ispLSI 8840 ® Features Functional Block Diagram • SuperBIG HIGH DENSITY IN-SYSTEM PROGRAMMABLE LOGIC — 5V Power Supply — 45,000 PLD Gates/840 Macrocells — Up to 312 I/O Pins Supporting 3.3V/5V I/O — 1152 Registers — High-Speed Global and Big Fast Megablock (BFM) Interconnect — Wide 20-Macrocell Generic Logic Block (GLB) for High Performance — Wide Input Gating (44 Inputs per GLB) for Fast Counters, State Machines, Address Decoders, Etc. — PCB-Efficient Ball Grid Array (BGA) Package Options 2 12 I/O 12 I/O 12 I/O 12 I/O 12 I/O 12 I/O 12 I/O Big Fast Megablock 0 12 I/O 12 I/O Big Fast Megablock 1 12 I/O 12 I/O Big Fast Megablock 2 12 I/O Global Routing Plane 12 I/O Big Fast Megablock 3 12 I/O 12 I/O Big Fast Megablock 4 12 I/O 12 I/O Big Fast Megablock 5 12 I/O 12 I/O Big Fast Megablock 6 12 I/O ® • HIGH-PERFORMANCE E CMOS TECHNOLOGY — fmax = 110 MHz Maximum Operating Frequency — tpd = 8.5 ns Propagation Delay — TTL Compatible Inputs and 3.3V/5V Outputs — PCI Compatible Inputs, Outputs and Speed Grades — Electrically Erasable and Reprogrammable — Non-Volatile — Programmable Speed/Power Logic Path Optimization • IN-SYSTEM PROGRAMMABLE — Increased Manufacturing Yields, Reduced Time-toMarket and Improved Product Quality — Reprogram Soldered Devices for Faster Debugging Boundary Scan • 100% IEEE 1149.1 BOUNDARY SCAN TESTABLE AND 5V IN-SYSTEM PROGRAMMABLE ispLSI 8000 Family Description 12 I/O 12 I/O 12 I/O 12 I/O 12 I/O 12 I/O 8840 block The ispLSI 8000 Family of Register-Intensive, SuperBIG In-System Programmable Logic Devices is based on Big Fast Megablocks of 120 registered macrocells and a Global Routing Plane (GRP) structure interconnecting the Big Fast Megablocks. Each Big Fast Megablock contains 120 registered macrocells arranged in six groups of 20, a group of 20 being referred to as a Generic Logic Block, or GLB. Within the Big Fast Megablock, a Big Fast Megablock Routing Pool (BRP) interconnects the six GLBs to each other and to 24 Big Fast Megablock I/O cells with optional I/O registers. The Global Routing Plane which interconnects the Big Fast Megablocks has an additional 144 global I/Os with optional I/O registers. • ARCHITECTURE FEATURES — Enhanced Pin-Locking Architecture, Symmetrical Generic Logic Blocks Connected by Hierarchical Big Fast Megablock and Global Routing Planes — Product Term Sharing Array Supports up to 28 Product Terms per Macrocell Output — Macrocells Support Concurrent Combinatorial and Registered Functions — Embedded Tristate Bus Can Be Used as an Internal Tristate Bus or as an Extension of an External Tristate Bus — Macrocell and I/O Registers Feature Multiple Control Options, Including Set, Reset and Clock Enable — I/O Pins Support Programmable Bus Hold, Pull-Up, Open-Drain and Slew Rate Options — Separate VCCIO Power Supply for Output Drivers Supports 5V or 3.3V Outputs — I/O Cell Register Programmable as Input Register for Fast Setup Time or Output Register for Fast Clock to Output Time Outputs from the GLBs in a Big Fast Megablock can drive both the Big Fast Megablock Routing Pool within the Big Fast Megablock and the Global Routing Plane between the Big Fast Megablocks. Switching resources are provided to allow signals in the Global Routing Plane to drive Copyright © 2002 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com 8840_08 1 January 2002 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm In-System Programmable SuperBIG™ High Density PLD Specifications ispLSI 8840 Figure 1. ispLSI 8840 Functional Block Diagram (Perspective) Big Fast Megablock Routing Pool (BRP) Big Fast Megablock Routing Pool (BRP) Big Fast Megablock Routing Pool (BRP) Big Fast Megablock Routing Pool (BRP) Global Routing Plane (GRP) with Tristate Bus Lines 2 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Functional Block Diagram Specifications ispLSI 8840 Control signals for the I/O cell registers are generated using an extra product term within each GLB, or using dedicated input pins. Each GLB has two extra product terms beyond the 80 available for the macrocell logic. The first additional product term is used as an optional shared product term clock for all the macrocells within the GLB. The second additional product term is then routed to an I/O Control Bus using