 1.2 2.5 — 0.6 Differential 1.2 V HSTL Class II VCCPD 1.2 2.5 — 0.6 LVDS VCCPD 2.5 2.5 — — RSDS VCCPD 2.5 2.5 — — Mini-LVDS VCCPD 2.5 2.5 — — LVPECL (Differential clock input only) VCCPD — 2.5 — — SSTL-15 VCCPD 1.5 2.5 0.75 SSTL-135 VCCPD 1.35 2.5 0.675 SSTL-125 VCCPD 1.25 2.5 0.625 SSTL-12 VCCPD 1.2 2.5 0.6 HSUL-12 VCCPD 1.2 2.5 0.6 Differential SSTL-15 VCCPD 1.5 2.5 — Differential SSTL-135 VCCPD 1.35 2.5 — Differential SSTL-125 VCCPD 1.25 2.5 — Differential SSTL-12 VCCPD 1.2 2.5 — Differential HSUL-12 VCCPD 1.2 2.5 — Typically does not require board termination Typically does not require board termination The Stratix V I/O buffers support 3.3 V I/O standards. You can use them as transmitters or receivers in your system. The output high voltage (VOH), output low voltage (VOL), input high voltage (VIH), and input low voltage (VIL) levels meet the 3.3 V I/O standards specifications defined by EIA/JEDEC Standard JESD8-B with margin when the Stratix V VCCIO voltage is powered by 3.0 V. Related Information Guideline: Observe Device Absolute Maximum Rating for 3.3 V Interfacing on page 5-8 Provides more information about the 3.3 V LVTTL/LVCMOS I/O standard supported in Stratix V devices. (5) Input buffers for the SSTL, HSTL, Differential SSTL, Differential HSTL, LVDS, RSDS, Mini-LVDS, LVPECL, HSUL, and Differential HSUL are powered by VCCPD I/O Features in Stratix V Devices Send Feedback Altera Corporation 5-6 SV51006 2015.06.12 MultiVolt I/O Interface in Stratix V Devices MultiVolt I/O Interface in Stratix V Devices The MultiVolt I/O interface feature allows Stratix V devices in all packages to interface with systems of different supply voltages. You can connect the VCCIO pins to a 1.2, 1.25, 1.35, 1.5, 1.8, 2.5, or 3.0 V power supply, depending on the output requirements. The output levels are compatible with systems of the same voltage as the power supply. For example, when VCCIO pins are connected to a 1.5 V power supply, the output levels are compatible with 1.5 V systems. For LVDS applications: • The LVDS I/O standard is not supported when VCCIO is 3.0 V. • The LVDS input operations are supported when VCCIO is 1.2, 1.25, 1.35, 1.5, 1.8, or 2.5 V. • The LVDS output operations are only supported when VCCIO is 2.5 V. Table 5-3: MultiVolt I/O Support in Stratix V Devices VCCIO (V) VCCPD (V) Input Signal (V) Output Signal (V) 1.2 2.5 1.2 1.2 1.25 2.5 1.25 1.25 1.35 2.5 1.35 1.35 1.5 2.5 1.5, 1.8 1.5 1.8 2.5 1.5, 1.8 1.8 2.5 2.5 2.5, 3.0, 3.3 2.5 3.0 3.0 2.5, 3.0, 3.3 3.0, 3.3 The pin current may be slightly higher than the default value. Verify that the VOL maximum and VOH minimum voltages of the driving device do not violate the applicable VIL maximum and VIH minimum voltage specifications of the Stratix V device. The VCCPD power pins must be connected to a 2.5 V or 3.0 V power supply. Using these power pins to supply the pre-driver power to the output buffers increases the performance of the output pins. Note: If the input signal is 3.0 V or 3.3 V, Altera recommends that you use an external clamping diode on the I/O pins. I/O Design Guidelines for Stratix V Devices There are several considerations that require your attention to ensure the success of your designs. Unless noted otherwise, these design guidelines apply to all variants of this device family. Mixing Voltage-Referenced and Non-Voltage-Referenced I/O Standards Each I/O bank can simultaneously support multiple I/O standards. The following sections provide guidelines for mixing non-voltage-referenced and voltage-referenced I/O standards in the devices. (6) Single-ended I/O standard at this voltage is not supported in the Stratix V devices. This information highlights that multiple single-ended I/O standards are not compatible with VCCIO at this voltage. Altera Corporation I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 Non-Voltage-Referenced I/O Standards 5-7 Non-Voltage-Referenced I/O Standards Each Stratix V I/O bank has its own VCCIO pins and supports only one VCCIO of 1.2, 1.25, 1.35, 1.5, 1.8, 2.5, or 3.0 V. An I/O bank can simultaneously support any number of input signals with different I/O standard assignments if the I/O standards support the VCCIO level and VCCPD requirement of the I/O bank. For output signals, a single I/O bank supports non-voltage-referenced output signals that drive at the same voltage as VCCIO. Because an I/O bank can only have one VCCIO value, it can only drive out the value for non-voltage-referenced signals. For example, an I/O bank with a 2.5 V VCCIO setting can support 2.5 V standard inputs and outputs, and 3.0 V LVCMOS inputs only. Voltage-Referenced I/O Standards To accommodate voltage-referenced I/O standards: • Each Stratix V I/O bank supports multiple dedicated VREF pins feeding a common VREF bus. • Each bank can have only a single VCCIO voltage level and a single voltage reference (VREF) level. An I/O bank featuring single-ended or differential standards can support different voltage-referenced standards if all voltage-referenced standards use the same VREF setting. For performance reasons, voltage-referenced input standards use their own VCCPD level as the power source. This feature allows you to place voltage-referenced input signals in an I/O bank with a VCCIO of 2.5 V or below. For example, you can place HSTL-15 input pins in an I/O bank with 2.5 V VCCIO. However, the voltage-referenced input with RT OCT enabled requires the VCCIO of the I/O bank to match the voltage of the input standard. RT OCT cannot be supported for the HSTL-15 I/O standard when VCCIO is 2.5 V. Voltage-referenced bidirectional and output signals must be the same as the VCCIO voltage of the I/O bank. For example, you can place only SSTL-2 output pins in an I/O bank with a 2.5 V VCCIO. Mixing Voltage-Referenced and Non-Voltage Referenced I/O Standards An I/O bank can support voltage-referenced and non-voltage-referenced pins by applying each of the rule sets individually. Examples: • An I/O bank can support SSTL-18 inputs and outputs, and 1.8 V inputs and outputs with a 1.8 V VCCIO and a 0.9 V VREF. • An I/O bank can support 1.5 V standards, 1.8 V inputs (but not outputs), and HSTL and 1.5 V HSTL I/O standards with a 1.5 V VCCIO and 0.75 V VREF. Guideline: Use the Same VCCPD for All I/O Banks in a Group One VCCPD is shared in a group of I/O banks. If one I/O bank in a group uses 3.0 V VCCPD, other I/O banks in the same group must also use 3.0 V VCCPD. I/O Features in Stratix V Devices Send Feedback Altera Corporation 5-8 SV51006 2015.06.12 Guideline: Observe Device Absolute Maximum Rating for 3.3 V Interfacing The I/O banks with the same bank number form a group. For example, I/O banks 7A, 7B, 7C, and 7D form a group and share the same VCCPD. This sharing is applicable to all I/O banks, with the following exceptions: • I/O banks 3A and 3B form a group with one VCCPD. • I/O banks 3C, 3D, and 3E (if available) form another group with its own VCCPD. If you are using an output or bidirectional pin with the 3.3 V LVTTL or 3.3 V LVCMOS I/O standard, you must adhere to this restriction manually with location assignments. Related Information • • • • Modular I/O Banks for Stratix V E Devices on page 5-10 Modular I/O Banks for Stratix V GX Devices on page 5-11 Modular I/O Banks for Stratix V GS Devices on page 5-14 Modular I/O Banks for Stratix V GT Devices on page 5-15 Guideline: Observe Device Absolute Maximum Rating for 3.3 V Interfacing To ensure device reliability and proper operation when you use the device for 3.3 V I/O interfacing, do not violate the absolute maximum ratings of the device. For more information about absolute maximum rating and maximum allowed overshoot during transitions, refer to the device datasheet. Tip: Perform IBIS or SPICE simulations to make sure the overshoot and undershoot voltages are within the specifications. Transmitter Application If you use the Stratix V device as a transmitter, use slow slew-rate and series termination to limit the overshoot and undershoot at the I/O pins. Transmission line effects that cause large voltage deviations at the receiver are associated with an impedance mismatch between the driver and the transmission lines. By matching the impedance of the driver to the characteristic impedance of the transmission line, you can significantly reduce overshoot voltage. You can use a series termination resistor placed physically close to the driver to match the total driver impedance to the transmission line impedance. Receiver Application If you use the Stratix V device as a receiver, use an off-chip clamping diode to limit the overshoot and undershoot voltage at the I/O pins. The 3.3 V I/O standard is supported using the bank supply voltage (VCCIO) at 3.0 V and a VCCPD voltage of 3.0 V. In this method, the clamping diode can sufficiently clamp overshoot voltage to within the DC and AC input voltage specifications. The clamped voltage is expressed as the sum of the VCCIO and the diode forward voltage. Related Information Stratix V Device Datasheet Guideline: Use PLL Integer Mode for LVDS Applications For LVDS applications, you must use the phase-locked loops (PLLs) in integer PLL mode. Related Information Guideline: Use PLLs in Integer PLL Mode for LVDS on page 6-8 Altera Corporation I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 I/O Banks in Stratix V Devices 5-9 I/O Banks in Stratix V Devices All I/O banks in Stratix V devices contain true differential input and output buffers and dedicated circuitry to support differential I/O standards: • • • • The number of I/O banks in a particular device depends on the device density. Each I/O bank supports a high-performance external memory interface. The I/O pins are organized in pairs to support differential I/O standards. Each I/O pin pair can support both differential input and output buffers. Figure 5-1: I/0 Banks for Stratix V Devices This figure represents the top view of the silicon die that corresponds to a reverse view of the device package. Bank 8B Bank 8C Bank 8D Bank 8E Bank 7E Bank 7D Bank 7C Bank 7B Bank 7A Bank 3A Bank 3B Bank 3C Bank 3D Bank 3E Bank 4E Bank 4D Bank 4C Bank 4B Bank 4A Transceiver Block Transceiver Block Bank 8A Related Information • • • • Modular I/O Banks for Stratix V E Devices on page 5-10 Modular I/O Banks for Stratix V GX Devices on page 5-11 Modular I/O Banks for Stratix V GS Devices on page 5-14 Modular I/O Banks for Stratix V GT Devices on page 5-15 I/O Features in Stratix V Devices Send Feedback Altera Corporation 5-10 SV51006 2015.06.12 I/O Banks Groups in Stratix V Devices I/O Banks Groups in Stratix V Devices The I/O pins in Stratix V devices are arranged in groups called modular I/O banks: • Modular I/O banks have independent power supplies that allow each bank to support different I/O standards. • Each modular I/O bank can support multiple I/O standards that use the same VCCIO and VCCPD voltages. Modular I/O Banks for Stratix V E Devices Table 5-4: Modular I/O Banks for Stratix V E Devices Member Code E9 Package Bank Total EB H40 F45 H40 F45 3A 36 36 36 36 3B 48 48 48 48 3C 48 48 48 48 3D 48 48 48 48 3E — 36 — 36 4A 24 24 24 24 4B 48 48 48 48 4C 48 48 48 48 4D 48 48 48 48 4E — 36 — 36 7A 24 24 24 24 7B 48 48 48 48 7C 48 48 48 48 7D 48 48 48 48 7E — 36 — 36 8A 36 36 36 36 8B 48 48 48 48 8C 48 48 48 48 8D 48 48 48 48 8E — 36 — 36 696 840 696 840 Related Information • I/O Banks in Stratix V Devices on page 5-9 Altera Corporation I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 5-11 Modular I/O Banks for Stratix V GX Devices • Guideline: Use the Same VCCPD for All I/O Banks in a Group on page 5-7 Provides guidelines about VCCPD and I/O banks groups. Modular I/O Banks for Stratix V GX Devices Table 5-5: Modular I/O Banks for Stratix V GX A3 and A4 Devices Member Code A3 Package Bank EH29 HF35 KF35 KF40 HF35 KF35 KF40 3A 36 36 36 36 36 36 36 3B 48 48 48 48 48 48 48 3C — — — 48 48 — 48 3D 24 24 24 48 24 24 48 4A 24 24 24 24 24 24 24 4B — 48 48 48 48 48 48 4C — — — 48 48 — 48 4D 24 36 36 48 24 36 48 7A 24 24 24 24 24 24 24 7B — 48 48 48 48 48 48 7C 48 48 48 48 48 48 48 7D 36 36 36 48 36 36 48 8A 24 24 24 36 24 24 36 8B — — — 48 — — 48 8C 48 — — 48 48 — 48 8D 24 36 36 48 24 36 48 360 432 432 696 552 432 696 Total I/O Features in Stratix V Devices Send Feedback A4 Altera Corporation 5-12 SV51006 2015.06.12 Modular I/O Banks for Stratix V GX Devices Table 5-6: Modular I/O Banks for Stratix V GX A5 and A7 Devices Member Code Package Bank Total Altera Corporation A5 A7 HF35 KF35 KF40 NF40 NF45 HF35 KF35 KF40 NF40 NF45 3A 36 36 36 36 36 36 36 36 36 36 3B 48 48 48 48 48 48 48 48 48 48 3C 48 — 48 48 48 48 — 48 48 48 3D 24 24 48 24 48 24 24 48 24 48 3E — — — — 36 — — — — 36 4A 24 24 24 24 24 24 24 24 24 24 4B 48 48 48 48 48 48 48 48 48 48 4C 48 — 48 48 48 48 — 48 48 48 4D 24 36 48 24 48 24 36 48 24 48 4E — — — — 36 — — — — 36 7A 24 24 24 24 24 24 24 24 24 24 7B 48 48 48 48 48 48 48 48 48 48 7C 48 48 48 48 48 48 48 48 48 48 7D 36 36 48 48 48 36 36 48 48 48 7E — — — — 36 — — — — 36 8A 24 24 36 36 36 24 24 36 36 36 8B — — 48 — 48 — — 48 — 48 8C 48 — 48 48 48 48 — 48 48 48 8D 24 36 48 48 48 24 36 48 48 48 8E — — — — 36 — — — — 36 552 432 696 600 840 552 432 696 600 840 I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 Modular I/O Banks for Stratix V GX Devices 5-13 Table 5-7: Modular I/O Banks for Stratix V GX A9, AB, B5, B6, B9, and BB Devices Member Code Package Bank A9 AB B5 B6 B9 BB KH40 NF45 KH40 NF45 RF40 RF43 RF40 RF43 RH43 RH43 3A 36 36 36 36 36 36 36 36 36 36 3B 48 48 48 48 48 48 48 48 48 48 3C 48 48 48 48 — 48 — 48 48 48 3D 48 48 48 48 — 36 — 36 36 36 3E — 36 — 36 — — — — — — 4A 24 24 24 24 48 48 48 48 48 48 4B 48 48 48 48 48 48 48 48 48 48 4C 48 48 48 48 36 36 36 36 36 36 4D 48 48 48 48 — — — — — — 4E — 36 — 36 — — — — — — 7A 24 24 24 24 48 48 48 48 48 48 7B 48 48 48 48 48 48 48 48 48 48 7C 48 48 48 48 36 36 36 36 36 36 7D 48 48 48 48 — — — — — — 7E — 36 — 36 — — — — — — 8A 36 36 36 36 36 36 36 36 36 36 8B 48 48 48 48 48 48 48 48 48 48 8C 48 48 48 48 — 48 — 48 48 48 8D 48 48 48 48 — 36 — 36 36 36 8E — 36 — 36 — — — — — — 696 840 696 840 432 600 432 600 600 600 Total Related Information • I/O Banks in Stratix V Devices on page 5-9 • Guideline: Use the Same VCCPD for All I/O Banks in a Group on page 5-7 Provides guidelines about VCCPD and I/O banks groups. I/O Features in Stratix V Devices Send Feedback Altera Corporation 5-14 SV51006 2015.06.12 Modular I/O Banks for Stratix V GS Devices Modular I/O Banks for Stratix V GS Devices Table 5-8: Modular I/O Banks for Stratix V GS Devices Member Code Package Bank Total D3 D4 D5 D6 D8 EF29 HF35 EF29 HF35 KF40 HF35 KF40 KF40 NF45 KF40 NF45 3A 36 36 36 36 36 36 36 36 36 36 36 3B 48 48 48 48 48 48 48 48 48 48 48 3C — — — — 48 48 48 48 48 48 48 3D 24 24 24 24 48 24 48 48 48 48 48 3E — — — — — — — — 36 — 36 4A 24 24 24 24 24 24 24 24 24 24 24 4B — 48 — 48 48 48 48 48 48 48 48 4C — — — — 48 48 48 48 48 48 48 4D 24 24 24 24 48 24 48 48 48 48 48 4E — — — — — — — — 36 — 36 7A 24 24 24 24 24 24 24 24 24 24 24 7B — 24 — 24 48 48 48 48 48 48 48 7C 48 48 48 48 48 48 48 48 48 48 48 7D 36 36 36 36 48 36 48 48 48 48 48 7E — — — — — — — — 36 — 36 8A 24 24 24 24 36 24 36 36 36 36 36 8B — — — — 48 — 48 48 48 48 48 8C 48 48 48 48 48 48 48 48 48 48 48 8D 24 24 24 24 48 24 48 48 48 48 48 8E — — — — — — — — 36 — 36 360 432 360 432 696 552 696 696 840 696 840 Related Information • I/O Banks in Stratix V Devices on page 5-9 • Guideline: Use the Same VCCPD for All I/O Banks in a Group on page 5-7 Provides guidelines about VCCPD and I/O banks groups. Altera Corporation I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 Modular I/O Banks for Stratix V GT Devices 5-15 Modular I/O Banks for Stratix V GT Devices Table 5-9: Modular I/O Banks for Stratix V GT Devices Member Code C5 C7 Package KF40 KF40 3A 36 36 3B 48 48 3C 48 48 3D 24 24 3E — — 4A 24 24 4B 48 48 4C 48 48 4D 24 24 4E — — 7A 24 24 7B 48 48 7C 48 48 7D 48 48 7E — — 8A 36 36 8B — — 8C 48 48 8D 48 48 8E — — 600 600 Bank Total Related Information • I/O Banks in Stratix V Devices on page 5-9 • Guideline: Use the Same VCCPD for All I/O Banks in a Group on page 5-7 Provides guidelines about VCCPD and I/O banks groups. I/O Element Structure in Stratix V Devices The I/O elements (IOEs) in Stratix V devices contain a bidirectional I/O buffer and I/O registers to support a complete embedded bidirectional single data rate (SDR) or double data rate (DDR) transfer. The IOEs are located in I/O blocks around the periphery of the Stratix V device. I/O Features in Stratix V Devices Send Feedback Altera Corporation 5-16 SV51006 2015.06.12 I/O Buffer and Registers in Stratix V Devices I/O Buffer and Registers in Stratix V Devices I/O registers are composed of the input path for handling data from the pin to the core, the output path for handling data from the core to the pin, and the output enable (OE) path for handling the OE signal to the output buffer. These registers allow faster source-synchronous register-to-register transfers and resynchronization. Table 5-10: Input and Output Paths in Stratix V Devices This table summarizes the input and output path in the Stratix V devices. Input Path Output Path Consists of: Consists of: • DDR input registers • Alignment and synchronization registers • Half data rate blocks • Output or OE registers • Alignment registers • Half data rate blocks You can bypass each block in the input path. The You can bypass each block of the output and OE input path uses the deskew delay to adjust the input paths. register clock delay across process, voltage, and temperature (PVT) variations. Altera Corporation I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 External Memory Interfaces 5-17 Figure 5-2: IOE Structure for Stratix V Devices This figure shows the Stratix V FPGA IOE structure. In the figure, one dynamic on-chip termination (OCT) control is available for each DQ/DQS group. From Core DQS Logic Block OE Register D OE from Core 2 Half Data Rate Block PRN D6_OCT D5_OCT Dynamic OCT Control Q Alignment Registers OE Register D5, D6 Delay PRN Q D V CCIO Programmable Pull-Up Resistor Write Data from Core Output Register Half Data Rate Block 4 Programmable Current Strength and Slew Rate Control Alignment Registers D PRN Q D5, D6 Delay Output Register D PRN Bus-Hold Circuit D1 Delay D3_1 Delay To Core Same available settings in the Quartus II software Input Register PRN Q D Read Data to Core 4 Half Data Rate Block Alignment and Synchronization Registers Input Register Input Register PRN D DQS CQn On-Chip Termination Input Buffer D3_0 Delay To Core Output Buffer Open Drain D2 Delay Q clkout From OCT Calibration Block Q D PRN Q D4 Delay clkin Deskew Delay External Memory Interfaces In addition to the I/O registers in each IOE, Stratix V devices also have dedicated registers and phase-shift circuitry on all I/O banks to interface with external memory. Stratix V devices support I/O standards such as SSTL-12, SSTL-15, SSTL-125, SSTL-135, and HSUL-12. High-Speed Differential I/O with DPA Support To support high-speed differential I/O, Stratix V devices contain the following dedicated circuitries: • • • • • • • Differential I/O buffer Transmitter serializer Receiver deserializer Data realignment DPA Synchronizer (FIFO buffer) Phase-locked loops (PLLs) I/O Features in Stratix V Devices Send Feedback Altera Corporation 5-18 SV51006 2015.06.12 Programmable IOE Features in Stratix V Devices Programmable IOE Features in Stratix V Devices Table 5-11: Summary of Supported Stratix V Programmable IOE Features and Settings Feature Setting Condition 0 (Slow), 1 (Fast). Default is 1. Disabled if you use the RS OCT feature. Refer to the device datasheet. — Open-Drain Output On, Off (default) — Bus-Hold On, Off (default) Disabled if you use the pull-up resistor feature. Pull-up Resistor On, Off (default) Disabled if you use the bus-hold feature. 0 (disabled), 1 (enabled). Default is 1. — 0 (low), 1 (medium low), 2 (medium high), 3 (high). Default is 1. — Slew Rate Control I/O Delay Pre-Emphasis Differential Output Voltage Related Information • • • • • • • Stratix V Device Datasheet Programmable Current Strength on page 5-18 Programmable Output Slew-Rate Control on page 5-19 Programmable IOE Delay on page 5-20 Programmable Output Buffer Delay on page 5-20 Programmable Pre-Emphasis on page 5-20 Programmable Differential Output Voltage on page 5-21 Programmable Current Strength You can use the programmable current strength to mitigate the effects of high signal attenuation that is caused by a long transmission line or a legacy backplane. Table 5-12: Programmable Current Strength Settings for Stratix V Devices The output buffer for each Stratix V device I/O pin has a programmable current strength control for the I/O standards listed in this table. I/O Standard IOH / IOL Current Strength Setting (mA) (Default setting in bold) 3.3-V LVTTL 16, 12, 8, 4 3.3-V LVCMOS 16, 12, 8, 4 2.5-V LVCMOS 16, 12, 8, 4 Altera Corporation I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 Programmable Output Slew-Rate Control I/O Standard 5-19 IOH / IOL Current Strength Setting (mA) (Default setting in bold) 1.8-V LVCMOS 12, 10, 8, 6, 4, 2 1.5-V LVCMOS 12, 10, 8, 6, 4, 2 1.2-V LVCMOS 8, 6, 4, 2 SSTL-2 Class I 12, 10, 8 SSTL-2 Class II 16 SSTL-18 Class I 12, 10, 8, 6, 4 SSTL-18 Class II 16, 8 SSTL-15 Class I 12, 10, 8, 6, 4 SSTL-15 Class II 16, 8 1.8-V HSTL Class I 12, 10, 8, 6, 4 1.8-V HSTL Class II 16 1.5-V HSTL Class I 12, 10, 8, 6, 4 1.5-V HSTL Class II 16 1.2-V HSTL Class I 12, 10, 8, 6, 4 1.2-V HSTL Class II 16 The 3.3 V LVTTL and 3.3 V LVCMOS I/O standards are supported using VCCIO and VCCPD at 3.0 V. Note: Altera recommends that you perform IBIS or SPICE simulations to determine the best current strength setting for your specific application. Related Information Programmable IOE Features in Stratix V Devices on page 5-18 Programmable Output Slew-Rate Control Programmable output slew-rate is available for single-ended I/O standards and emulated LVDS output standards. The programmable output slew-rate control in the output buffer of each regular- and dual-function I/O pin allows you to configure the following: • Fast slew-rate—provides high-speed transitions for high-performance systems. Fast slew rates improve the available timing margin in memory-interface applications or when the output pin has highcapacitive loading. • Slow slew-rate—reduces system noise and crosstalk but adds a nominal delay to the rising and falling edges. You can specify the slew-rate on a pin-by-pin basis because each I/O pin contains a slew-rate control. Note: Altera recommends that you perform IBIS or SPICE simulations to determine the best slew rate setting for your specific application. I/O Features in Stratix V Devices Send Feedback Altera Corporation 5-20 SV51006 2015.06.12 Programmable IOE Delay Related Information Programmable IOE Features in Stratix V Devices on page 5-18 Programmable IOE Delay You can activate the programmable IOE delays to ensure zero hold times, minimize setup times, or increase clock-to-output times. This feature helps read and write timing margins because it minimizes the uncertainties between signals in the bus. Each single-ended and differential I/O pin can have a different input delay from pin-to-input register or a delay from output register-to-output pin values to ensure that the signals within a bus have the same delay going into or out of the device. For more information about the programmable IOE delay specifications, refer to the device datasheet. Related Information • Stratix V Device Datasheet • Programmable IOE Features in Stratix V Devices on page 5-18 Programmable Output Buffer Delay The delay chains are built inside the single-ended output buffer. There are four levels of output buffer delay settings. By default, there is no delay. The delay chains can independently control the rising and falling edge delays of the output buffer, allowing you to: • Adjust the output-buffer duty cycle • Compensate channel-to-channel skew • Reduce simultaneous switching output (SSO) noise by deliberately introducing channel-to-channel skew • Improve high-speed memory-interface timing margins For more information about the programmable output buffer delay specifications, refer to the device datasheet. Related Information • Stratix V Device Datasheet • Programmable IOE Features in Stratix V Devices on page 5-18 Programmable Pre-Emphasis The VOD setting and the output impedance of the driver set the output current limit of a high-speed transmission signal. At a high frequency, the slew rate may not be fast enough to reach the full VOD level before the next edge, producing pattern-dependent jitter. With pre-emphasis, the output current is boosted momentarily during switching to increase the output slew rate. Pre-emphasis increases the amplitude of the high-frequency component of the output signal, and thus helps to compensate for the frequency-dependent attenuation along the transmission line. The overshoot introduced by the extra current happens only during a change of state switching to increase the output slew rate and does not ring, unlike the overshoot caused by signal reflection. The amount of pre-emphasis required depends on the attenuation of the high-frequency component along the transmission line. Altera Corporation I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 Programmable Differential Output Voltage 5-21 Figure 5-3: Programmable Pre-Emphasis This figure shows the LVDS output with pre-emphasis. Voltage boost from pre-emphasis VP OUT V OD OUT VP Differential output voltage (peak–peak) Table 5-13: Quartus II Software Assignment Editor—Programmable Pre-Emphasis This table lists the assignment name for programmable pre-emphasis and its possible values in the Quartus II software Assignment Editor. Field Assignment To tx_out Assignment name Programmable Pre-emphasis Allowed values 0 (disabled), 1 (enabled). Default is 1. Related Information Programmable IOE Features in Stratix V Devices on page 5-18 Programmable Differential Output Voltage The programmable VOD settings allow you to adjust the output eye opening to optimize the trace length and power consumption. A higher VOD swing improves voltage margins at the receiver end, and a smaller VOD swing reduces power consumption. You can statically adjust the VOD of the differential signal by changing the VOD settings in the Quartus II software Assignment Editor. I/O Features in Stratix V Devices Send Feedback Altera Corporation 5-22 SV51006 2015.06.12 Open-Drain Output Figure 5-4: Differential VOD This figure shows the VOD of the differential LVDS output. Single-Ended Waveform Positive Channel (p) V OD Negative Channel (n) V CM Ground Differential Waveform V OD (diff peak - peak) = 2 x V OD V OD (single-ended) p-n=0V V OD Table 5-14: Quartus II Software Assignment Editor—Programmable VOD This table lists the assignment name for programmable VOD and its possible values in the Quartus II software Assignment Editor. Field Assignment To tx_out Assignment name Programmable Differential Output Voltage (VOD) Allowed values 0 (low), 1 (medium low), 2 (medium high), 3 (high). Default is 1. Related Information Programmable IOE Features in Stratix V Devices on page 5-18 Open-Drain Output The optional open-drain output for each I/O pin is equivalent to an open collector output. If it is configured as an open drain, the logic value of the output is either high-Z or logic low. You can attach several open-drain output to a wire. This connection type is like a logical OR function and is commonly called an active-low wired-OR circuit. If at least one of the outputs is in logic 0 state (active), the circuit sinks the current and brings the line to low voltage. You can use open-drain output if you are connecting multiple devices to a bus. For example, you can use the open-drain output for system-level control signals that can be asserted by any device or as an interrupt. You can enable the open-drain output assignment using one these methods: • Design the tristate buffer using OPNDRN primitive. • Turn on the Auto Open-Drain Pins option in the Quartus II software. Altera Corporation I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 Bus-Hold Circuitry 5-23 Although you can design open-drain output without enabling the option assignment, you will not be using the open-drain output feature of the I/O buffer. The open-drain output feature in the I/O buffer provides you the best propagation delay from OE to output. Bus-Hold Circuitry Each I/O pin provides an optional bus-hold feature that is active only after configuration. When the device enters user mode, the bus-hold circuit captures the value that is present on the pin by the end of the configuration. The bus-hold circuitry uses a resistor with a nominal resistance (RBH), approximately 7 kΩ, to weakly pull the signal level to the last-driven state of the pin. The bus-hold circuitry holds this pin state until the next input signal is present. Because of this, you do not require an external pull-up or pull-down resistor to hold a signal level when the bus is tri-stated. For each I/O pin, you can individually specify that the bus-hold circuitry pulls non-driven pins away from the input threshold voltage—where noise can cause unintended high-frequency switching. To prevent over-driving signals, the bus-hold circuitry drives the voltage level of the I/O pin lower than the VCCIO level. If you enable the bus-hold feature, you cannot use the programmable pull-up option. To configure the I/O pin for differential signals, disable the bus-hold feature. Pull-up Resistor Each I/O pin provides an optional programmable pull-up resistor during user mode. The pull-up resistor, typically 25 kΩ, weakly holds the I/O to the VCCIO level. If you enable this option, you cannot use the bushold feature. The Stratix V device supports programmable pull-up resistors only on user I/O pins. For dedicated configuration pins or JTAG pins with internal pull-up resistors, these resistor values are not programmable. You can find more information related to the internal pull-up values for dedicated configuration pins or JTAG pins in the Stratix V Pin Connection Guidelines. On-Chip I/O Termination in Stratix V Devices Dynamic RS and RT OCT provides I/O impedance matching and termination capabilities. OCT maintains signal quality, saves board space, and reduces external component costs. The Stratix V devices support OCT in all I/O banks. Table 5-15: OCT Schemes Supported in Stratix V Devices Direction Output Input I/O Features in Stratix V Devices Send Feedback OCT Schemes RS OCT with calibration RS OCT without calibration RT OCT with calibration RD OCT (differential LVDS I/O standard only) Altera Corporation 5-24 SV51006 2015.06.12 RS OCT without Calibration in Stratix V Devices Direction Bidirectional OCT Schemes Dynamic RS OCT and RT OCT RS OCT without Calibration in Stratix V Devices The Stratix V devices support RS OCT for single-ended I/O standards. RS OCT without calibration is supported on output only. Table 5-16: Selectable I/O Standards for RS OCT Without Calibration This table lists the output termination settings for uncalibrated OCT on different I/O standards. I/O Standard Uncalibrated OCT (Output) RS (Ω) 3.3 V LVTTL/3.3 V LVCMOS 25/50 2.5 V LVCMOS 25/50 1.8 V LVCMOS 25/50 1.5 V LVCMOS 25/50 1.2 V LVCMOS 25/50 SSTL-2 Class I 50 SSTL-2 Class II 25 SSTL-18 Class I 50 SSTL-18 Class II 25 SSTL-15 Class I 50 SSTL-15 Class II 25 1.8 V HSTL Class I 50 1.8 V HSTL Class II 25 1.5 V HSTL Class I 50 1.5 V HSTL Class II 25 1.2 V HSTL Class I 50 1.2 V HSTL Class II 25 Differential SSTL-2 Class I 50 Differential SSTL-2 Class II 25 Differential SSTL-18 Class I 50 Differential SSTL-18 Class II 25 Differential SSTL-15 Class I 50 Differential SSTL-15 Class II 25 Differential 1.8 V HSTL Class I 50 Differential 1.8 V HSTL Class II 25 Altera Corporation I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 RS OCT without Calibration in Stratix V Devices 5-25 Uncalibrated OCT (Output) I/O Standard RS (Ω) Differential 1.5 V HSTL Class I 50 Differential 1.5 V HSTL Class II 25 Differential 1.2 V HSTL Class I 50 Differential 1.2 V HSTL Class II 25 SSTL-15 25, 34, 40, 50 SSTL-135 34, 40 SSTL-125 34, 40 SSTL-12 40, 60, 240 HSUL-12 34.3, 40, 48, 60, 80 The following list specifies the default settings for RS OCT without calibration in the Quartus II software: • For all non-voltage-referenced, HSTL Class I, and SSTL Class I I/O standards—50 Ω. • For HSTL Class II and SSTL Class II I/O standards—25 Ω. Driver-impedance matching provides the I/O driver with controlled output impedance that closely matches the impedance of the transmission line. As a result, you can significantly reduce signal reflections on PCB traces. If you select matching impedance, current strength is no longer selectable. Figure 5-5: RS OCT Without Calibration This figure shows the RS as the intrinsic impedance of the output transistors. Typical RS values are 25 Ω and 50 Ω. Receiving Device Driver Series Termination V CCIO RS Z 0 = 50 Ω RS GND To use OCT for the SSTL Class I I/O standard, you must select the 50 Ω RS OCT setting, thus eliminating the external 25 Ω RS (to match the 50 Ω transmission line). For the SSTL Class II I/O standard, you must select the 25 Ω RS OCT setting (to match the 50 Ω transmission line and the near-end external 50 Ω pull-up to VTT). I/O Features in Stratix V Devices Send Feedback Altera Corporation 5-26 SV51006 2015.06.12 RS OCT with Calibration in Stratix V Devices RS OCT with Calibration in Stratix V Devices The Stratix V devices support RS OCT with calibration in all banks. Table 5-17: Selectable I/O Standards for RS OCT With Calibration This table lists the output termination settings for calibrated OCT on different I/O standards. I/O Standard Calibrated OCT (Output) RS (Ω) RZQ (Ω) 3.3 V LVTTL/3.3 V LVCMOS 25/50 100 2.5 V LVCMOS 25/50 100 1.8 V LVCMOS 25/50 100 1.5 V LVCMOS 25/50 100 1.2 V LVCMOS 25/50 100 SSTL-2 Class I 50 100 SSTL-2 Class II 25 100 SSTL-18 Class I 50 100 SSTL-18 Class II 25 100 SSTL-15 Class I 50 100 SSTL-15 Class II 25 100 1.8 V HSTL Class I 50 100 1.8 V HSTL Class II 25 100 1.5 V HSTL Class I 50 100 1.5 V HSTL Class II 25 100 1.2 V HSTL Class I 50 100 1.2 V HSTL Class II 25 100 Differential SSTL-2 Class I 50 100 Differential SSTL-2 Class II 25 100 Differential SSTL-18 Class I 50 100 Differential SSTL-18 Class II 25 100 Differential SSTL-15 Class I 50 100 Differential SSTL-15 Class II 25 100 Differential 1.8 V HSTL Class I 50 100 Differential 1.8 V HSTL Class II 25 100 Differential 1.5 V HSTL Class I 50 100 Differential 1.5 V HSTL Class II 25 100 Differential 1.2 V HSTL Class I 50 100 Altera Corporation I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 RT OCT with Calibration in Stratix V Devices 5-27 Calibrated OCT (Output) I/O Standard RS (Ω) RZQ (Ω) 25 100 25, 50 100 34, 40 240 SSTL-135 34, 40 240 SSTL-125 34, 40 240 SSTL-12 40, 60, 240 240 HSUL-12 34, 40, 48, 60, 80 240 25, 50 100 34, 40 240 Differential SSTL-135 34, 40 240 Differential SSTL-125 34, 40 240 Differential SSTL-12 40, 60, 240 240 Differential HSUL-12 34, 40, 48, 60, 80 240 Differential 1.2 V HSTL Class II SSTL-15 Differential SSTL-15 The RS OCT calibration circuit compares the total impedance of the I/O buffer to the external reference resistor connected to the RZQ pin and dynamically enables or disables the transistors until they match. Calibration occurs at the end of device configuration. When the calibration circuit finds the correct impedance, the circuit powers down and stops changing the characteristics of the drivers. Figure 5-6: RS OCT with Calibration This figure shows the RS as the intrinsic impedance of the output transistors. Driver Series Termination Receiving Device V CCIO RS Z 0 = 50 Ω RS GND RT OCT with Calibration in Stratix V Devices The Stratix V devices support RT OCT with calibration in all banks. RT OCT with calibration is available only for configuration of input and bidirectional pins. Output pin configurations do not support RT OCT I/O Features in Stratix V Devices Send Feedback Altera Corporation 5-28 SV51006 2015.06.12 RT OCT with Calibration in Stratix V Devices with calibration. If you use RT OCT, the VCCIO of the bank must match the I/O standard of the pin where you enable the RT OCT. Table 5-18: Selectable I/O Standards for RT OCT With Calibration This table lists the input termination settings for calibrated OCT on different I/O standards. I/O Standard Calibrated OCT (Input) RT (Ω) RZQ (Ω) SSTL-2 Class I 50 100 SSTL-2 Class II 50 100 SSTL-18 Class I 50 100 SSTL-18 Class II 50 100 SSTL-15 Class I 50 100 SSTL-15 Class II 50 100 1.8 V HSTL Class I 50 100 1.8 V HSTL Class II 50 100 1.5 V HSTL Class I 50 100 1.5 V HSTL Class II 50 100 1.2 V HSTL Class I 50 100 1.2 V HSTL Class II 50 100 Differential SSTL-2 Class I 50 100 Differential SSTL-2 Class II 50 100 Differential SSTL-18 Class I 50 100 Differential SSTL-18 Class II 50 100 Differential SSTL-15 Class I 50 100 Differential SSTL-15 Class II 50 100 Differential 1.8 V HSTL Class I 50 100 Differential 1.8 V HSTL Class II 50 100 Differential 1.5 V HSTL Class I 50 100 Differential 1.5 V HSTL Class II 50 100 Differential 1.2 V HSTL Class I 50 100 Differential 1.2 V HSTL Class II 50 100 SSTL-15 20, 30, 40, 60,120 240 SSTL-135 20, 30, 40, 60, 120 240 SSTL-125 20, 30, 40, 60, 120 240 SSTL-12 60, 120 240 HSUL-12 34, 40, 48, 60, 80 240 Altera Corporation I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 Dynamic OCT in Stratix V Devices 5-29 Calibrated OCT (Input) I/O Standard RT (Ω) RZQ (Ω) Differential SSTL-15 20, 30, 40, 60,120 240 Differential SSTL-135 20, 30, 40, 60, 120 240 Differential SSTL-125 20, 30, 40, 60, 120 240 Differential SSTL-12 60, 120 240 Differential HSUL-12 34, 40, 48, 60, 80 240 The RT OCT calibration circuit compares the total impedance of the I/O buffer to the external resistor connected to the RZQ pin. The circuit dynamically enables or disables the transistors until the total impedance of the I/O buffer matches the external resistor. Calibration occurs at the end of the device configuration. When the calibration circuit finds the correct impedance, the circuit powers down and stops changing the characteristics of the drivers. Figure 5-7: RT OCT with Calibration FPGA OCT V CCIO 100 Ω Z 0 = 50 Ω V REF 100 Ω GND Transmitter Receiver Dynamic OCT in Stratix V Devices Dynamic OCT is useful for terminating a high-performance bidirectional path by optimizing the signal integrity depending on the direction of the data. Dynamic OCT also helps save power because device termination is internal—termination switches on only during input operation and thus draw less static power. Note: If you use the HSUL-12, SSTL-12, SSTL-15, SSTL-135, and SSTL-125 I/O standards with the DDR3 memory interface, Altera recommends that you use dynamic OCT with these I/O standards to save board space and cost. Dynamic OCT reduces the number of external termination resistors used. Table 5-19: Dynamic OCT Based on Bidirectional I/O Dynamic RT OCT or RS OCT is enabled or disabled based on whether the bidirectional I/O acts as a receiver or driver. Dynamic OCT Dynamic RT OCT I/O Features in Stratix V Devices Send Feedback Bidirectional I/O State Acts as a receiver Enabled Acts as a driver Disabled Altera Corporation 5-30 SV51006 2015.06.12 LVDS Input RD OCT in Stratix V Devices Dynamic OCT Dynamic RS OCT Bidirectional I/O State Acts as a receiver Disabled Acts as a driver Enabled Figure 5-8: Dynamic RT OCT in Stratix V Devices V CCIO V CCIO Transmitter Receiver 100 Ω 100 Ω 50 Ω Z 0 = 50 Ω 100 Ω 100 Ω GND 50 Ω GND FPGA OCT FPGA OCT V CCIO V CCIO Receiver Transmitter 100 Ω 100 Ω 50 Ω Z 0 = 50 Ω 100 Ω GND FPGA OCT 100 Ω 50 Ω GND FPGA OCT LVDS Input RD OCT in Stratix V Devices The Stratix V devices support RD OCT in all I/O banks. You can only use RD OCT if you set the VCCPD to 2.5 V. Altera Corporation I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 OCT Calibration Block in Stratix V Devices 5-31 Figure 5-9: Differential Input OCT The Stratix V devices support OCT for differential LVDS input buffers with a nominal resistance value of 100 Ω, as shown in this figure. Transmitter Receiver Z 0 = 50 Ω 100 Ω Z 0 = 50 Ω OCT Calibration Block in Stratix V Devices You can calibrate the OCT using any of the available four to eight OCT calibration blocks, depending on the device density. Each