a separate routing structure from the Big Fast Megablock Routing Pool and Global Routing Plane. Use of a separate control bus routing structure allows the I/O registers to have many control signals with no impact on the interconnection of the GLBs and Big Fast Megablocks. The I/O Control Bus is split into four quadrants, each servicing the I/O cell control requirements for one edge of the device. Signals in the control bus can be independently selected by any or all I/O cells to act as clock, clock enable, output enable, reset or preset. any or all the Big Fast Megablocks in the device. This mechanism allows fast, efficient connections, both within the Big Fast Megablocks and between them. Each GLB contains 20 macrocells and a fully populated, programmable AND-array with 82 logic product terms. The GLB has 44 inputs from the Big Fast Megablock Routing Pool which are available in both true and complement form for every product term. Up to 20 of these inputs can be switched to provide local feedback into the GLB for logic functions that require it. The 80 general-purpose product terms can be grouped into 20 sets of four and sent into a Product Term Sharing Array (PTSA) which allows sharing up to a maximum of 28 product terms for a single function. Alternatively, the PTSA can be bypassed for functions of four product terms or less. The 20 registered macrocells in the GLB are driven by the 20 outputs from the PTSA or the PTSA bypass. Each macrocell contains a programmable XOR gate, a programmable register/latch/toggle flip-flop and the necessary clocks and control logic to allow combinatorial or registered operation. Each macrocell has two outputs, one output can be fed back inside the GLB to the ANDarray, while the other output drives both the Big Fast Megablock Routing Pool and the Global Routing Plane. This dual output capability from the macrocell allows efficient use of the hardware resources. One output can be a registered function for example, while the other output can be an unrelated combinatorial function. Each Big Fast Megablock has 24 I/O cells. The Global Routing Pool has 144 I/O cells. Each I/O cell can be configured as a combinatorial input, combinatorial output, registered input, registered output or bidirectional I/O. I/O cell registers can be clocked from one of several global, local or product term clocks which are selected from the I/O control bus. A global and product term clock enable is also provided, eliminating the need for the user to gate the clock to the I/O cell registers. Reset and preset for the I/O cell register is provided from both global and product term signals. The polarity of all of these control signals is selectable on an individual I/O cell basis. The I/O cell register can be programmed to operate as a Dtype register or a D-type latch. Macrocell registers can be clocked from one of several global, local or product term clocks available on the device. A global, local and product term clock enable is also provided, eliminating the need to gate the clock to the macrocell registers. Reset and preset for the macrocell register is provided from both global and product term signals. The polarity of all of these control signals is selectable on an individual macrocell basis. The macrocell register can be programmed to operate as a D-type register, a D-type flow-through latch or a T-type flip flop. Inputs and outputs are PCI compatible. The input threshold is fixed at TTL levels. The output driver can source 4mA and sink 8mA. The output drivers have a separate VCCIO power supply which is independent of the main VCC supply for the device. This feature allows the output drivers to run from either 5V or 3.3V while the device logic is always powered from 5V. The output drivers also provide individually programmable edge rates and open drain capability. A programmable pullup resistor is provided to tie off unused inputs and a programmable bus-hold latch is available to hold tristate outputs in their last valid state until the bus is driven again by another device. The 20 outputs from the GLB can drive both the Big Fast Megablock Routing Pool within the Big Fast Megablock and the Global Routing Plane between the Big Fast Megablocks. The Big Fast Megablock Routing