calibration block contains one RZQ pin. You can use RS and RT OCT in the same I/O bank for different I/O standards if the I/O standards use the same VCCIO supply voltage. You cannot configure the RS OCT and the programmable current strength for the same I/O buffer. The OCT calibration process uses the RZQ pin that is available in every calibration block in a given I/O bank for series- and parallel-calibrated termination: • Connect the RZQ pin to GND through an external 100 Ω or 240 Ω resistor (depending on the RS or RT OCT value). • The RZQ pin shares the same VCCIO supply voltage with the I/O bank where the pin is located. • The RZQ pin is a dual-purpose I/O pin and functions as a general purpose I/O pin if you do not use the calibration circuit. Stratix V devices support calibrated RS and calibrated RT OCT on all I/O pins except for dedicated configuration pins. I/O Features in Stratix V Devices Send Feedback Altera Corporation 5-32 SV51006 2015.06.12 Calibration Block Locations in Stratix V Devices Calibration Block Locations in Stratix V Devices Figure 5-10: OCT Calibration Block and RZQ Pin Location This figure shows the location of I/O banks with OCT calibration blocks and RZQ pins in the Stratix V device. This figure represents the top view of the silicon die that corresponds to a reverse view of the device package and illustrates the highest density device in the device family. RZQ pin Bank 8C Bank 8D Bank 8E Bank 7E Bank 7D Bank 7C Bank 7B Bank 7A Transceiver Block Bank 8B Transceiver Block Bank 8A RZQ pin I/O bank with OCT calibration block and RZQ pin Bank 3A Bank 3B Bank 3C Bank 3D Bank 3E Bank 4E Bank 4D RZQ pin Bank 4C Bank 4B Bank 4A RZQ pin Sharing an OCT Calibration Block on Multiple I/O Banks An OCT calibration block has the same VCCIO as the I/O bank that contains the block. All I/O banks with the same VCCIO can share one OCT calibration block, even if that particular I/O bank has an OCT calibra‐ tion block. I/O banks that do not have calibration blocks share the calibration blocks in the I/O banks that have calibration blocks. All I/O banks support OCT calibration with different VCCIO voltage standards, up to the number of available OCT calibration blocks. You can configure the I/O banks to receive calibration codes from any OCT calibration block with the same VCCIO. If a group of I/O banks has the same VCCIO voltage, you can use one OCT calibration block to calibrate the group of I/O banks placed around the periphery. Related Information • OCT Calibration Block Sharing Example on page 5-33 Altera Corporation I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 OCT Calibration Block Sharing Example 5-33 • ALTOCT Megafunction User Guide Provides more information about the OCT calibration block. OCT Calibration Block Sharing Example Figure 5-11: Example of Calibrating Multiple I/O Banks with One Shared OCT Calibration Block As an example, this figure shows a group of I/O banks that has the same VCCIO voltage. The figure does not show transceiver calibration blocks. This figure represents the top view of the silicon die that corresponds to a reverse view of the device package and illustrates the highest density device in the device family. CB7 Bank 8C Bank 8D Bank 8E Bank 7E Bank 7D Bank 7C Bank 7B Bank 7A Transceiver Block Bank 8B Transceiver Block Bank 8A I/O bank with different V I/O bank with the same V Bank 3A Bank 3B Bank 3C Bank 3D Bank 3E Bank 4E Bank 4D Bank 4C Bank 4B CCIO CCIO Bank 4A Because banks 3B, 4C, and 7B have the same VCCIO as bank 7A, you can calibrate all four I/O banks (3B, 4C, 7A, and 7B) with the OCT calibration block (CB7) located in bank 7A. To enable this calibration, serially shift out the RS OCT calibration codes from the OCT calibration block in bank 7A to the I/O banks around the periphery. Related Information • Sharing an OCT Calibration Block on Multiple I/O Banks on page 5-32 • ALTOCT Megafunction User Guide Provides more information about the OCT calibration block. OCT Calibration in Power-Up Mode In power-up mode, OCT calibration is automatically performed at power up. Calibration codes are shifted to selected I/O buffers before transitioning to user mode. I/O Features in Stratix V Devices Send Feedback Altera Corporation 5-34 SV51006 2015.06.12 OCT Calibration in User Mode OCT Calibration in User Mode In user mode, the OCTUSRCLK, ENAOCT, nCLRUSR, and ENASER signals are used to calibrate and serially transfer calibration codes from each OCT calibration block to any I/O. Table 5-20: OCT Calibration Block Ports for User Control This table lists the user-controlled calibration block signal names and their descriptions Signal Name Description OCTUSRCLK Clock for OCT block. ENAOCT Enable OCT Calibration (generated by user IP). ENASER[7..0] • ENOCT is 0—each signal enables the OCT serializer for the corresponding OCT calibration block. • ENAOCT is 1—each signal enables OCT calibra‐ tion for the corresponding OCT calibration block. S2PENA_bank# Serial-to-parallel load enable per I/O bank. nCLRUSR Clear user. Altera Corporation I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 OCT Calibration in User Mode 5-35 Figure 5-12: Signals Used for User Mode Calibration Bank 7A Bank 7B Bank 7C Bank 7D Bank 7E Bank 8E Bank 8D Bank 8C Bank 8B Bank 8A This figure shows the flow of the user signal. CB7 CB8 CB6 ENAOCT, nCLRUSR, S2PENA_6C Transceiver Block Transceiver Block Stratix V Core S2PENA_4C OCTUSRCLK, ENASER[N] CB5 Bank 4A Bank 4B Bank 4C Bank 4D Bank 4E Bank 3E Bank 3D Bank 3C CB4 Bank 3B Bank 3A CB3 When ENAOCT is 1, all OCT calibration blocks are in calibration mode. When ENAOCT is 0, all OCT calibra‐ tion blocks are in serial data transfer mode. The OCTUSRCLK clock frequency must be 20 MHz or less. Note: You must generate all user signals on the rising edge of the OCTUSRCLK signal. Figure 5-13: OCT User Mode Signal—Timing Waveform for One OCT Block This figure shows the user mode signal-timing waveforms. OCTUSRCLK ENAOCT Calibration Phase nCLRUSR ENASER0 1000 OCTUSRCLK Cycles 32 OCTUSRCLK Cycles ts2p ts2p ≥ 25 ns S2PENA_1A I/O Features in Stratix V Devices Send Feedback Altera Corporation 5-36 SV51006 2015.06.12 Example of Using Multiple OCT Calibration Blocks OCT Calibration To calibrate OCT block N (where N is a calibration block number), you must assert ENAOCT one cycle before asserting ENASERN. You must also set nCLRUSR low for one OCTUSRCLK cycle before the ENASERN signal is asserted. Assert the ENASERN signals for 1,000 OCTUSRCLK cycles to perform RS OCT and RT OCT calibration. You can deassert ENAOCT one clock cycle after the last ENASER is deasserted. Serial Data Transfer After you complete calibration, you must serially shift out the 32 bit OCT calibration codes (16 bit RS OCT and 16 bit RT OCT) from each OCT calibration block to the corresponding I/O buffers. Only one OCT calibration block can send out the codes at any time by asserting only one ENASERN signal at a time. After you deassert ENAOCT, wait at least one OCTUSRCLK cycle to enable any ENASERN signal to begin serial transfer. To shift the 32 bit code from the OCT calibration block N, you must assert ENASERN for exactly 32 OCTUSRCLK cycles. Between two consecutive asserted ENASER signals, there must be at least one OCTUSRCLK cycle gap, as shown in the preceding figure. After calibrated codes are shifted in serially to each I/O bank, the calibrated codes must be converted from serial to parallel format before being used in the I/O buffers. The preceding figure shows the S2PENA signals that can be asserted at any time to update the calibration codes in each I/O bank. All I/O banks that received the codes from the same OCT calibration block can have S2PENA asserted at the same time, or at a different time, even while another OCT calibration block is calibrating and serially shifting codes. The S2PENA signal is asserted one OCTUSRCLK cycle after ENASER is deasserted for at least 25 ns. You cannot use I/Os for transmitting or receiving data when their S2PENA is asserted for parallel codes transfer. Example of Using Multiple OCT Calibration Blocks Figure 5-14: OCT User-Mode Signal Timing Waveform for Two OCT Blocks This figure shows a signal timing waveform for two OCT calibration blocks doing RS and RT calibration. OCTUSRCLK Calibration Phase ENAOCT nCLRUSR 1000 ENASER0 1000 ENASER1 OCTUSRCLK CYCLES OCTUSRCLK 32 OCTUSRCLK CYCLES 32 OCTUSRCLK CYCLES CYCLES ts2p Asserted in Bank 1A for calibration block 0 S2PENA_1A Asserted in Bank 2A for calibration block 1 S2PENA_2A ts2p ≥ 25 ns ts2p Calibration blocks can start calibrating at different times by asserting the ENASER signals at different times. ENAOCT must remain asserted while any calibration is ongoing. You must set nCLRUSR low for one OCTUSRCLK cycle before each ENASERN signal is asserted. As shown in the preceding figure, when you set nCLRUSR to 0 for the second time to initialize OCT calibration block 0, this does not affect OCT calibra‐ tion block 1, whose calibration is already in progress. Altera Corporation I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 I/O Termination Schemes for Stratix V Devices 5-37 I/O Termination Schemes for Stratix V Devices Table 5-21: Termination Schemes for Different I/O Standards I/O Standard External Termination Scheme 3.3-V LVTTL/3.3-V LVCMOS 2.5-V LVCMOS 1.8-V LVCMOS No external termination required 1.5-V LVCMOS 1.2-V LVCMOS SSTL-2 Class I SSTL-2 Class II SSTL-18 Class I SSTL-18 Class II Single-Ended SSTL I/O Standard Termination SSTL-15 Class I SSTL-15 Class II 1.8-V HSTL Class I 1.8-V HSTL Class II 1.5-V HSTL Class I 1.5-V HSTL Class II Single-Ended HSTL I/O Standard Termination 1.2-V HSTL Class I 1.2-V HSTL Class II Differential SSTL-2 Class I Differential SSTL-2 Class II Differential SSTL-18 Class I Differential SSTL-18 Class II Differential SSTL I/O Standard Termination Differential SSTL-15 Class I Differential SSTL-15 Class II I/O Features in Stratix V Devices Send Feedback Altera Corporation 5-38 SV51006 2015.06.12 Single-ended I/O Termination I/O Standard External Termination Scheme Differential 1.8-V HSTL Class I Differential 1.8-V HSTL Class II Differential 1.5-V HSTL Class I Differential 1.5-V HSTL Class II Differential HSTL I/O Standard Termination Differential 1.2-V HSTL Class I Differential 1.2-V HSTL Class II LVDS RSDS Mini-LVDS LVPECL LVDS I/O Standard Termination RSDS/mini-LVDS I/O Standard Termination Differential LVPECL I/O Standard Termination SSTL-15 (7) SSTL-135 (7) SSTL-125 (7) SSTL-12 HSUL-12 Differential SSTL-15 (7) No external termination required Differential SSTL-135 (7) Differential SSTL-125 (7) Differential SSTL-12 Differential HSUL-12 Single-ended I/O Termination Voltage-referenced I/O standards require an input VREF and a termination voltage (VTT). The reference voltage of the receiving device tracks the termination voltage of the transmitting device. The supported I/O standards such as SSTL-12, SSTL-125, SSTL-135, and SSTL-15 typically do not require external board termination. Altera recommends that you use dynamic OCT with these I/O standards to save board space and cost. Dynamic OCT reduces the number of external termination resistors used. Note: You cannot use RS and RT OCT simultaneously. For more information, refer to the related information. (7) Altera recommends that you use dynamic OCT with these I/O standards to save board space and cost. Dynamic OCT reduces the number of external termination resistors used. Altera Corporation I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 5-39 Single-ended I/O Termination Figure 5-15: SSTL I/O Standard Termination This figure shows the details of SSTL I/O termination on Stratix V devices. This is not applicable for SSTL-12, SSTL-15, SSTL-125, and SSTL-135 I/O standards. Termination SSTL Class I SSTL Class II V TT V TT 50 Ω 25 Ω V TT 50 Ω External On-Board Termination 25 Ω V REF Transmitter Receiver Receiver V TT V TT Series OCT 25 Ω 50 Ω OCT Transmit V REF Transmitter V TT Series OCT 50 Ω 50 Ω 50 Ω 50 Ω 50 Ω V REF V REF Transmitter Receiver Transmitter Receiver V TT FPGA Parallel OCT V CCIO 50 Ω OCT Receive 100 Ω 50 Ω 25 Ω V REF V REF 100 Ω GND Transmitter Receiver 100 Ω GND Transmitter V CCIO Series OCT 25 Ω V REF 100 Ω 100 Ω FPGA I/O Features in Stratix V Devices 100 Ω V REF V CCIO 100 Ω 50 Ω 100 Ω GND Receiver V REF 50 Ω OCT in Bidirectional Pins Send Feedback 100 Ω V CCIO V CCIO Series OCT 50 Ω FPGA Parallel OCT V CCIO 50 Ω 100 Ω 25 Ω 50 Ω 50 Ω 50 Ω GND 100 Ω Series OCT 50 Ω FPGA GND FPGA 100 Ω V REF GND Series OCT 25 Ω FPGA Altera Corporation 5-40 SV51006 2015.06.12 Differential I/O Termination Figure 5-16: HSTL I/O Standard Termination This figure shows the details of HSTL I/O termination on the Stratix V devices. This is not applicable for HSUL-12 I/O standard. Termination HSTL Class I HSTL Class II V TT V TT 50 Ω V TT 50 Ω External On-Board Termination 50 Ω 50 Ω 50 Ω V REF V REF Transmitter Transmitter Receiver Receiver V TT V TT V TT Series OCT 50 Ω Series OCT 25 Ω 50 Ω OCT Transmit 50 Ω 50 Ω 50 Ω 50 Ω V REF V REF Transmitter Transmitter Receiver V CCIO Receiver V TT FPGA Parallel OCT 100 Ω 50 Ω 50 Ω V REF V REF 100 Ω 100 Ω Transmitter Receiver GND V CCIO Series OCT 50 Ω Transmitter V CCIO Series OCT 25 Ω 100 Ω 100 Ω GND FPGA V REF 100 Ω 50 Ω 100 Ω V REF V CCIO 100 Ω 50 Ω OCT in Bidirectional Pins Receiver GND V CCIO V REF 100 Ω FPGA Parallel OCT 50 Ω 100 Ω OCT Receive V CCIO GND 100 Ω Series OCT 50 Ω FPGA GND FPGA 100 Ω V REF GND Series OCT 25 Ω FPGA Related Information Dynamic OCT in Stratix V Devices on page 5-29 Differential I/O Termination The I/O pins are organized in pairs to support differential I/O standards. Each I/O pin pair can support differential input and output buffers. The supported I/O standards such as Differential SSTL-12, Differential SSTL-15, Differential SSTL-125, and Differential SSTL-135 typically do not require external board termination. Altera recommends that you use dynamic OCT with these I/O standards to save board space and cost. Dynamic OCT reduces the number of external termination resistors used. Altera Corporation I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 Differential HSTL, SSTL, and HSUL Termination 5-41 Differential HSTL, SSTL, and HSUL Termination Differential HSTL, SSTL, and HSUL inputs use LVDS differential input buffers with RD support. Differential HSTL, SSTL, and HSUL outputs are not true differential outputs. These I/O standards use two single-ended outputs with the second output programmed as inverted. Figure 5-17: Differential SSTL I/O Standard Termination This figure shows the details of Differential SSTL I/O termination on Stratix V devices. This is not applicable for differential SSTL-12, differential SSTL-15, differential SSTL-125, differential SSTL-135, and differential HSUL-12 I/O standards. Termination Differential SSTL Class I Differential SSTL Class II V TT 50 Ω 25 Ω V TT V TT 50 Ω 50 Ω V TT V TT 50 Ω 50 Ω 50 Ω V TT 50 Ω 50 Ω 25 Ω External On-Board Termination 25 Ω 25 Ω 50 Ω 50 Ω Transmitter Receiver Transmitter V CCIO Series OCT 50 Ω Series OCT 25 Ω Receiver 50 Ω 100 Ω Z 0 = 50 Ω OCT V CCIO V TT V CCIO 100 Ω Z 0 = 50 Ω V TT V CCIO 100 Ω 100 Ω 50 Ω 100 Ω GND Z 0 = 50 Ω 100 Ω GND Z 0 = 50 Ω 100 Ω 100 Ω Transmitter I/O Features in Stratix V Devices Send Feedback GND Receiver Transmitter GND Receiver Altera Corporation 5-42 SV51006 2015.06.12 LVDS, RSDS, and Mini-LVDS Termination Figure 5-18: Differential HSTL I/O Standard Termination This figure shows the details of Differential HSTL I/O standard termination on Stratix V devices. This is not applicable for differential HSUL-12 I/O standard. Termination Differential HSTL Class I Differential HSTL Class II V TT 50 Ω V TT V TT 50 Ω 50 Ω V TT V TT 50 Ω 50 Ω 50 Ω 50 Ω 50 Ω 50 Ω V TT 50 Ω External On-Board Termination Transmitter Receiver V CCIO Series OCT 50 Ω Transmitter Series OCT 25 Ω Receiver V TT 50 Ω 100 Ω Z 0 = 50 Ω OCT V CCIO V CCIO 100 Ω Z 0 = 50 Ω V TT V CCIO 100 Ω 100 Ω 50 Ω 100 Ω GND Z 0 = 50 Ω 100 Ω GND Z 0 = 50 Ω 100 Ω Transmitter GND 100 Ω Receiver Transmitter GND Receiver LVDS, RSDS, and Mini-LVDS Termination All I/O banks have dedicated circuitry to support the true LVDS, RSDS, and mini-LVDS I/O standards by using true LVDS output buffers without resistor networks. In Stratix V devices, the LVDS I/O standard requires a 2.5 V VCCIO level. The LVDS input buffer requires 2.5 V VCCPD. The LVDS receiver requires a 100 Ω termination resistor between the two signals at the input buffer. Stratix V devices provide an optional 100 Ω differential termination resistor in the device using RD OCT if VCCPD is set to 2.5 V. Altera Corporation I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 Emulated LVDS, RSDS, and Mini-LVDS Termination 5-43 Figure 5-19: LVDS I/O Standard Termination This figure shows the LVDS I/O standard termination. The on-chip differential resistor is available in all I/O banks. Termination LVDS Differential Outputs Differential Inputs 50 Ω External On-Board Termination 100 Ω 50 Ω Differential Outputs OCT Receiver (True LVDS Output) Differential Inputs OCT 50 Ω 100 Ω 50 Ω Receiver Emulated LVDS, RSDS, and Mini-LVDS Termination The I/O banks also support emulated LVDS, RSDS, and mini-LVDS I/O standards. Emulated LVDS, RSDS and mini-LVDS output buffers use two single-ended output buffers with an external three-resistor network, and can be tri-stated. I/O Features in Stratix V Devices Send Feedback Altera Corporation 5-44 SV51006 2015.06.12 Emulated LVDS, RSDS, and Mini-LVDS Termination Figure 5-20: Emulated LVDS, RSDS, or Mini-LVDS I/O Standard Termination The output buffers, as shown in this figure, are available in all I/O banks. For LVDS output with a threeresistor network, RS is 120 Ω and RP is 170 Ω. For RSDS and Mini-LVDS output, RS and RP values are pending characterization. Termination Emulated LVDS, RSDS, and mini-LVDS ≤ 1 inch 50 Ω RS External On-Board Termination (RSDS_E_3R) 100 Ω RP RS 50 Ω External Resistor Receiver Transmitter OCT ≤ 1 inch 50 Ω RS OCT 100 Ω RP (RSDS_E_3R) RS 50 Ω External Resistor Receiver Transmitter Single-Ended Outputs Differential Inputs OCT ≤ 1 inch OCT Receive (Single-Ended Output with Three-Resistor Network, LVDS_E_3R) 50 Ω RS 100 Ω RP RS 50 Ω External Resistor Transmitter Receiver To meet the RSDS or mini-LVDS specifications, you require a resistor network to attenuate the outputvoltage swing. You can modify the three-resistor network values to reduce power or improve the noise margin. Choose resistor values that satisfy the following equation. Altera Corporation I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 LVPECL Termination 5-45 Figure 5-21: Resistor Network Calculation Note: Altera recommends that you perform additional simulations with IBIS or SPICE models to validate that the custom resistor values meet the RSDS or mini-LVDS I/O standard requirements. For information about the data rates supported for external three-resistor network, refer to the device datasheet. Related Information • Stratix V Device Datasheet • National Semiconductor (www.national.com) For more information about the RSDS I/O standard, refer to the RSDS Specification on the National Semiconductor web site. LVPECL Termination The Stratix V devices support the LVPECL I/O standard on input clock pins only: • LVPECL input operation is supported using LVDS input buffers. • LVPECL output operation is not supported. Use AC coupling if the LVPECL common-mode voltage of the output buffer does not match the LVPECL input common-mode voltage. Note: Altera recommends that you use IBIS models to verify your LVPECL AC/DC-coupled termination. Figure 5-22: LVPECL AC-Coupled Termination The 50 Ω resistors used at the receiver end are external to the device. LVPECL Output Buffer LVPECL Input Buffer 0.1 µF Z 0 = 50 Ω V ICM 50 Ω 0.1 µF Z 0 = 50 Ω 50 Ω Support for DC-coupled LVPECL is available if the LVPECL output common mode voltage is within the Stratix V LVPECL input buffer specification. I/O Features in Stratix V Devices Send Feedback Altera Corporation 5-46 SV51006 2015.06.12 Document Revision History Figure 5-23: LVPECL DC-Coupled Termination LVPECL Output Buffer LVPECL Input Buffer Z 0 = 50 Ω 100 Ω Z 0 = 50 Ω Document Revision History Date Version January 2015 2015.01.23 • Corrected truncated sentence in the note about the recommendation to use dynamic OCT for several I/O standards with DDR3 external memory interface. • Clarified that dedicated configuration pins, clock pins and JTAG pins do not support programmable pull-up resistor but these pins have fixed value of internal pull-up resistors. • Moved the Open-Drain Output, Bus-Hold Circuitry and Pull-up Resistor sections to Programmable IOE Features in Stratix V Devices. • Update Open-Drain Output section with steps to enable open-drain output in Assignment Editor. June 2014 2014.06.30 • Added footnote to clarify that some of the voltage levels listed in the MultiVolt I/O support table are for showing that multiple singleended I/O standards are not compatible with certain VCCIO voltages. • Added information to clarify that programmable output slew-rate is available for single-ended and emulated LVDS I/O standards. • Finalized calibrated RS and RT OCT values and updated the RT OCT values for HSUL-12 and Differential HSUL-12 I/O standards. January 2014 2014.01.10 • Updated statements in several topics to clarify that each modular I/O bank can support multiple I/O standards that use the same voltages. • Updated the guideline topic about using the same VCCPD for I/O banks in the same VCCPD group to improve clarity. • Clarified that you can only use RD OCT if VCCPD is 2.5 V. • Corrected the topic about LVDS, RSDS, and Mini-LVDS termination to remove the requirement of 2.5 V VCCIO. Only VCCPD of 2.5 V is required for using RD OCT. • Removed all "preliminary" marks. Altera Corporation Changes I/O Features in Stratix V Devices Send Feedback SV51006 2015.06.12 Document Revision History Date Version 5-47 Changes June 2013 2013.06.21 • Updated the topic about LVDS input RD OCT to remove the require‐ ment for setting the VCCIO to 2.5 V. RD OCT now requires only that the VCCPD is 2.5 V. • Updated the topic about LVPECL termination to improve clarity. May 2013 2013.05.06 • Moved all links to the Related Information section of respective topics for easy reference. • Added link to the known document issues in the Knowledge Base. • Removed all references to column and row I/Os. Stratix V devices have I/O banks on the top and bottom only. January 2013 2013.01.22 • Corrected the guideline about using the same VCCPD for all I/O banks in a group. • Removed references to LVDS single-ended output with single-resistor network (LVDS_E_1R). The Stratix V devices do not support LVDS_ E_1R. December 2012 2012.12.28 • Reorganized content and updated template. • Added table about the termination schemes for different I/O standards. • Updated the SSTL and HSTL I/O termination figures to add VREF inputs for OCT in bidirectional pins. • Added OCT diagram for LVDS single-ended output with singleresistor network (LVDS_E_1R). • Removed the "Summary of OCT Assignments" table and merged the information into the restructured OCT tables. June 2012 1.5 • Added "Summary of OCT Assignments" and "LVDS Channels" sections. • Updated Table 5-2, Table 5-3, Table 5-4, Table 5-5, and Table 5-8. • Updated "Pull-Up Resistor", "Differential Output Voltage", and "Programmable IOE Delay" sections. November 2011 1.4 • Updated Figure 5-2. • Updated Table 5-3, Table 5-4, and Table 5-5. May 2011 1.3 • Chapter moved to volume 2 for the 11.0 release. • Added Table 5-4, Table 5-5, Table 5-6, Table 5-7, and Table 5-8. • Updated "Single-Ended I/O Standards Termination", "Differential I/O Standards Termination", and "VCCPD Restriction" sections. • Updated Table 5-3 and Table 5-11. • Updated Figure 5-1, Figure 5-8, Figure 5-9, Figure 5-10, Figure 5-17, Figure 5-20, and Figure 5-21. • Minor text edits. I/O Features in Stratix V Devices Send Feedback Altera Corporation 5-48 SV51006 2015.06.12 Document Revision History Date Version January 2011 1.2 Updated Table 5-2. December 2010 1.1 No changes to the content of this chapter for the Quartus II software 10.1. July 2010 1.0 Initial release. Altera Corporation Changes I/O Features in Stratix V Devices Send Feedback High-Speed Differential I/O Interfaces and DPA in Stratix V Devices 6 2015.06.12 SV51007 Subscribe Send Feedback The high-speed differential I/O interfaces and dynamic phase alignment (DPA) features in Stratix V devices provide advantages over single-ended I/Os and contribute to the achievable overall system bandwidth. Stratix V devices support low-voltage differential signaling (LVDS), mini-LVDS, and reduced swing differential signaling (RSDS) differential I/O standards. The following figure shows the I/O bank support for high-speed differential I/O in the Stratix V devices. Figure 6-1: I/O Bank Support for High-Speed Differential I/O LVDS I/Os I/Os with Dedicated SERDES Circuitry LVDS Interface with 'Use External PLL' Option Enabled LVDS Interface with 'Use External PLL' Option Disabled Related Information • I/O Standards Support in Stratix V Devices on page 5-2 Provides information about the supported differential I/O standards. • Stratix V Device Handbook: Known Issues Lists the planned updates to the Stratix V Device Handbook chapters. © 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. www.altera.com 101 Innovation Drive, San Jose, CA 95134 ISO 9001:2008 Registered 6-2 SV51007 2015.06.12 Dedicated High-Speed Circuitries in Stratix V Devices Dedicated High-Speed Circuitries in Stratix V Devices The following dedicated circuitries are available in the Stratix V device family to support high-speed differential I/O: • • • • • • • Differential I/O buffer Transmitter serializer Receiver deserializer Data realignment (Bit-slip) DPA Synchronizer (FIFO buffer) Phase-locked loops (PLLs) SERDES and DPA Bank Locations in Stratix V Devices The dedicated serializer/deserializer (SERDES) and DPA circuitry that supports high-speed differential I/Os is located in the top and bottom banks of the Stratix V devices. Figure 6-2: High-Speed Differential I/Os with DPA Locations in Stratix V Devices Left Clock Region General Purpose I/O and High-Speed LVDS I/O with DPA and Soft-CDR Right Clock Region FPGA Fabric (Logic Elements, DSP, Embedded Memory, Clock Networks) Fractional PLL Transceiver Block Left Clock Region Right Clock Region Related Information PLLs and Clocking for Stratix V Devices on page 6-8 LVDS SERDES Circuitry The Stratix V devices have built-in serializer/deserializer (SERDES) circuitry that supports high-speed LVDS interfaces. You can configure the SERDES circuitry to support source-synchronous communica‐ tion protocols such as RapidIO®, XSBI, serial peripheral interface (SPI), and asynchronous protocols such as Gigabit Ethernet (GbE) and SGMII. The following figure shows a transmitter and receiver block diagram for the LVDS SERDES circuitry with the interface signals of the transmitter and receiver data paths. Altera Corporation High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback SV51007 2015.06.12 6-3 SERDES I/O Standards Support in Stratix V Devices Figure 6-3: LVDS SERDES 2 Serializer tx_in IOE supports SDR, DDR, or non-registered datapath LVDS Transmitter tx_coreclock 3 (LVDS_LOAD_EN, diffioclk, tx_coreclock) IOE supports SDR, DDR, or non-registered datapath 2 10 Deserializer Bit Slip 10 DOUT FPGA Fabric LVDS Receiver + – IOE DIN 2 (LOAD_EN, diffioclk) DIN DOUT Synchronizer DOUT Retimed Data Clock Mux DIN DPA Clock diffioclk rx_divfwdclk rx_outclock rx_in DPA Circuitry DIN DPA_diffioclk rx_out tx_out + – DOUT DIN LVDS_diffioclk 10 bits maxiumum data width 10 IOE 3 (DPA_LOAD_EN, DPA_diffioclk, rx_divfwdclk) 3 (LVDS_LOAD_EN, LVDS_diffioclk, rx_outclock) DPA Clock Domain LVDS Clock Domain Fractional PLL 8 Serial LVDS Clock Phases rx_inclock / tx_inclock The preceding figure shows a shared PLL between the transmitter and receiver. If the transmitter and receiver do not share the same PLL, you require two fractional PLLs. In single data rate (SDR) and double data rate (DDR) modes, the data width is 1 and 2 bits, respectively. The ALTLVDS transmitter and receiver requires various clock and load enable signals from a fractional PLL. The Quartus II software configures the PLL settings automatically. The software is also responsible for generating the various clock and load enable signals based on the input reference clock and selected data rate. Note: For the maximum data rate supported by the Stratix V devices, refer to the device overview. Related Information • Stratix V Device Overview • LVDS SERDES Transmitter/Receiver IP Cores User Guide Provides a list of the LVDS transmitter and receiver ports and settings using ALTLVDS. • Guideline: Use PLLs in Integer PLL Mode for LVDS on page 6-8 SERDES I/O Standards Support in Stratix V Devices The following tables list the I/O standards supported by the SERDES receiver and transmitter, and the respective Quartus II software assignment values. High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback Altera Corporation 6-4 SV51007 2015.06.12 SERDES I/O Standards Support in Stratix V Devices The SERDES receiver and transmitter also support all differential HSTL, differential HSUL, and differen‐ tial SSTL I/O standards. Table 6-1: SERDES Receiver I/O Standards Support I/O Standard Quartus II Software Assignment Value True LVDS LVDS Differential 1.2 V HSTL Class I Differential 1.2-V HSTL Class I Differential 1.2 V HSTL Class II Differential 1.2-V HSTL Class II Differential HSUL-12 Differential 1.2-V HSUL Differential SSTL-12 Differential 1.2-V SSTL Differential SSTL-125 Differential 1.25-V SSTL Differential SSTL-135 Differential 1.35-V SSTL Differential 1.5 V HSTL Class I Differential 1.5-V HSTL Class I Differential 1.5 V HSTL Class II Differential 1.5-V HSTL Class II Differential SSTL-15 Differential 1.5-V SSTL Differential SSTL-15 Class I Differential 1.5-V SSTL Class I Differential SSTL-15 Class II Differential 1.5-V SSTL Class II Differential 1.8 V HSTL Class I Differential 1.8-V HSTL Class I Differential 1.8 V HSTL Class II Differential 1.8-V HSTL Class II Differential SSTL-18 Class I Differential 1.8-V SSTL Class I Differential SSTL-18 Class II Differential 1.8-V SSTL Class II Differential SSTL-2 Class I Differential 2.5-V SSTL Class I Differential SSTL-2 Class II Differential 2.5-V SSTL Class II Table 6-2: SERDES Transmitter I/O Standards Support I/O Standard Quartus II Software Assignment Value True LVDS LVDS Differential 1.2 V HSTL Class I Differential 1.2-V HSTL Class I Differential 1.2 V HSTL Class II Differential 1.2-V HSTL Class II Differential HSUL-12 Differential 1.2-V HSUL Differential SSTL-12 Differential 1.2-V SSTL Differential SSTL-125 Differential 1.25-V SSTL Differential SSTL-135 Differential 1.35-V SSTL Differential 1.5 V HSTL Class I Differential 1.5-V HSTL Class I Differential 1.5 V HSTL Class II Differential 1.5-V HSTL Class II Differential SSTL-15 Differential 1.5-V SSTL Altera Corporation High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback SV51007 2015.06.12 True LVDS Buffers in Stratix V Devices I/O Standard 6-5 Quartus II Software Assignment Value Differential SSTL-15 Class I Differential 1.5-V SSTL Class I Differential SSTL-15 Class II Differential 1.5-V SSTL Class II Differential 1.8 V HSTL Class I Differential 1.8-V HSTL Class I Differential 1.8 V HSTL Class II Differential 1.8-V HSTL Class II Differential SSTL-18 Class I Differential 1.8-V SSTL Class I Differential SSTL-18 Class II Differential 1.8-V SSTL Class II Differential SSTL-2 Class I Differential 2.5-V SSTL Class I Differential SSTL-2 Class II Differential 2.5-V SSTL Class II Emulated LVDS LVDS_E_3R mini-LVDS mini-LVDS Emulated mini-LVDS mini-LVDS_E_3R RSDS RSDS Emulated RSDS RSDS_E_3R True LVDS Buffers in Stratix V Devices The Stratix V device family supports LVDS on all I/O banks: • All I/Os support true LVDS input buffers with RD OCT or true LVDS output buffers. • Stratix V devices offer single-ended I/O reference clock support for the fractional PLL that drives the SERDES. The following tables list the number of true LVDS buffers supported in Stratix V devices with these conditions: • The LVDS channel count does not include dedicated clock pins. • Dedicated SERDES and DPA is available for top and bottom banks only. Table 6-3: LVDS Channels Supported in Stratix V E Devices Member Code Package H40-H1517 E9 and EB F45-F1932 High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback Side TX RX Top 87 87 Bottom 87 87 Top 105 105 Bottom 105 105 Altera Corporation 6-6 SV51007 2015.06.12 True LVDS Buffers in Stratix V Devices Table 6-4: LVDS Channels Supported in Stratix V GX Devices Member Code Package EH29-H780 HF35-F1152 A3 KF35-F1152 KF40-F1517 HF35-F1152 A4 KF35-F1152 KF40-F1517 HF35-F1152 KF35-F1152 A5 and A7 KF40-F1517 NF40-F1517 NF45-F1932 KH40-1517 A9 and AB NF45-F1932 RF40-F1517 B5 and B6 RF43-F1760 Altera Corporation Side TX RX Top 51 51 Bottom 39 39 Top 57 57 Bottom 51 51 Top 54 54 Bottom 54 54 Top 87 87 Bottom 87 87 Top 63 63 Bottom 75 75 Top 54 54 Bottom 54 54 Top 87 87 Bottom 87 87 Top 63 63 Bottom 75 75 Top 54 54 Bottom 54 54 Top 87 87 Bottom 87 87 Top 75 75 Bottom 75 75 Top 105 105 Bottom 105 105 Top 87 87 Bottom 87 87 Top 105 105 Bottom 105 105 Top 54 54 Bottom 54 54 Top 75 75 Bottom 75 75 High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback SV51007 2015.06.12 Emulated LVDS Buffers in Stratix V Devices Member Code B9 and BB Package RH43-H1760 Side TX RX Top 75 75 Bottom 75 75 Side TX RX Top 51 51 Bottom 39 39 Top 57 57 Bottom 51 51 Top 51 51 Bottom 39 39 Top 57 57 Bottom 51 51 Top 87 87 Bottom 87 87 Top 63 63 Bottom 75 75 Top 87 87 Bottom 87 87 Top 87 87 Bottom 87 87 Top 105 105 Bottom 105 105 Side TX RX Top 75 75 Bottom 75 75 6-7 Table 6-5: LVDS Channels Supported in Stratix V GS Devices Member Code Package EH29-H780 D3 HF35-F1152 EH29-H780 D4 HF35-F1152 KF40-F1517 HF35-F1152 D5 KF40-F1517 KF40-F1517 D6 and D8 NF45-F1932 Table 6-6: LVDS Channels Supported in Stratix V GT Devices Member Code C5 and C7 Package KF40-F1517 Related Information Guideline: Use PLLs in Integer PLL Mode for LVDS on page 6-8 Emulated LVDS Buffers in Stratix V Devices The Stratix V device family supports emulated LVDS on all I/O banks: High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback Altera Corporation 6-8 SV51007 2015.06.12 High-Speed I/O Design Guidelines for Stratix V Devices • You can use unutilized true LVDS input channels as emulated LVDS output buffers (eTX) for seriali‐ zation factors of 1 and 2. • The emulated LVDS output buffers use two single-ended output buffers with an external resistor network to support LVDS, mini-LVDS, and RSDS I/O standards. • The emulated differential output buffers support tri-state capability. High-Speed I/O Design Guidelines for Stratix V Devices There are several considerations that require your attention to ensure the success of your designs. Unless noted otherwise, these design guidelines apply to all variants of this device family. PLLs and Clocking for Stratix V Devices To generate the parallel clocks (rx_outclock and tx_outclock) and high-speed clocks (diffioclk), the Stratix V devices provide fractional PLLs in the high-speed differential I/O receiver and transmitter channels. Related Information • SERDES and DPA Bank Locations in Stratix V Devices on page 6-2 Provides information about the PLL locations available for each Stratix V device. • Guideline: Use High-Speed Clock from PLL to Clock LVDS SERDES Only on page 6-8 • Guideline: Use PLLs in Integer PLL Mode for LVDS on page 6-8 Guideline: Use PLLs in Integer PLL Mode for LVDS To drive the LVDS channels, you must use the PLLs in integer PLL mode. The center or corner PLLs can drive the LVDS receiver and transmitter channels. However, the clock tree network cannot cross over to different I/O regions. For example, the top left corner PLL cannot cross over to drive the LVDS receiver and transmitter channels on the top right I/O bank. Related Information Pin Placement Guidelines for DPA Differential Channels on page 6-13 Provides more information about the fractional PLL clocking restrictions. Guideline: Use High-Speed Clock from PLL to Clock LVDS SERDES Only The high-speed clock generated from the PLL is intended to clock the LVDS SERDES circuitry only. Do not use the high-speed clock to drive other logic because the allowed frequency to drive the core logic is restricted by the PLL FOUT specification. For more information about the FOUT specification, refer to the device datasheet. Related Information Stratix V Device Datasheet Altera Corporation High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback SV51007 2015.06.12 LVDS Interface with External PLL Mode 6-9 LVDS Interface with External PLL Mode The MegaWizard Plug-In Manager provides an option for implementing the LVDS interface with the Use External PLL option. With this option enabled you can control the PLL settings, such as dynamically reconfiguring the PLL to support different data rates, dynamic phase shift, and other settings. You must also instantiate the an Altera_PLL megafunction to generate the various clock and load enable signals. If you enable the Use External PLL option with the ALTLVDS transmitter and receiver, the following signals are required from the Altera_PLL megafunction: • • • • Serial clock input to the SERDES of the ALTLVDS transmitter and receiver Load enable to the SERDES of the ALTLVDS transmitter and receiver Parallel clock used to clock the transmitter FPGA fabric logic and parallel clock used for the receiver Asynchronous PLL reset port of the ALTLVDS receiver Altera_PLL Signal Interface with ALTLVDS Megafunction Table 6-7: Signal Interface Between Altera_PLL and ALTLVDS Megafunctions This table lists the signal interface between the output ports of the Altera_PLL megafunction and the input ports of the ALTLVDS transmitter and receiver. As an example, the table lists the serial clock output, load enable output, and parallel clock output generated on ports outclk0, outclk1, and outclk2, along with the locked signal of the Altera_PLL instance. You can choose any of the PLL output clock ports to generate the interface clocks. From the Altera_PLL Megafunction Serial clock output (outclk0) The serial clock output (outclk0) can only drive tx_inclock on the ALTLVDS transmitter, and rx_ inclock and rx_dpaclock on the ALTLVDS receiver. This clock cannot drive the core logic. To the ALTLVDS Transmitter tx_inclock (serial clock input to the transmitter) To the ALTLVDS Receiver rx_inclock (serial clock input) rx_dpaclock Load enable output (outclk1) tx_enable (load enable to rx_enable (load enable for the Parallel clock output (outclk2) Parallel clock used inside the transmitter core logic in the FPGA fabric rx_syncclock (parallel clock input) and parallel clock used inside the receiver core logic in the FPGA fabric the transmitter) ~(locked) — deserializer) pll_areset (asynchronous PLL reset port) The pll_areset signal is automati‐ cally enabled for the LVDS receiver in external PLL mode. This signal does not exist for LVDS transmitter instantiation when the external PLL option is enabled. Note: With soft SERDES, a different clocking requirement is needed. High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback Altera Corporation 6-10 SV51007 2015.06.12 Altera_PLL Parameter Values for External PLL Mode Related Information LVDS SERDES Transmitter/Receiver IP Cores User Guide More information about the different clocking requirement for soft SERDES. Altera_PLL Parameter Values for External PLL Mode The following examples show the clocking requirements to generate output clocks for ALTLVDS_TX and ALTLVDS_RX using the Altera_PLL megafunction. The examples set the phase shift with the assumption that the clock and data are edge aligned at the pins of the device. Note: For other clock and data phase relationships, Altera recommends that you first instantiate your ALTLVDS_RX and ALTLVDS_TX interface without using the external PLL mode option. Compile the megafunctions in the Quartus II software and take note of the frequency, phase shift, and duty cycle settings for each clock output. Enter these settings in the Altera_PLL megafunction parameter editor and then connect the appropriate output to the ALTLVDS_RX and ALTLVDS_TX megafunctions. Table 6-8: Example: Generating Output Clocks Using an Altera_PLL Megafunction (No DPA and Soft-CDR Mode) This table lists the parameter values that you can set in the Altera_PLL parameter editor to generate three output clocks using an Altera_PLL megafunction if you are not using DPA and soft-CDR mode. Parameter outclk0 outclk1 outclk2 (Connects to the tx_inclock (Connects to the tx_enable (Used as the core clock for port of ALTLVDS_TX and the port of ALTLVDS_TX and the the parallel data registers for rx_inclock port of rx_enable port of ALTLVDS_ both transmitter and ALTLVDS_RX) RX) receiver, and connects to the rx_synclock port of ALTLVDS_RX) Frequency data rate data rate/serialization factor data rate/serialization factor Phase shift –180° [(deserialization factor – 2)/ –180/serialization factor deserialization factor] x 360° (outclk0 phase shift divided by the serializa‐ tion factor) Duty cycle 50% 100/serialization factor 50% The calculations for phase shift, using the RSKM equation, assume that the input clock and serial data are edge aligned. Introducing a phase shift of –180° to sampling clock (c0) ensures that the input data is center-aligned with respect to the outclk0, as shown in the following figure. Altera Corporation High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback SV51007 2015.06.12 Altera_PLL Parameter Values for External PLL Mode 6-11 Figure 6-4: Phase Relationship for External PLL Interface Signals inclk0 VCO clk (internal PLL clk) outclk0 (-180° phase shift) outclk1 (288° phase shift) outclk2 (-18° phase shift) RX serial data D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 tx_outclk TX serial data D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Table 6-9: Example: Generating Output Clocks Using an Altera_PLL Megafunction (With DPA and Soft-CDR Mode) This table lists the parameter values that you can set in the Altera_PLL parameter editor to generate four output clocks using an Altera_PLL megafunction if you are using DPA and soft-CDR mode. The locked output port of Altera_PLL must be inverted and connected to the pll_areset port of the ALTLVDS_RX megafunction if you are using DPA and soft-CDR mode. Parameter outclk0 outclk1 outclk2 outclk3 (Connects to the tx_ inclock port of ALTLVDS_TX and the rx_inclock port of ALTLVDS_RX) (Connects to the tx_ enable port of ALTLVDS_TX and the rx_enable port of ALTLVDS_RX) (Used as the core clock for the parallel data registers for both transmitter and receiver, and connects to the rx_synclock port of ALTLVDS_RX) (Connects to the rx_ dpaclock port of ALTLVDS_RX) Frequency data rate data rate/serialization data rate/serialization data rate factor factor Phase shift –180° [(deserialization –180/serialization –180° factor - 2)/deserializa‐ factor tion factor] x 360° (outclk0 phase shift divided by the seriali‐ zation factor) Duty cycle 50% 100/serialization factor High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback 50% 50% Altera Corporation 6-12 SV51007 2015.06.12 Connection between Altera_PLL and ALTLVDS Related Information Receiver Skew Margin for Non-DPA Mode on page 6-34 RSKM equation used for the phase shift calculations. Connection between Altera_PLL and ALTLVDS Figure 6-5: LVDS Interface with the Altera_PLL Megafunction (Without DPA and Soft-CDR Mode) This figure shows the connections between the Altera_PLL and ALTLVDS megafunction if you are not using DPA and soft-CDR mode. FPGA Fabric Transmitter Core Logic D Q LVDS Transmitter (ALTLVDS) tx_in tx_inclock tx_enable tx_coreclk outclk0 outclk1 outclk2 rx_coreclk Receiver Core Logic Q D LVDS Receiver (ALTLVDS) rx_out locked Altera_PLL inclk0 pll_areset rx_inclock rx_enable rx_syncclock pll_areset Figure 6-6: LVDS Interface with the Altera_PLL Megafunction (With DPA) This figure shows the connections between the Altera_PLL and ALTLVDS megafunction if you are using DPA. The locked output port must be inverted and connected to the pll_areset port. FPGA Fabric Transmitter Core Logic D Q LVDS Transmitter (ALTLVDS) tx_in tx_inclock tx_enable tx_coreclk rx_coreclk Receiver Core Logic Altera Corporation Q D LVDS Receiver (ALTLVDS) rx_out outclk0 outclk1 outclk2 outclk3 locked Altera_PLL inclk0 pll_areset rx_inclock rx_dpaclock rx_enable rx_syncclock pll_areset High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback SV51007 2015.06.12 Pin Placement Guidelines for DPA Differential Channels 6-13 Figure 6-7: LVDS Interface with the Altera_PLL Megafunction (With Soft-CDR Mode) This figure shows the connections between the Altera_PLL and ALTLVDS megafunction if you are using soft-CDR mode. The locked output port must be inverted and connected to the pll_areset port. FPGA Fabric Transmitter Core Logic D LVDS Transmitter (ALTLVDS) Q tx_inclock tx_in tx_enable tx_coreclk LVDS Receiver (ALTLVDS) rx_coreclk Receiver Core Logic Q D rx_out rx_divfwdclk outclk0 outclk1 outclk2 outclk3 Altera_PLL locked inclk0 pll_areset rx_inclock rx_dpaclock rx_enable rx_syncclock pll_areset When generating the Altera_PLL megafunction, the Left/Right PLL option is configured to set up the PLL in LVDS mode. Instantiation of pll_areset is optional. The rx_enable and rx_inclock input ports are not used and can be left unconnected. Pin Placement Guidelines for DPA Differential Channels DPA usage adds some constraints on the placement of high-speed differential channels. If DPA-enabled or DPA-disabled differential channels(8) in the differential banks are used, you must adhere to the differential pin placement guidelines to ensure the proper high-speed operation. The Quartus II compiler automatically checks the design and issues an error message if the guidelines are not followed. Note: The figures in this section show guidelines for using corner and center PLLs but do not necessarily represent the exact locations of the high-speed LVDS I/O banks. Related Information Guideline: Use PLLs in Integer PLL Mode for LVDS on page 6-8 Guideline: Using DPA-Enabled Differential Channels Each differential receiver in an I/O block has a dedicated DPA circuit to align the phase of the clock to the data phase of its associated channel. If you enable a DPA channel in a bank, you can use both singleended I/Os and differential I/O standards in the bank. (8) DPA-enabled differential channels refer to DPA mode or soft-CDR mode while DPA disabled channels refer to non-DPA mode. High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback Altera Corporation 6-14 SV51007 2015.06.12 Guideline: Using DPA-Enabled Differential Channels You can place double data rate I/O (DDIO) output pins within I/O modules that have the same pad group number as a SERDES differential channel. However, you cannot place SDR I/O output pins within I/O modules that have the same pad group number as a receiver SERDES differential channel. You must implement the input register within the FPGA fabric logic. The following figure illustrates the clock network for DPA and SERDES resources in Stratix V devices. Figure 6-8: LVDS and DPA Clock Network Left Corner PLLs fPLL Dedicated clock “stripes” span the entire edge of the device fPLL Right Corner PLLs Center PLLs fPLL Clock “stripes” are shared by corner and center fPLLs fPLL fPLL fPLL LVDS_diffioclk (0) LVDS_LOAD_EN(0) LVDS_diffioclk (1) LVDS_LOAD_EN(1) DPA Clock Tree (8 VCO phase taps) Interconnect between dedicated clock trees and SERDES TX & RX R X T X R X T X R X T X R X T X R X T X R X T X R X T X R X T X R X T X R X T X R X T X R X T X R X T X IO BANK If you use DPA-enabled channels in differential banks, adhere to the following guidelines. Using Center and Corner PLLs If two PLLs drive the DPA-enabled channels in a bank—the corner and center PLL drive one group each —there must be at least one row (one differential channel) of separation between the two groups of DPAenabled channels, as shown in the following figure. Altera Corporation High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback SV51007 2015.06.12 Guideline: Using DPA-Enabled Differential Channels 6-15 Figure 6-9: Center and Corner PLLs Driving DPA-enabled Differential I/Os in the Same Bank Center fPLL TX & RX DPA-enabled Diff I/O TX & RX TX & RX Reference DPA-enabled DPA-enabled CLK Diff I/O Diff I/O Right Corner fPLL Center fPLL TX & RX TX & RX Reference DPA-enabled DPA-enabled CLK Diff I/O Diff I/O TX & RX Diff I/O TX & RX DPA-enabled DPA-enabled Diff I/O Diff I/O TX & RX Non Reference DPA-enabled CLK DPA-enabled Diff I/O Diff I/O Right Corner fPLL Non Reference DPA-enabled CLK Diff I/O One Unused Channel for Buffer Channels Driven by Center fPLLs Channels Driven by Corner fPLLs This separation prevents noise mixing because the two groups can operate at independent frequencies. No separation is necessary if a single PLL is driving both the DPA-enabled channels and DPA-disabled channels. Using Both Center PLLs You can use center PLLs to drive DPA-enabled channels simultaneously, if they drive these channels in their adjacent banks only, as shown in the previous figure. The center PLLs cannot drive cross-banks simultaneously. Refer to the following figures. Figure 6-10: Center PLLs Driving DPA-enabled Differential I/Os Center PLL DPA-enabled Diff I/O DPA-enabled DPA-enabled DPA-enabled Reference CLK Diff I/O Diff I/O Diff I/O High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback Center PLL Reference DPA-enabled DPA-enabled DPA-enabled Diff I/O Diff I/O Diff I/O CLK DPA-enabled Diff I/O Altera Corporation 6-16 SV51007 2015.06.12 Guideline: Using DPA-Enabled Differential Channels Figure 6-11: Invalid Placement of DPA-enabled Differential I/Os Driven by Both Center PLLs Center PLL Center PLL DPA-enabled Diff I/O Reference DPA-enabled DPA-enabled DPA-enabled Diff I/O Diff I/O CLK Diff I/O DPA-enabled DPA-enabled DPA-enabled Reference CLK Diff I/O Diff I/O Diff I/O DPA-enabled Diff I/O Using Both Corner PLLs You can use the left and right corner PLLs to drive DPA-enabled channels simultaneously, if they drive the channels in their adjacent banks only. There must be at least one row of separation between the two groups of DPA-enabled channels. There are two PLL in each corner of the device. However, only one corner PLL can be use to drive DPAenabled channels in a quadrant. Figure 6-12: Invalid Usage of Corner PLLs Driving DPA-enabled Differential I/Os Unused PLLs Left Corner fPLL Left Corner fPLL Non Reference DPA-enabled CLK Diff I/O Center fPLL Non TX & RX DPA-enabled Reference DPA-enabled CLK Diff I/O Diff I/O Left I/O Bank Altera Corporation Right Corner fPLL Center fPLL TX & RX TX & RX TX & RX Unused TX & RX Non DPA-enabled DPA-enabled DPA-enabled Diff I/O DPA-enabled Reference DPA-enabled CLK Diff I/O Diff I/O Diff I/O Diff I/O Diff I/O Right Corner fPLL Non Reference DPA-enabled CLK Diff I/O Right I/O Bank High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback SV51007 2015.06.12 Guideline: Using DPA-Disabled Differential Channels 6-17 DPA Restrictions Because there is only a single DPA clock bus, a PLL drives a continuous series of DPA channels. To prevent noise mixing, use one row of separation between two groups of DPA channels. Guideline: Using DPA-Disabled Differential Channels If you use DPA-disabled channels, adhere to the following guidelines. DPA-Disabled Channel Driving Distance Each PLL can drive all the DPA-disabled channels located in the entire bank. Using Corner and Center PLLs You can use a corner PLL to drive all transmitter channels and a center PLL to drive all DPA-disabled receiver channels in the same I/O bank. You can drive a transmitter channel and a receiver channel in the same LAB row by two different PLLs. A corner PLL and a center PLL can drive duplex channels in the same I/O bank if the channels that are driven by each PLL are not interleaved. You do not require separation between the group of channels that are driven by the corner and center, left and right PLLs. Refer to the following figures. High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback Altera Corporation 6-18 SV51007 2015.06.12 Guideline: Using DPA-Disabled Differential Channels Figure 6-13: Corner and Center PLLs Driving DPA-Disabled Differential I/Os in the Same Bank Unused Center PLL Unused Corner PLL Center PLL Corner PLL DPA-disabled DPA-disabled DPA-disabled DPA-disabled DPA-disabled DPA-disabled DPA-disabled DPA-disabled DPA-disabled DPA-disabled Diff RX Diff RX Diff RX Diff RX Diff RX Diff RX Diff RX Diff RX Diff RX Diff RX Reference Reference CLK CLK Diff TX Diff TX Diff TX Diff TX Diff TX Diff TX Diff TX Diff TX Diff TX Diff TX Unused Center PLL Unused Corner PLL Center PLL Corner PLL Reference DPA-disabled DPA-disabled DPA-disabled DPA-disabled DPA-disabled DPA-disabled DPA-disabled DPA-disabled DPA-disabled DPA-disabled Reference Diff TX & RX Diff TX & RX Diff TX & RX Diff TX & RX Diff TX & RX Diff TX & RX Diff TX & RX Diff TX & RX Diff TX & RX Diff TX & RX CLK CLK Channels Driven by Center fPLL Altera Corporation No Separation Buffer Needed Channels Driven by Corner fPLL High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback SV51007 2015.06.12 6-19 Guideline: Using DPA-Disabled Differential Channels Figure 6-14: Invalid Placement of DPA-disabled Differential I/Os Due to Interleaving of Channels Driven by the Corner and Center PLLs Unused Center PLL Unused Corner PLL Center PLL Corner PLL Reference DPA-disabled DPA-disabled DPA-disabled DPA-disabled DPA-disabled DPA-disabled DPA-disabled DPA-disabled DPA-disabled DPA-disabled Reference Diff TX & RX Diff TX & RX Diff TX & RX Diff TX & RX Diff TX & RX Diff TX & RX Diff TX & RX Diff TX & RX Diff TX & RX Diff TX & RX CLK CLK Using Both Corner PLLs You can use both corner PLLs to drive DPA-disabled channels simultaneously. You can use a corner PLL to drive all the transmitter channels and the other corner PLL to drive all the DPA-disabled receiver channels in the same I/O bank. Both corner PLLs can drive duplex channels in the same I/O bank if the channels that are driven by each PLL are not interleaved. You do not require separation between the groups of channels that are driven by both corner PLLs. Figure 6-15: Right Corner PLLs Driving LVDS Differential I/Os in the Same Bank Corner PLL Reference CLK Diff TX DPA-disabled Diff RX Diff TX High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback DPA-disabled Diff RX Diff TX DPA-disabled Diff RX Corner PLL Reference CLK Altera Corporation 6-20 SV51007 2015.06.12 Differential Transmitter in Stratix V Devices Differential Transmitter in Stratix V Devices The Stratix V transmitter contains dedicated circuitry to support high-speed differential signaling. The differential transmitter buffers support the following features: • LVDS signaling that can drive out LVDS, mini-LVDS, and RSDS signals • Programmable VOD and programmable pre-emphasis Transmitter Blocks The dedicated circuitry consists of a true differential buffer, a serializer, and fractional PLLs that you can share between the transmitter and receiver. The serializer takes up to 10 bits wide parallel data from the FPGA fabric, clocks it into the load registers, and serializes it using shift registers that are clocked by the fractional PLL before sending the data to the differential buffer. The MSB of the parallel data is transmitted first. Note: To drive the LVDS channels, you must use the PLLs in integer PLL mode. The following figure shows a block diagram of the transmitter. In SDR and DDR modes, the data width is 1 and 2 bits, respectively. Figure 6-16: LVDS Transmitter 2 FPGA Fabric 10 bits maximum data width tx_in Serializer 10 DIN IOE IOE supports SDR, DDR, or non-registered datapath + – DOUT tx_out LVDS Transmitter tx_coreclock 3 (LVDS_LOAD_EN, diffioclk, tx_coreclock) Fractional PLL LVDS Clock Domain tx_inclock Related Information Guideline: Use PLLs in Integer PLL Mode for LVDS on page 6-8 Transmitter Clocking The fractional PLL generates the load enable (LVDS_LOAD_EN) signal and the diffioclk signal (the clock running at serial data rate) that clocks the load and shift registers. You can statically set the serialization factor to x3, x4, x5, x6, x7, x8, x9, or x10 using the Quartus II software. The load enable signal is derived from the serialization factor setting. You can configure any Stratix V transmitter data channel to generate a source-synchronous transmitter clock output. This flexibility allows the placement of the output clock near the data outputs to simplify board layout and reduce clock-to-data skew. Altera Corporation High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback SV51007 2015.06.12 Serializer Bypass for DDR and SDR Operations 6-21 Different applications often require specific clock-to-data alignments or specific data-rate-to-clock-rate factors. You can specify these settings statically in the Quartus II MegaWizard Plug-In Manager: • The transmitter can output a clock signal at the same rate as the data—with a maximum output clock frequency that each speed grade of the device supports. • You can divide the output clock by a factor of 1, 2, 4, 6, 8, or 10, depending on the serialization factor. • You can set the phase of the clock in relation to the data using internal PLL option of the ALTLVDS megafunction. The fractional PLLs provide additional support for other phase shifts in 45° increments. The following figure shows the transmitter in clock output mode. In clock output mode, you can use an LVDS channel as a clock output channel. Figure 6-17: Transmitter in Clock Output Mode Transmitter Circuit Series Parallel FPGA Fabric Fractional PLL Txclkout+ Txclkout– diffioclk LVDS_LOAD_EN Related Information Guideline: Use PLLs in Integer PLL Mode for LVDS on page 6-8 Serializer Bypass for DDR and SDR Operations You can bypass the serializer to support DDR (x2) and SDR (x1) operations to achieve a serialization factor of 2 and 1, respectively. The I/O element (IOE) contains two data output registers that can each operate in either DDR or SDR mode. High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback Altera Corporation 6-22 SV51007 2015.06.12 Programmable Differential Output Voltage Figure 6-18: Serializer Bypass This figure shows the serializer bypass path. In DDR mode, tx_inclock clocks the IOE register. In SDR mode, data is passed directly through the IOE. In SDR and DDR modes, the data width to the IOE is 1 and 2 bits, respectively. 2 FPGA Fabric Serializer tx_in 2 DIN IOE IOE supports SDR, DDR, or non-registered datapath + – DOUT tx_out LVDS Transmitter tx_coreclock (LVDS_LOAD_EN, diffioclk, tx_coreclock) 3 Fractional PLL Note: Disabled blocks and signals are grayed out Programmable Differential Output Voltage The programmable VOD settings allow you to adjust the output eye opening to optimize the trace length and power consumption. A higher VOD swing improves voltage margins at the receiver end, and a smaller VOD swing reduces power consumption. You can statically adjust the VOD of the differential signal by changing the VOD settings in the Quartus II software Assignment Editor. Figure 6-19: Differential VOD This figure shows the VOD of the differential LVDS output. Single-Ended Waveform Positive Channel (p) V OD Negative Channel (n) V CM Ground Differential Waveform V OD (diff peak - peak) = 2 x V OD V OD (single-ended) p-n=0V V OD Table 6-10: Quartus II Software Assignment Editor—Programmable VOD This table lists the assignment name for programmable VOD and its possible values in the Quartus II software Assignment Editor. Field To Altera Corporation Assignment tx_out High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback SV51007 2015.06.12 Programmable Pre-Emphasis Field 6-23 Assignment Assignment name Programmable Differential Output Voltage (VOD) Allowed values 0 (low), 1 (medium low), 2 (medium high), 3 (high). Default is 1. Related Information Programmable IOE Features in Stratix V Devices on page 5-18 Programmable Pre-Emphasis The VOD setting and the output impedance of the driver set the output current limit of a high-speed transmission signal. At a high frequency, the slew rate may not be fast enough to reach the full VOD level before the next edge, producing pattern-dependent jitter. With pre-emphasis, the output current is boosted momentarily during switching to increase the output slew rate. Pre-emphasis increases the amplitude of the high-frequency component of the output signal, and thus helps to compensate for the frequency-dependent attenuation along the transmission line. The overshoot introduced by the extra current happens only during a change of state switching to increase the output slew rate and does not ring, unlike the overshoot caused by signal reflection. The amount of pre-emphasis required depends on the attenuation of the high-frequency component along the transmission line. Figure 6-20: Programmable Pre-Emphasis This figure shows the LVDS output with pre-emphasis. Voltage boost from pre-emphasis VP OUT V OD OUT VP Differential output voltage (peak–peak) Table 6-11: Quartus II Software Assignment Editor—Programmable Pre-Emphasis This table lists the assignment name for programmable pre-emphasis and its possible values in the Quartus II software Assignment Editor. Field Assignment To tx_out Assignment name Programmable Pre-emphasis Allowed values 0 (disabled), 1 (enabled). Default is 1. Related Information Programmable IOE Features in Stratix V Devices on page 5-18 High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback Altera Corporation 6-24 SV51007 2015.06.12 Differential Receiver in Stratix V Devices Differential Receiver in Stratix V Devices The receiver has a differential buffer and fractional PLLs that you can share among the transmitter and receiver, a DPA block, a synchronizer, a data realignment block, and a deserializer. The differential buffer can receive LVDS, mini-LVDS, and RSDS signal levels. You can statically set the I/O standard of the receiver pins to LVDS, mini-LVDS, or RSDS in the Quartus II software Assignment Editor. Note: To drive the LVDS channels, you must use the PLLs in integer PLL mode. Related Information Guideline: Use PLLs in Integer PLL Mode for LVDS on page 6-8 Receiver Blocks in Stratix V Devices The Stratix V differential receiver has the following hardware blocks: • • • • DPA block Synchronizer Data realignment block (bit slip) Deserializer The following figure shows the hardware blocks of the receiver. In SDR and DDR modes, the data width from the IOE is 1 and 2 bits, respectively. The deserializer includes shift registers and parallel load registers, and sends a maximum of 10 bits to the internal logic. Figure 6-21: Receiver Block Diagram LVDS Receiver IOE Deserializer Bit Slip 10 DOUT FPGA Fabric DIN DOUT DOUT Clock Mux rx_divfwdclk rx_outclock + – rx_in DPA Circuitry Retimed Data DIN DIN DPA Clock diffioclk 2 (LOAD_EN, diffioclk) DIN Synchronizer DPA_diffioclk rx_out IOE supports SDR, DDR, or non-registered datapath 2 10 LVDS_diffioclk 10 bits maximum data width 3 (DPA_LOAD_EN, DPA_diffioclk, rx_divfwdclk) 3 (LVDS_LOAD_EN, LVDS_diffioclk, rx_outclock) DPA Clock Domain LVDS Clock Domain Fractional PLL 8 Serial LVDS Clock Phases rx_inclock DPA Block The DPA block takes in high-speed serial data from the differential input buffer and selects one of the eight phases that the fractional PLLs generate to sample the data. The DPA chooses a phase closest to the phase of the serial data. The maximum phase offset between the received data and the selected phase is Altera Corporation High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback SV51007 2015.06.12 Synchronizer 6-25 1/8 UI, which is the maximum quantization error of the DPA. The eight phases of the clock are equally divided, offering a 45° resolution. The following figure shows the possible phase relationships between the DPA clocks and the incoming serial data. Figure 6-22: DPA Clock Phase to Serial Data Timing Relationship rx_in D0 D1 D2 D3 D4 Dn 0° 45° 90° 135° 180° 225° 270° 315° T vco 0.125T vco T VCO = PLL serial clock period The DPA block continuously monitors the phase of the incoming serial data and selects a new clock phase if it is required. You can prevent the DPA from selecting a new clock phase by asserting the optional RX_DPLL_HOLD port, which is available for each channel. DPA circuitry does not require a fixed training pattern to lock to the optimum phase out of the eight phases. After reset or power up, the DPA circuitry requires transitions on the received data to lock to the optimum phase. An optional output port, RX_DPA_LOCKED, is available to indicate an initial DPA lock condition to the optimum phase after power up or reset. This signal is not deasserted if the DPA selects a new phase out of the eight clock phases to sample the received data. Do not use the rx_dpa_locked signal to determine a DPA loss-of-lock condition. Use data checkers such as a cyclic redundancy check (CRC) or diagonal interleaved parity (DIP-4) to validate the data. An independent reset port, RX_RESET, is available to reset the DPA circuitry. You must retrain the DPA circuitry after reset. Note: The DPA block is bypassed in non-DPA mode. Related Information Guideline: Use PLLs in Integer PLL Mode for LVDS on page 6-8 Synchronizer The synchronizer is a 1 bit wide and 6 bit deep FIFO buffer that compensates for the phase difference between DPA_diffioclk—the optimal clock that the DPA block selects—and the LVDS_diffioclk that the fractional PLLs produce. The synchronizer can only compensate for phase differences, not frequency differences, between the data and the receiver’s input reference clock. High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback Altera Corporation 6-26 SV51007 2015.06.12 Data Realignment Block (Bit Slip) An optional port, RX_FIFO_RESET, is available to the internal logic to reset the synchronizer. The synchronizer is automatically reset when the DPA first locks to the incoming data. Altera recommends using RX_FIFO_RESET to reset the synchronizer when the data checker indicates that the received data is corrupted. Note: The synchronizer circuit is bypassed in non-DPA and soft-CDR mode. Related Information Guideline: Use PLLs in Integer PLL Mode for LVDS on page 6-8 Data Realignment Block (Bit Slip) Skew in the transmitted data along with skew added by the link causes channel-to-channel skew on the received serial data streams. If you enable the DPA, the received data is captured with different clock phases on each channel. This difference may cause misalignment of the received data from channel to channel. To compensate for this channel-to-channel skew and establish the correct received word boundary at each channel, each receiver channel has a dedicated data realignment circuit that realigns the data by inserting bit latencies into the serial stream. An optional RX_CHANNEL_DATA_ALIGN port controls the bit insertion of each receiver independently controlled from the internal logic. The data slips one bit on the rising edge of RX_CHANNEL_DATA_ALIGN. The requirements for the RX_CHANNEL_DATA_ALIGN signal include the following items: • • • • The minimum pulse width is one period of the parallel clock in the logic array. The minimum low time between pulses is one period of the parallel clock. The signal is an edge-triggered signal. The valid data is available two parallel clock cycles after the rising edge of RX_CHANNEL_DATA_ALIGN. Figure 6-23: Data Realignment Timing This figure shows receiver output (RX_OUT) after one bit slip pulse with the deserialization factor set to 4. rx_inclock rx_in 3 2 1 0 3 2 1 0 3 2 1 0 rx_outclock rx_channel_data_align rx_out 3210 321x xx21 0321 The data realignment circuit can have up to 11 bit-times of insertion before a rollover occurs. The programmable bit rollover point can be from 1 to 11 bit-times, independent of the deserialization factor. Set the programmable bit rollover point equal to, or greater than, the deserialization factor—allowing enough depth in the word alignment circuit to slip through a full word. You can set the value of the bit rollover point using the MegaWizard Plug-In Manager. An optional status port, RX_CDA_MAX, is available to the FPGA fabric from each channel to indicate the reaching of the preset rollover point. Altera Corporation High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback SV51007 2015.06.12 Deserializer 6-27 Figure 6-24: Receiver Data Realignment Rollover This figure shows a preset value of four bit-times before rollover occurs. The rx_cda_max signal pulses for one rx_outclock cycle to indicate that rollover has occurred. rx_inclock rx_channel_data_align rx_outclock rx_cda_max Deserializer You can statically set the deserialization factor to x3, x4, x5, x6, x7, x8, x9, or x10 by using the Quartus II software. You can bypass the deserializer in the Quartus II MegaWizard Plug-In Manager to support DDR (x2) or SDR (x1) operations, as shown in the following figure. Figure 6-25: Deserializer Bypass Bit Slip DOUT DIN DOUT DOUT Clock Mux rx_divfwdclk rx_outclock + – rx_in DPA Circuitry Retimed Data DIN DIN DPA Clock diffioclk 2 (LOAD_EN, diffioclk) DIN Synchronizer DPA_diffioclk Deserializer 10 FPGA Fabric LVDS Receiver IOE 2 LVDS_diffioclk rx_out IOE supports SDR, DDR, or non-registered datapath 2 3 (DPA_LOAD_EN, DPA_diffioclk, rx_divfwdclk) 3 (LVDS_LOAD_EN, LVDS_diffioclk, rx_outclock) Fractional PLL 8 Serial LVDS Clock Phases Note: Disabled blocks and signals are grayed out The IOE contains two data input registers that can operate in DDR or SDR mode. In DDR mode, rx_inclock clocks the IOE register. In SDR mode, data is directly passed through the IOE. In SDR and DDR modes, the data width from the IOE is 1 and 2 bits, respectively. You cannot use the DPA and data realignment circuit when you bypass the deserializer. High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback Altera Corporation 6-28 SV51007 2015.06.12 Receiver Modes in Stratix V Devices Receiver Modes in Stratix V Devices The Stratix V devices support the following receiver modes: • Non-DPA mode • DPA mode • Soft-CDR mode Non-DPA Mode The non-DPA mode disables the DPA and synchronizer blocks. Input serial data is registered at the rising edge of the serial LVDS_diffioclk clock that is produced by the left and right PLLs. You can select the rising edge option with the Quartus II MegaWizard Plug-In Manager. The LVDS_diffioclk clock that is generated by the left and right PLLs clocks the data realignment and deserializer blocks. The following figure shows the non-DPA datapath block diagram. In SDR and DDR modes, the data width from the IOE is 1 and 2 bits, respectively. Figure 6-26: Receiver Data Path in Non-DPA Mode LVDS Receiver IOE 10 Deserializer Bit Slip 10 DOUT FPGA Fabric DIN DOUT DOUT Clock Mux rx_divfwdclk rx_outclock + – rx_in DPA Circuitry Retimed Data DIN DIN DPA Clock diffioclk 2 (LOAD_EN, diffioclk) DIN Synchronizer DPA_diffioclk rx_out IOE supports SDR, DDR, or non-registered datapath 2 LVDS_diffioclk 10 bits maximum data width 3 (DPA_LOAD_EN, DPA_diffioclk, rx_divfwdclk) 3 (LVDS_LOAD_EN, LVDS_diffioclk, rx_outclock) LVDS Clock Domain Fractional PLL 8 Serial LVDS Clock Phases rx_inclock Note: All disabled blocks and signals are grayed out DPA Mode The DPA block chooses the best possible clock (DPA_diffioclk) from the eight fast clocks that the fractional PLL sent. This serial DPA_diffioclk clock is used for writing the serial data into the synchron‐ izer. A serial LVDS_diffioclk clock is used for reading the serial data from the synchronizer. The same LVDS_diffioclk clock is used in data realignment and deserializer blocks. The following figure shows the DPA mode datapath. In the figure, all the receiver hardware blocks are active. Altera Corporation High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback SV51007 2015.06.12 6-29 Soft-CDR Mode Figure 6-27: Receiver Datapath in DPA Mode In SDR and DDR modes, the data width from the IOE is 1 and 2 bits, respectively. LVDS Receiver + – IOE Deserializer Bit Slip 10 DOUT FPGA Fabric DIN DOUT Retimed Data DIN DOUT Clock Mux rx_divfwdclk rx_outclock rx_in DPA Circuitry DIN DPA Clock diffioclk 2 (LOAD_EN, diffioclk) DIN Synchronizer DPA_diffioclk rx_out IOE supports SDR, DDR, or non-registered datapath 2 10 LVDS_diffioclk 10 bits maximum data width 3 (DPA_LOAD_EN, DPA_diffioclk, rx_divfwdclk) 3 (LVDS_LOAD_EN, LVDS_diffioclk, rx_outclock) DPA Clock Domain LVDS Clock Domain Fractional PLL 8 Serial LVDS Clock Phases rx_inclock Note: All disabled blocks and signals are grayed out Related Information • Receiver Blocks in Stratix V Devices on page 6-24 Lists and describes the receiver hardware blocks. • Guideline: Use PLLs in Integer PLL Mode for LVDS on page 6-8 Soft-CDR Mode The Stratix V LVDS channel offers the soft-CDR mode to support the GbE and SGMII protocols. A receiver PLL uses the local clock source for reference. The following figure shows the soft-CDR mode datapath. In SDR and DDR modes, the data width from the IOE is 1 and 2 bits, respectively. High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback Altera Corporation 6-30 SV51007 2015.06.12 Receiver Clocking for Stratix V Devices Figure 6-28: Receiver Datapath in Soft-CDR Mode LVDS Receiver + – IOE 10 Deserializer Bit Slip Synchronizer 10 DOUT FPGA Fabric DIN DIN DOUT Retimed Data (LOAD_EN, diffioclk) Clock Mux rx_divfwdclk rx_outclock DIN DPA Clock diffioclk 2 rx_in DPA Circuitry DIN DOUT DPA_diffioclk rx_out IOE supports SDR, DDR, or non-registered datapath 2 LVDS_diffioclk 10 bits Maximum Data Width 3 (DPA_LOAD_EN, DPA_diffioclk, rx_divfwdclk) 3 DPA Clock Domain LVDS Clock Domain 8 Serial LVDS Clock Phases (rx_outclock) Fractional PLL rx_inclock Note: All disabled blocks and signals are grayed out In soft-CDR mode, the synchronizer block is inactive. The DPA circuitry selects an optimal DPA clock phase to sample the data. Use the selected DPA clock for bit-slip operation and deserialization. The DPA block also forwards the selected DPA clock, divided by the deserialization factor called rx_divfwdclk, to the FPGA fabric, along with the deserialized data. This clock signal is put on the periphery clock (PCLK) network. If you use the soft-CDR mode, do not assert the rx_reset port after the DPA has trained. The DPA continuously chooses new phase taps from the PLL to track parts per million (PPM) differences between the reference clock and incoming data. You can use every LVDS channel in soft-CDR mode and drive the FPGA fabric using the PCLK network in the Stratix V device family. The rx_dpa_locked signal is not valid in soft-CDR mode because the DPA continuously changes its phase to track PPM differences between the upstream transmitter and the local receiver input reference clocks. The parallel clock, rx_outclock, generated by the left and right PLLs, is also forwarded to the FPGA fabric. Related Information Periphery Clock Networks on page 4-4 Provides more information about PCLK networks. Receiver Clocking for Stratix V Devices The fractional PLL receives the external clock input and generates different phases of the same clock. The DPA block automatically chooses one of the clocks from the fractional PLL and aligns the incoming data on each channel. The synchronizer circuit is a 1 bit wide by 6 bit deep FIFO buffer that compensates for any phase difference between the DPA clock and the data realignment block. If necessary, the user-controlled data realignment circuitry inserts a single bit of latency in the serial bit stream to align to the word boundary. Altera Corporation High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback SV51007 2015.06.12 Differential I/O Termination for Stratix V Devices 6-31 The deserializer includes shift registers and parallel load registers, and sends a maximum of 10 bits to the internal logic. The physical medium connecting the transmitter and receiver LVDS channels may introduce skew between the serial data and the source-synchronous clock. The instantaneous skew between each LVDS channel and the clock also varies with the jitter on the data and clock signals as seen by the receiver. The three different modes—non-DPA, DPA, and soft-CDR—provide different options to overcome skew between the source synchronous clock (non-DPA, DPA) /reference clock (soft-CDR) and the serial data. Non-DPA mode allows you to statically select the optimal phase between the source synchronous clock and the received serial data to compensate skew. In DPA mode, the DPA circuitry automatically chooses the best phase to compensate for the skew between the source synchronous clock and the received serial data. Soft-CDR mode provides opportunities for synchronous and asynchronous applications for chip-tochip and short reach board-to-board applications for SGMII protocols. Note: Only the non-DPA mode requires manual skew adjustment. Related Information Guideline: Use PLLs in Integer PLL Mode for LVDS on page 6-8 Differential I/O Termination for Stratix V Devices The Stratix V devices provide a 100 Ω, on-chip differential termination option on each differential receiver channel for LVDS standards. On-chip termination saves board space by eliminating the need to add external resistors on the board. You can enable on-chip termination in the Quartus II software Assignment Editor. All I/O pins and dedicated clock input pins support on-chip differential termination, RD OCT. Figure 6-29: On-Chip Differential I/O Termination Differential Receiver with On-Chip 100 Ω Termination LVDS Transmitter Z 0 = 50 Ω RD Z 0 = 50 Ω Table 6-12: Quartus II Software Assignment Editor—On-Chip Differential Termination This table lists the assignment name for on-chip differential termination in the Quartus II software Assignment Editor. Field Assignment To rx_in Assignment name Input Termination Value Differential High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback Altera Corporation 6-32 SV51007 2015.06.12 Source-Synchronous Timing Budget Source-Synchronous Timing Budget The topics in this section describe the timing budget, waveforms, and specifications for source-synchro‐ nous signaling in the Stratix V device family. The LVDS I/O standard enables high-speed transmission of data, resulting in better overall system performance. To take advantage of fast system performance, you must analyze the timing for these highspeed signals. Timing analysis for the differential block is different from traditional synchronous timing analysis techniques. The basis of the source synchronous timing analysis is the skew between the data and the clock signals instead of the clock-to-output setup times. High-speed differential data transmission requires the use of timing parameters provided by IC vendors and is strongly influenced by board skew, cable skew, and clock jitter. This section defines the source-synchronous differential data orientation timing parameters, the timing budget definitions for the Stratix V device family, and how to use these timing parameters to determine the maximum performance of a design. Differential Data Orientation There is a set relationship between an external clock and the incoming data. For operations at 1 Gbps and a serialization factor of 10, the external clock is multiplied by 10. You can set phase-alignment in the PLL to coincide with the sampling window of each data bit. The data is sampled on the falling edge of the multiplied clock. Figure 6-30: Bit Orientation in the Quartus II Software This figure shows the data bit orientation of the x10 mode. incloc k/outcloc k data in MSB 9 10 LVDS Bits 8 7 6 5 4 3 2 1 LSB 0 Differential I/O Bit Position Data synchronization is necessary for successful data transmission at high frequencies. The following figure shows the data bit orientation for a channel operation and is based on the following conditions: • The serialization factor is equal to the clock multiplication factor. • The phase alignment uses edge alignment. • The operation is implemented in hard SERDES. Altera Corporation High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback SV51007 2015.06.12 6-33 Differential Bit Naming Conventions Figure 6-31: Bit-Order and Word Boundary for One Differential Channel Transmitter Channel Operation (x8 Mode) tx_outclock tx_out X X X Previous Cycle X X X X 7 6 MSB X Current Cycle 5 4 3 2 1 0 LSB X Next Cycle X X X X X X X X X Receiver Channel Operation (x8 Mode) rx_inclock rx_in 7 6 5 4 3 2 1 0 X X X X X X X X X X X X X X X X X X X X X