Pool contains general purpose tracks which interconnect the six GLBs within the Big Fast Megablock and dedicated tracks for the signals from the Big Fast Megablock I/O cells. The Global Routing Plane contains general purpose tracks that interconnect the Big Fast Megablocks and also carry the signals from the I/Os connected to the Global Routing Plane. The ispLSI 8000 Family features 5V, non-volatile insystem programmability for both the logic and the interconnect structures, providing the means to develop truly reconfigurable systems. Programming is achieved 3 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm ispLSI 8000 Family Description (Continued) Specifications ispLSI 8840 through the industry standard IEEE 1149.1-compliant Boundary Scan interface using either the JTAG protocol or Lattice proprietary ISP protocol. Boundary Scan test is also supported through the same interface. The embedded tristate bus has internal bus hold and arbitration features in order to make the function more “user friendly”. The bus hold feature keeps the internal bus at the previously driven logic state when the bus is not driven to eliminate bus float. The bus arbitration is performed on a “first come, first served” priority. In other words, once a logic block drives the bus, other logic blocks cannot drive the bus until the first releases the bus. This arbitration feature prevents internal bus contention when there is an overlap between two bus enable signals. Typically, it takes about 3ns to resolve one bus signal coming off the bus to another bus signal driving the bus. The arbitration feature combined with the predictability of CPLD, makes the embedded tristate bus the most practical for the real world bus implementations. An enhanced, multiple cell security scheme is provided that prevents reading of the JEDEC programming file when secured. After the device has been secured using this mechanism, the only way to clear the security is to execute a bulk-erase instruction. ispLSI 8840 Description The ispLSI 8840 device has seven Big Fast Megablocks for a total of 7 x 120 = 840 macrocells. Each Big Fast Megablock has a total of 24 I/O cells and the Global Routing Plane has a total of 144 I/O cells. This gives (7 x 24) + 144 = 312 I/Os. The total registers in the device is the sum of macrocells plus I/O cells, 840 + 312 = 1152 registers. Embedded Tristate Bus There is a 108-line embedded internal tristate bus as part of the Global Routing Plane (GRP), enabling multiple GLBs to drive the same tracks. This bus can be partitioned into various bus widths such as twelve 9-line buses, six 18-line buses or three 36-line buses. The GLBs can dynamically share a subset of the Global Routing Plane tracks. This feature eliminates the need to convert tristate buses to wide multiplexers on the programmable device. Up to 18 macrocells per GLB can participate in driving the embedded tristate bus. The remaining two macrocells per GLB are used to generate the internal tristate driver control signals on each data byte (with parity). The embedded tristate bus can also be configured as an extension of an external tristate bus using the bidirectional capability of the I/O cells connected to the Global Routing Plane. The Global Routing Plane I/Os 0-8 and 15-23 from each group (I/OGx as defined in the I/O Pin Location Table) can connect to the internal tristate bus as well as the unidirectional/non- 4 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm tristate global routing channels. I/Os 9-14 connect only to the global routing channel. ispLSI 8000 Family Description (Continued) Specifications ispLSI 8840 I/O Big Fast Megablock Input Tracks AND Array Input Routing General Purpose Big Fast Megablock Input Tracks 20 Feedback Inputs 0 43 Product Term Sharing Array Macrocell 0 PT 0 PT 1 PT 2 PT 3 From PTSA PTSA Bypass Single PT PT Clock PT Preset PT Reset Shared PT Clock Bus Input To Interconnect 0 From Tristate Bus Track Macrocell 1 PT 4 PT 5 PT 6 PT 7 From PTSA PTSA Bypass Single PT PT Clock PT Preset PT Reset Shared PT Clock Bus Input To Interconnect 1 From Tristate Bus Track Macrocell 2 PT 8 PT 9 PT 10 PT 11 From PTSA PTSA Bypass Single PT PT Clock PT Preset PT Reset Shared PT Clock Bus Input Fully Populated AND Array To Interconnect 2 From Tristate Bus Track Macrocell 3 PT 12 PT 13 PT 14 PT 15 From PTSA PTSA Bypass Single PT PT Clock PT Preset PT Reset Shared PT Clock Bus Input To interconnect 3 From Tristate Bus Track Macrocell 19 PT 76 PT 77 PT 78 PT 79 From PTSA PTSA Bypass Single PT PT Clock PT Preset PT Reset Shared PT Clock Bus Input PT 80 To Interconnect 19 From Tristate Bus Track To Output Control MUX PT 81 Function Selector (E2 Cell Controlled) Note: Macrocells 9 and 10 do not support Tristate Bus Feedback. 