X rx_outclock rx_out [7..0] XXXXXXXX XXXXXXXX XXXX7654 3210XXXX Note: These waveforms are only functional waveforms and do not convey timing information For other serialization factors, use the Quartus II software tools to find the bit position within the word. Differential Bit Naming Conventions The following table lists the conventions for differential bit naming for 18 differential channels. The MSB and LSB positions increase with the number of channels used in a system. Table 6-13: Differential Bit Naming This table lists the conventions for differential bit naming for 18 differential channels. The MSB and LSB positions increase with the number of channels used in a system. Receiver Channel Data Number Internal 8-Bit Parallel Data MSB Position LSB Position 1 7 0 2 15 8 3 23 16 4 31 24 5 39 32 6 47 40 7 55 48 8 63 56 9 71 64 10 79 72 11 87 80 12 95 88 13 103 96 14 111 104 High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback Altera Corporation 6-34 SV51007 2015.06.12 Transmitter Channel-to-Channel Skew Receiver Channel Data Number Internal 8-Bit Parallel Data MSB Position LSB Position 15 119 112 16 127 120 17 135 128 18 143 136 Transmitter Channel-to-Channel Skew The receiver skew margin calculation uses the transmitter channel-to-channel skew (TCCS)—an important parameter based on the Stratix V transmitter in a source-synchronous differential interface: • TCCS is the difference between the fastest and slowest data output transitions, including the TCO variation and clock skew. • For LVDS transmitters, the TimeQuest Timing Analyzer provides the TCCS value in the TCCS report (report_TCCS) in the Quartus II compilation report, which shows TCCS values for serial output ports. • You can also get the TCCS value from the device datasheet. Note: For the Stratix V devices, perform PCB trace compensation to adjust the trace length of each LVDS channel to improve channel-to-channel skew when interfacing with non-DPA receivers at data rate above 840 Mbps. The Quartus II software Fitter Report panel reports the amount of delay you must add to each trace for the Stratix V device. You can use the recommended trace delay numbers published under the LVDS Transmitter/Receiver Package Skew Compensation panel and manually compensate the skew on the PCB board trace to reduce channel-to-channel skew, thus meeting the timing budget between LVDS channels. Related Information • Stratix V Device Datasheet • LVDS SERDES Transmitter/Receiver IP Cores User Guide Provides more information about the LVDS Transmitter/Receiver Package Skew Compensation report panel. Receiver Skew Margin for Non-DPA Mode Different modes of LVDS receivers use different specifications, which can help in deciding the ability to sample the received serial data correctly: • In DPA mode, use DPA jitter tolerance instead of the receiver skew margin (RSKM). • In non-DPA mode, use RSKM, TCCS, and sampling window (SW) specifications for high-speed source-synchronous differential signals in the receiver data path. The following equation expresses the relationship between RSKM, TCCS, and SW. Figure 6-32: RSKM Equation Altera Corporation High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback SV51007 2015.06.12 Receiver Skew Margin for Non-DPA Mode 6-35 Conventions used for the equation: • RSKM—the timing margin between the receiver’s clock input and the data input sampling window. • Time unit interval (TUI)—time period of the serial data. • SW—the period of time that the input data must be stable to ensure that data is successfully sampled by the LVDS receiver. The SW is a device property and varies with device speed grade. • TCCS—the timing difference between the fastest and the slowest output edges, including tCO variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measure‐ ment. You must calculate the RSKM value to decide whether the LVDS receiver can sample the data properly or not, given the data rate and device. A positive RSKM value indicates that the LVDS receiver can sample the data properly, whereas a negative RSKM indicates that it cannot sample the data properly. The following figure shows the relationship between the RSKM, TCCS, and the SW of the receiver. Figure 6-33: Differential High-Speed Timing Diagram and Timing Budget for Non-DPA Mode Timing Diagram External Input Clock Time Unit Interval (TUI) Internal Clock TCCS TCCS Receiver Input Data RSKM SW tSW (min) Bit n Timing Budget Internal Clock Falling Edge RSKM tSW (max) Bit n TUI External Clock Clock Placement Internal Clock Synchronization Transmitter Output Data TCCS RSKM RSKM TCCS 2 Receiver Input Data SW High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback Altera Corporation 6-36 SV51007 2015.06.12 Assigning Input Delay to LVDS Receiver Using TimeQuest Timing Analyzer For LVDS receivers, the Quartus II software provides an RSKM report showing the SW, TUI, and RSKM values for non-DPA LVDS mode: • You can generate the RSKM report by executing the report_RSKM command in the TimeQuest Timing Analyzer. You can find the RSKM report in the Quartus II compilation report in the TimeQuest Timing Analyzer section. • To obtain the RSKM value, assign the input delay to the LVDS receiver through the constraints menu of the TimeQuest Timing Analyzer. The input delay is determined according to the data arrival time at the LVDS receiver port, with respect to the reference clock. • If you set the input delay in the settings parameters for the Set Input Delay option, set the clock name to the clock that reference the source synchronous clock that feeds the LVDS receiver. • If you do not set any input delay in the TimeQuest Timing Analyzer, the receiver channel-to-channel skew defaults to zero. • You can also directly set the input delay in a Synopsys Design Constraint file (.sdc) using the set_input_delay command. Example 6-1: RSKM Calculation Example This example shows the RSKM calculation for Stratix V devices at 1 Gbps data rate with a 200 ps board channel-to-channel skew. • • • • • TCCS = 100 ps (pending characterization) SW = 300 ps (pending characterizatoin TUI = 1000 ps Total RCCS = TCCS + Board channel-to-channel skew = 100 ps + 200 ps = 300 ps RSKM = (TUI – SW – RCCS) / 2 = (1000 ps – 300 ps – 300 ps) / 2 = 200 ps Because the RSKM is greater than 0 ps, the receiver non-DPA mode will work correctly. Related Information • LVDS SERDES Transmitter/Receiver IP Cores User Guide Provides more information about the RSKM equation and calculation. • Quartus II TimeQuest Timing Analyzer chapter, Quartus II Development Software Handbook Provides more information about .sdc commands and the TimeQuest Timing Analyzer. Assigning Input Delay to LVDS Receiver Using TimeQuest Timing Analyzer To obtain the RSKM value, assign an appropriate input delay to the LVDS receiver from the TimeQuest Timing Analyzer constraints menu. 1. On the menu in the TimeQuest Timing Analyzer, select Constraints > Set Input Delay. 2. In the Set Input Delay window, select the desired clock using the pull-down menu. The clock name must reference the source synchronous clock that feeds the LVDS receiver. 3. Click the Browse button (next to the Targets field). 4. In the Name Finder window, click List to view a list of all available ports. Select the LVDS receiver serial input ports according to the input delay you set, and click OK. Altera Corporation High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback SV51007 2015.06.12 Document Revision History 6-37 5. In the Set Input Delay window, set the appropriate values in the Input delay options and Delay value fields. 6. Click Run to incorporate these values in the TimeQuest Timing Analyzer. 7. Repeat from step 1 to assign the appropriate delay for all the LVDS receiver input ports. If you have already assigned Input Delay and you need to add more delay to that input port, turn on the Add Delay option. Document Revision History Date Version Changes June 2015 2015.06.12 • Changed figure title "Corner PLLs Driving DPA-enabled Differential I/Os" to "Invalid Usage of Corner PLLs Driving DPA-enabled Differential I/Os". • Added LVDS and DPA Clock Network figure in Guideline: Using DPA-Enabled Differential Channels. • Updated all figures in Guideline: Using DPA-Enabled Differential Channels. • Updated guidelines for using both corner PLLs in Stratix V Devices. • Updated figures in Guideline: Using DPA-Disabled LVDS Differen‐ tial Channels. January 2015 2015.01.23 • Removed statement on explanation related to rx_synclock for figure "LVDS Interface with the Altera_PLL Megafunction (With Soft-CDR Mode)". • Updated figure LVDS Interface with the Altera_PLL Megafunction (With Soft-CDR Mode) and figure Receiver Datapath in Soft-CDR Mode. • Added a note to leave rx_enable and rx_inclock to be unconnected for figure LVDS Interface with the Altera_PLL Megafunction (With Soft-CDR Mode). • Updated timing diagram for Phase Relationship for External PLL Interface Signals to reflect the correct phase shift and frequency for outclk2. January 2014 2014.01.10 • Updated the statement about setting the phase of the clock in relation to data in the topic about transmitter clocking. • Updated the figure that shows the phase relationship for the external PLL interface signals. • Clarified that "one row of separation" between two groups of DPAenabled channels means a separation of one differential channel. • Clarified that "internal PLL option" refers to the option in the ALTLVDS megafunction. • Updated the topic about emulated LVDS buffers to clarify that you can use unutilized true LVDS input channels (instead "buffers") as emulated LVDS output buffers. High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback Altera Corporation 6-38 SV51007 2015.06.12 Document Revision History Date Version Changes June 2013 2013.06.21 Updated the figure about data realignment timing to correct the data pattern after a bit slip. May 2013 2013.05.06 • Moved all links to the Related Information section of respective topics for easy reference. • Added link to the known document issues in the Knowledge Base. • Removed all references to column and row I/Os. Stratix V devices have I/O banks on the top and bottom only. • Changed the color of the transceiver blocks in the high-speed differential I/O location diagram for clarity. • Updated the pin placement guidelines section to add figures and new topic about using DPA-disabled differential channels. • Added a topic about emulated LVDS buffers. • Edited the topic about true LVDS buffers. • Added a topic that lists the SERDES I/O standards support and the respective Quartus II assignment values. • Corrected the outclk2 waveform in Figure 6-4 to show -18° phase shift (as labeled). • Clarified that the programmable VOD assignment value of "0" is also applicable for mini-LVDS. • Updated the data realignment timing figure to improve clarity. • Updated the receiver data realignment rollover figure to improve clarity. December 2012 2012.12.28 • Reorganized content and updated template. • Added Altera_PLL settings for external PLL usage in DPA and nonDPA modes. • Moved the PLL and clocking section into design guideline topics. • Updated external PLL clocking examples without DPA and soft-CDR. Altera_PLL now supports entering negative phase shift. • Added external PLL clocking example and settings for DPA and softCDR mode. • Updated the LVDS channel tables to list the number of channels per side for each device package instead of just for the largest package. • Removed the “LVDS Direct Loopback Mode” section. June 2012 1.4 Altera Corporation • • • • Added Table 6–2. Updated Table 6–1, Table 6–3, Table 6–4, and Table 6–5. Updated Figure 6–21. Updated “Non-DPA Mode”, “Soft-CDR Mode”, and “PLLs and Stratix V Clocking” sections. High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback SV51007 2015.06.12 Document Revision History Date Version Changes November 2011 1.3 • Updated Table 6–2. • Updated Example 6–1. • Updated “LVDS Direct Loopback Mode” and “LVDS Interface with the Use External PLL Option Enabled” sections. May 2011 1.2 • • • • • December 2010 1.1 No changes to the content of this chapter for the Quartus II software 10.1. July 2010 1.0 Initial release. Chapter moved to volume 2 for the 11.0 release. Added Table 6–2 and Table 6–3. Updated Table 6–1. Updated Figure 6–2 and Figure 6–23. Updated “Locations of the I/O Banks”, “Programmable PreEmphasis”, “Differential Receiver”, “Fractional PLLs and Stratix V Clocking”, and “DPA-Enabled Channels, DPA-Disabled Channels, and Single-Ended I/Os” sections. • Minor text edits. High-Speed Differential I/O Interfaces and DPA in Stratix V Devices Send Feedback 6-39 Altera Corporation External Memory Interfaces in Stratix V Devices 7 2015.06.12 SV51008 Subscribe Send Feedback The Stratix V devices provide an efficient architecture that allows you to fit wide external memory interfaces to support a high level of system bandwidth within the small modular I/O bank structure. The I/Os are designed to provide high-performance support for existing and emerging external memory standards. Table 7-1: Supported External Memory Standards in Stratix V Devices Memory Standard Soft Memory Controller DDR3 SDRAM Half rate and quarter rate DDR2 SDRAM Full rate and half rate RLDRAM 3 Half rate and quarter rate RLDRAM II Full rate and half rate QDR II+ SRAM Full rate and half rate QDR II SRAM Full rate and half rate Related Information • Stratix V Device Handbook: Known Issues Lists the planned updates to the Stratix V Device Handbook chapters. • External Memory Interface Spec Estimator For the latest information and to estimate the external memory system performance specification, use Altera's External Memory Interface Spec Estimator tool. • External Memory Interfaces Handbook Volume 1, 2, and 3. Provides more information about the memory types supported, board design guidelines, timing analysis, simulation, and debugging information. © 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. www.altera.com 101 Innovation Drive, San Jose, CA 95134 ISO 9001:2008 Registered 7-2 SV51008 2015.06.12 External Memory Performance External Memory Performance Table 7-2: External Memory Interface Performance in Stratix V Devices Interface Voltage (V) Soft Controller (MHz) 1.5 933 1.35 800 DDR2 SDRAM 1.8 400 RLDRAM 3 1.2 800 1.8 533 1.5 533 1.8 550 1.5 550 1.8 350 1.5 350 DDR3 SDRAM RLDRAM II QDR II+ SRAM QDR II SRAM Related Information External Memory Interface Spec Estimator For the latest information and to estimate the external memory system performance specification, use Altera's External Memory Interface Spec Estimator tool. Memory Interface Pin Support in Stratix V Devices In the Stratix V devices, the memory interface circuitry is available in every I/O bank that does not support transceivers. The devices offer differential input buffers for differential read-data strobe and clock operations. Stratix V devices also provide an independent DQS logic block for each CQn pin for complementary read-data strobe and clock operations The memory clock pins are generated with double data rate input/output (DDRIO) registers. Related Information Planning Pin and FPGA Resources chapter, External Memory Interface Handbook Provides more information about which pins to use for memory clock pins and pin location requirements. Altera Corporation External Memory Interfaces in Stratix V Devices Send Feedback SV51008 2015.06.12 Guideline: Using DQ/DQS Pins 7-3 Guideline: Using DQ/DQS Pins The following list provides guidelines on using the DQ/DQS pins: • • • • The devices support DQ and DQS signals with DQ bus modes of x4, x8/x9, x16/x18, or x32/x36. You can use the DQSn or CQn pins that are not used for clocking as DQ pins. If you do not use the DQ/DQS pins for memory interfacing, you can use these pins as user I/Os. Some pins have multiple functions such as RZQ or DQ. If you need extra RZQ pins, you can use the DQ/DQNs pins in some of the x4 groups as RZQ pins instead. • You cannot use a x4 DQ/DQS group for memory interfaces if any of its members are used as RZQ pins for OCT calibration. • There is no restriction on using x8/x9, x16/x18, or x32/x36 DQ/DQS groups that include the x4 groups whose pins are used as RZQ pins because there are enough extra pins that you can use as DQS pins. Note: For the x8, x16/x18, or x32/x36 DQ/DQS groups whose members are used as RZQ pins, Altera recommends that you assign the DQ and DQS pins manually. Otherwise, the Quartus II software might not be able to place the DQ and DQS pins, resulting in a “no-fit” error. DQ pins can be bidirectional signals, as in DDR3 and DDR2 SDRAM, and RLDRAM II common I/O interfaces, or unidirectional signals, as in QDR II+ and QDR II SRAM, and RLDRAM II separate I/O devices. Connect the unidirectional read-data signals to Stratix V DQ pins and the unidirectional writedata signals to a different DQ/DQS group than the read DQ/DQS group. You must assign the write clocks to the DQS/DQSn pins associated to this write DQ/DQS group. Do not use the CQ/CQn pin-pair for write clocks. Note: Using a DQ/DQS group for the write-data signals minimizes output skew, allows access to the write-leveling circuitry (for DDR3 SDRAM interfaces), and allows vertical migration. These pins also have access to deskewing circuitry (using programmable delay chains) that can compensate for delay mismatch between signals on the bus. Reading the Pin Table For the maximum number of DQ pins and the exact number per group for a particular Stratix V device, refer to the pin table in the Stratix V page of the Altera website. In the pin tables, the DQS and DQSn pins denote the differential data strobe/clock pin pairs, while the CQ and CQn pins denote the complementary echo clock signals. The pin table lists the parity, DM, BWSn, NWSn, ECC, and QVLD pins as DQ pins. In the Stratix V pin tables, DQSn and CQn pins are marked separately. Each CQn pin connects to a DQS logic block and the phase-shifted CQn signals go to the negative half cycle input registers in the DQ IOE registers. The DQS and DQSn pins are listed respectively in the Stratix V pin tables as DQSXY and DQSnXY. X indicates the DQ/DQS grouping number and Y indicates whether the group is located on the top (T), bottom (B), left (L), or right (R) side of the device. The DQ/DQS pin numbering is based on the x4 mode. The corresponding DQ pins are marked as DQXY, where X indicates which DQS group the pins belong to and Y indicates whether the group is located on the top (T) or bottom (B) side of the device. For example, DQS1T indicates a DQS pin located on the top side of the device. The DQ pins belonging to that group are shown as DQ1T in the pin table. External Memory Interfaces in Stratix V Devices Send Feedback Altera Corporation 7-4 SV51008 2015.06.12 DQ/DQS Bus Mode Pins for Stratix V Devices Figure 7-1: DQS Pins in Stratix V I/O Banks This figure shows the DQ/DQS groups numbering in a die-top view of the device where the numbering scheme starts from the top-left corner of the device going clockwise. DQS1T DQS66T DLL_TL DLL_TR 8A 8B 8C 8D 8E 7E 7D 7C 7B 7A Stratix V Device 3A 3B 3C 3D 4E 4D 4C 4B 4A DLL_BL DLL_BR DQS62B DQS1B DQ/DQS Bus Mode Pins for Stratix V Devices The following table list the pin support per DQ/DQS bus mode, including the DQS/CQ and DQSn/CQn pins. The maximum number of data pins per group listed in the table may vary according to the following conditions: • Single-ended DQS signaling—the maximum number of DQ pins includes parity, data mask, and QVLD pins connected to the DQS bus network. • Differential or complementary DQS signaling—the maximum number of data pins per group decreases by one. This number may vary per DQ/DQS group in a particular device. Check the pin table for the exact number per group. • DDR3 and DDR2 interfaces—the maximum number of pins is further reduced for an interface larger than x8 because you require one DQS pin for each x8/x9 group to form the x16/x18 and x32/x36 groups. Altera Corporation External Memory Interfaces in Stratix V Devices Send Feedback SV51008 2015.06.12 7-5 DQ/DQS Groups in Stratix V E Table 7-3: DQ/DQS Bus Mode Pins for Stratix V Devices Parity or Data Mask QVLD (9) Mode (Option DQSn CQn al) Support Support Data Pins per Group (Option al) Typical Maximu m Notes x4 Yes — — — 4 5 If you do not use differential DQS and the group does not have additional signals, the data mask (DM) pin is supported. x8/x9 Yes Yes Yes Yes 8 or 9 11 Two x4 DQ/DQS groups are stitched to create a x8/x9 group, so there are a total of 12 pins in this group. x16/x18 Yes Yes Yes Yes 16 or 18 23 Four x4 DQ/DQS groups are stitched to create a x16/x18 group; so there are a total of 24 pins in this group. x32/x36 Yes Yes Yes Yes 32 or 36 47 Eight x4 DQ/DQS groups are stitched to create a x32/x36 group, so there are a total of 48 pins in this group. DQ/DQS Groups in Stratix V E Table 7-4: Number of DQ/DQS Groups Per Side in Stratix V E Devices Some of the x4 groups are using RZQ pins. If you use the Stratix V calibrated OCT feature, you cannot use these groups. Member Code Package 1517-pin FineLine BGA E9 1932-pin FineLine BGA 1517-pin FineLine BGA EB 1932-pin FineLine BGA (9) Side x4 x8/x9 x16/x18 x32/x36 Top 58 29 14 6 Bottom 58 29 14 6 Top 70 35 16 6 Bottom 70 35 16 6 Top 58 29 14 6 Bottom 58 29 14 6 Top 70 35 16 6 Bottom 70 35 16 6 The QVLD pin is not used in the UniPHY megafunction. External Memory Interfaces in Stratix V Devices Send Feedback Altera Corporation 7-6 SV51008 2015.06.12 DQ/DQS Groups in Stratix V GX DQ/DQS Groups in Stratix V GX Table 7-5: Number of DQ/DQS Groups Per Side in Stratix V GX Devices Some of the x4 groups are using RZQ pins. If you use the Stratix V calibrated OCT feature, you cannot use these groups. Member Code Package 780-pin FineLine BGA A3 1152-pin FineLine BGA (with 24 transceivers) 1152-pin FineLine BGA (with 36 transceivers) 1517-pin FineLine BGA 1152-pin FineLine BGA (with 24 transceivers) A4 1152-pin FineLine BGA (with 36 transceivers) 1517-pin FineLine BGA 1152-pin FineLine BGA (with 24 transceivers) 1152-pin FineLine BGA (with 36 transceivers) A5 1517-pin FineLine BGA (with 36 transceivers) 1517-pin FineLine BGA (with 48 transceivers) 1932-pin FineLine BGA Altera Corporation Side x4 x8/x9 x16/x18 x32/x36 Top 34 13 8 2 Bottom 26 17 6 1 Top 42 21 10 3 Bottom 50 25 12 4 Top 36 18 8 2 Bottom 36 18 8 2 Top 58 29 14 6 Bottom 58 29 14 6 Top 42 21 10 3 Bottom 50 25 12 4 Top 36 18 8 2 Bottom 36 18 8 2 Top 58 29 14 6 Bottom 58 29 14 6 Top 42 21 10 3 Bottom 50 25 12 4 Top 36 18 8 2 Bottom 36 18 8 2 Top 58 29 14 6 Bottom 58 29 14 6 Top 50 25 12 5 Bottom 50 25 12 4 Top 70 35 16 6 Bottom 70 35 16 6 External Memory Interfaces in Stratix V Devices Send Feedback SV51008 2015.06.12 7-7 DQ/DQS Groups in Stratix V GX Member Code Package 1152-pin FineLine BGA (with 24 transceivers) 1152-pin FineLine BGA (with 36 transceivers) A7 1517-pin FineLine BGA (with 36 transceivers) 1517-pin FineLine BGA (with 48 transceivers) 1932-pin FineLine BGA 1517-pin FineLine BGA A9 1932-pin FineLine BGA 1517-pin FineLine BGA AB 1932-pin FineLine BGA 1517-pin FineLine BGA B5 1760-pin FineLine BGA 1517-pin FineLine BGA B6 1760-pin FineLine BGA B9 1760-pin FineLine BGA BB 1760-pin FineLine BGA External Memory Interfaces in Stratix V Devices Send Feedback Side x4 x8/x9 x16/x18 x32/x36 Top 42 21 10 3 Bottom 50 25 12 4 Top 36 18 8 2 Bottom 36 18 8 2 Top 58 29 14 6 Bottom 58 29 14 6 Top 50 25 12 5 Bottom 50 25 12 4 Top 70 35 16 6 Bottom 70 35 16 6 Top 58 29 14 6 Bottom 58 29 14 6 Top 70 35 16 6 Bottom 70 35 16 6 Top 58 29 14 6 Bottom 58 29 14 6 Top 70 35 16 6 Bottom 70 35 16 6 Top 36 18 8 3 Bottom 36 18 8 3 Top 50 25 11 4 Bottom 50 25 11 4 Top 36 18 8 3 Bottom 36 18 8 3 Top 50 25 11 4 Bottom 50 25 11 4 Top 50 25 11 3 Bottom 50 25 11 3 Top 50 25 11 3 Bottom 50 25 11 3 Altera Corporation 7-8 SV51008 2015.06.12 DQ/DQS Groups in Stratix V GS DQ/DQS Groups in Stratix V GS Table 7-6: Number of DQ/DQS Groups Per Side in Stratix V GS Devices Some of the x4 groups are using RZQ pins. If you use the Stratix V calibrated OCT feature, you cannot use these groups. Member Code Package 780-pin FineLine BGA D3 1152-pin FineLine BGA 780-pin FineLine BGA D4 1152-pin FineLine BGA 1517-pin FineLine BGA 1152-pin FineLine BGA D5 1517-pin FineLine BGA 1517-pin FineLine BGA D6 1932-pin FineLine BGA 1517-pin FineLine BGA D8 1932-pin FineLine BGA Altera Corporation Side x4 x8/x9 x16/x18 x32/x36 Top 34 13 8 2 Bottom 26 17 6 1 Top 38 19 9 2 Bottom 34 17 8 2 Top 34 13 8 2 Bottom 26 17 6 1 Top 38 19 9 2 Bottom 34 17 8 2 Top 58 29 14 6 Bottom 58 29 14 6 Top 42 21 10 3 Bottom 50 25 12 4 Top 58 29 14 6 Bottom 58 29 14 6 Top 58 29 14 6 Bottom 58 29 14 6 Top 70 35 16 6 Bottom 70 35 16 6 Top 58 29 14 6 Bottom 58 29 14 6 Top 70 35 16 6 Bottom 70 35 16 6 External Memory Interfaces in Stratix V Devices Send Feedback SV51008 2015.06.12 7-9 DQ/DQS Groups in Stratix V GT DQ/DQS Groups in Stratix V GT Table 7-7: Number of DQ/DQS Groups Per Side in Stratix V GT Devices Some of the x4 groups are using RZQ pins. If you use the Stratix V calibrated OCT feature, you cannot use these groups. Member Code Package C5 1517-pin FineLine BGA C7 1517-pin FineLine BGA Side x4 x8/x9 x16/x18 x32/x36 Top 50 25 12 5 Bottom 50 25 12 4 Top 50 25 12 5 Bottom 50 25 12 4 External Memory Interface Features in Stratix V Devices The Stratix V I/O elements (IOE) provide built-in functionality required for a rapid and robust implementation of external memory interfacing. The following device features are available for external memory interfaces: • • • • • • • • • • • • DQS phase-shift circuitry PHY Clock (PHYCLK) networks DQS logic block Dynamic on-chip termination (OCT) control IOE registers Delay chains Delay-locked loops (DLLs) Read- and write-leveling support Trace mismatch compensation Read FIFO blocks Slew rate adjustment Programmable drive strength UniPHY IP The high-performance memory interface solution includes the self-calibrating UniPHY IP that is optimized to take advantage of the Stratix V I/O structure and the Quartus II software TimeQuest Timing Analyzer. The UniPHY IP helps set up the physical interface (PHY) best suited for your system. This provides the total solution for the highest reliable frequency of operation across process, voltage, and temperature (PVT) variations. The UniPHY IP instantiates a PLL to generate related clocks for the memory interface. The UniPHY IP can also dynamically choose the number of delay chains that are required for the system. The amount of delay is equal to the sum of the intrinsic delay of the delay element and the product of the number of delay steps and the value of the delay steps. External Memory Interfaces in Stratix V Devices Send Feedback Altera Corporation 7-10 SV51008 2015.06.12 External Memory Interface Datapath The UniPHY IP and the Altera memory controller MegaCore® functions can run at half or quarter of the I/O interface frequency of the memory devices, allowing better timing management in high-speed memory interfaces. The Stratix V devices contain built-in circuitry in the IOE to convert data from full rate (the I/O frequency) to half rate (the controller frequency) and vice versa. Related Information Functional Description - UniPHY, External Memory Interface Handbook Volume 3 Provides more information about UniPHY IP. External Memory Interface Datapath The following figure shows an overview of the memory interface datapath that uses the Stratix V I/O elements. In the figure, the DQ/DQS read and write signals may be bidirectional or unidirectional, depending on the memory standard. If the signal is bidirectional, it is active during read and write operations. You can bypass each register block. Figure 7-2: External Memory Interface Datapath Overview for Stratix V Devices Memory FPGA DQS Enable Control Circuit Postamble Enable Postamble Clock DLL DQS Logic Block 4n 2n DQS Enable Circuit DDR Input Registers Read FIFO 4n Clock Management and Reset 4 DQ Write Clock Half-Rate Clock Alignment Clock DQS Write Clock Half Data Rate Output Registers 2n Half Data Rate Output Registers 2 2n Alignment Registers Alignment Registers 2 DDR Output and Output Enable Registers DDR Output and Output Enable Registers DQS (Read) n n DQ (Read) DQ (Write) DQS (Write) Note: There are slight block differences for different memory interface standards. The shaded blocks are part of the I/O elements. Altera Corporation External Memory Interfaces in Stratix V Devices Send Feedback SV51008 2015.06.12 DQS Phase-Shift Circuitry 7-11 DQS Phase-Shift Circuitry The Stratix V phase-shift circuitry provides phase shift to the DQS/CQ and CQn pins on read transac‐ tions if the DQS/CQ and CQn pins are acting as input clocks or strobes to the FPGA. The DQS phaseshift circuitry consists of DLLs that are shared between multiple DQS pins and the phase-offset module to further fine-tune the DQS phase shift for different sides of the device. The following figures show how the DQS phase-shift circuitry is connected to the DQS/CQ and CQn pins in the Stratix V variants. Figure 7-3: DQS/CQ and CQn Pins and DQS Phase-Shift Circuitry in Stratix V E Devices DQS/CQ Pin DLL Reference Clock CQn Pin DQS Phase-Shift Circuitry DLL Reference Clock Δt to IOE to IOE Δt Δt to IOE to IOE to IOE to IOE to IOE to IOE Δt Δt Δt Δt CQn Pin External Memory Interfaces in Stratix V Devices Send Feedback CQn Pin DQS Logic Blocks Δt DQS Phase-Shift Circuitry DQS/CQ Pin DQS/CQ Pin CQn Pin DQS/CQ Pin DLL Reference Clock DQS Phase-Shift Circuitry DQS Phase-Shift Circuitry DLL Reference Clock Altera Corporation 7-12 SV51008 2015.06.12 Delay-Locked Loop Figure 7-4: DQS/CQ and CQn Pins and DQS Phase-Shift Circuitry in Stratix V GX, GS, and GT Devices DQS/CQ Pin DLL Reference Clock CQn Pin DQS/CQ Pin CQn Pin Δt Δt DQS Logic Blocks Δt DQS Phase-Shift Circuitry Δt to IOE to IOE DQS Phase-Shift Circuitry DLL Reference Clock DQS Phase-Shift Circuitry Transceiver to IOE Transceiver to IOE DLL Reference Clock to IOE to IOE to IOE to IOE Δt Δt Δt Δt CQn Pin DQS/CQ Pin CQn Pin DQS/CQ Pin DQS Phase-Shift Circuitry DLL Reference Clock The DQS phase-shift circuitry is connected to the DQS logic blocks that control each DQS/CQ or CQn pin. DQS logic blocks allow the DQS delay settings to be updated concurrently at every DQS/CQ or CQn pin. Delay-Locked Loop The DQS phase-shift circuitry uses a delay-locked loop (DLL) to dynamically control the clock delay required by the DQS/CQ and CQn pin. The DLL uses a frequency reference to dynamically generate control signals for the delay chains in each of the DQS/CQ and CQn pins, allowing the delay to compensate for process, voltage, and temperature (PVT) variations. The DQS delay settings are gray-coded to reduce jitter if the DLL updates the settings. Altera Corporation External Memory Interfaces in Stratix V Devices Send Feedback SV51008 2015.06.12 DLL Reference Clock Input for Stratix V Devices 7-13 There are a maximum of four DLLs, located in each corner of the Stratix V devices. You can clock each DLL using different frequencies. Each DLL can have two outputs with different phase offsets, which allows one Stratix V device to have eight different DLL phase shift settings. You can have two different interfaces with the same frequency sharing a DLL, where the DLL controls the DQS delay settings for both interfaces. Each I/O bank is accessible by two DLLs, giving more flexibility to create multiple frequencies and multiple-type interfaces. Each bank can use settings from one or both adjacent DLLs. For example, DQS1T can get its phase-shift settings from DLL_TR, while DQS2T can get its phase-shift settings from DLL_TL. The reference clock for each DLL may come from the PLL output clocks or clock input pins. Note: If you have a dedicated PLL that only generates the DLL input reference clock, set the PLL mode to No Compensation to achieve better performance (or the Quartus II software automatically changes it). Because the PLL does not use any other outputs, it does not have to compensate for any clock paths. DLL Reference Clock Input for Stratix V Devices Table 7-8: DLL Reference Clock Input for Stratix V E E9 and EB, and Stratix V GX A9, AB, B9, and BB Devices DLL DLL_TL PLL CLKIN Center Corner Left Center Right CEN_X104_ Y166 COR_X0_Y170 CLK20P CLK16P — COR_X0_Y161 CLK21P CLK17P CLK22P CLK18P CLK23P CLK19P — CLK16P CLK12P CLK17P CLK13P CLK18P CLK14P CLK19P CLK15P CLK4P CLK8P CLK5P CLK9P CLK6P CLK10P CLK7P CLK11P — CEN_X104_ Y157 DLL_TR DLL_BR CEN_X104_ Y166 COR_X225_ Y170 CEN_X104_ Y157 COR_X225_ Y161 CEN_X104_Y11 COR_X225_Y10 CEN_X104_Y2 DLL_BL COR_X225_Y1 CEN_X104_Y11 COR_X0_Y10 CLK0P CLK4P CEN_X104_Y2 COR_X0_Y1 CLK1P CLK5P CLK2P CLK6P CLK3P CLK7P External Memory Interfaces in Stratix V Devices Send Feedback — Altera Corporation 7-14 SV51008 2015.06.12 DLL Reference Clock Input for Stratix V Devices Table 7-9: DLL Reference Clock Input for Stratix V GX A3 (with 36 Transceivers) and A4, and Stratix V GS D5 Devices DLL DLL_TL DLL_TR PLL CLKIN Center Corner Left Center Right CEN_X92_Y96 COR_X0_Y100 CLK20P CLK16P — CEN_X92_Y87 COR_X0_Y91 CLK21P CLK17P CLK22P CLK18P CLK23P CLK19P — CLK16P CLK12P CLK17P CLK13P CLK18P CLK14P CLK19P CLK15P CLK4P CLK8P CLK5P CLK9P CLK6P CLK10P CLK7P CLK11P — CEN_X92_Y96 COR_X202_ Y100 CEN_X92_Y87 COR_X202_Y91 DLL_BR DLL_BL CEN_X92_Y11 COR_X202_Y10 CEN_X92_Y2 COR_X202_Y1 — CEN_X92_Y11 COR_X0_Y10 CLK0P CLK4P CEN_X92_Y1 COR_X0_Y1 CLK1P CLK5P CLK2P CLK6P CLK3P CLK7P Table 7-10: DLL Reference Clock Input for Stratix V GX B5 and B6 Devices DLL DLL_TL Altera Corporation PLL CLKIN Center Corner Left Center Right CEN_X90_Y123 LR_X0_Y109 CLK20P CLK16P — CEN_X90_Y114 LR_X0_Y100 CLK21P CLK17P CLK22P CLK18P CLK23P CLK19P External Memory Interfaces in Stratix V Devices Send Feedback SV51008 2015.06.12 DLL Reference Clock Input for Stratix V Devices DLL DLL_TR PLL Center CLKIN Corner CEN_X90_Y123 LR_X197_Y109 Left Center Right — CLK16P CLK12P CLK17P CLK13P CLK18P CLK14P CLK19P CLK15P CLK4P CLK8P CLK5P CLK9P CLK6P CLK10P CLK7P CLK11P — CEN_X90_Y114 LR_X197_Y100 DLL_BR DLL_BL 7-15 CEN_X90_Y11 LR_X197_Y14 CEN_X90_Y2 LR_X197_Y5 — CEN_X90_Y11 LR_X0_Y14 CLK0P CLK4P CEN_X90_Y2 LR_X0_Y5 CLK1P CLK5P CLK2P CLK6P CLK3P CLK7P Table 7-11: DLL Reference Clock Input for Stratix V GX A5 and A7, and Stratix V GT C5 and C7 Devices DLL DLL_TL DLL_TR PLL CLKIN Center Corner Left Center Right CEN_X98_Y118 COR_X0_Y122 CLK20P CLK16P — CEN_X98_Y109 COR_X0_Y113 CLK21P CLK17P CLK22P CLK18P CLK23P CLK19P — CLK16P CLK12P CLK17P CLK13P CLK18P CLK14P CLK19P CLK15P CLK4P CLK8P CLK5P CLK9P CLK6P CLK10P CLK7P CLK11P CEN_X98_Y118 CEN_X98_Y109 COR_X210_ Y122 COR_X210_ Y113 DLL_BR CEN_X98_Y11 COR_X210_Y10 CEN_X98_Y2 COR_X210_Y1 External Memory Interfaces in Stratix V Devices Send Feedback — Altera Corporation 7-16 SV51008 2015.06.12 DLL Reference Clock Input for Stratix V Devices DLL DLL_BL PLL CLKIN Center Corner Left Center Right CEN_X98_Y11 COR_X0_Y10 CLK0P CLK4P — CEN_X98_Y2 COR_X0_Y1 CLK1P CLK5P CLK2P CLK6P CLK3P CLK7P Table 7-12: DLL Reference Clock Input for Stratix V GX A3 (with 24 Transceivers), and Stratix V GS D3 and D4 Devices DLL DLL_TL DLL_TR DLL_BR DLL_BL Altera Corporation PLL CLKIN Center Corner Left Center Right CEN_X84_Y77 COR_X0_Y81 CLK20P CLK16P — CEN_X84_Y68 COR_X0_Y72 CLK21P CLK17P CLK22P CLK18P CLK23P CLK19P — CLK16P CLK12P CLK17P CLK13P CLK18P CLK14P CLK19P CLK15P CLK4P CLK8P CLK5P CLK9P CLK6P CLK10P CLK7P CLK11P — CEN_X84_Y77 COR_X185_Y81 CEN_X84_Y68 COR_X185_Y72 CEN_X84_Y11 COR_X185_Y10 CEN_X84_Y2 COR_X185_Y1 — CEN_X84_Y11 COR_X0_Y10 CLK0P CLK4P CEN_X84_Y2 COR_X0_Y1 CLK1P CLK5P CLK2P CLK6P CLK3P CLK7P External Memory Interfaces in Stratix V Devices Send Feedback SV51008 2015.06.12 DQS Phase-Shift 7-17 Table 7-13: DLL Reference Clock Input for Stratix V GS D6 and D8 Devices DLL DLL_TL DLL_TR PLL CLKIN Center Corner Left Center Right CEN_X96_Y141 COR_X0_Y145 CLK20P CLK16P — CEN_X96_Y132 COR_X0_Y136 CLK21P CLK17P CLK22P CLK18P CLK23P CLK19P — CLK16P CLK12P CLK17P CLK13P CLK18P CLK14P CLK19P CLK15P CLK4P CLK8P CLK5P CLK9P CLK6P CLK10P CLK7P CLK11P — CEN_X96_Y141 CEN_X96_Y132 COR_X208_ Y145 COR_X208_ Y136 DLL_BR DLL_BL CEN_X96_Y11 COR_X208_Y10 CEN_X96_Y2 COR_X208_Y1 — CEN_X96_Y11 COR_X0_Y10 CLK0P CLK4P CEN_X96_Y2 COR_X0_Y1 CLK1P CLK5P CLK2P CLK6P CLK3P CLK7P DQS Phase-Shift The DLL can shift the incoming DQS signals by 0°, 45°, 90°, or 135°. The shifted DQS signal is then used as the clock for the DQ IOE input registers. All DQS/CQ/CQn pins referenced to the same DLL, can have their input signal phase shifted by a different degree amount but all must be referenced at one particular frequency. For example, you can have a 90° phase shift on DQS1T and a 45° phase shift on DQS2T, referenced from a 300-MHz clock. However, not all phase-shift combinations are supported. The phase shifts on the DQS pins referenced by the same DLL must all be a multiple of 45° (up to 135°). The 7-bit DQS delay settings from the DLL vary with PVT to implement the phase-shift delay. For example, with a 0° shift, the DQS/CQ signal bypasses both the DLL and DQS logic blocks. The Quartus II software automatically sets the DQ input delay chains, so that the skew between the DQ and DQS/CQ pins at the DQ IOE registers is negligible if a 0° shift is implemented. You can feed the DQS delay settings to the DQS logic block and logic array. External Memory Interfaces in Stratix V Devices Send Feedback Altera Corporation 7-18 SV51008 2015.06.12 DQS Phase-Shift The shifted DQS/CQ signal goes to the DQS bus to clock the IOE input registers of the DQ pins. The signal can also go into the logic array for resynchronization if you are not using IOE resynchronization registers. Figure 7-5: Simplified Diagram of the DQS Phase-Shift Circuitry This figure shows a simple block diagram of the DLL. All features of the DQS phase-shift circuitry are accessible from the UniPHY megafunction in the Quartus II software. addnsub Phase offset settings from the logic array (offset[6:0]) 7 DLL Input Reference Clock offsetdelayctrlin[6:0] aload Phase Comparator upndninclkena 7 offsetdelayctrlout[6:0] offsetdelayctrlin[6:0] 7 Delay Chains delayctrlout[6:0] 7 7 Phase offset settings to DQS pins (offsetctrlout[6:0]) addnsub Phase offset settings from the logic array ( offset [6:0] ) Up/Down Counter This clock can come from a PLL output clock or an input clock pin 7 (dll_offset_ctrl_a) offsetdelayctrlout[6:0] upndnin clk Phase Offset Control A dqsupdate Phase Offset Control B 7 Phase offset settings can only go to the DQS logic blocks Phase offset settings to DQS pin (offsetctrlout[6:0]) (dll_offset_ctrl_b) DQS Delay Settings DQS delay settings can go to the logic array and DQS logic block The input reference clock goes into the DLL to a chain of up to eight delay elements. The phase comparator compares the signal coming out of the end of the delay chain block to the input reference clock. The phase comparator then issues the upndn signal to the Gray-code counter. This signal increments or decrements a 7-bit delay setting (DQS delay settings) that increases or decreases the delay through the delay element chain to bring the input reference clock and the signals coming out of the delay element chain in phase. Note: In the Quartus II assignment, the phase offset control block ‘A’ is designated as DLLOFFSETCTRL_CoordinateX_CoordinateY_N1 and phase offset control block ‘B’ is designated as DLLOFFSETCTRL_CoordinateX_CoordinateY_N2. The DLL can be reset from either the logic array or a user I/O pin (if 2,560 or 512 clock cycles applies). Each time the DLL is reset, you must wait for 2,560 (low-jitter mode) or 512 clock cycles for the DLL to lock before you can capture the data properly. You can still use DQS phase-shift circuitry for memory interfaces running on frequencies below the minimum DLL input frequency, which is 300 MHz. The frequency of the clock feeding the DLL should be doubled when the interface frequency is between 150 MHz and 299 MHz or multiplied by four when the interface frequency is between 75 MHz and 149 MHz. Because of the changes on the DLL input clock frequency, the DQS delay chain can only shift up to 67.5° for the interface frequency between 150 MHz and 299 MHz and 33.75° for the interface frequency between 75 MHz and 149 MHz. Depending on your design, while the DQS signal might not shift exactly to the middle of the DQ valid window, the IOE is still able to capture the data accurately in low-frequency applications, where a large amount of timing margin is available. For the frequency range of each DLL frequency mode, refer to the device datasheet. Altera Corporation External Memory Interfaces in Stratix V Devices Send Feedback SV51008 2015.06.12 PHY Clock (PHYCLK) Networks 7-19 Related Information Stratix V Device Datasheet PHY Clock (PHYCLK) Networks The PHYCLK network is a dedicated high-speed, low-skew balanced clock tree designed for a highperformance external memory interface. The top and bottom sides of the Stratix V devices three PHYCLK networks each. Each PHYCLK network spans across one I/O bank and is driven by one of the left, right, or center PLLs located at that device side. The following figure shows the PHYCLK networks available in the Stratix V devices. Figure 7-6: PHYCLK Networks in Stratix V Devices I/O Bank 8 Sub-Bank Sub-Bank Left PLL Center PLL I/O Bank 7 Sub-Bank Sub-Bank Right PLL Transceiver Banks Transceiver Banks PHYCLK Networks FPGA Device PHYCLK Networks Left PLL Sub-Bank Sub-Bank I/O Bank 3 Center PLL Right PLL Sub-Bank Sub-Bank I/O Bank 4 The PHYCLK network can be used to drive I/O sub-banks in each I/O bank. Each I/O sub-bank can be driven by only one PHYCLK network—all I/O pins in an I/O sub-bank are driven by the same PHYCLK network. The UniPHY IP for Stratix V devices uses the PHYCLK network to improve external memory interface performance. DQS Logic Block Each DQS/CQ and CQn pin is connected to a separate DQS logic block, which consists of the DQS delay chains, update enable circuitry, and DQS postamble circuitry. External Memory Interfaces in Stratix V Devices Send Feedback Altera Corporation 7-20 SV51008 2015.06.12 Update Enable Circuitry The following figure shows the DQS logic block. Figure 7-7: DQS Logic Block in Stratix V Devices DQS Del ay Chain DQS Enable 00 01 10 11 dqsin DQS/CQ or CQn Pin D Q dqsin The dqsenable signal can also come from the FPGA fabric <use_alternate_input_for first_stage_delay_control> dqsenable 0 1 dqsenableout D Q zerophaseclk Postamble clock 0 1 D Q D Q leveling clk <bypass_output_register> Read-leveled postamble clock 0 1 <delay_dqs_enable_by_half_cycle> 0 1 enaphasetransferreg dqsenablein D Q phasectrlin[1..0] PRE DQS Postamble Circuit Postamble Enable dqsbusout 7 7 0 1 7 offsetctrlin [6..0] 7 1 D Q Phase offset 0 settings from the DQS phase-shift <dqs_offsetctrl_enable> circuitry 7 0 1 7 <dqs_ctrl_latches_enable> D Q 7 dqsupdateen Update Enable Circuitry 7 DQS del ay settings from the DQS phase-shift circuitry delayctrlin [6..0] Input Reference Clock This clock can come from a PLL output clock or an input clock pin Update Enable Circuitry The update enable circuitry enables the registers to allow enough time for the DQS delay settings to travel from the DQS phase-shift circuitry or core logic to all the DQS logic blocks before the next change. Both the DQS delay settings and the phase-offset settings pass through a register before going into the DQS delay chains. The registers are controlled by the update enable circuitry to allow enough time for any changes in the DQS delay setting bits to arrive at all the delay elements, which allows them to be adjusted at the same time. The circuitry uses the input reference clock or a user clock from the core to generate the update enable output. The UniPHY intellectual property (IP) uses this circuit by default. Figure 7-8: DQS Update Enable Waveform This figure shows an example waveform of the update enable circuitry output. DLL Counter Update (Every 8 cycles) DLL Counter Update (Every 8 cycles) System Clock DQS Delay Settings Updated every 8 cycles 7 bit Update Enable Circuitry Output Altera Corporation External Memory Interfaces in Stratix V Devices Send Feedback SV51008 2015.06.12 DQS Delay Chain 7-21 DQS Delay Chain DQS delay chains consist of a set of variable delay elements to allow the input DQS/CQ and CQn signals to be shifted by the amount specified by the DQS phase-shift circuitry or the logic array. There are four delay elements in the DQS delay chain that have the same characteristics: • Delay elements in the DQS logic block • Delay elements in the DLL The first delay chain closest to the DQS/CQ pin is shifted either by the DQS delay settings or by the sum of the DQS delay setting and the phase-offset setting. The DQS delay settings can come from the DQS phase-shift circuitry on either end of the I/O banks or from the logic array. The number of delay chains required is transparent because the UniPHY IP automatically sets it when you choose the operating frequency. In Stratix V devices, if you do not use the DLL to control the DQS delay chains, you can input your own gray-coded 7 bit settings using the delayctrlin[6..0] signals available in the UniPHY IP. These settings control 1, 2, 3, or all 4 delay elements in the DQS delay chains. The UniPHY megafunction can also dynamically choose the number of DQS delay chains required for the system. The amount of delay is equal to the sum of the intrinsic delay of the delay element and the product of the number of delay steps and the value of the delay steps. You can also bypass the DQS delay chain to achieve a 0° phase shift. Related Information • ALTDQ_DQS2 IP Core User Guide Provides more information about programming the delay chains. • Delay Chains on page 7-26 DQS Postamble Circuitry There are preamble and postamble specifications for both read and write operations in DDR3 and DDR2 SDRAM. The DQS postamble circuitry ensures that data is not lost if there is noise on the DQS line during the end of a read operation that occurs while DQS is in a postamble state. The Stratix V devices contain dedicated postamble registers that you can control to ground the shifted DQS signal that is used to clock the DQ input registers at the end of a read operation. This function ensures that any glitches on the DQS input signal during the end of a read operation and occurring while DQS is in a postamble state do not affect the DQ IOE registers. • For preamble state, the DQS is low, just after a high-impedance state. • For postamble state, the DQS is low, just before it returns to a high-impedance state. For external memory interfaces that use a bidirectional read strobe (DDR3 and DDR2 SDRAM), the DQS signal is low before going to or coming from a high-impedance state. Half Data Rate Block The Stratix V devices contain a half data rate (HDR) block in the postamble enable circuitry. The HDR block is clocked by the half-rate resynchronization clock, which is the output of the I/O clock divider circuit. There is an AND gate after the postamble register outputs to avoid postamble glitches from a previous read burst on a non-consecutive read burst. This scheme allows half-a-clock cycle latency for dqsenable assertion and zero latency for dqsenable deassertion. External Memory Interfaces in Stratix V Devices Send Feedback Altera Corporation 7-22 SV51008 2015.06.12 Leveling Circuitry Using the HDR block as the first stage capture register in the postamble enable circuitry block is optional. Altera recommends using these registers if the controller is running at half the frequency of the I/Os. Figure 7-9: Avoiding Glitch on a Non-Consecutive Read Burst Waveform This figure shows how to avoid postamble glitches using the HDR block. Postamble glitch Postamble Preamble DQS Postamble Enable dqsenable Delayed by 1/2T logic Leveling Circuitry DDR3 SDRAM unbuffered modules use a fly-by clock distribution topology for better signal integrity. This means that the CK/CK# signals arrive at each DDR3 SDRAM device in the module at different times. The difference in arrival time between the first DDR3 SDRAM device and the last device on the module can be as long as 1.6 ns. The following figure shows the clock topology in DDR3 SDRAM unbuffered modules. Figure 7-10: DDR3 SDRAM Unbuffered Module Clock Topology DQS/DQ DQS/DQ DQS/DQ DQS/DQ CK/CK# DQS/DQ DQS/DQ DQS/DQ DQS/DQ FPGA Because the data and read strobe signals are still point-to-point, take special care to ensure that the timing relationship between the CK/CK# and DQS signals (tDQSS, tDSS, and tDSH) during a write is met at every Altera Corporation External Memory Interfaces in Stratix V Devices Send Feedback SV51008 2015.06.12 Dynamic OCT Control 7-23 device on the modules. In a similar way, read data coming back into the FPGA from the memory is also staggered. The Stratix V devices have leveling circuitry to address these two situations. There is one leveling circuit per I/O sub-bank (for example, I/O sub-bank 1A, 1B, and 1C each has one leveling circuitry). These delay chains are PVT-compensated by the same DQS delay settings as the DLL and DQS delay chains. The DLL uses eight delay chain taps, such that each delay chain tap generates a 45° delay. The generated clock phases are distributed to every DQS logic block that is available in the I/O sub-bank. The delay chain taps then feed a multiplexer controlled by the UniPHY megafunction to select which clock phases are to be used for that x4 or x 8 DQS group. Each group can use a different tap output from the readleveling and write-leveling delay chains to compensate for the different CK/CK# delay going into each device on the module. Figure 7-11: Write-Leveling Delay Chains and Multiplexers There is one leveling delay chain per I/O sub-bank (for example, I/O sub-banks 1A, 1B, and 1C). You can only have one memory interface in each I/O sub-bank when you use the leveling delay chain. Write clk (-900) Write-Leveled DQS Clock Write-Leveled DQ Clock The –90° write clock of the UniPHY IP feeds the write-leveling circuitry to produce the clock to generate the DQS and DQ signals. During initialization, the UniPHY IP picks the correct write-leveled clock for the DQS and DQ clocks for each DQ/DQS group after sweeping all the available clocks in the write calibration process. The DQ clock output is –90° phase-shifted compared to the DQS clock output. The UniPHY IP dynamically calibrates the alignment for read and write leveling during the initialization process. Related Information • Functional Description - UniPHY Provides more information about the UniPHY IP. • DDR2, DDR3, and DDR4 SDRAM Board Design Guidelines chapter. External Memory Interface Volume 2 Provides layout guidelines for DDR3 SDRAM interface. Dynamic OCT Control The dynamic OCT control block includes all the registers that are required to dynamically turn the onchip parallel termination (RT OCT) on during a read and turn RT OCT off during a write. External Memory Interfaces in Stratix V Devices Send Feedback Altera Corporation 7-24 SV51008 2015.06.12 IOE Registers Figure 7-12: Dynamic OCT Control Block for Stratix V Devices OCT Control Path OCT Control 2 DFF DFF OCT Enable OCT Half-Rate Clock HDR Block Write Clock Resynchronization Registers The write clock comes from either the PLL or the writeleveling delay chain. Related Information Dynamic OCT in Stratix V Devices on page 5-29 Provides more information about dynamic OCT control. IOE Registers The IOE registers are expanded to allow source-synchronous systems to have faster register-to-FIFO transfers and resynchronization. All top, bottom, and right IOEs have the same capability. Input Registers The input path consists of the DDR input registers and the read FIFO block. You can bypass each block of the input path. There are three registers in the DDR input registers block. Two registers capture data on the positive and negative edges of the clock while the third register aligns the captured data. You can choose to use the same clock for the positive and negative edge registers or two complementary clocks (DQS/CQ for the positive-edge register and DQSn/CQn for the negative-edge register). The third register that aligns the captured data uses the same clock as the positive edge registers. The read FIFO block resynchronizes the data to the system clock domain and lowers the data rate to half rate. The following figure shows the registers available in the Stratix V input path. For DDR3 and DDR2 SDRAM interfaces, the DQS and DQSn signals must be inverted. If you use Altera’s memory interface IPs, the DQS and DQSn signals are automatically inverted. Altera Corporation External Memory Interfaces in Stratix V Devices Send Feedback SV51008 2015.06.12 Output Registers 7-25 Figure 7-13: IOE Input Registers for Stratix V Devices Double Data Rate Input Registers DQ D DFF Input Reg A I D Q neg_reg_out D The input clock can be from the DQS logic block or from a global clock line. Differential Input Buffer DQS/CQ DQSn datain [0] Q D Q datain [1] This half-rate read clock comes from a PLL through the clock network DFF Input Reg C I wrclk CQn To core Read FIFO Q DFF Input Reg B I dataout[3..0] rdclk Half-rate clock 0 1 This input clock comes from the CQn logic block. Output Registers The Stratix V output and output-enable path is divided into the HDR block, alignment registers, and output and output-enable registers. The device can bypass each block of the output and output-enable path. The output path is designed to route combinatorial or registered single data rate (SDR) outputs and fullrate or half-rate DDR outputs from the FPGA core. Half-rate data is converted to full-rate with the HDR block, clocked by the half-rate clock from the PLL. The resynchronization registers are also clocked by the same 0° system clock, except in the DDR3 SDRAM interface. In DDR3 SDRAM interfaces, the leveling registers are clocked by the write-leveling clock. The output-enable path has a structure similar to the output path—ensuring that the output-enable path goes through the same delay and latency as the output path. External Memory Interfaces in Stratix V Devices Send Feedback Altera Corporation 7-26 SV51008 2015.06.12 Delay Chains Figure 7-14: IOE Output and Output-Enable Path Registers The following figure shows the registers available in the output and output-enable paths. You can bypass each register block of the output and output-enable paths. Used in DDR3 SDRAM interfaces for write-leveling purposes Data coming from the FPGA core are at half the frequency of the memory interface clock frequency in half-rate mode From Core Half Data Rate to Single Data Rate Output-Enable Registers D Q DFF From Core 0 1 D Q DFF D Q D Q DFF DFF 000 001 010 011 100 101 110 111 Alignment Registers D Q 0 1 dataout DFF DFF <add_output_cycle_delay> D Q DFF enaphasetransferreg D Q Double Data Rate Output-Enable Registers OE Reg A OE 1 0 enaoutputcycledelay[2..0] OR2 D Q DFF From Core (wdata2) Half Data Rate to Single Data Rate Output Registers D Q DFF From Core (wdata0) 0 1 D Q DFF D Q D Q DFF From Core (wdata1) D Q DFF DFF Alignment Registers D Q 0 1 <add_output_cycle_delay> 0 1 D DFF Q D Q D Q DFF DFF dataout DFF Half-Rate Clock From the PLL Alignment Clock From write-leveling delay chains <add_output_cycle_delay> D Q DFF DFF 0 1 TRI DQ or DQS OE Reg A O enaoutputcycledelay[2..0] 000 001 010 011 100 101 110 111 D Q 0 1 dataout DFF D Q DFF enaphasetransferreg D Q OE Reg B OE Double Data Rate Output Registers enaphasetransferreg DFF From Core (wdata3) D Q 000 001 010 011 100 101 110 111 OE Reg B O enaoutputcycledelay[2..0] The write clock can come from either the PLL or from the write-leveling delay chain. The DQ write clock and DQS write clock have a 90° offset between them Write Clock Delay Chains The Stratix V devices contain run-time adjustable delay chains in the I/O blocks and the DQS logic blocks. You can control the delay chain setting through the I/O or the DQS configuration block output. Altera Corporation External Memory Interfaces in Stratix V Devices Send Feedback SV51008 2015.06.12 Delay Chains 7-27 Figure 7-15: Delay Chain delayctrlin [7..0] Δt datain dataout Every I/O block contains two delay chains between the following elements: • • • • The output registers and output buffer (in series) The input buffer and input register The output enable and output buffer The R T OCT enable-control register and output buffer Figure 7-16: Delay Chains in an I/O Block rtena oe octdelaysetting1 D5 OCT delay chain D5 Ouput Enable delay chain octdelaysetting2 D6 OCT delay chain D6 Ouput Enable delay chain DQ outputdelaysetting1 outputdelaysetting2 D6 Delay delay chain D1 Delay delay chain D1 Rise/Fall Balancing delay chain D2 Delay delay chain D5 Delay delay chain 0 1 D3 Delay delay chain padtoinputregisterdelaysetting padtoinputregisterrisefalldelaysetting[5..0] Each DQS logic block contains a delay chain after the dqsbusout output and another delay chain before the dqsenable input. External Memory Interfaces in Stratix V Devices Send Feedback Altera Corporation 7-28 SV51008 2015.06.12 I/O and DQS Configuration Blocks Figure 7-17: Delay Chains in the DQS Input Path DQS Enable dqsin DQS DQS delay chain T7 delay chain dqsenable dqsbusout T11 delay chain DQS Enable Control Related Information • ALTDQ_DQS2 IP Core User Guide Provides more information about programming the delay chains. • DQS Delay Chain on page 7-21 I/O and DQS Configuration Blocks The I/O and DQS configuration blocks are shift registers that you can use to dynamically change the settings of various device configuration bits. • The shift registers power-up low. • Every I/O pin contains one I/O configuration register. • Every DQS pin contains one DQS configuration block in addition to the I/O configuration register. Figure 7-18: Configuration Block (I/O and DQS) This figure shows the I/O configuration block and the DQS configuration block circuitry. MSB datain update ena rankselectread rankselectwrite bit2 bit1 bit0 dataout clk Altera Corporation External Memory Interfaces in Stratix V Devices Send Feedback SV51008 2015.06.12 Document Revision History 7-29 Related Information ALTDQ_DQS2 IP Core User Guide Provides more information about programming the delay chains. Document Revision History Date Version Changes June 2014 2014.06.30 • Updated DDR3 1.35 V (DDR3L) performance from 933 MHz to 800 MHz. January 2014 2014.01.10 • Updated the figure that shows the delay chains in the Stratix V I/O block. • Added related information link to ALTDQ_DQS2 Megafunction User Guide for more information about using the delay chains. • Added link to Altera's External Memory Spec Estimator tool to the topic listing the external memory interface performance. May 2013 2013.05.06 • Moved all links to the Related Information section of respective topics for easy reference. • Added link to the known document issues in the Knowledge Base. • Added related information link to DDR2 and DDR3 SDRAM Board Design Guidelines. • Performed some minor text edits to improve accuracy. December 2012 2012.11.28 • • • • • • • • • External Memory Interfaces in Stratix V Devices Send Feedback Reorganized content and updated template. Added RLDRAM 3 support. Added performance information for external memory interfaces. Separated the DQ/DQS groups tables into separate topics for each device variant for easy reference. Moved the PHYCLK networks pin placement guideline to the Planning Pin and FPGA Resources chapter of the External Memory Interface Handbook. Removed guidelines on DDR2 and DDR3 SDRAM DIMM interfaces. Refer to the relevant sections in the External Memory Interface Handbook for the information. Corrected “Gray-code” to “Binary-Code” in the “Phase Offset Control” section. Removed the topic about phase offset control. Removed the topics about I/O and DQS configuration block bit sequence. Refer to the relevant sections in the ALTDQ_DQS2 Megafunction User Guide. Altera Corporation 7-30 SV51008 2015.06.12 Document Revision History Date Version Changes June 2012 1.4 • • • • Added Table 7–6, Table 7–8, and Table 7–9. Updated Table 7–2, Table 7–3, and Table 7–7. Updated Figure 7–18. Updated the “PHY Clock (PHYCLK) Networks” section. November 2011 1.3 • • • • • Added “PHY Clock (PHYCLK) Networks” section. Updated “Delay-Locked Loop” section. Updated Figure 7–3, Figure 7–5, and Figure 7–7. Updated Table 7–2, Table 7–3, Table 7–4, Table 7–5, and Table 7–6. Minor text edits. May 2011 1.2 • Chapter moved to volume 2 for the 11.0 release. • Updated Figure 7–4, Figure 7–6, Figure 7–13, Figure 7–14, and Figure 7–17. • Updated Table 7–2, Table 7–7, and Table 7–8. • Minor text edits. December 2010 1.1 No changes to the content of this chapter for the Quartus II software 10.1. July 2010 1.0 Initial release. Altera Corporation External Memory Interfaces in Stratix V Devices Send Feedback 8 Configuration, Design Security, and Remote System Upgrades in Stratix V Devices 2015.06.12 SV51010 Subscribe Send Feedback This chapter describes the configuration schemes, design security, and remote system upgrade that are supported by the Stratix V devices. Related Information • Stratix V Device Handbook: Known Issues Lists the planned updates to the Stratix V Device Handbook chapters. • Stratix V Device Overview Provides more information about configuration features supported for each configuration scheme. • Stratix V Device Datasheet Provides more information about the estimated uncompressed .rbf file sizes, FPP DCLK-to-DATA[] ratio, and timing parameters. • Configuration via Protocol (CvP) Implementation in Altera FPGAs User Guide Provides more information about the CvP configuration scheme. • Design Planning for Partial Reconfiguration Provides more information about partial reconfiguration. Enhanced Configuration and Configuration via Protocol Table 8-1: Configuration Modes and Features of Stratix V Devices Stratix V devices support 1.8 V, 2.5 V, and 3.0 V programming voltages and several configuration modes. Mode AS through the EPCS and EPCQ serial configura‐ tion device (10) Data Width Max Clock Rate (MHz) 1 bit, 4 bits 100 Max Data Decompression Design Partial Remote System Rate Security Reconfiguration Update (10) (Mbps) — Yes Yes — Yes Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Altera for support. © 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. www.altera.com 101 Innovation Drive, San Jose, CA 95134 ISO 9001:2008 Registered 8-2 SV51010 2015.06.12 MSEL Pin Settings Mode PS through CPLD or external microcontroller FPP CvP (PCIe) JTAG Data Width Max Clock Rate (MHz) Max Data Decompression Design Partial Remote System Rate Security Reconfiguration Update (10) (Mbps) 1 bit 125 125 Yes Yes — 8 bits 125 — Yes Yes — 16 bits 125 — Yes Yes Yes(11) 32 bits 100 — Yes Yes — x1, x2, x4, and x8 lanes — — Yes Yes Yes — 1 bit 33 33 — — — — — Parallel flash loader Instead of using an external flash or ROM, you can configure the Stratix V devices through PCIe using CvP. The CvP mode offers the fastest configuration rate and flexibility with the easy-to-use PCIe hard IP block interface. The Stratix V CvP implementation conforms to the PCIe 100 ms power-up-to-active time requirement. Related Information Configuration via Protocol (CvP) Implementation in Altera FPGAs User Guide Provides more information about the CvP configuration scheme. MSEL Pin Settings To select a configuration scheme, hardwire the MSEL pins to VCCPGM or GND without pull-up or pull-down resistors. Note: Altera recommends connecting the MSEL pins directly to VCCPGM or GND. Driving the MSEL pins from a microprocessor or another controlling device may not guarantee the VIL or VIH of the MSEL pins. The VIL or VIH of the MSEL pins must be maintained throughout configuration stages. (10) (11) Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Altera for support. Supported at a maximum clock rate of 62.5 MHz. Altera Corporation Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 MSEL Pin Settings 8-3 Table 8-2: MSEL Pin Settings for Each Configuration Scheme of Stratix V Devices Configuration Scheme Compression Feature Design Security Feature VCCPGM (V) Disabled Disabled 1.8/2.5/3.0 Disabled Enabled 1.8/2.5/3.0 Enabled Enabled/ Disabled 1.8/2.5/3.0 Disabled Disabled 1.8/2.5/3.0 Disabled Enabled 1.8/2.5/3.0 Enabled Enabled/ Disabled 1.8/2.5/3.0 Disabled Disabled 1.8/2.5/3.0 Disabled Enabled 1.8/2.5/3.0 Enabled Enabled/ Disabled 1.8/2.5/3.0 PS Enabled/ Disabled Enabled/ Disabled 1.8/2.5/3.0 AS (x1 and x4) Enabled/ Disabled Enabled/ Disabled 3.0 Disabled Disabled — FPP x8 FPP x16 FPP x32 JTAG-based configuration Power-On Reset (POR) Delay Valid MSEL[4..0] Fast 10100 Standard 11000 Fast 10101 Standard 11001 Fast 10110 Standard 11010 Fast 00000 Standard 00100 Fast 00001 Standard 00101 Fast 00010 Standard 00110 Fast 01000 Standard 01100 Fast 01001 Standard 01101 Fast 01010 Standard 01110 Fast 10000 Standard 10001 Fast 10010 Standard 10011 — Use any valid MSEL pin settings above Note: You must also select the configuration scheme in the Configuration page of the Device and Pin Options dialog box in the Quartus II software. Based on your selection, the option bit in the programming file is set accordingly. Related Information • Stratix V E, GS, and GX Device Family Pin Connection Guidelines Provides more information about JTAG pins voltage-level connection. • Stratix V GT Device Family Pin Connection Guidelines Provides more information about JTAG pins voltage-level connection. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Altera Corporation 8-4 SV51010 2015.06.12 Configuration Sequence Configuration Sequence Describes the configuration sequence and each configuration stage. Figure 8-1: Configuration Sequence for Stratix V Devices Power Up • nSTATUS and CONF_DONE driven low • All I/Os pins are tied to an internal weak pull-up • Clears configuration RAM bits Power supplies including V CCPD and V CCPGM reach recommended operating voltage Reset • nSTATUS and CONF_DONE remain low • All I/Os pins are tied to an internal weak pull-up • Samples MSEL pins nSTATUS and nCONFIG released high CONF_DONE pulled low Configuration Error Handling • nSTATUS pulled low • CONF_DONE remains low • Restarts configuration if option enabled Configuration Writes configuration data to FPGA CONF_DONE released high Initialization • Initializes internal logic and registers • Enables I/O buffers INIT_DONE released high (if option enabled) User Mode Executes your design You can initiate reconfiguration by pulling the nCONFIG pin low to at least the minimum tCFG low-pulse width except for configuration using the partial reconfiguration operation. When this pin is pulled low, the nSTATUS and CONF_DONE pins are pulled low and all I/O pins are tied to an internal weak pull-up. Altera Corporation Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 Power Up 8-5 Power Up Power up all the power supplies that are monitored by the POR circuitry. All power supplies, including VCCPGM and VCCPD, must ramp up from 0 V to the recommended operating voltage level within the ramp-up time specification. Otherwise, hold the nCONFIG pin low until all the power supplies reach the recommended voltage level. VCCPGM Pin The configuration input buffers do not have to share power lines with the regular I/O buffers in Stratix V devices. The operating voltage for the configuration input pin is independent of the I/O banks power supply, VCCIO, during configuration. Therefore, Stratix V devices do not require configuration voltage constraints on VCCIO. VCCPD Pin Use the VCCPD pin, a dedicated programming power supply, to power the I/O pre-drivers and JTAG I/O pins (TCK, TMS, TDI, TRST, and TDO). If VCCIO of the bank is set to 2.5 V or lower, VCCPD must be powered up at 2.5 V. If VCCIO is set greater than 2.5 V, VCCPD must be greater than VCCIO. For example, when VCCIO is set to 3.0 V, VCCPD must be set at 3.0 V. Related Information • Stratix V Device Datasheet Provides more information about the ramp-up time specifications. • Stratix V E, GS, and GX Device Family Pin Connection Guidelines Provides more information about configuration pin connections. • Stratix V GT Device Family Pin Connection Guidelines Provides more information about configuration pin connections. • Device Configuration Pins on page 8-10 Provides more information about configuration pins. • I/O Standards Voltage Levels in Stratix V Devices on page 5-3 Provides more information about typical power supplies for each supported I/O standards in Stratix V devices. Reset POR delay is the time frame between the time when all the power supplies monitored by the POR circuitry reach the recommended operating voltage and when nSTATUS is released high and the Stratix V device is ready to begin configuration. Set the POR delay using the MSEL pins. The user I/O pins are tied to an internal weak pull-up until the device is configured. Related Information • MSEL Pin Settings on page 8-2 • Stratix V Device Datasheet Provides more information about the POR delay specification. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Altera Corporation 8-6 SV51010 2015.06.12 Configuration Configuration For more information about the DATA[] pins for each configuration scheme, refer to the appropriate configuration scheme. Configuration Error Handling To restart configuration automatically, turn on the Auto-restart configuration after error option in the General page of the Device and Pin Options dialog box in the Quartus II software. If you do not turn on this option, you can monitor the nSTATUS pin to detect errors. To restart configura‐ tion, pull the nCONFIG pin low for at least the duration of tCFG. Related Information Stratix V Device Datasheet Provides more information about tSTATUS and tCFG timing parameters. Initialization The initialization clock source is from the internal oscillator, CLKUSR pin, or DCLK pin. By default, the internal oscillator is the clock source for initialization. If you use the internal oscillator, the Stratix V device will be provided with enough clock cycles for proper initialization. Note: If you use the optional CLKUSR pin as the initialization clock source and the nCONFIG pin is pulled low to restart configuration during device initialization, ensure that the CLKUSR or DCLK pin continues toggling until the nSTATUS pin goes low and then goes high again. The CLKUSR pin provides you with the flexibility to synchronize initialization of multiple devices or to delay initialization. Supplying a clock on the CLKUSR pin during initialization does not affect configura‐ tion. After the CONF_DONE pin goes high, the CLKUSR or DCLK pin is enabled after the time specified by tCD2CU. When this time period elapses, Stratix V devices require a minimum number of clock cycles as specified by Tinit to initialize properly and enter user mode as specified by the tCD2UMC parameter. Related Information Stratix V Device Datasheet Provides more information about tCD2CU, tinit, and tCD2UMC timing parameters, and initialization clock source. User Mode You can enable the optional INIT_DONE pin to monitor the initialization stage. After the INIT_DONE pin is pulled high, initialization completes and your design starts executing. The user I/O pins will then function as specified by your design. Altera Corporation Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 8-7 Configuration Timing Waveforms Configuration Timing Waveforms FPP Configuration Timing Figure 8-2: FPP Configuration Timing Waveform when DCLK-to-DATA[] Ratio is 1 tCFG tCF2ST1 tCF2CK nCONFIG nSTATUS (1) tCF2ST0 CONF_DONE (2) tCF2CD tSTATUS tST2CK tCH tCL (3) DCLK DATA[15..0] (4) (5) tCLK tDH Word 0 Word 1 Word 2 Word 3 Word n-2 Word n-1 tDSU User I/O High-Z User Mode User Mode INIT_DONE (6) tCD2UM Notes: (1) After power up, the FPGA holds nSTATUS low for the time of the POR delay. (2) After power up, before and during configuration, CONF_DONE is low. (3) Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required. (4) For FPP x16, use DATA[15..0]. For FPP x8, use DATA[7..0]. DATA[15..5] are available as a user I/O pin after configuration. The state of this pin depends on the dual-purpose pin settings. (5) To ensure a successful configuration, send the entire configuration data to the FPGA. CONF_DONE is released high when the FPGA receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. (6) After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Altera Corporation 8-8 SV51010 2015.06.12 FPP Configuration Timing Figure 8-3: FPP Configuration Timing Waveform when DCLK-to-DATA[] Ratio is >1 tCFG tCF2ST1 nCONFIG tCF2CK nSTATUS (1) tCF2ST0 CONF_DONE (2) tCF2CD DCLK (4) tSTATUS tST2CK tCH 1 2 r 1 tCL (6) 2 r (5) 1 r 1 (3) 2 tCLK DATA[15..0] (6) tDSU User I/O Word 0 Word 1 tDH tDH Word 3 User Mode Word (n-1) User Mode High-Z INIT_DONE (7) tCD2UM Notes: (1) After power up, the FPGA holds nSTATUS low for the time as specified by the POR delay. (2) After power up, before and during configuration, CONF_DONE is low. (3) Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required. (4) “r” denotes the DCLK-to-DATA[] ratio. For the DCLK-to-DATA[] ratio based on the decompression and the design security feature enable settings, refer to the DCLK-to-DATA[] Ratio table. (5) If needed, pause DCLK by holding it low. When DCLK restarts, the external host must provide data on the DATA[15..0] pins prior to sending the first DCLK rising edge. (6) To ensure a successful configuration, send the entire configuration data to the FPGA. CONF_DONE is released high after the FPGA device receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. (7) After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low. Related Information Stratix V Device Datasheet Provides more information about the FPP timing parameters. Altera Corporation Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 8-9 AS Configuration Timing AS Configuration Timing Figure 8-4: AS Configuration Timing Waveform t CF2ST1 nCONFIG nSTATUS CONF_DONE nCSO DCLK t CO AS_DATA0/ASDO t DH Read Address t SU AS_DATA1 (1) bit 0 bit 1 bit (n - 2) bit (n - 1) t CD2UM (2) INIT_DONE (3) User I/O User Mode Notes: (1) If you are using AS x4 mode, this signal represents the AS_DATA[3..0] and EPCQ sends in 4-bits of data for each DCLK cycle. (2) The initialization clock can be from the internal oscillator or CLKUSR pin. (3) After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low. Related Information Stratix V Device Datasheet Provides more information about the AS timing parameters. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Altera Corporation 8-10 SV51010 2015.06.12 PS Configuration Timing PS Configuration Timing Figure 8-5: PS Configuration Timing Waveform tCFG tCF2ST1 nCONFIG tCF2CK nSTATUS (1) tCF2ST0 tSTATUS CONF_DONE (2) tCF2CD DCLK tST2CK DATA0 User I/O (4) t CLK tCH tCL (3) tDH Bit 0 Bit 1 tDSU Bit 2 Bit 3 Bit (n-1) High-Z User Mode INIT_DONE (5) tCD2UM Notes: (1) After power up, the FPGA holds nSTATUS low for the time of the POR delay. (2) After power up, before and during configuration, CONF_DONE is low. (3) Do not leave DCLK floating after configuration. DCLK is ignored after configuration is complete. It can toggle high or low if required. (4) To ensure a successful configuration, send the entire configuration data to the FPGA. CONF_DONE is released high after the FPGA receives all the configuration data successfully. After CONF_DONE goes high, send two additional falling edges on DCLK to begin initialization and enter user mode. (5) After the option bit to enable the INIT_DONE pin is configured into the device, the INIT_DONE goes low. Related Information Stratix V Device Datasheet Provides more information about PS timing parameters. Device Configuration Pins Configuration Pins Summary The following table lists the Stratix V configuration pins and their power supply. Note: The TDI, TMS, TCK, TDO, and TRST pins are powered by VCCPD of the bank in which the pin resides. Note: The CLKUSR, DEV_OE, DEV_CLRn, DATA[31..1], and DATA0 pins are powered by VCCPGM during configuration and by VCCIO of the bank in which the pin resides if you use it as a user I/O pin. Altera Corporation Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 Device Configuration Pins 8-11 Table 8-3: Configuration Pin Summary for Stratix V Devices Configuration Pin Input/Output User Mode Powered By TDI JTAG Input — VCCPD TMS JTAG Input — VCCPD TCK JTAG Input — VCCPD TDO JTAG Output — VCCPD TRST JTAG Input — VCCPD All schemes Input I/O VCCPGM/VCCIO (12) Optional, all schemes Output I/O Pull-up All schemes Bidirectional — VCCPGM/Pull-up FPP and PS Input — VCCPGM AS Output — VCCPGM Optional, all schemes Input I/O VCCPGM/VCCIO (12) Optional, all schemes Input I/O VCCPGM/VCCIO (12) Optional, all schemes Output I/O Pull-up All schemes Input — VCCPGM All schemes Bidirectional — VCCPGM/Pull-up All schemes Input — VCCPGM All schemes Output I/O Pull-up All schemes Input — VCCPGM FPP Input I/O VCCPGM/VCCIO (12) CLKUSR CRC_ERROR CONF_DONE DCLK DEV_OE DEV_CLRn INIT_DONE MSEL[4..0] nSTATUS nCE nCEO nCONFIG DATA[31..1] (12) Configuration Scheme This pin is powered by VCCPGM during configuration and powered by VCCIO of the bank in which the pin resides when you use this pin as a user I/O pin. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Altera Corporation 8-12 SV51010 2015.06.12 Configuration Pin Options in the Quartus II Software Configuration Pin Configuration Scheme Input/Output User Mode Powered By FPP and PS Bidirectional I/O VCCPGM/VCCIO (12) AS Output — VCCPGM All schemes Input — VCCPGM AS_DATA[3..1] AS Bidirectional — VCCPGM AS_DATA0/ASDO AS Bidirectional — VCCPGM Partial Input Reconfigur ation I/O VCCPGM/VCCIO (12) Partial Output Reconfigur ation I/O VCCPGM/VCCIO (12) Partial Output Reconfigur ation I/O VCCPGM/VCCIO (12) Partial Output Reconfigur ation I/O VCCPGM/VCCIO (12) DATA0 nCSO nIO_PULLUP PR_REQUEST PR_READY PR_ERROR PR_DONE Related Information • Stratix V E, GS, and GX Device Family Pin Connection Guidelines Provides more information about each configuration pin. • Stratix V GT Device Family Pin Connection Guidelines Provides more information about each configuration pin. Configuration Pin Options in the Quartus II Software The following table lists the dual-purpose configuration pins available in the Device and Pin Options dialog box in the Quartus II software. Table 8-4: Configuration Pin Options Configuration Pin Category Page Option CLKUSR General Enable user-supplied start-up clock (CLKUSR) DEV_CLRn General Enable device-wide reset (DEV_CLRn) DEV_OE General Enable device-wide output enable (DEV_OE) INIT_DONE General Enable INIT_DONE output nCEO General Enable nCEO pin Altera Corporation Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 Fast Passive Parallel Configuration Configuration Pin Category Page 8-13 Option Enable Error Detection CRC_ERROR pin CRC_ERROR Error Detection CRC Enable open drain on CRC_ERROR pin Enable internal scrubbing PR_REQUEST PR_READY PR_ERROR General Enable PR pin PR_DONE Related Information Reviewing Printed Circuit Board Schematics with the Quartus II Software Provides more information about the device and pin options dialog box setting. Fast Passive Parallel Configuration The FPP configuration scheme uses an external host, such as a microprocessor, MAX® II device, or MAX V device. This scheme is the fastest method to configure Stratix V devices. The FPP configuration scheme supports 8-, 16-, and 32-bits data width. You can use an external host to control the transfer of configuration data from an external storage such as flash memory to the FPGA. The design that controls the configuration process resides in the external host. You can store the configuration data in Raw Binary File (.rbf), Hexadecimal (Intel-Format) File (.hex), or Tabular Text File (.ttf) formats. You can use the PFL IP core with a MAX II or MAX V device to read configuration data from the flash memory device and configure the Stratix V device. Note: Two DCLK falling edges are required after the CONF_DONE pin goes high to begin the initialization of the device for both uncompressed and compressed configuration data in an FPP configuration. Related Information • Parallel Flash Loader IP Core User Guide • Stratix V Device Datasheet Provides more information about the FPP configuration timing. Fast Passive Parallel Single-Device Configuration To configure a Stratix V device, connect the device to an external host as shown in the following figure. Note: If you are using the FPP x8 configuration mode, use DATA[7..0] pins. If you are using FPP x16 configuration mode, use DATA[15..0] pins. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Altera Corporation 8-14 SV51010 2015.06.12 Fast Passive Parallel Multi-Device Configuration Figure 8-6: Single Device FPP Configuration Using an External Host Connect the resistor to a supply that provides an acceptable input signal for the FPGA device. V CCPGM must be high enough to meet the V IH specification of the I/O on the device and the external host. Altera recommends powering up all configuration system I/Os with V CCPGM . Memory V CCPGM ADDR DATA[7..0] 10 kΩ V CCPGM 10 kΩ FPGA Device For more information, refer to the MSEL pin settings. MSEL[4..0] External Host (MAX II Device, MAX V Device, or Microprocessor) CONF_DONE nSTATUS nCE GND nCEO N.C. DATA[] nCONFIG DCLK You can leave the nCEO pin unconnected or use it as a user I/O pin when it does not feed another device’s nCE pin. Fast Passive Parallel Multi-Device Configuration You can configure multiple Stratix V devices that are connected in a chain. Pin Connections and Guidelines Observe the following pin connections and guidelines for this configuration setup: • Tie the following pins of all devices in the chain together: • • • • • nCONFIG nSTATUS DCLK DATA[] CONF_DONE By tying the CONF_DONE and nSTATUS pins together, the devices initialize and enter user mode at the same time. If any device in the chain detects an error, configuration stops for the entire chain and you must reconfigure all the devices. For example, if the first device in the chain flags an error on the nSTATUS pin, it resets the chain by pulling its nSTATUS pin low. • Ensure that DCLK and DATA[] are buffered for every fourth device to prevent signal integrity and clock skew problems. • All devices in the chain must use the same data width. • If you are configuring the devices in the chain using the same configuration data, the devices must be of the same package and density. Using Multiple Configuration Data To configure multiple Stratix V devices in a chain using multiple configuration data, connect the devices to an external host as shown in the following figure. Altera Corporation Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 Using One Configuration Data 8-15 Note: If you are using the FPP x8 configuration mode, use DATA[7..0] pins. If you are using FPP x16 configuration mode, use DATA[15..0] pins. Note: By default, the nCEO pin is disabled in the Quartus II software. For multi-device configuration chain, you must enable the nCEO pin in the Quartus II software. Otherwise, device configuration could fail. Figure 8-7: Multiple Device FPP Configuration Using an External Host When Both Devices Receive a Different Set of Configuration Data Connect the resistor to a supply that provides an acceptable input signal for the FPGA device. V CCPGM must be high enough to meet the V IH specification of the I/O on the device and the external host. Altera recommends powering up all configuration system I/Os with V CCPGM . Memory ADDR V CCPGM DATA[7..0] For more information, refer to the MSEL pin settings. V CCPGM 10 kΩ FPGA Device Master 10 kΩ V CCPGM FPGA Device Slave MSEL[4..0] External Host (MAX II Device, MAX V Device, or Microprocessor) nCE MSEL[4..0] 10 kΩ CONF_DONE nSTATUS nCEO CONF_DONE nSTATUS nCE GND DATA[] DATA[] nCONFIG DCLK nCONFIG DCLK nCEO N.C. You can leave the nCEO pin unconnected or use it as a user I/O pin when it does not feed another device’s nCE pin. Buffers Connect the repeater buffers between the FPGA master and slave device for DATA[] and DCLK for every fourth device. When a device completes configuration, its nCEO pin is released low to activate the nCE pin of the next device in the chain. Configuration automatically begins for the second device in one clock cycle. Using One Configuration Data To configure multiple Stratix V devices in a chain using one configuration data, connect the devices to an external host as shown in the following figure. Note: If you are using the FPP x8 configuration mode, use DATA[7..0] pins. If you are using FPP x16 configuration mode, use DATA[15..0] pins. Note: By default, the nCEO pin is disabled in the Quartus II software. For multi-device configuration chain, you must enable the nCEO pin in the Quartus II software. Otherwise, device configuration could fail. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Altera Corporation 8-16 SV51010 2015.06.12 Transmitting Configuration Data Figure 8-8: Multiple Device FPP Configuration Using an External Host When Both Devices Receive the Same Data Connect the resistor to a supply that provides an acceptable input signal for the FPGA device. V CCPGM must be high enough to meet the V IH specification of the I/O on the device and the external host. Altera recommends powering up all configuration system I/Os with V CCPGM . Memory ADDR For more information, refer to the MSEL pin settings. V CCPGM V CCPGM DATA[7..0] 10 kΩ FPGA Device Slave FPGA Device Master 10 kΩ MSEL[4..0] CONF_DONE nSTATUS nCE External Host (MAX II Device, MAX V Device, or Microprocessor) GND nCEO MSEL[4..0] CONF_DONE nSTATUS nCE N.C. DATA[] nCONFIG DCLK GND nCEO N.C. You can leave the nCEO pin unconnected or use it as a user I/O pin when it does not feed another device’s nCE pin. DATA[] nCONFIG DCLK Buffers Connect the repeater buffers between the FPGA master and slave device for DATA[] and DCLK for every fourth device. The nCE pins of the device in the chain are connected to GND, allowing configuration for these devices to begin and end at the same time. Transmitting Configuration Data This section describes how to transmit configuration data when you are using .rbf file for FPP x8, x16, and x32 configuration modes. The configuration data in the .rbf file is little endian. For example, if the .rbf file contains the byte sequence 02 1B EE 01, refer to the following tables for details on how this data is transmitted in the FPP x8, x16, and x32 configuration modes. Table 8-5: Transmitting Configuration Data for FPP x8 Configuration Mode In FPP x8 configuration mode, the LSB of a byte is BIT0, and the MSB is BIT7. BYTE0 = 02 BYTE1 = 1B BYTE2 = EE BYTE3 = 01 D[7..0] D[7..0] D[7..0] D[7..0] 0000 0010 0001 1011 1110 1110 0000 0001 Table 8-6: Transmitting Configuration Data for FPP x16 Configuration Mode In FPP x16 configuration mode, the first byte in the file is the LSB of the configuration word, and the second byte in the file is the MSB of the configuration word. WORD0 = 1B02 WORD1 = 01EE LSB: BYTE0 = 02 MSB: BYTE1 = 1B LSB: BYTE2 = EE MSB: BYTE3 = 01 D[7..0] D[15..8] D[7..0] D[15..8] Altera Corporation Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 Active Serial Configuration WORD0 = 1B02 8-17 WORD1 = 01EE LSB: BYTE0 = 02 MSB: BYTE1 = 1B LSB: BYTE2 = EE MSB: BYTE3 = 01 0000 0010 0001 1011 1110 1110 0000 0001 Table 8-7: Transmitting Configuration Data for FPP x32 Configuration Mode In FPP x32 configuration mode, the first byte in the file is the LSB of the configuration double word, and the fourth byte is the MSB. Double Word = 01EE1B02 LSB: BYTE0 = 02 BYTE1 = 1B BYTE2 = EE MSB: BYTE3 = 01 D[7..0] D[15..8] D[23..16] D[31..24] 0000 0010 0001 1011 1110 1110 0000 0001 Ensure that you do not swap the the upper bits or bytes with the lower bits or bytes when performing the FPP configuration. Sending incorrect configuration data during the configuration process may cause unexpected behavior on the CONF_DONE signal. Active Serial Configuration The AS configuration scheme supports AS x1 (1-bit data width) and AS x4 (4-bit data width) modes. The AS x4 mode provides four times faster configuration time than the AS x1 mode. In the AS configuration scheme, the Stratix V device controls the configuration interface. Related Information Stratix V Device Datasheet Provides more information about the AS configuration timing. DATA Clock (DCLK) Stratix V devices generate the serial clock, DCLK, that provides timing to the serial interface. In the AS configuration scheme, Stratix V devices drive control signals on the falling edge of DCLK and latch the configuration data on the following falling edge of this clock pin. The maximum DCLK frequency supported by the AS configuration scheme is 100 MHz except for the AS multi-device configuration scheme. You can source DCLK using CLKUSR or the internal oscillator. If you use the internal oscillator, you can choose a 12.5, 25, 50, or 100 MHz clock under the Device and Pin Options dialog box, in the Configuration page of the Quartus II software. After power-up, DCLK is driven by a 12.5 MHz internal oscillator by default. The Stratix V device determines the clock source and frequency to use by reading the option bit in the programming file. Related Information Stratix V Device Datasheet Provides more information about the DCLK frequency specification in the AS configuration scheme. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Altera Corporation 8-18 SV51010 2015.06.12 Active Serial Single-Device Configuration Active Serial Single-Device Configuration To configure a Stratix V device, connect the device to a serial configuration (EPCS) device or quad-serial configuration (EPCQ) device, as shown in the following figures. Figure 8-9: Single Device AS x1 Mode Configuration Connect the pull-up resistors to V CCPGM at 3.0-V power supply. V CCPGM V CCPGM 10 kΩ V CCPGM 10 kΩ 10 kΩ EPCS or EPCQ Device FPGA Device nSTATUS CONF_DONE nCONFIG nCE MSEL[4..0] GND DATA DCLK nCS ASDI Altera Corporation nCEO AS_DATA1 DCLK nCSO ASDO N.C. For more information, refer to the MSEL pin settings. CLKUSR Use the CLKUSR pin to supply the external clock source to drive DCLK during configuration. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 Active Serial Multi-Device Configuration 8-19 Figure 8-10: Single Device AS x4 Mode Configuration Connect the pull-up resistors to V CCPGM at 3.0-V power supply. V CCPGM V CCPGM 10 kΩ V CCPGM 10 kΩ 10 kΩ EPCQ Device FPGA Device nSTATUS CONF_DONE nCONFIG nCE DATA0 DATA1 GND AS_DATA0/ ASDO AS_DATA1 DATA2 AS_DATA2 DATA3 AS_DATA3 DCLK nCS nCEO N.C. For more information, refer to the MSEL pin settings. MSEL[4..0] DCLK nCSO CLKUSR Use the CLKUSR pin to supply the external clock source to drive DCLK during configuration. Active Serial Multi-Device Configuration You can configure multiple Stratix V devices that are connected to a chain. Only AS x1 mode supports multi-device configuration. The first device in the chain is the configuration master. Subsequent devices in the chain are configuration slaves. Note: The AS multi-device configuration scheme does not support 100 MHz DCLK frequency. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Altera Corporation 8-20 SV51010 2015.06.12 Pin Connections and Guidelines Pin Connections and Guidelines Observe the following pin connections and guidelines for this configuration setup: • Hardwire the MSEL pins of the first device in the chain to select the AS configuration scheme. For subsequent devices in the chain, hardwire their MSEL pins to select the PS configuration scheme. Any other Altera® devices that support the PS configuration can also be part of the chain as a configuration slave. • Tie the following pins of all devices in the chain together: • • • • • nCONFIG nSTATUS DCLK DATA[] CONF_DONE By tying the CONF_DONE, nSTATUS, and nCONFIG pins together, the devices initialize and enter user mode at the same time. If any device in the chain detects an error, configuration stops for the entire chain and you must reconfigure all the devices. For example, if the first device in the chain flags an error on the nSTATUS pin, it resets the chain by pulling its nSTATUS pin low. • Ensure that DCLK and DATA[] are buffered every fourth device to prevent signal integrity and clock skew problems. Using Multiple Configuration Data To configure multiple Stratix V devices in a chain using multiple configuration data, connect the devices to an EPCS or EPCQ device, as shown in the following figure. Figure 8-11: Multiple Device AS Configuration When Both Devices in the Chain Receive Different Sets of Configuration Data Connect the pull-up resistors to V CCPGM at a 3.0-V power supply. V CCPGM V CCPGM 10 kΩ V CCPGM 10 kΩ V CCPGM 10 kΩ 10 kΩ EPCS or EPCQ Device FPGA Device Master FPGA Device Slave nSTATUS nSTATUS CONF_DONE CONF_DONE nCONFIG nCONFIG nCE nCEO nCE nCEO N.C. You can leave the nCEO pin unconnected or use it as a user I/O pin when it does not feed another device’s nCE pin. GND Altera Corporation DATA AS_DATA1 DCLK DCLK nCS nCSO ASDI ASDO MSEL[4..0] CLKUSR DATA0 DCLK MSEL [4..0] (4) For the appropriate MSEL settings based on POR delay settings, set the slave device MSEL setting to the PS scheme. Buffers For more information, refer to the MSEL pin settings. Connect the repeater buffers between the FPGA master and slave device for AS_DATA1 or DATA0 and DCLK for every fourth device. Use the CLKUSR pin to supply the external clock source to drive DCLK during configuration. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 Estimating the Active Serial Configuration Time 8-21 When a device completes configuration, its nCEO pin is released low to activate the nCE pin of the next device in the chain. Configuration automatically begins for the second device in one clock cycle. Estimating the Active Serial Configuration Time The AS configuration time is mostly the time it takes to transfer the configuration data from an EPCS or EPCQ device to the Stratix V device. Use the following equations to estimate the configuration time: • AS x1 mode .rbf Size x (minimum DCLK period / 1 bit per DCLK cycle) = estimated minimum configuration time. • AS x4 mode .rbf Size x (minimum DCLK period / 4 bits per DCLK cycle) = estimated minimum configuration time. Compressing the configuration data reduces the configuration time. The amount of reduction varies depending on your design. Using EPCS and EPCQ Devices EPCS devices support AS x1 mode and EPCQ devices support AS x1 and AS x4 modes. Related Information • Serial Configuration (EPCS) Devices Datasheet • Quad-Serial Configuration (EPCQ) Devices Datasheet Controlling EPCS and EPCQ Devices During configuration, Stratix V devices enable the EPCS or EPCQ device by driving its nCSO output pin low, which connects to the chip select (nCS) pin of the EPCS or EPCQ device. Stratix V devices use the DCLK and ASDO pins to send operation commands and read address signals to the EPCS or EPCQ device. The EPCS or EPCQ device provides data on its serial data output (DATA[]) pin, which connects to the AS_DATA[] input of the Stratix V devices. Note: If you wish to gain control of the EPCS pins, hold the nCONFIG pin low and pull the nCE pin high. This causes the device to reset and tri-state the AS configuration pins. Trace Length and Loading Guideline The maximum trace length and loading apply to both single- and multi-device AS configuration setups as listed in the following table. The trace length is the length from the Stratix V device to the EPCS or EPCQ device. Table 8-8: Maximum Trace Length and Loading Guideline for AS x1 and x4 Configurations for Stratix V Devices Maximum Board Trace Length (Inches) Stratix V Device AS Pins DCLK 12.5/ 25/ 50 MHz 10 6 Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Maximum Board Load (pF) 100 MHz 5 Altera Corporation 8-22 SV51010 2015.06.12 Programming EPCS and EPCQ Devices Maximum Board Trace Length (Inches) Stratix V Device AS Pins 12.5/ 25/ 50 MHz Maximum Board Load (pF) 100 MHz DATA[3..0] 10 6 10 nCSO 10 6 10 Programming EPCS and EPCQ Devices You can program EPCS and EPCQ devices in-system using a USB-Blaster™, EthernetBlaster, EthernetBlaster II, or ByteBlaster™ II download cable. Alternatively, you can program the EPCS or EPCQ using a microprocessor with the SRunner software driver. In-system programming (ISP) offers you the option to program the EPCS or EPCQ either using an AS programming interface or a JTAG interface. Using the AS programming interface, the configuration data is programmed into the EPCS by the Quartus II software or any supported third-party software. Using the JTAG interface, an Altera IP called the serial flash loader (SFL) must be downloaded into the Stratix V device to form a bridge between the JTAG interface and the EPCS or EPCQ. This allows the EPCS or EPCQ to be programmed directly using the JTAG interface. Related Information • AN 370: Using the Serial FlashLoader with the Quartus II Software • AN 418: SRunner: An Embedded Solution for Serial Configuration Device Programming Programming EPCS Using the JTAG Interface To program an EPCS device using the JTAG interface, connect the device as shown in the following figure. Altera Corporation Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 Programming EPCQ Using the JTAG Interface 8-23 Figure 8-12: Connection Setup for Programming the EPCS Using the JTAG Interface V CCPGM V CCPGM 10 kΩ V CCPG 10 kΩ 10 kΩ V CCPD EPCS Device Connect the pull-up resistors to V CCPGM at a 3.0-V power supply. V CCPD The resistor value can vary from 1 k Ω to 10 kΩ. Perform signal integrity analysis to select the resistor value for your setup. FPGA Device nSTATUS CONF_DONE nCONFIG nCE DATA DCLK nCS ASDI For more information, refer to the MSEL pin settings. Use the CLKUSR pin to supply the external clock source to drive DCLK during configuration. GND AS_DATA1 DCLK nCSO ASDO TCK TDO V CCPD TMS TDI Serial Flash Loader MSEL[4..0] CLKUSR Instantiate SFL in your design to form a bridge between the EPCS and the 10-pin header. Pin 1 1 kΩ Download Cable GND 10-Pin Male Header (JTAG Mode) (Top View) GND Programming EPCQ Using the JTAG Interface To program an EPCQ device using the JTAG interface, connect the device as shown in the following figure. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Altera Corporation 8-24 SV51010 2015.06.12 Programming EPCS Using the Active Serial Interface Figure 8-13: Connection Setup for Programming the EPCQ Using the JTAG Interface V CCPGM 10 kΩ V CCPGM V CCPGM 10 kΩ 10 kΩ EPCQ Device Connect the pull-up resistors to V CCPGM at a 3.0-V power supply. V CCPD V CCPD The resistor value can vary from 1 k Ω to 10 kΩ. Perform signal integrity analysis to select the resistor value for your setup. FPGA Device nSTATUS CONF_DONE nCONFIG nCE DATA0 GND TCK TDO V CCPD TMS TDI Pin 1 AS_DATA0/ASDO DATA1 AS_DATA1 DATA2 DATA3 DCLK nCS Serial AS_DATA2 Flash AS_DATA3 Loader DCLK MSEL[4..0] nCSO CLKUSR Instantiate SFL in your design to form a bridge between the EPCQ and the 10-pin header. 1 kΩ Download Cable GND 10-Pin Male Header (JTAG Mode) (Top View) GND For more information, refer to the MSEL pin settings. Use the CLKUSR pin to supply the external clock source to drive DCLK during configuration. Programming EPCS Using the Active Serial Interface To program an EPCS device using the AS interface, connect the device as shown in the following figure. Altera Corporation Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 Programming EPCQ Using the Active Serial Interface 8-25 Figure 8-14: Connection Setup for Programming the EPCS Using the AS Interface Connect the pull-up resistors to V CCPGM at a 3.0-V power supply. V CCPGM V CCPGM 10 kΩ V CCPGM 10 kΩ 10 kΩ FPGA Device CONF_DONE nSTATUS nCONFIG EPCS Device nCEO N.C. nCE 10 kΩ DATA DCLK nCS ASDI AS_DATA1 DCLK nCSO ASDO Pin 1 For more information, refer to the MSEL pin settings. MSEL[4..0] CLKUSR Use the CLKUSR pin to supply the external clock source to drive DCLK during configuration. V CCPGM Power up the USB-Blaster, ByteBlaster II, EthernetBlaster, or EthernetBlaster II cable’s V CC(TRGT) to V CCPGM . USB-Blaster or ByteBlaster II (AS Mode) 10-Pin Male Header GND Programming EPCQ Using the Active Serial Interface To program an EPCQ device using the AS interface, connect the device as shown in the following figure. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Altera Corporation 8-26 SV51010 2015.06.12 Programming EPCQ Using the Active Serial Interface Figure 8-15: Connection Setup for Programming the EPCQ Using the AS Interface Using the AS header, the programmer serially transmits the operation commands and configuration bits to the EPCQ on DATA0. This is equivalent to the programming operation for the EPCS. Connect the pull-up resistors to V CCPGM at a 3.0-V power supply. V CCPGM V CCPGM 10 kΩ V CCPGM 10 kΩ 10 kΩ FPGA Device CONF_DONE nSTATUS nCONFIG nCE EPCQ Device nCEO N.C. 10 kΩ DATA0 DATA1 AS_DATA0/ASDO AS_DATA1 DATA2 DATA3 AS_DATA2 AS_DATA3 DCLK nCS DCLK nCSO Pin 1 For more information, refer to the MSEL pin settings. MSEL[4..0] CLKUSR Use the CLKUSR pin to supply the external clock source to drive DCLK during configuration. V CCPGM Power up the USB-Blaster, ByteBlaster II, EthernetBlaster, or EthernetBlaster II cable’s V CC(TRGT) to V CCPGM . USB-Blaster or ByteBlaster II (AS Mode) 10-Pin Male Header GND When programming the EPCS and EPCQ devices, the download cable disables access to the AS interface by driving the nCE pin high. The nCONFIG line is also pulled low to hold the Stratix V device in the reset stage. After programming completes, the download cable releases nCE and nCONFIG, allowing the pull-down and pull-up resistors to drive the pin to GND and VCCPGM, respectively. During the EPCQ programming using the download cable, DATA0 transfers the programming data, operation command, and address information from the download cable into the EPCQ. During the EPCQ verification using the download cable, DATA1 transfers the programming data back to the download cable. Altera Corporation Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 Passive Serial Configuration 8-27 Passive Serial Configuration The PS configuration scheme uses an external host. You can use a microprocessor, MAX II device, MAX V device, or a host PC as the external host. You can use an external host to control the transfer of configuration data from an external storage such as flash memory to the FPGA. The design that controls the configuration process resides in the external host. You can store the configuration data in Programmer Object File (.pof), .rbf, .hex, or .ttf. If you are using configuration data in .rbf, .hex, or .ttf, send the LSB of each data byte first. For example, if the .rbf contains the byte sequence 02 1B EE 01 FA, the serial data transmitted to the device must be 0100-0000 1101-1000 0111-0111 1000-0000 0101-1111. You can use the PFL IP core with a MAX II or MAX V device to read configuration data from the flash memory device and configure the Stratix V device. For a PC host, connect the PC to the device using a download cable such as the Altera USB-Blaster USB port, ByteBlaster II parallel port, EthernetBlaster, and EthernetBlaster II download cables. The configuration data is shifted serially into the DATA0 pin of the device. If you are using the Quartus II programmer and the CLKUSR pin is enabled, you do not need to provide a clock source for the pin to initialize your device. Related Information • Parallel Flash Loader IP Core User Guide • Stratix V Device Datasheet Provides more information about the PS configuration timing. Passive Serial Single-Device Configuration Using an External Host To configure a Stratix V device, connect the device to an external host, as shown in the following figure. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Altera Corporation 8-28 SV51010 2015.06.12 Passive Serial Single-Device Configuration Using an Altera Download... Figure 8-16: Single Device PS Configuration Using an External Host Memory ADDR DATA0 V CCPGM 10 kΩ External Host (MAX II Device, MAX V Device, or Microprocessor V CCPGM Connect the resistor to a power supply that provides an acceptable input signal for the FPGA device. V CCPGM must be high enough to meet the V IH specification of the I/O on the device and the external host. Altera recommends powering up all the configuration system I/Os with V CCPGM . FPGA Device 10 kΩ CONF_DONE nSTATUS nCE GND DATA0 nCONFIG DCLK nCEO N.C. You can leave the nCEO pin unconnected or use it as a user I/O pin when it does not feed another device’s nCE pin. MSEL[4..0] For more information, refer to the MSEL pin settings. Passive Serial Single-Device Configuration Using an Altera Download Cable To configure a Stratix V device, connect the device to a download cable, as shown in the following figure. Altera Corporation Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 Passive Serial Multi-Device Configuration 8-29 Figure 8-17: Single Device PS Configuration Using an Altera Download Cable V CCPGM V CCPGM 10 kΩ V CCPGM 10 kΩ V CCPGM 10 kΩ V CCPGM 10 kΩ FPGA Device CONF_DONE nSTATUS 10 kΩ Connect the pull-up resistor to the same supply voltage (V CCIO ) as the USB-Blaster, ByteBlaster II, EthernetBlaster, or EthernetBlaster II cable. MSEL[4..0] nCE GND nCEO N.C. DCLK DATA0 nCONFIG Download Cable 10-Pin Male Header (PS Mode) Pin 1 V CCIO V IO You only need the pull-up resistors on DATA0 and DCLK if the download cable is the only configuration scheme used on your board. This ensures that DATA0 and DCLK are not left floating after configuration. For example, if you are also using a MAX II device, MAX V device, or microprocessor, you do not need the pull-up resistors on DATA0 and DCLK. For more information, refer to the MSEL pin settings. Shield GND GND In the USB-Blaster and ByteBlaster II cables, this pin is connected to nCE when you use it for AS programming. Otherwise, this pin is a no connect. Passive Serial Multi-Device Configuration You can configure multiple Stratix V devices that are connected in a chain. Pin Connections and Guidelines Observe the following pin connections and guidelines for this configuration setup: • Tie the following pins of all devices in the chain together: • • • • • nCONFIG nSTATUS DCLK DATA0 CONF_DONE By tying the CONF_DONE and nSTATUS pins together, the devices initialize and enter user mode at the same time. If any device in the chain detects an error, configuration stops for the entire chain and you must reconfigure all the devices. For example, if the first device in the chain flags an error on the nSTATUS pin, it resets the chain by pulling its nSTATUS pin low. • If you are configuring the devices in the chain using the same configuration data, the devices must be of the same package and density. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Altera Corporation 8-30 SV51010 2015.06.12 Using Multiple Configuration Data Using Multiple Configuration Data To configure multiple Stratix V devices in a chain using multiple configuration data, connect the devices to the external host as shown in the following figure. Note: By default, the nCEO pin is disabled in the Quartus II software. For the multi-device configuration chain, you must enable the nCEO pin in the Quartus II software. Otherwise, device configuration could fail. Figure 8-18: Multiple Device PS Configuration when Both Devices Receive Different Sets of Configuration Data Memory ADDR DATA0 Connect the resistor to a power supply that provides an acceptable input signal for the FPGA device. V CCPGM must be high enough to meet the V IH specification of the I/O on the device and the external host. Altera recommends powering up all the configuration system I/Os with V CCPGM . V CCPGM 10 kΩ V CCPGM External Host (MAX II Device, MAX V Device, or Microprocessor V CCPGM FPGA Device 1 10 kΩ CONF_DONE nSTATUS nCE 10 kΩ nCEO FPGA Device 2 CONF_DONE nSTATUS nCE GND DATA0 nCONFIG DCLK MSEL[4..0] DATA0 nCONFIG DCLK nCEO N.C. You can leave the nCEO pin unconnected or use it as a user I/O pin when it does not feed another device’s nCE pin. MSEL[4..0] For more information, refer to the MSEL pin settings. After a device completes configuration, its nCEO pin is released low to activate the nCE pin of the next device in the chain. Configuration automatically begins for the second device in one clock cycle. Using One Configuration Data To configure multiple Stratix V devices in a chain using one configuration data, connect the devices to an external host, as shown in the following figure. Note: By default, the nCEO pin is disabled in the Quartus II software. For the multi-device configuration chain, you must enable the nCEO pin in the Quartus II software. Otherwise, device configuration could fail. Altera Corporation Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 Using PC Host and Download Cable 8-31 Figure 8-19: Multiple Device PS Configuration When Both Devices Receive the Same Set of Configuration Data Memory ADDR DATA0 Connect the resistor to a power supply that provides an acceptable input signal for the FPGA device. V CCPGM must be high enough to meet the V IH specification of the I/O on the device and the external host. Altera recommends powering up all the configuration system I/Os with V CCPGM . V CCPGM V CCPGM 10 kΩ External Host (MAX II Device, MAX V Device, or Microprocessor 10 kΩ FPGA Device 2 FPGA Device 1 CONF_DONE nSTATUS nCE nCEO CONF_DONE nSTATUS nCE N.C. nCEO GND GND DATA0 nCONFIG DCLK MSEL[4..0] DATA0 nCONFIG DCLK N.C. MSEL[4..0] For more information, refer to the MSEL pin settings. You can leave the nCEO pin unconnected or use it as a user I/O pin. The nCE pins of the devices in the chain are connected to GND, allowing configuration for these devices to begin and end at the same time. Using PC Host and Download Cable To configure multiple Stratix V devices, connect the devices to a download cable, as shown in the following figure. Note: By default, the nCEO pin is disabled in the Quartus II software. For the multi-device configuration chain, you must enable the nCEO pin in the Quartus II software. Otherwise, device configuration could fail. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Altera Corporation 8-32 SV51010 2015.06.12 JTAG Configuration Figure 8-20: Multiple Device PS Configuration Using an Altera Download Cable Connect the pull-up resistor to the same supply voltage (V CCIO ) as the USB-Blaster, ByteBlaster II, EthernetBlaster, or EthernetBlaster II cable. V CCPGM 10 k Ω 10 k Ω FPGA Device 1 V CCPGM CONF_DONE 10 k Ω V CCPGM V CCPGM 10 k Ω (2) Download Cable 10-Pin Male Header (PS Mode) Pin 1 V CCPGM nSTATUS DCLK MSEL[4..0] GND V IO V CCPGM nCE 10 k Ω You only need the pull-up resistors on DATA0 and DCLK if the download cable is the only configuration scheme used on your board. This ensures that DATA0 and DCLK are not left floating after configuration. For example, if you are also using a configuration device, you do not need the pull-up resistors on DATA0 and DCLK. For more information, refer to the MSEL pin settings. nCEO GND DATA0 nCONFIG GND In the USB-Blaster and ByteBlaster II cables, this pin is connected to nCE when you use it for AS programming. Otherwise, this pin is a no connect. FPGA Device 2 CONF_DONE nSTATUS MSEL[4..0] DCLK nCEO N.C. nCE DATA0 nCONFIG When a device completes configuration, its nCEO pin is released low to activate the nCE pin of the next device. Configuration automatically begins for the second device. JTAG Configuration In Stratix V devices, JTAG instructions take precedence over other configuration schemes. The Quartus II software generates an SRAM Object File (.sof) that you can use for JTAG configuration using a download cable in the Quartus II software programmer. Alternatively, you can use the JRunner software with .rbf or a JAM™ Standard Test and Programming Language (STAPL) Format File (.jam) or JAM Byte Code File (.jbc) with other third-party programmer tools. Note: You cannot use the Stratix V decompression or design security features if you are configuring your Stratix V device using JTAG-based configuration. The chip-wide reset (DEV_CLRn) and chip-wide output enable (DEV_OE) pins on Stratix V devices do not affect JTAG boundary-scan or programming operations. Related Information • JTAG Boundary-Scan Testing in Stratix V Devices on page 10-1 Provides more information about JTAG boundary-scan testing. • Device Configuration Pins on page 8-10 Provides more information about JTAG configuration pins. • JTAG Secure Mode on page 8-44 • AN 425: Using the Command-Line Jam STAPL Solution for Device Programming Altera Corporation Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 JTAG Single-Device Configuration 8-33 • Stratix V Device Datasheet Provides more information about the JTAG configuration timing. • Programming Support for Jam STAPL Language • USB-Blaster Download Cable User Guide • ByteBlaster II Download Cable User Guide • EthernetBlaster Communications Cable User Guide • EthernetBlaster II Communications Cable User Guide JTAG Single-Device Configuration To configure a single device in a JTAG chain, the programming software sets the other devices to the bypass mode. A device in a bypass mode transfers the programming data from the TDI pin to the TDO pin through a single bypass register. The configuration data is available on the TDO pin one clock cycle later. The Quartus II software can use the CONF_DONE pin to verify the completion of the configuration process through the JTAG port: • CONF_DONE pin is low—indicates that configuration has failed. • CONF_DONE pin is high—indicates that configuration was successful. After the configuration data is transmitted serially using the JTAG TDI port, the TCK port is clocked an additional 1,222 cycles to perform device initialization. To configure a Stratix V device using a download cable, connect the device as shown in the following figure. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Altera Corporation 8-34 SV51010 2015.06.12 JTAG Single-Device Configuration Figure 8-21: JTAG Configuration of a Single Device Using a Download Cable The resistor value can vary from 1 kΩ to 10 kΩ. Perform signal integrity analysis to select the resistor value for your setup. V CCPGM 10 kΩ V CCPD V CCPGM V CCPD FPGA Device 10 kΩ GND N.C. You must connect nCE to GND or drive it low for successful JTAG configuration. nCE nCEO Connect the pull-up resistor V CCPD . TCK TDO TMS TDI nSTATUS CONF_DONE nCONFIG MSEL[4..0] DCLK Download Cable 10-Pin Male Header (JTAG Mode) (Top View) Pin 1 V CCPD V CCPD TRST If you only use the JTAG configuration, connect nCONFIG to V CCPGM and MSEL[4..0] to GND. Pull DCLK either high or low, whichever is convenient on your board. If you are using JTAG in conjunction with another configuration scheme, connect MSEL[4..0], nCONFIG, and DCLK based on the selected configuration scheme. GND 1 kΩ GND GND To configure Stratix V device using a microprocessor, connect the device as shown in the following figure. You can use JRunner as your software driver. Figure 8-22: JTAG Configuration of a Single Device Using a Microprocessor Memory ADDR V CCPGM DATA 10 kΩ Microprocessor TRST TDI TCK TMS TDO nSTATUS CONF_DONE DCLK nCONFIG MSEL[4..0] nCEO nCE N.C. GND The microprocessor must use the same I/O standard as V CCPD to drive the JTAG pins. Altera Corporation 10 kΩ FPGA Device V CCPD V CCPGM Connect the pull-up resistor to a supply that provides an acceptable input signal for all FPGA devices in the chain. V CCPGM must be high enough to meet the V IH specification of the I/O on the device. If you only use the JTAG configuration, connect nCONFIG to V CCPGM and MSEL[4..0] to GND. Pull DCLK high or low. If you are using JTAG in conjunction with another configuration scheme, set the MSEL[4..0] pins and tie nCONFIG and DCLK based on the selected configuration scheme. Connect nCE to GND or drive it low. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 8-35 JTAG Multi-Device Configuration Related Information AN 414: The JRunner Software Driver: An Embedded Solution for PLD JTAG Configuration JTAG Multi-Device Configuration You can configure multiple devices in a JTAG chain. Pin Connections and Guidelines Observe the following pin connections and guidelines for this configuration setup: • Isolate the CONF_DONE and nSTATUS pins to allow each device to enter user mode independently. • One JTAG-compatible header is connected to several devices in a JTAG chain. The number of devices in the chain is limited only by the drive capability of the download cable. • If you have four or more devices in a JTAG chain, buffer the TCK, TDI, and TMS pins with an on-board buffer. You can also connect other Altera devices with JTAG support to the chain. • JTAG-chain device programming is ideal when the system contains multiple devices or when testing your system using the JTAG boundary-scan testing (BST) circuitry. Using a Download Cable The following figure shows a multi-device JTAG configuration. Figure 8-23: JTAG Configuration of Multiple Devices Using a Download Cable If you only use the JTAG configuration, connect nCONFIG to V CCPGM and MSEL[4..0] to GND. Pull DCLK either high or low, whichever is convenient on your board. If you are using JTAG in conjunction with another configuration scheme, connect MSEL[4..0], nCONFIG, and DCLK based on the selected configuration scheme. Connect the pull-up resistor V CCPD . Download Cable 10-Pin Male Header (JTAG Mode) Pin 1 FPGA Device V CCPGM V CCPD V CCPD V CCPD V IO 1 kΩ V CCPD V CCPGM 10 kΩ 10 kΩ nSTATUS nCONFIG DCLK CONF_DONE MSEL[4..0] V CCPD nCE TRST TDI TMS TCK TDO V CCPGM FPGA Device 10 kΩ 10 kΩ nSTATUS nCONFIG DCLK CONF_DONE MSEL[4..0] V CCPD nCE TRST TDI TMS TCK TDO FPGA Device V CCPGM V CCPGM 10 kΩ 10 kΩ nSTATUS nCONFIG DCLK CONF_DONE MSEL[4..0] nCE TRST TDI TMS TCK TDO Connect the pull-up resistor V CCPD . The resistor value can vary from 1 kΩ to 10 kΩ. Perform signal integrity analysis to select the resistor value for your setup. You must connect nCE to GND or drive it low for successful JTAG configuration. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback V CCPGM Altera Corporation 8-36 SV51010 2015.06.12 CONFIG_IO JTAG Instruction Related Information AN 656: Combining Multiple Configuration Schemes Provides more information about combining JTAG configuration with other configuration schemes. CONFIG_IO JTAG Instruction The CONFIO_IO JTAG instruction allows you to configure the I/O buffers using the JTAG port before or during device configuration. When you issue this instruction, it interrupts configuration and allows you to issue all JTAG instructions. Otherwise, you can only issue the BYPASS, IDCODE, and SAMPLE JTAG instructions. You can use the CONFIO_IO JTAG instruction to interrupt configuration and perform board-level testing. After the board-level testing is completed, you must reconfigure your device. Use the following methods to reconfigure your device: • JTAG interface—issue the PULSE_NCONFIG JTAG instruction. • FPP, PS, or AS configuration scheme—pulse the nCONFIG pin low. Configuration Data Compression Stratix V devices can receive compressed configuration bitstream and decompress the data in real-time during configuration. Preliminary data indicates that compression typically reduces the configuration file size by 30% to 55% depending on the design. Decompression is supported in all configuration schemes except the JTAG configuration scheme. You can enable compression before or after design compilation. Enabling Compression Before Design Compilation To enable compression before design compilation, follow these steps: 1. On the Assignment Menu, click Device. 2. Select your Stratix V device and then click Device and Pin Options. 3. In the Device and Pin Options window, select Configuration under the Category list and turn on Generate compressed bitstreams. Enabling Compression After Design Compilation To enable compression after design compilation, follow these steps: 1. On the File menu, click Convert Programming Files. 2. Select the programming file type (.pof, .sof, .hex, .hexout, .rbf, or .ttf). For POF output files, select a configuration device. 3. Under the Input files to convert list, select SOF Data. 4. Click Add File and select a Stratix V device .sof. 5. Select the name of the file you added to the SOF Data area and click Properties. 6. Turn on the Compression check box. Altera Corporation Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 Using Compression in Multi-Device Configuration 8-37 Using Compression in Multi-Device Configuration The following figure shows a chain of two Stratix V devices. Compression is only enabled for the first device. This setup is supported by the AS or PS multi-device configuration only. Figure 8-24: Compressed and Uncompressed Serial Configuration Data in the Same Configuration File Serial Configuration Data Compressed Configuration Data Decompression Controller Uncompressed Configuration Data FPGA Device 1 nCE EPCS, EPCQ, or External Host FPGA Device 2 nCEO nCE nCEO N.C. GND For the FPP configuration scheme, a combination of compressed and uncompressed configuration in the same multi-device configuration chain is not allowed because of the difference on the DCLK-to-DATA[] ratio. Remote System Upgrades Stratix V devices contain dedicated remote system upgrade circuitry. You can use this feature to upgrade your system from a remote location. Figure 8-25: Stratix V Remote System Upgrade Block Diagram 2 1 Development Location 3 Data Data Data FPGA Remote System Upgrade Circuitry Configuration Memory FPGA Configuration 4 Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Altera Corporation 8-38 SV51010 2015.06.12 Configuration Images You can design your system to manage remote upgrades of the application configuration images in the configuration device. The following list is the sequence of the remote system upgrade: 1. The logic (embedded processor or user logic) in the Stratix V device receives a configuration image from a remote location. You can connect the device to the remote source using communication protocols such as TCP/IP, PCI, user datagram protocol (UDP), UART, or a proprietary interface. 2. The logic stores the configuration image in non-volatile configuration memory. 3. The logic starts reconfiguration cycle using the newly received configuration image. 4. When an error occurs, the circuitry detects the error, reverts to a safe configuration image, and provides error status to your design. Configuration Images Each Stratix V device in your system requires one factory image. The factory image is a user-defined configuration image that contains logic to perform the following: • Processes errors based on the status provided by the dedicated remote system upgrade circuitry. • Communicates with the remote host, receives new application images, and stores the images in the local non-volatile memory device. • Determines the application image to load into the Stratix V device. • Enables or disables the user watchdog timer and loads its time-out value. • Instructs the dedicated remote system upgrade circuitry to start a reconfiguration cycle. You can also create one or more application images for the device. An application image contains selected functionalities to be implemented in the target device. Store the images at the following locations in the EPCS or EPCQ devices: • Factory configuration image—PGM[23..0] = 24'h000000 start address on the EPCS or EPCQ device. • Application configuration image—any sector boundary. Altera recommends that you store only one image at one sector boundary. When you are using EPCQ 256, ensure that the application configuration image address granularity is 32'h00000100. The granularity requirement is having the most significant 24 bits of the 32 bits start address written to PGM[23..0] bits. Note: If you are not using the Quartus II software or SRunner software for EPCQ 256 programming, put your EPCQ 256 device into four-byte addressing mode before you program and configure your device. Altera Corporation Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 Configuration Sequence in the Remote Update Mode 8-39 Configuration Sequence in the Remote Update Mode Figure 8-26: Transitions Between Factory and Application Configurations in Remote Update Mode Configuration Error Set Control Register and Reconfigure Power Up Configuration Error Factory Configuration (page 0) Application 1 Configuration Reload a Different Application Reload a Different Application Set Control Register and Reconfigure Application n Configuration Configuration Error Related Information Remote System Upgrade State Machine on page 8-42 A detailed description of the configuration sequence in the remote update mode. Remote System Upgrade Circuitry The remote system upgrade circuitry contains the remote system upgrade registers, watchdog timer, and a state machine that controls these components. Note: If you are using the Altera Remote Update IP core, the IP core controls the RU_DOUT, RU_SHIFTnLD, RU_CAPTnUPDT, RU_CLK, RU_DIN, RU_nCONFIG, and RU_nRSTIMER signals internally to perform all the related remote system upgrade operations. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Altera Corporation 8-40 SV51010 2015.06.12 Enabling Remote System Upgrade Circuitry Figure 8-27: Remote System Upgrade Circuitry Internal Oscillator Status Register (SR) [4..0] Control Register [37..0] Logic Array Update Register [37..0] update Remote System Upgrade State Machine Shift Register dout din Bit [4..0] dout din Bit [37..0] capture capture clkout capture Logic Array RU_DOUT RU_SHIFTnLD RU_CAPTnUPDT Timeout User Watchdog Timer update clkin RU_CLK RU_DIN RU_nCONFIG RU_nRSTIMER Logic Array Related Information Stratix V Device Datasheet Provides more information about remote system upgrade circuitry timing specifications. Enabling Remote System Upgrade Circuitry To enable the remote system upgrade feature, follow these steps: 1. Select Active Serial x1/x4 or Configuration Device from the Configuration scheme list in the Configuration page of the Device and Pin Options dialog box in the Quartus II software. 2. Select Remote from the Configuration mode list in the Configuration page of the Device and Pin Options dialog box in the Quartus II software. Enabling this feature automatically turns on the Auto-restart configuration after error option. Altera Remote Update IP core provides a memory-like interface to the remote system upgrade circuitry and handles the shift register read and write protocol in the Stratix V device logic. Related Information Altera Remote Update IP Core User Guide Remote System Upgrade Registers Altera Corporation Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 Control Register 8-41 Table 8-9: Remote System Upgrade Registers Register Description Shift Accessible by the logic array and clocked by RU_CLK. • Bits[4..0]—Contents of the status register are shifted into these bits. • Bits[37..0]—Contents of the update and control registers are shifted into these bits. Control This register is clocked by the 10-MHz internal oscillator. The contents of this register are shifted to the shift register for the user logic in the application configuration to read. When reconfiguration is triggered, this register is updated with the contents of the update register. Update This register is clocked by RU_CLK. The factory configuration updates this register by shifting data into the shift register and issuing an update. When reconfiguration is triggered, the contents of the update register are written to the control register. Status After each reconfiguration, the remote system upgrade circuitry updates this register to indicate the event that triggered the reconfiguration. This register is clocked by the 10-MHz internal oscillator. Related Information • Control Register on page 8-41 • Status Register on page 8-42 Control Register Table 8-10: Control Register Bits Bit 0 Name AnF Reset Value(13) 1'b0 Description Application not Factory bit. Indicates the configuration image type currently loaded in the device; 0 for factory image and 1 for application image. When this bit is 1, the access to the control register is limited to read only and the watchdog timer is enabled. Factory configuration design must set this bit to 1 before triggering reconfiguration using an application configuration image. 1..24 (13) PGM[0..23] 24'h000000 Upper 24 bits of AS configuration start address (StAdd[31..8]), the 8 LSB are zero. This is the default value after the device exits POR and during reconfiguration back to the factory configura‐ tion image. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Altera Corporation 8-42 SV51010 2015.06.12 Status Register Bit Name Reset Value(13) Description 25 Wd_en 1'b0 User watchdog timer enable bit. Set this bit to 1 to enable the watchdog timer. 26..37 Wd_timer[11..0] 12'b000000000000 User watchdog time-out value. Status Register Table 8-11: Status Register Bits Bit Name Reset Value(14) Description 0 CRC 1'b0 When set to 1, indicates CRC error during applica‐ tion configuration. 1 nSTATUS 1'b0 When set to 1, indicates that nSTATUS is asserted by an external device due to error. 2 Core_nCONFIG 1'b0 When set to 1, indicates that reconfiguration has been triggered by the logic array of the device. 3 nCONFIG 1'b0 When set to 1, indicates that nCONFIG is asserted. 4 Wd 1'b0 When set to 1, indicates that the user watchdog time-out. Remote System Upgrade State Machine The operation of the remote system upgrade state machine is as follows: 1. After power-up, the remote system upgrade registers are reset to 0 and the factory configuration image is loaded. 2. The user logic sets the AnF bit to 1 and the start address of the application image to be loaded. The user logic also writes the watchdog timer settings. 3. When the configuration reset (RU_CONFIG) goes low, the state machine updates the control register with the contents of the update register, and triggers reconfiguration using the application configura‐ tion image. 4. If error occurs, the state machine falls back to the factory image. The control and update registers are reset to 0, and the status register is updated with the error information. 5. After successful reconfiguration, the system stays in the application configuration. User Watchdog Timer The user watchdog timer prevents a faulty application configuration from stalling the device indefinitely. You can use the timer to detect functional errors when an application configuration is successfully loaded (13) (14) This is the default value after the device exits POR and during reconfiguration back to the factory configura‐ tion image. After the device exits POR and power-up, the status register content is 5'b00000. Altera Corporation Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 Design Security 8-43 into the device. The timer is automatically disabled in the factory configuration; enabled in the application configuration. Note: If you do not want this feature in the application configuration, you need to turn off this feature by setting the Wd_en bit to 1'b0 in the update register during factory configuration user mode operation. You cannot disable this feature in the application configuration. The counter is 29 bits wide and has a maximum count value of 229. When specifying the user watchdog timer value, specify only the most significant 12 bits. The granularity of the timer setting is 217 cycles. The cycle time is based on the frequency of the user watchdog timer internal oscillator. The timer begins counting as soon as the application configuration enters user mode. When the timer expires, the remote system upgrade circuitry generates a time-out signal, updates the status register, and triggers the loading of the factory configuration image. To reset the time, assert RU_nRSTIMER. Related Information Stratix V Device Datasheet Provides more information about the operating range of the user watchdog internal oscillator's frequency. Design Security The Stratix V design security feature supports the following capabilities: • Enhanced built-in advanced encryption standard (AES) decryption block to support 256-bit key industry-standard design security algorithm (FIPS-197 Certified) • Volatile and non-volatile key programming support • Secure operation mode for both volatile and non-volatile key through tamper protection bit setting • Limited accessible JTAG instruction during power-up in the JTAG secure mode • Supports board-level testing • Supports in-socket key programming for non-volatile key • Available in all configuration schemes except JTAG • Supports both remote system upgrades and compression features The Stratix V design security feature provides the following security protection for your designs: • Security against copying—the security key is securely stored in the Stratix V device and cannot be read out through any interface. In addition, as configuration file read-back is not supported in Stratix V devices, your design information cannot be copied. • Security against reverse engineering—reverse engineering from an encrypted configuration file is very difficult and time consuming because the Stratix V configuration file formats are proprietary and the file contains millions of bits that require specific decryption. • Security against tampering—After you set the tamper protection bit, the Stratix V device can only accept configuration files encrypted with the same key. Additionally, programming through the JTAG interface and configuration interface is blocked. When you use compression with the design security feature, the configuration file is first compressed and then encrypted using the Quartus II software. During configuration, the device first decrypts and then decompresses the configuration file. When you use design security with Stratix V devices in an FPP configuration scheme, it requires a different DCLK-to-DATA[] ratio. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Altera Corporation 8-44 SV51010 2015.06.12 Altera Unique Chip ID IP Core Altera Unique Chip ID IP Core The Altera Unique Chip ID IP core provides the following features: • Acquiring the chip ID of an FPGA device. • Allowing you to identify your device in your design as part of a security feature to protect your design from an unauthorized device. Related Information Altera Unique Chip ID IP Core User Guide JTAG Secure Mode When you enable the tamper-protection bit, Stratix V devices are in the JTAG secure mode after power-up. During this mode, many JTAG instructions are disabled. Stratix V devices only allow mandatory JTAG 1149.1 and 1149.6 instructions to be exercised. These JTAG instructions are SAMPLE/PRELOAD, BYPASS, EXTEST, and optional instructions such as IDCODE and SHIFT_EDERROR_REG. To enable the access of other JTAG instructions such as USERCODE, HIGHZ, CLAMP, PULSE_nCONFIG, and CONFIG_IO, you must issue the UNLOCK instruction to deactivate the JTAG secure mode. You can issue the LOCK instruction to put the device back into JTAG secure mode. You can only issue both the LOCK and UNLOCK JTAG instructions during user mode. Related Information Supported JTAG Instruction on page 10-3 Provides more information about JTAG binary instruction code related to the LOCK and UNLOCK instructions. Security Key Types Stratix V devices offer two types of keys—volatile and non-volatile. The following table lists the differences between the volatile key and non-volatile keys. Table 8-12: Security Key Types Key Types Key Programmability Power Supply for Key Storage Programming Method Volatile • Reprogrammable Required external battery, VCCBAT (15) • Erasable On-board Non-volatile One-time programming On-board and in-socket programming (16) Does not require an external battery Both non-volatile and volatile key programming offers protection from reverse engineering and copying. If you set the tamper-protection bit, the design is also protected from tampering. (15) (16) VCCBAT is a dedicated power supply for volatile key storage. VCCBAT continuously supplies power to the volatile register regardless of the on-chip supply condition. Third-party vendors offer in-socket programming. Altera Corporation Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 Security Modes 8-45 You can perform key programming through the JTAG pins interface. Ensure that the nSTATUS pin is released high before any key-programming attempts. Note: To clear the volatile key, issue the KEY_CLR_VREG JTAG instruction. To verify the volatile key has been cleared, issue the KEY_VERIFY JTAG instruction. Related Information • Supported JTAG Instruction on page 10-3 Provides more information about the KEY_CLR_VREG and KEY_VERIFY instructions. • Stratix V E, GS, and GX Device Family Pin Connection Guidelines Provides more information about the VCCBAT pin connection recommendations. • Stratix V GT Device Family Pin Connection Guidelines Provides more information about the VCCBAT pin connection recommendations. • Stratix V Device Datasheet Provides more information about battery specifications. Security Modes Table 8-13: Supported Security Modes There is no impact to the configuration time required when compared with unencrypted configuration modes except FPP with AES (and/or decompression), which requires a DCLK that is up to ×8 the data rate. Security Mode Tamper Protection Bit Setting Device Accepts Unencrypted File Device Accepts Encrypted File Security Level No key — Yes No — Volatile Key — Yes Yes Secure Volatile Key with Tamper Protection Bit Set Set No Yes Secure with tamper resistant Non-volatile Key — Yes Yes Secure Non-volatile Key with Tamper Protection Bit Set Set No Yes Secure with tamper resistant The use of unencrypted configuration bitstream in the volatile key and non-volatile key security modes is supported for board-level testing only. Note: For the volatile key with tamper protection bit set security mode, Stratix V devices do not accept the encrypted configuration file if the volatile key is erased. If the volatile key is erased and you want to reprogram the key, you must use the volatile key security mode. Enabling the tamper protection bit disables the test mode in Stratix V devices and disables programming through the JTAG interface. This process is irreversible and prevents Altera from carrying out failure analysis. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Altera Corporation 8-46 SV51010 2015.06.12 Design Security Implementation Steps Design Security Implementation Steps Figure 8-28: Design Security Implementation Steps AES Key Programming File Step 3 Key Storage Step 1 256-bit User-Defined Key FPGA Device AES Decryption Quartus II Software AES Encryptor Step 4 Step 1 Encrypted Configuration File Step 2 Memory or Configuration Device To carry out secure configuration, follow these steps: 1. The Quartus II software generates the design security key programming file and encrypts the configu‐ ration data using the user-defined 256-bit security key. 2. Store the encrypted configuration file in the external memory. 3. Program the AES key programming file into the Stratix V device through a JTAG interface. 4. Configure the Stratix V device. At the system power-up, the external memory device sends the encrypted configuration file to the Stratix V device. Document Revision History Date Version Changes June 2015 2015.06.12 • Added timing waveforms for FPP, AS, and PS configuration. • Updated the Trace Length and Loading Guideline section. • Updated data rate to x8 in the Supported Security Modes table. January 2015 2015.01.23 Added the Transmitting Configuration Data section. Altera Corporation Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback SV51010 2015.06.12 Document Revision History Date Version 8-47 Changes June 2014 2014.06.30 • Updated Figure 8-17: JTAG Configuration of a Single Device Using a Download Cable. • Updated Figure 8-19: JTAG Configuration of Multiple Devices Using a Download Cable. • Updated the maximum clock rate for Partial Reconfiguration in Table 8-1. • Updated the MSEL pin settings recommendation in the MSEL Pin Settings section. January 2014 2014.01.10 • Updated the Enabling Remote System Upgrade Circuitry section. • Updated the Configuration Pin Summary section. • Updated Figure 8-3, Figure 8-7, and Figure 8-14. June 2013 2013.06.11 Updated the Configuration Error Handling section. May 2013 2013.05.10 Removed support for active serial multi-device configuration using the same configuration data. May 2013 2013.05.06 • Added link to the known document issues in the Knowledge Base. • Added the ALTCHIP_ID megafunction section. • Added links for AS, PS, FPP, and JTAG configuration timing to device datasheet. • Updated "Connection Setup for Programming the EPCS Using the JTAG Interface" and "Connection Setup for Programming the EPCQ Using the JTAG Interface" figures. • Updated CvP support for partial reconfiguration in the Table 8-1: Configuration Modes and Features Supported by Stratix V Devices. • Moved all links to the Related Information section of respective topics for easy reference. March 2013 2013.03.04 Remove a note to the nIO_PULLUP pin in Table 8-3: Configuration Pin Summary for Stratix V Devices. December 2012 2012.12.28 • Added configuration modes and features for Stratix V devices. • Reorganized content and updated template. June 2012 1.7 • Added MAX V devices. • Updated Figure 9-2, Figure 9-3, Figure 9-11, Figure 9-16, Figure 9-17, Figure 9-20, and Figure 9-23. • Updated Table 9-4, Table 9-5, Table 9-7, Table 9-11, and Table 9-12. • Updated "MSEL Pin Settings" and "FPP Multi-Device Configuration" sections. February 2012 1.6 • Updated "Security Key Types" section. • Updated Table 9-10. Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback Altera Corporation 8-48 SV51010 2015.06.12 Document Revision History Date Version Changes December 2011 1.5 • Updated "FPP Configuration Timing", "JTAG Secure Mode", and "Security Key Types" sections. • Updated Table 9-8. November 2011 1.4 • Updated Table 9-5, Table 9-9, and Table 9-14. • Updated Figure 9-8, Figure 9-9, and Figure 9-21. • Updated "AS Multi-Device Configuration" and "Active Serial Configuration (Serial Configuration Devices)" sections. May 2011 1.3 • Chapter moved to volume 2 for the 11.0 release. • Added "Remote System Upgrades Using EPCQ 256" and "JTAG Secure Mode" sections. • Updated Table 9-5. • Updated "Configuration", "Configuration Error", "Programming EPCS and EPCQ", "JTAG Configuration", "Remote Update Mode", and "Design Security" sections. • Minor text edits. January 2011 1.2 • Updated Table 9-7, Table 9-8, Table 9-12, and Table 9-14. • Updated Figure 9-15 and Figure 9-21. • Updated "User Watchdog Timer", "DCLK-to-DATA[] Ratio for FPP Configuration", "VCCPD Pin", "POR Delay Specification", and "Programming EPCS and EPCQ" sections. December 2010 1.1 No changes to the content of this chapter for the Quartus II software 10.1. July 2010 1.0 Initial release. Altera Corporation Configuration, Design Security, and Remote System Upgrades in Stratix V Devices Send Feedback 9 SEU Mitigation for Stratix V Devices 2015.06.12 SV51011 Subscribe Send Feedback This chapter describes the error detection features in Stratix V devices. You can use these features to mitigate single event upset (SEU) or soft errors. Related Information Stratix V Device Handbook: Known Issues Lists the planned updates to the Stratix V Device Handbook chapters. Error Detection Features The on-chip error detection CRC circuitry allows you to perform the following operations without any impact on the fitting or performance of the device: • Auto-detection of CRC errors during configuration. • Optional CRC error detection and identification in user mode. • Optional internal scrubbing in user mode. When enabled, this feature corrects single-bit and doubleadjacent errors automatically. • Testing of error detection functions by deliberately injecting errors through the JTAG interface. Configuration Error Detection When the Quartus II software generates the configuration bitstream, the software also computes a 16-bit CRC value for each frame. A configuration bitstream can contain more than one CRC values depending on the number of data frames in the bitstream. The length of the data frame varies for each device. When a data frame is loaded into the FPGA during configuration, the precomputed CRC value shifts into the CRC circuitry. At the same time, the CRC engine in the FPGA computes the CRC value for the data frame and compares it against the precomputed CRC value. If both CRC values do not match, the nSTATUS pin is set to low to indicate a configuration error. You can test the capability of this feature by modifying the configuration bitstream or intentionally corrupting the bitstream during configuration. © 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. www.altera.com 101 Innovation Drive, San Jose, CA 95134 ISO 9001:2008 Registered 9-2 SV51011 2015.06.12 User Mode Error Detection User Mode Error Detection In user mode, the contents of the configured CRAM bits may be affected by soft errors. These soft errors, which are caused by an ionizing particle, are not common in Altera devices. However, high-reliability applications that require the device to operate error-free may require that your designs account for these errors. You can enable the error detection circuitry to detect soft errors. Each data frame stored in the CRAM contains a 32-bit precomputed CRC value. When this feature is enabled, the error detection circuitry continuously computes a 32-bit CRC value for each frame in the CRAM and compares the CRC value against the precomputed value. • If the CRC values match, the 32-bit CRC signature in the syndrome register is set to zero to indicate that no error is detected. • Otherwise, the resulting 32-bit CRC signature in the syndrome register is non-zero to indicate a CRC error. The CRC_ERROR pin is pulled high, and the error type and location are identified. Within a frame, the error detection circuitry can detect all single-, double-, triple-, quadruple-, and quintuple-bit errors. When a single-bit or double-adjacent error is detected, the error detection circuitry reports the bit location and determines the error type for single-bit and double-adjacent errors. The probability of other error patterns is very low and the reporting of bit location is not guaranteed. The probability of more than five CRAM bits being flipped by soft errors is very low. In general, the probability of detection for all error patterns is 99.9999%. The process of error detection continues until the device is reset by setting the nCONFIG signal low. Internal Scrubbing Internal scrubbing is the ability to internally correct soft errors in user mode. This feature corrects singlebit and double-adjacent errors detected in each data frame without the need to reconfigure the device. Note: The SEU internal scrubbing feature is available for Cyclone V E, GX, SE, and SX devices with the "SC" suffix in the part number. For device availability and ordering, contact your local Altera sales representatives. Figure 9-1: Block Diagram Error Detection State Machine 32-Bit CRC Calculation and Error Search Engine Internal Scrubbing Data Registers, CRC Registers, and CRAM Array Specifications This section lists the EMR update interval, error detection frequencies, and CRC calculation time for error detection in user mode. Altera Corporation SEU Mitigation for Stratix V Devices Send Feedback SV51011 2015.06.12 Minimum EMR Update Interval 9-3 Minimum EMR Update Interval The interval between each update of the error message register depends on the device and the frequency of the error detection clock. Using a lower clock frequency increases the interval time, hence increasing the time required to recover from a single event upset (SEU). Table 9-1: Estimated Minimum EMR Update Interval in Stratix V Devices Variant Member Code A3 Stratix V GX Timing Interval (µs) EH29-H780 3.13 HF35-F1152 3.13 KF35-F1152 3.13 KF40-F1517/KH40H1517 3.13 A4 3.13 A5 3.71 A7 3.71 A9 Stratix V GT Package All AB 5.01 B5 3.85 B6 3.85 C5 C7 D3 D4 Stratix V GS All D6 EB 3.71 2.61 EH29-H780 2.61 HF35-F1152 2.61 KF40-F1517/KH40H1517 3.13 3.13 All D8 E9 3.71 All D5 Stratix V E 5.01 4.33 4.33 All 5.01 5.01 Error Detection Frequency You can control the speed of the error detection process by setting the division factor of the clock frequency in the Quartus II software. The divisor is 2n, where n can be any value listed in the following table. SEU Mitigation for Stratix V Devices Send Feedback Altera Corporation 9-4 SV51011 2015.06.12 CRC Calculation Time For Entire Device The speed of the error detection process for each data frame is determined by the following equation: Figure 9-2: Error Detection Frequency Equation Error Detection Frequency = Internal Oscillator Frequency 2n Table 9-2: Error Detection Frequency Range for Stratix V Devices The following table lists the frequencies and valid values of n. Internal Oscillator Frequency 100 MHz Error Detection Frequency Maximum 100 MHz Minimum 390 kHz n Divisor Range 0, 1, 2, 3, 4, 5, 6, 7, 8 1 – 256 CRC Calculation Time For Entire Device While the CRC calculation is done on a per frame basis, it is important to know the time taken to complete CRC calculations for the entire device. The entire device detection time is the time taken to do CRC calculations on every frame in the device. This time depends on the device and the error detection clock frequency. The error detection clock frequency also depends on the device and on the internal oscillator frequency, which varies from 42.6 MHz to 100 MHz. You can calculate the minimum and maximum time for any number of divisor based on the following formula: Maximum time (n) = 2^(n-8) * tMAX Minimum time (n) = 2^n * tMIN where the range of n is from 0 to 8. Altera Corporation SEU Mitigation for Stratix V Devices Send Feedback SV51011 2015.06.12 Using Error Detection Features in User Mode 9-5 Table 9-3: Device EDCRC Detection Time in Stratix V Devices The following table lists the minimum and maximum time taken to calculate the CRC value: • The minimum time is derived using the maximum clock frequency with a divisor of 0. • The maximum time is derived using the minimum clock frequency with a divisor of 8. Variant Member Code Package tMIN (ms) tMAX (s) EH29-H780 38 19.42 HF35-F1152 38 19.42 KF35-F1152 38 19.42 KF40-F1517/KH40H1517 38 19.42 A4 38 19.42 A5 47 24.20 A7 47 24.20 68 35.21 AB 68 35.21 B5 45 23.52 B6 45 23.52 47 24.20 47 24.20 All 29 14.91 EH29-H780 29 14.91 HF35-F1152 38 19.42 KF40-F1517/KH40H1517 38 19.42 38 19.42 54 27.81 54 27.81 68 35.21 68 35.21 A3 Stratix V GX A9 Stratix V GT C5 C7 D3 D4 Stratix V GS All All D5 D6 All D8 Stratix V E E9 EB All Using Error Detection Features in User Mode This section describes the pin, registers, process flow, and procedures for error detection in user mode. Enabling Error Detection and Internal Scrubbing SEU Mitigation for Stratix V Devices Send Feedback Altera Corporation 9-6 SV51011 2015.06.12 CRC_ERROR Pin To enable user mode error detection and internal scrubbing in the Quartus II software, follow these steps: 1. 2. 3. 4. 5. On the Assignments menu, click Device. In the Device dialog box, click Device and Pin Options. In the Category list, click Error Detection CRC. Turn on Enable Error Detection CRC_ERROR pin. To set the CRC_ERROR pin as output open drain, turn on Enable open drain on CRC_ERROR pin. Turning off this option sets the CRC_ERROR pin as output. 6. To enable the on-chip error correction feature, turn on Enable internal scrubbing. 7. In the Divide error check frequency by list, select a valid divisor. 8. Click OK. CRC_ERROR Pin Table 9-4: Pin Description Pin Name CRC_ERROR Pin Type Description I/O or output/ An active-high signal, when driven high indicates that an output open-drain error is detected in the CRAM bits. This pin is only used when you enable error detection in user mode. Otherwise, the pin is used as a user I/O pin. When using the WYSIWYG function, you can route the crcerror port from the WYSIWYG atom to the dedicated CRC_ERROR pin or any user I/O pin. To route the crcerror port to a user I/O pin, insert a D-type flipflop between them. Error Detection Registers This section describes the registers used in user mode. Altera Corporation SEU Mitigation for Stratix V Devices Send Feedback SV51011 2015.06.12 Error Detection Registers 9-7 Figure 9-3: Block Diagram for Error Detection in User Mode The block diagram shows the registers and data flow in user mode. Readback Bitstream with Expected CRC Error Detection State Machine 32-bit Error Detection CRC Calculation, Error Search Engine, and Internal Scrubbing Control Signals Syndrome Register Error Message Register Error Injection Block Fault Injection Register JTAG Fault Injection Register CRC_ERROR JTAG Update Register User Update Register JTAG Shift Register User Shift Register JTAG TDO General Routing Table 9-5: Error Detection Registers Name Width (Bits) Description Syndrome register 32 Contains the 32-bit CRC signature calculated for the current frame. If the CRC value is 0, the CRC_ERROR pin is driven low to indicate no error. Otherwise, the pin is pulled high. Error message register (EMR) 67 Contains error details for single-bit and double-adjacent errors. The error detection circuitry updates this register each time the circuitry detects an error. The Error Message Register Map figure shows the fields in this register and the Error Type in EMR table lists the possible error types. JTAG update register 67 This register is automatically updated with the contents of the EMR one clock cycle after the content of this register is validated. The JTAG update register includes a clock enable, which must be asserted before its contents are written to the JTAG shift register. This requirement ensures that the JTAG update register is not overwritten when its contents are being read by the JTAG shift register. JTAG shift register 67 This register allows you to access the contents of the JTAG update register via the JTAG interface using the SHIFT_ EDERROR_REG JTAG instruction. SEU Mitigation for Stratix V Devices Send Feedback Altera Corporation 9-8 SV51011 2015.06.12 Error Detection Registers Name Width (Bits) Description User update register 67 This register is automatically updated with the contents of the EMR one clock cycle after the contents of this register are validated. The user update register includes a clock enable, which must be asserted before its contents are written to the user shift register. This requirement ensures that the user update register is not overwritten when its contents are being read by the user shift register. User shift register 67 This register allows user logic to access the contents of the user update register via the core interface. JTAG fault injection register 46 You can use this register with the EDERROR_INJECT JTAG instruction to inject errors in the bitstream. The JTAG Fault Injection Register Map table lists the fields in this register. Fault injection register 46 This register is updated with the contents of the JTAG fault injection register. Figure 9-4: Error Message Register Map MSB LSB Syndrome 32 bits Frame Address 16 bits Double Word Location Byte Offset Bit Offset 10 bits 2 bits 3 bits Error Type 4 bits Table 9-6: Error Type in EMR The following table lists the possible error types reported in the error type field in the EMR. Error Type Bit 3 Bit 2 Bit 1 Description Bit 0 0 0 0 0 No CRC error. 0 0 0 1 Location of a single-bit error is identified. 0 0 1 0 Location of a double-adjacent error is identified. 1 1 1 1 Error types other than single-bit and double-adjacent errors. Table 9-7: JTAG Fault Injection Register Map Field Name Bit Range Description Error Byte Value 31:0 Contains the location of the bit error that corresponds to the error injection type to this field. Byte Location 41:32 Contains the location of the injected error in the first data frame. Altera Corporation SEU Mitigation for Stratix V Devices Send Feedback SV51011 2015.06.12 Error Detection Process Field Name Bit Range Description 45:42 Error Type 9-9 Specifies the following error types. Bit 45 Bit 44 Bit 43 Bit 42 0 0 0 0 No error 0 0 0 1 Single-bit error 0 0 1 0 Double adjacent error Error Detection Process When enabled, the user mode error detection process activates automatically when the FPGA enters user mode. The process continues to run until the device is reset even when an error is detected in the current frame. Figure 9-5: Error Detection Process Flow in User Mode Receive Data Frame Calculate and Compare CRC Values Error Detected? No Pull CRC_ERROR Signal Low for 32 Clock Cycles Yes Update Error Message Register (Overwrite) Search for Error Location Drive CRC_ERROR Signal High Timing The CRC_ERROR pin is always driven low during CRC calculation for a minimum of 32 clock cycles. When an error occurs, the pin is driven high once the EMR is updated or 32 clock cycles have lapsed, whichever comes last. Therefore, you can start retrieving the contents of the EMR at the rising edge of the CRC_ERROR pin. The pin stays high until the current frame is read and then driven low again for a minimum of 32 clock cycles. To ensure information integrity, complete the read operation within one frame of the CRC verification. The following diagram shows the timing of these events. SEU Mitigation for Stratix V Devices Send Feedback Altera Corporation 9-10 SV51011 2015.06.12 Testing the Error Detection Block Figure 9-6: Timing Requirements Frame Data Integrity N No CRC Error N+1 N+2 CRC Error CRC Error N+3 No CRC Error N+4 CRC Error N+5 No CRC Error Read Data Frame CRC ERROR Pin CRC Calculation (minimum 32 clock cycles) Read Error Message Register (allowed time) Read Error Message for frame N+1 Read Error Message for frame N+2 Read Error Message for frame N+4 Retrieving Error Information You can retrieve the error information via the core interface or the JTAG interface using the SHIFT_EDERROR_REG JTAG instruction. Recovering from CRC Errors The system that hosts the FPGA must control device reconfiguration. To recover from a CRC error, drive the nCONFIG signal low. The system waits for a safe time before reconfiguring the device. When reconfigu‐ ration completes successfully, the FPGA operates as intended. Related Information • Error Detection Frequency on page 9-3 Provides more information about the minimum and maximum error detection frequencies. • Minimum EMR Update Interval on page 9-3 Provides more information about the duration of each Stratix Vdevice. • Test Methodology of Error Detection and Recovery using CRC in Altera FPGA Devices Provides more information about how to retrieve the error information. Testing the Error Detection Block You can inject errors into the configuration data to test the error detection block. This error injection methodology provides design verification and system fault tolerance characterization. Testing via the JTAG Interface You can intentionally inject single or double-adjacent errors into the configuration data using the EDERROR_INJECT JTAG instruction. Altera Corporation SEU Mitigation for Stratix V Devices Send Feedback SV51011 2015.06.12 Document Revision History 9-11 Table 9-8: EDERROR_INJECT instruction JTAG Instruction Instruction Code 00 0001 0101 EDERROR_INJECT Description Use this instruction to inject errors into the configuration data. This instruction controls the JTAG fault injection register, which contains the error you want to inject into the bitstream. You can only inject errors into the first frame of the configuration data. However, you can monitor the error information at any time. Altera recommends that you reconfigure the FPGA after the test completes. Automating the Testing Process You can automate the testing process by creating a Jam™ file (.jam). Using this file, you can verify the CRC functionality in-system and on-the-fly without reconfiguring the device. You can then switch to the CRC circuitry to check for real errors caused by an SEU. Related Information Test Methodology of Error Detection and Recovery using CRC in Altera FPGA Devices Provides more information about how to test the error detection block. Document Revision History Date Version January 2015 2015.01.23 Updated the description in the CRC Calculation Time section. June 2014 2014.06.30 Updated the CRC Calculation Time section. January 2014 2014.01.10 • Updated the CRC Calculation Time section to include a formula to calculate the minimum and maximum time. • Updated the maximum error detection frequency. • Removed preliminary and finalized the values for the Minimum EMR Update Interval and CRC Calculation Time. May 2013 2013.05.06 • Added link to the known document issues in the Knowledge Base. • Moved all links to the Related Information section of respective topics for easy reference. December 2012 2012.12.28 • Updated the valid values of n in the error detection frequency equation. • Updated the width of the JTAG fault injection and fault injection registers. June 2012 2.0 Minor text edits. February 2012 1.4 Updated Table 10–9 and Table 10–10. SEU Mitigation for Stratix V Devices Send Feedback Changes Altera Corporation 9-12 SV51011 2015.06.12 Document Revision History Date Version Changes November 2011 1.3 • Chapter moved to Volume 2. • Updated Table 10–9 and Table 10–10. • Minor text edits. May 2011 1.2 • Chapter moved to Volume 2. • Updated Table 10–9 and Table 10–10. • Minor text edits. December 2010 1.1 No change. July 2010 1.0 Initial release. Altera Corporation SEU Mitigation for Stratix V Devices Send Feedback JTAG Boundary-Scan Testing in Stratix V Devices 10 2015.06.12 SV51012 Subscribe Send Feedback This chapter describes the boundary-scan test (BST) features in Stratix V devices. Related Information • JTAG Configuration on page 8-32 Provides more information about JTAG configuration. • Stratix V Device Handbook: Known Issues Lists the planned updates to the Stratix V Device Handbook chapters. BST Operation Control Stratix V devices support IEEE Std. 1149.1 and IEEE Std. 1149.6. The IEEE Std. 1149.6 is only supported on the high-speed serial interface (HSSI) transceivers in Stratix V devices. IEEE Std. 1149.6 enables board-level connectivity checking between transmitters and receivers that are AC coupled (connected with a capacitor in series between the source and destination). IDCODE The IDCODE is unique for each Stratix V device. Use this code to identify the devices in a JTAG chain. © 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. www.altera.com 101 Innovation Drive, San Jose, CA 95134 ISO 9001:2008 Registered 10-2 SV51012 2015.06.12 IDCODE Table 10-1: IDCODE Information for Stratix V Devices IDCODE (32 Bits) Family Stratix V GX Stratix V GT (17) (18) Member Code Version (4 Bits) Part Number (16 Bits) Manufacture Identity (11 Bits) LSB (1 Bit) A3 (17) 0000 0010 1001 0100 0111 000 0110 1110 1 A3 (18) 0000 0010 1001 0010 0001 000 0110 1110 1 A4 0000 0010 1001 0010 0111 000 0110 1110 1 A5 0000 0010 1001 0001 0011 000 0110 1110 1 A7 0000 0010 1001 0000 0011 000 0110 1110 1 A9 0000 0010 1001 0100 0101 000 0110 1110 1 AB 0000 0010 1001 0010 0101 000 0110 1110 1 B5 0000 0010 1001 0001 0010 000 0110 1110 1 B6 0000 0010 1001 0000 0010 000 0110 1110 1 B9 0000 0010 1001 0001 0101 000 0110 1110 1 BB 0000 0010 1001 0000 0101 000 0110 1110 1 C5 0000 0010 1001 0010 0011 000 0110 1110 1 C7 0000 0010 1001 0100 0011 000 0110 1110 1 The IDCODE is applicable for KF35 and KF40 packages only. The IDCODE is applicable for EH29 and HF35 packages only. Altera Corporation JTAG Boundary-Scan Testing in Stratix V Devices Send Feedback SV51012 2015.06.12 Supported JTAG Instruction 10-3 IDCODE (32 Bits) Family Member Code Version (4 Bits) Stratix V GS Stratix V E Part Number (16 Bits) Manufacture Identity (11 Bits) LSB (1 Bit) D3 0000 0010 1001 0001 0001 000 0110 1110 1 D4 (19) 0000 0010 1001 0000 0001 000 0110 1110 1 D4 (20) 0000 0010 1001 0001 0111 000 0110 1110 1 D5 0000 0010 1001 0000 0111 000 0110 1110 1 D6 0000 0010 1001 0001 0100 000 0110 1110 1 D8 0000 0010 1001 0000 0100 000 0110 1110 1 E9 0000 0010 1001 1001 0101 000 0110 1110 1 EB 0000 0010 1001 1000 0101 000 0110 1110 1 Supported JTAG Instruction Table 10-2: JTAG Instructions Supported by Stratix V Devices JTAG Instruction SAMPLE/PRELOAD (19) (20) Instruction Code 00 0000 0101 Description • Allows you to capture and examine a snapshot of signals at the device pins during normal device operation and permits an initial data pattern to be an output at the device pins. • Use this instruction to preload the test data into the update registers before loading the EXTEST instruc‐ tion. • Used by the SignalTap™ II Embedded Logic Analyzer. The IDCODE is applicable for EH29 and HF35 packages only. The IDCODE is applicable for KF40 package only. JTAG Boundary-Scan Testing in Stratix V Devices Send Feedback Altera Corporation 10-4 SV51012 2015.06.12 Supported JTAG Instruction JTAG Instruction Instruction Code Description EXTEST 00 0000 1111 • Allows you to test the external circuit and board-level intercon‐ nects by forcing a test pattern at the output pins, and capturing the test results at the input pins. Forcing known logic high and low levels on output pins allows you to detect opens and shorts at the pins of any device in the scan chain. • The high-impedance state of EXTEST is overridden by bus hold and weak pull-up resistor features. BYPASS 11 1111 1111 Places the 1-bit bypass register between the TDI and TDO pins. During normal device operation, the 1-bit bypass register allows the BST data to pass synchronously through the selected devices to adjacent devices. USERCODE 00 0000 0111 • Examines the user electronic signature (UES) within the devices along a JTAG chain. • Selects the 32-bit USERCODE register and places it between the TDI and TDO pins to allow serial shifting of USERCODE out of TDO. • The UES value is set to default value before configuration and is only user-defined after the device is configured. IDCODE 00 0000 0110 • Identifies the devices in a JTAG chain. If you select IDCODE, the device identification register is loaded with the 32-bit vendor-defined identification code. • Selects the IDCODE register and places it between the TDI and TDO pins to allow serial shifting of IDCODE out of TDO. • IDCODE is the default instruction at power up and in the TAP RESET state. Without loading any instructions, you can go to the SHIFT_DR state and shift out the JTAG device ID. Altera Corporation JTAG Boundary-Scan Testing in Stratix V Devices Send Feedback SV51012 2015.06.12 Supported JTAG Instruction JTAG Instruction Instruction Code 10-5 Description HIGHZ 00 0000 1011 • Sets all user I/O pins to an inactive drive state. • Places the 1-bit bypass register between the TDI and TDO pins. During normal operation, the 1-bit bypass register allows the BST data to pass synchronously through the selected devices to adjacent devices while tri-stating all I/O pins until a new JTAG instruction is executed. • If you are testing the device after configuration, the programmable weak pull-up resistor or the bus hold feature overrides the HIGHZ value at the pin. CLAMP 00 0000 1010 • Places the 1-bit bypass register between the TDI and TDO pins. During normal operation, the 1-bit bypass register allows the BST data to pass synchronously through the selected devices to adjacent devices while holding the I/O pins to a state defined by the data in the boundary-scan register. • If you are testing the device after configuration, the programmable weak pull-up resistor or the bus hold feature overrides the CLAMP value at the pin. The CLAMP value is the value stored in the update register of the boundary-scan cell (BSC). PULSE_NCONFIG 00 0000 0001 Emulates pulsing the nCONFIG pin low to trigger reconfiguration even though the physical pin is not affected. CONFIG_IO 00 0000 1101 Allows I/O reconfiguration (after or during reconfigurations) through the JTAG ports using I/O configuration shift register (IOCSR) for JTAG testing. You can issue the CONFIG_IO instruction only after the nSTATUS pin goes high. JTAG Boundary-Scan Testing in Stratix V Devices Send Feedback Altera Corporation 10-6 SV51012 2015.06.12 Supported JTAG Instruction JTAG Instruction Instruction Code Description LOCK 01 1111 0000 Put the device in JTAG secure mode. In this mode, only BYPASS, SAMPLE/ PRELOAD, EXTEST, IDCODE, SHIFT_EDERROR_REG, and UNLOCK instructions are supported. This instruction can only be accessed through JTAG core access in user mode. It cannot be accessed through external JTAG pins in test or user mode. UNLOCK 11 0011 0001 Release the device from the JTAG secure mode to enable access to all other JTAG instructions. This instruction can only be accessed through JTAG core access in user mode. It cannot be accessed through external JTAG pins in test or user mode. KEY_CLR_VREG 00 0010 1001 Clears the volatile key. KEY_VERIFY 00 0001 0011 Verifies the non-volatile key has been cleared. EXTEST_PULSE 00 1000 1111 Enables board-level connectivity checking between the transmitters and receivers that are AC coupled by generating three output transitions: • Driver drives data on the falling edge of TCK in the UPDATE_IR/DR state. • Driver drives inverted data on the falling edge of TCK after entering the RUN_TEST/IDLE state. • Driver drives data on the falling edge of TCK after leaving the RUN_TEST/IDLE state. The EXTEST_PULSE JTAG instruction is only supported in user mode for Stratix V devices. EXTEST_TRAIN 00 0100 1111 Behaves the same as the EXTEST_PULSE instruction except that the output continues to toggle on the TCK falling edge as long as the TAP controller is in the RUN_TEST/IDLE state. The EXTEST_TRAIN JTAG instruction is only supported in user mode for Stratix V devices. Altera Corporation JTAG Boundary-Scan Testing in Stratix V Devices Send Feedback SV51012 2015.06.12 JTAG Secure Mode 10-7 Note: If the device is in a reset state and the nCONFIG or nSTATUS signal is low, the device IDCODE might not be read correctly. To read the device IDCODE correctly, you must issue the IDCODE JTAG instruction only when the nCONFIG and nSTATUS signals are high. Note: If you use DC coupling on the HSSI signals, execute the EXTEST instruction. If you use AC coupling on the HSSI signals, execute the EXTEST_PULSE instruction. AC-coupled and DC-coupled HSSI are only supported in post-configuration mode. Related Information JTAG Secure Mode on page 8-44 Provides more information about PULSE_NCONFIG, CONFIG_IO, LOCK, and UNLOCK JTAG instructions. JTAG Secure Mode If you enable the tamper-protection bit, the Stratix V device is in JTAG secure mode after power up. In the JTAG secure mode, the JTAG pins support only the BYPASS, SAMPLE/PRELOAD, EXTEST, IDCODE, SHIFT_EDERROR_REG, and UNLOCK instructions. Issue the UNLOCK JTAG instruction to enable support for other JTAG instructions. JTAG Private Instruction Caution: Never invoke the following instruction codes. These instructions can damage and render the device unusable: • • • • • • 1100010000 0011001001 1100010011 1100010111 0111100000 1110110011 I/O Voltage for JTAG Operation A Stratix V device operating in BST mode uses four required JTAG pins—TDI, TDO, TMS, TCK, and one optional pin, TRST. The TCK pin has an internal weak pull-down resistor, while the TDI and TMS pins have internal weak pullup resistors. The 3.0- or 2.5-V VCCPD supply of I/O bank 3A powers the TDO, TDI, TMS, and TCK pins. All user I/O pins are tri-stated during JTAG configuration. The JTAG chain supports several different devices. Use the supported TDO and TDI voltage combinations listed in the following table if the JTAG chain contains devices that have different VCCIO levels. The output voltage level of the TDO pin must meet the specification of the TDI pin it drives. JTAG Boundary-Scan Testing in Stratix V Devices Send Feedback Altera Corporation 10-8 SV51012 2015.06.12 Performing BST Table 10-3: Supported TDO and TDI Voltage Combinations The TDO output buffer for VCCPD of 3.0 V meets VOH (MIN) of 2.4 V, and the TDO output buffer for VCCPD of 2.5 V meets VOH (MIN) of 2.0 V. Device Stratix V Non-Stratix V(21) TDI Input Buffer Power (V) Stratix V TDO VCCPD VCCPD = 3.0 V VCCPD = 2.5 V VCCPD = 3.0 V Yes Yes VCCPD = 2.5 V Yes Yes VCC = 3.3 V Yes Yes VCC = 2.5 V Yes Yes VCC = 1.8 V Yes Yes VCC = 1.5 V Yes Yes Performing BST You can issue BYPASS, IDCODE, and SAMPLE JTAG instructions before, after, or during configuration without having to interrupt configuration. To issue other JTAG instructions, follow these guidelines: • To perform testing before configuration, hold the nCONFIG pin low. • To perform BST during configuration, issue CONFIG_IO JTAG instruction to interrupt configuration. While configuration is interrupted, you can issue other JTAG instructions to perform BST. After BST is completed, issue the PULSE_CONFIG JTAG instruction or pulse nCONFIG low to reconfigure the device. The chip-wide reset (DEV_CLRn) and chip-wide output enable (DEV_OE) pins on Stratix V devices do not affect JTAG boundary-scan or configuration operations. Toggling these pins does not disrupt BST operation (other than the expected BST behavior). If you design a board for JTAG configuration of Stratix V devices, consider the connections for the dedicated configuration pins. Related Information • JTAG Configuration Provides more information about JTAG configuration. • Stratix V Device Datasheet Provides more information about JTAG configuration timing. Enabling and Disabling IEEE Std. 1149.1 BST Circuitry The IEEE Std. 1149.1 BST circuitry is enabled after the Stratix V device powers up. (21) The input buffer must be tolerant to the TDO VCCPD voltage. Altera Corporation JTAG Boundary-Scan Testing in Stratix V Devices Send Feedback SV51012 2015.06.12 Guidelines for IEEE Std. 1149.1 Boundary-Scan Testing 10-9 To ensure that you do not inadvertently enable the IEEE Std. 1149.1 circuitry when it is not required, disable the circuitry permanently with pin connections as listed in the following table. Table 10-4: Pin Connections to Permanently Disable the IEEE Std. 1149.1 Circuitry for Stratix V Devices JTAG Pins(22) Connection for Disabling TMS VCCPD supply of Bank 3A TCK GND TDI VCCPD supply of Bank 3A TDO Leave open Guidelines for IEEE Std. 1149.1 Boundary-Scan Testing Consider the following guidelines when you perform BST with IEEE Std. 1149.1 devices: • If the “10...” pattern does not shift out of the instruction register through the TDO pin during the first clock cycle of the SHIFT_IR state, the TAP controller did not reach the proper state. To solve this problem, try one of the following procedures: • Verify that the TAP controller has reached the SHIFT_IR state correctly. To advance the TAP controller to the SHIFT_IR state, return to the RESET state and send the 01100 code to the TMS pin. • Check the connections to the VCC, GND, JTAG, and dedicated configuration pins on the device. • Perform a SAMPLE/PRELOAD test cycle before the first EXTEST test cycle to ensure that known data is present at the device pins when you enter EXTEST mode. If the OEJ update register contains 0, the data in the OUTJ update register is driven out. The state must be known and correct to avoid contention with other devices in the system. • Do not perform EXTEST testing during in-circuit reconfiguration because EXTEST is not supported during in-circuit reconfiguration. To perform testing, wait for the configuration to complete or issue the CONFIG_IO instruction to interrupt configuration. • After configuration, you cannot test any pins in a differential pin pair. To perform BST after configu‐ ration, edit and redefine the BSC group that correspond to these differential pin pairs as an internal cell. Related Information IEEE 1149.6 BSDL Files Provides more information about BSC group definitions. IEEE Std. 1149.1 Boundary-Scan Register The boundary-scan register is a large serial shift register that uses the TDI pin as an input and the TDO pin as an output. The boundary-scan register consists of 3-bit peripheral elements that are associated with Stratix V I/O pins. You can use the boundary-scan register to test external pin connections or to capture internal data. (22) The JTAG pins are dedicated. Software option is not available to disable JTAG in Stratix V devices. JTAG Boundary-Scan Testing in Stratix V Devices Send Feedback Altera Corporation 10-10 SV51012 2015.06.12 Boundary-Scan Cells of a Stratix V Device I/O Pin Figure 10-1: Boundary-Scan Register This figure shows how test data is serially shifted around the periphery of the IEEE Std. 1149.1 device. Each peripheral element is either an I/O pin, dedicated input pin, or dedicated configuration pin. Internal Logic TAP Controller TDI TMS TCK TDO Boundary-Scan Cells of a Stratix V Device I/O Pin The Stratix V device 3-bit BSC consists of the following registers: • Capture registers—Connect to internal device data through the OUTJ, OEJ, and PIN_IN signals. • Update registers—Connect to external data through the PIN_OUT and PIN_OE signals. The TAP controller generates the global control signals for the IEEE Std. 1149.1 BST registers (shift, clock, and update) internally. A decode of the instruction register generates the MODE signal. The data signal path for the boundary-scan register runs from the serial data in (SDI) signal to the serial data out (SDO) signal. The scan register begins at the TDI pin and ends at the TDO pin of the device. Altera Corporation JTAG Boundary-Scan Testing in Stratix V Devices Send Feedback SV51012 2015.06.12 Boundary-Scan Cells of a Stratix V Device I/O Pin 10-11 Figure 10-2: User I/O BSC with IEEE Std. 1149.1 BST Circuitry for Stratix V Devices Capture Registers SDO Update Registers INJ PIN_IN 0 1 D Q D INPUT 0 1 Q INPUT OEJ From or To Device I/O Cell Circuitry And/Or Logic Array 0 1 D Q D OE Q OE VCC 0 1 0 1 PIN_OE 0 1 PIN_OUT OUTJ 0 1 D Q D Q OUTPUT OUTPUT SHIFT CLOCK UPDATE Pin Output Buffer SDI HIGHZ MODE Global Signals Note: TDI, TDO, TMS, and TCK pins, all VCC and GND pin types, and VREF pins do not have BSCs. Table 10-5: Boundary-Scan Cell Descriptions for Stratix V Devices This table lists the capture and update register capabilities of all BSCs within Stratix V devices. Captures Output Capture Register Pin Type User I/O pins OUTJ Dedicated clock input 0 OE Capture Register Input Capture Register OEJ PIN_IN 1 PIN_IN JTAG Boundary-Scan Testing in Stratix V Devices Send Feedback Drives Output Update Register OE Update Register Input Update Register Comments PIN_OUT PIN_OE INJ — No Connect (N.C.) N.C. N.C. PIN_IN drives to the clock network or logic array Altera Corporation 10-12 SV51012 2015.06.12 IEEE Std. 1149.6 Boundary-Scan Register Captures Output Capture Register Pin Type Drives OE Capture Register Input Capture Register Dedicated input 0 1 PIN_IN Dedicated bidirectional (open drain) 0 OEJ OUTJ OEJ Output Update Register OE Update Register Input Update Register N.C. N.C. N.C. PIN_IN drives PIN_IN N.C. N.C. N.C. PIN_IN drives to the configuration control PIN_IN N.C. N.C. N.C. PIN_IN drives N.C. N.C. N.C. OUTJ drives to (23) Dedicated bidirec‐ tional(24) Dedicated output(25) OUTJ 0 Comments 0 to the control logic to the configuration control and OUTJ drives to the output buffer the output buffer IEEE Std. 1149.6 Boundary-Scan Register The BSCs for HSSI transmitters (GXB_TX[p,n]) and receivers/input clock buffers (GXB_RX[p,n])/(REFCLK[p,n]) in Stratix V devices are different from the BSCs for the I/O pins. (23) (24) (25) This includes the CONF_DONE and nSTATUS pins. This includes the DCLK pin. This includes the nCEO pin. Altera Corporation JTAG Boundary-Scan Testing in Stratix V Devices Send Feedback SV51012 2015.06.12 10-13 IEEE Std. 1149.6 Boundary-Scan Register Figure 10-3: HSSI Transmitter BSC with IEEE Std. 1149.6 BST Circuitry for Stratix V Devices PMA SDOUT BSCAN AC JTAG Output Buffer 0 BSTX1 OE 0 D D Q Q 1 1 Pad Mission 0 (DATAOUT) D D Q Q Tx Output Buffer 0 1 BSOEB 1 TX_BUF_OE nOE Pad OE Logic MORHZ ACJTAG_BUF_OE 0 0 OE BSTX0 D Q D Q 1 1 MEM_INIT SDIN AC JTAG Output Buffer SHIFT CLK UPDATE Capture Registers HIGHZ AC_TEST AC_MODE MODE Update Registers Figure 10-4: HSSI Receiver/Input Clock Buffer with IEEE Std. 1149.6 BST Circuitry for Stratix V Devices SDOUT BSCAN PMA BSRX1 AC JTAG Test Receiver Hysteretic Memory 0 BSOUT1 D Q Pad Mission (DATAIN) Optional INTEST/RUNBIST not supported 1 RX Input Buffer Pad BSRX0 AC JTAG Test Receiver 0 D BSOUT0 Q Hysteretic Memory 1 HIGHZ SDIN SHIFT CLK AC_TEST UPDATE MODE Capture Registers AC_MODE Update Registers JTAG Boundary-Scan Testing in Stratix V Devices Send Feedback MEM_INIT Altera Corporation 10-14 SV51012 2015.06.12 Document Revision History Document Revision History Date Version January 2014 2014.01.10 • Updated the Supported JTAG Instruction section. • Updated the KEY_CLR_VREG JTAG instruction. May 2013 2013.05.06 • Added link to the known document issues in the Knowledge Base. • Updated the description for EXTEST_TRAIN and EXTEST_PULSE JTAG instructions. • Moved all links to the Related Information section of respective topics for easy reference. December 2012 2012.12.28 Reorganized content and updated template. June 2012 1.5 Updated Table 11-1. December 2011 1.4 Updated Table 11-2 to include KEY_CLR_VREG and KEY_VERIFY JTAG instructions. November 2011 1.3 Updated Table 11-1 and Table 11-2. May 2011 1.2 • Chapter moved to volume 2 for the 11.0 release. • Updated Table 11-1. December 2010 1.1 No changes to the content of this chapter for the Quartus II software 10.1 release. July 2010 1.0 Initial release. Altera Corporation Changes JTAG Boundary-Scan Testing in Stratix V Devices Send Feedback Power Management in Stratix V Devices 11 2015.06.12 SV51013 Subscribe Send Feedback This chapter describes the programmable power technology, hot-socketing feature, power-on reset (POR) requirements, power-up sequencing recommendation, temperature sensing diode (TSD), and their implementation in Stratix V devices. Related Information • Stratix V Device Handbook: Known Issues Lists the planned updates to the Stratix V Device Handbook chapters. • PowerPlay Power Analysis Provides more information about the Quartus®II PowerPlay Power Analyzer tool in volume 3 of the Quartus II Handbook. • Stratix V Device Datasheet Provides more information about the recommended operating conditions of each power supply. • Stratix V E, GS, and GX Device Family Pin Connection Guidelines Provides detailed information about power supply pin connection guidelines and power regulator sharing. • Stratix V GT Device Family Pin Connection Guidelines Provides detailed information about power supply pin connection guidelines and power regulator sharing. • Board Design Resource Center Provides detailed information about power supply design requirements. • PowerPlay Early Power Estimators (EPE) and Power Analyzer Provides more information about the two supplies which make up the VCC supply. They are VCCL (core VCC) and VCCP (periphery VCC). The sum of ICCL and ICCP equals to ICC. ICCL and ICCP is found on the EPE report tab. • Stratix V Device Design Guidelines • Stratix V GT Device Design Guidelines Power Consumption The total power consumption of a Stratix V device consists of the following components: • Static power—the power that the configured device consumes when powered up but no clocks are operating. • Dynamic power— the additional power consumption of the device due to signal activity or toggling. © 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. www.altera.com 101 Innovation Drive, San Jose, CA 95134 ISO 9001:2008 Registered 11-2 SV51013 2015.06.12 Dynamic Power Equation Dynamic Power Equation Figure 11-1: Dynamic Power The following equation shows how to calculate dynamic power where P is power, C is the load capacitance, and V is the supply voltage level. The equation shows that power is design-dependent and is determined by the operating frequency of your design. Stratix V devices minimize static and dynamic power using advanced process optimizations. This technology allows Stratix V designs to meet specific performance requirements with the lowest possible power. Programmable Power Technology Stratix V devices offer the ability to configure portions of the core, called tiles, for high-speed or lowpower mode of operation performed by the Quartus II software without user intervention. Setting a tile to high-speed or low-power mode is accomplished with on-chip circuitry and does not require extra power supplies brought into the Stratix V device. In a design compilation, the Quartus II software determines whether a tile should be in high-speed or low-power mode based on the timing constraints of the design. Stratix V tiles consist of the following: • Memory logic array block (MLAB)/ logic array block (LAB) pairs with routing to the pair • MLAB/LAB pairs with routing to the pair and to adjacent digital signal processing (DSP)/ memory block routing • TriMatrix memory blocks • DSP blocks • PCI Express® (PCIe®) hard IP • Physical coding sublayer (PCS) All blocks and routing associated with the tile share the same setting of either high-speed or low-power mode. By default, tiles that include DSP blocks or memory blocks are set to high-speed mode for optimum performance. Unused DSP blocks and memory blocks are set to low-power mode to minimize static power. Clock networks do not support programmable power technology. With programmable power technology, faster speed grade FPGAs may require less power because there are fewer high-speed MLAB and LAB pairs, when compared with slower speed grade FPGAs. The slower speed grade device may have to use more high-speed MLAB and LAB pairs to meet performance require‐ ments. The Quartus II software sets unused device resources in the design to low-power mode to reduce the static power. It also sets the following resources to low-power mode when they are not used in the design: • LABs and MLABs • TriMatrix memory blocks • DSP blocks Altera Corporation Power Management in Stratix V Devices Send Feedback SV51013 2015.06.12 Temperature Sensing Diode 11-3 If a phase-locked loop (PLL) is instantiated in the design, you may assert the areset pin high to keep the PLL in low-power mode. Altera recommends that you power down unused PCIe HIPs, per side, by connecting the PCIe HIP power to GND on the PCB for additional power savings. All of the HIPs on a side of the device must be unused to be powered down. For additional information refer to the pin connection guidelines. Table 11-1: Programmable Power Capabilities for Stratix V Devices This table lists the available Stratix V programmable power capabilities. Speed grade considerations can add to the permutations to give you flexibility in designing your system. Feature Programmable Power Technology LAB Yes Routing Yes Memory Blocks Fixed setting(26) DSP Blocks Fixed setting(26) Clock Networks No Related Information • Stratix V E, GS, and GX Device Family Pin Connection Guidelines Provides more information about powering down PCIe HIPs. • Stratix V GT Device Family Pin Connection Guidelines Provides more information about powering down PCIe HIPs. Temperature Sensing Diode The Stratix V TSD uses the characteristics of a PN junction diode to determine die temperature. Knowing the junction temperature is crucial for thermal management. You can calculate junction temperature using ambient or case temperature, junction-to-ambient (ja) or junction-to-case (jc) thermal resistance, and device power consumption. Stratix V devices monitor its die temperature with the internal TSD with built-in analog-to-digital converter (ADC) circuitry or the external TSD with an external temperature sensor. This allows you to control the air flow to the device. Internal Temperature Sensing Diode You can use the Stratix V internal TSD in the following operations: • Power-up mode—to read the die's temperature during configuration, enable the Altera Temperature Sensor IP core in your design. • User mode—to read the die's temperature during user mode, assert the clken signal to the internal TSD circuitry. Note: To reduce power consumption, disable the Stratix V internal TSD when you are not using it. (26) Tiles with DSP blocks and memory blocks that are used in the design are always set to high-speed mode. By default, unused DSP blocks and memory blocks are set to low-power mode. Power Management in Stratix V Devices Send Feedback Altera Corporation 11-4 SV51013 2015.06.12 External Temperature Sensing Diode Related Information • Altera Temperature Sensor IP Core User Guide Provides more information about using the Altera Temperature Sensor IP core. • Stratix V Device Datasheet Provides more information about the Stratix V internal TSD specification. External Temperature Sensing Diode The Stratix V external TSD requires two pins for voltage reference. The following figure shows how to connect the external TSD with an external temperature sensor device, allowing external sensing of the Stratix V die temperature. For example, you can connect external temperature sensing devices, such as MAX1619, MAX1617A, MAX6627, and ADT7411 to the two external TSD pins for Stratix V device die temperature reading. Figure 11-2: TSD External Pin Connections External TSD TEMPDIODEP External Temperature Sensor FPGA TEMPDIODEN The TSD is a very sensitive circuit that can be influenced by noise coupled from other traces on the board or within the device package itself, depending on your device usage. The interfacing signal from the Stratix V device to the external temperature sensor is based on millivolts (mV) of difference, as seen at the external TSD pins. Switching the I/O near the TSD pins can affect the temperature reading. Altera recommends taking temperature readings during periods of inactivity in the device or use the internal TSD with built-in ADC circuitry. The following are board connection guidelines for the TSD external pin connections: • The maximum trace lengths for the TEMPDIODEP/TEMPDIODEN traces must be less than eight inches. • Route both traces in parallel and place them close to each other with grounded guard tracks on each side. • Altera recommends 10-mils width and space for both traces. • Route traces through a minimum number of vias and crossunders to minimize the thermocouple effects. • Ensure that the number of vias are the same on both traces. • Ensure both traces are approximately the same length. • Avoid coupling with toggling signals (for example, clocks and I/O) by having the GND plane between the diode traces and the high frequency signals. • For high-frequency noise filtering, place an external capacitor (close to the external chip) between the TEMPDIODEP/TEMPDIODEN trace. For Maxim devices, use an external capacitor between 2200 pF to 3300 pF. Altera Corporation Power Management in Stratix V Devices Send Feedback SV51013 2015.06.12 Hot-Socketing Feature 11-5 • Place a 0.1 uF bypass capacitor close to the external device. • You can use the internal TSD with built-in ADC circuitry and external TSD at the same time. • If you only use internal ADC circuitry, the external TSD pins (TEMPDIODEP/TEMPDIODEN) can be connected to GND because the external TSD pins are not used. For details about device specification and connection guidelines, refer to the external temperature sensor device datasheet from the device manufacturer. Related Information • Stratix V Device Datasheet Provides details about the external TSD specification. • Stratix V E, GS, and GX Device Family Pin Connection Guidelines Provides details about the TEMPDIODEP/TEMPDIODEN pin connection when you are not using an external TSD. • Stratix V GT Device Family Pin Connection Guidelines Provides details about the TEMPDIODEP/TEMPDIODEN pin connection when you are not using an external TSD. Hot-Socketing Feature Stratix V devices support hot socketing—also known as hot plug-in or hot swap. The hot-socketing circuitry monitors the VCCIO, VCCPD, and VCC power supplies and all VCCIO and VCCPD banks. When powering up or powering down these power supplies, refer to the Power-Up Sequence section of this handbook. During the hot-socketing operation, the I/O pin capacitance is less than 15 pF and the clock pin capacitance is less than 20 pF. The hot-socketing capability removes some of the difficulty that designers face when using the Stratix V devices on PCBs that contain a mixture of devices with different voltage requirements. The hot-socketing capability in Stratix V devices provides the following advantages: • You can drive signals into the I/O, dedicated input, and dedicated clock pins before or during power up or power down without damaging the device. External input signals to the I/O pins of the unpowered device will not power the power supplies through internal paths within the device. • The output buffers are tri-stated during system power up or power down. Because the Stratix V device does not drive signals out before or during power up, the device does not affect the other operating buses. • You can insert or remove a Stratix V device from a powered-up system board without damaging or interfering with the system board's operation. This capability allows you to avoid sinking current through the device signal pins to the device power supply, which can create a direct connection to GND that causes power supply failures. • During hot socketing, Stratix V devices are immune to latch up that can occur when a device is hotsocketed into an active system. Altera uses GND as a reference for hot-socketing and I/O buffer circuitry designs. To ensure proper operation, connect GND between boards before connecting the power supplies. This prevents GND on Power Management in Stratix V Devices Send Feedback Altera Corporation 11-6 SV51013 2015.06.12 Hot-Socketing Implementation your board from being pulled up inadvertently by a path to power through other components on your board. A pulled up GND could otherwise cause an out-of-specification I/O voltage or over current condition in the Altera device. Related Information • Power-Up Sequence on page 11-7 • Stratix V Device Datasheet Provides details about the Stratix V hot-socketing specifications. Hot-Socketing Implementation The hot-socketing feature tri-state the output buffer during power up and power down of the power supplies. When these power supplies are below the threshold voltage, the hot-socketing circuitry generates an internal HOTSCKT signal. Hot-socketing circuitry prevents excess I/O leakage during power up. When the voltage ramps up very slowly, I/O leakage is still relatively low, even after the release of the POR signal and configuration is complete. Note: The output buffer cannot flip from the state set by the hot-socketing circuitry at very low voltage. To allow the CONF_DONE and nSTATUS pins to operate during configuration, the hot-socketing feature is not applied to these configuration pins. Therefore, these pins will drive out during power up and power down. Figure 11-3: Hot-Socketing Circuitry for Stratix V Devices Power-On Reset (POR) Monitor V CCIO Weak Pull-Up Resistor PAD R Output Enable Voltage Tolerance Control Hot-Socket Output Pre-Driver Input Buffer to Logic Array The POR circuitry monitors the voltage level of the power supplies and keeps the I/O pins tri-stated until the device is in user mode. The weak pull-up resistor (R) in the Stratix V input/output element (IOE) is enabled during configuration download to keep the I/O pins from floating. Altera Corporation Power Management in Stratix V Devices Send Feedback SV51013 2015.06.12 Power-Up Sequence 11-7 The 3.0-V tolerance control circuit allows the I/O pins to be driven by 3.0 V before the power supplies are powered and prevents the I/O pins from driving out before the device enters user mode. Note: For the VCC_AUX power supply, POR only monitors one of the VCC_AUX pins. You must connect all the VCC_AUX pins. Power-Up Sequence The Stratix V devices require a power-up sequence as shown in the following figure to prevent excessive inrush current. This power-up sequence is divided into four power groups. Group 1 contains the first power rails to ramp. The VCC, VCCHIP, and VCCHSSI power rails in this group must ramp to a minimum of 80% of their full rail before any other power rails may start. Group 1 power rails can continue to ramp to full rail. The power rails in Group 2 and Group 4 can start to ramp in any order after Group 1 has reached its minimum 80% threshold. When the last power rail in Group 2 reaches 80% of its full rail, the remaining power rails in Group 3 may start their ramp. During this time, Group 2 power rails may continue to ramp to full rail. Power rails in Group 3 may ramp in any order. All power rails must ramp monotonically. The complete power-up sequence must meet either the standard or fast POR delay time, depending on the POR delay setting that is used. Power Management in Stratix V Devices Send Feedback Altera Corporation 11-8 SV51013 2015.06.12 Power-On Reset Circuitry Figure 11-4: Power-Up Sequence Requirement for Stratix V Devices Power up VCCBAT at any time. If VCC, VCCR_GXB, and VCCT_GXB have the same voltage level, they can be powered by the same regulator in Group 1 and ramp simultaneously. Group 4 Group 1 Group 1 Group 2 V CC V CCHIP V CCHSSI V CCPD V CCPGM V CCA_FPLL V CC_AUX V CCA_GXB/GTB Group 3 V CCPT V CCH_GXB V CCD_FPLL V CCT_GXB/GTB V CCR_GXB/GTB V CCL_GTB Group 4 V CCIO Group 2 Group 3 80% V CC 80% of Last Rail in Group 2 Stratix V devices may power down all power rails simultaneously. However, all rails must reach 0 V within 100 ms from the start of power-down. Power-On Reset Circuitry The POR circuitry keeps the Stratix V device in the reset state until the power supply outputs are within the recommended operating range. Altera Corporation Power Management in Stratix V Devices Send Feedback SV51013 2015.06.12 Power-On Reset Circuitry 11-9 A POR event occurs when you power up the Stratix V device until the power supplies reach the recommended operating range within the maximum power supply ramp time, tRAMP. If tRAMP is not met, the Stratix V device I/O pins and programming registers remain tri-stated, during which device configu‐ ration could fail. Figure 11-5: Relationship Between tRAMP and POR Delay Volts POR trip level first power supply last power supply Time POR delay tRAMP configuration time The Stratix V POR circuitry uses an individual detecting circuitry to monitor each of the configuration-related power supplies independently. The main POR circuitry is gated by the outputs of all the individual detectors. The main POR signal is asserted when the power starts to ramp up. This signal is released after the last ramp-up power reaches the POR trip level during power up. In user mode, the main POR signal is asserted when any of the monitored power goes below its POR trip level. Asserting the POR signal forces the device into the reset state. The POR circuitry checks the functionality of the I/O level shifters powered by the VCCPD and VCCPGM power supplies during power-up mode. The main POR circuitry waits for all the individual POR circuitries to release the POR signal before allowing the control block to start programming the device. Power Management in Stratix V Devices Send Feedback Altera Corporation 11-10 SV51013 2015.06.12 Power Supplies Monitored and Not Monitored by the POR Circuitry Figure 11-6: Simplified POR Diagram for Stratix V Devices V CC V CC POR V CC_AUX Modular Main POR V CC_AUX POR Main POR V CCPD V CCPGM Related Information Stratix V Device Datasheet Provides more information about the POR delay specification and tRAMP. Power Supplies Monitored and Not Monitored by the POR Circuitry Table 11-2: Power Supplies Monitored and Not Monitored by the Stratix V POR Circuitry Power Supplies Monitored • • • • • • VCC_AUX VCCBAT VCC VCCPT VCCPD VCCPGM Power Supplies Not Monitored • • • • • • • • VCCT_GXB VCCH_GXB VCCR_GXB VCCA_GXB VCCA_FPLL VCCD_FPLL VCCIO VCCHIP Note: For the device to exit POR, you must power the VCCBAT power supply even if you do not use the volatile key. Related Information MSEL Pin Settings Provides more information about the MSEL pin settings for each POR delay. Document Revision History Date Version January 2015 2015.01.23 Altera Corporation Changes Added links to the Stratix V Design Guidelines and Stratix V GT Design Guidelines. Power Management in Stratix V Devices Send Feedback SV51013 2015.06.12 Document Revision History Date Version 11-11 Changes May 2013 2013.05.06 • Added link to the known document issues in the Knowledge Base. • Moved all links to the Related Information section of respective topics for easy reference. • Added 'There are two supplies which make up the VCC supply. They are VCCL (core VCC) and VCCP (periphery VCC). The sum of ICCL and ICCP equals to ICC. You can refer to the Stratix V PowerPlay Early Power Estimators (EPE) and Power Analyzer for ICCL and ICCP on the EPE report tab.' to 'For detailed information about power supply design requirements, refer to the Board Design Resource Center page.' • Updated dynamic power in Power Consumption for improve clarity. • Added description on powering down unused PCIe HIPS in Programmable Power Technology • Updated Hot-Socketing Feature with ' When powering up these power supplies, you must follow the required power-up sequence as shown in the Power-Up Sequence section of this handbook.' December 2012 2012.12.28 • Consolidated content from the Hot Socketing and Power-On Reset in Stratix V Devices chapter. • Reorganized content and updated template. June 2012 1.3 Minor text edits. May 2011 1.2 Chapter moved to volume 2 for the Quartus II software 11.0 release. December 2010 1.1 No changes to the content of this chapter for the Quartus II software 10.1 release. July 2010 1.0 Initial release. Power Management in Stratix V Devices Send Feedback Altera Corporation