5 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Figure 2. ispLSI 8000 GLB Overview Specifications ispLSI 8840 Bus Input From Tristate Bus Track* Single PT Feedback to AND Array PTSA D Q To Big Fast Megablock or Global Interconnect PTSA Bypass PT Clock Clk En Global Clock Enable To Specific Global Tristate Bus* Global Clock 0 Global Clock 1 Global Clock 2 R/L R P PT Reset From Macrocell 9 or 10 Macrocells 0-8 and 11-19 GRST PT Preset Reset pin GRST To All Macrocells and I/O Cells Preset/Reset Input has Global Polarity Control From PT80 : Function Selector (E2 Cell Controlled) *Not available for Macrocells 9 and 10. 6 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Figure 3. ispLSI 8000 Macrocell Overview Specifications ispLSI 8840 TOE VCCIO VCCIO VCCIO GLOBAL OE0 GLOBAL OE1 GLOBAL OE2 GLOBAL OE3 From Output Control Bus Multiplexed Output From Big Fast Megablock or Global Track D Q GLOBAL I/O CLOCK ENABLE From Output Control Bus GLOBAL I/O CLOCK0 GLOBAL I/O CLOCK1 QUADRANT I/O CLOCK Big Fast Megablock I/O Pad or Global I/O Pad Slew Open Rate Drain CLKEN To Specific Big Fast Megablock or Global Tracks R/L To Specific Global Tristate Bus From Output Control Bus P R From Output Control Bus Global I/O Cell Only GRST From Output Control Bus : Function Selector (E2 Cell Controlled) 7 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Figure 4. ispLSI 8000 I/O Cell Specifications ispLSI 8840 In addition to the data input and output to the I/O cells, each I/O cell can have up to six different I/O cell control signals. In addition to the internal OE control, the five control signals for each I/O cell consist of pin OE control, clock enable, clock input, asynchronous preset and asynchronous reset. All of the I/O control signals can be driven either from the dedicated external input pins or from the internal control bus. The 16-bit wide output control buses are organized in four different quadrants as shown in Figure 5. Since each GLB is capable of generating the output control signals, each of the output control bus signals can be driven from a unique GLB. The 42 GLBs can generate a total of 42 unique I/O control signals. Referring to Figure 2, the GLB generates its output control signal from control product term (PT81). The output enable of each I/O cell can be driven by 21 different sources – 16 from the output control bus, four from the Global OE pins and one from the Test OE pin. Figure 5 also illustrates how the quadrant clocks are routed to the appropriate quadrant I/O cells. Figure 5. Output Control Bus and Quadrant Organization GLB Generated Output Control (see Figure 2) From PT81 Quadrant 3, 16-Bit Wide Output Control Bus (I/O G0-G5 <0-11>, QIOCLK3) Quadrant 1, 16-Bit Wide Output Control Bus (I/O G0-G5 <12-23>, QIOCLK1) Quadrant 0, 16-Bit Wide Output Control Bus (I/O B0-B6 <0-11>, QIOCLK0) Quadrant 2, 16-Bit Wide Output Control Bus (I/O B0-B6 <12-23>, QIOCLK2) OE Bus.eps 8 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm The Global OE signals and Test OE signal are driven from the dedicated external control input pins. Output Control Organization Specifications ispLSI 8840 HIGHZ EXTEST PROG_MODE SCANIN (from previous cell) BSCAN Registers D TOE BSCAN Latches Q D Normal Function OE Q 0 1 EXTEST PROG_MODE Normal Function Shift DR D Q D Q Clock DR D 0 1 Q SCANOUT (to next cell) Update DR Reset* *Internal power-up reset signal. Not connected to external reset pin. Figure 7. Boundary Scan Register Circuit for Input-Only Pins Input Pin SCANIN (from previous cell D Shift DR Clock DR 9 Q SCANOUT (to next cell) I/O Pin Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Figure 6. Boundary Scan Register Circuit for I/O Pins Specifications ispLSI 8840 TMS TDI Tbtsu Tbtch Tbth Tbtcl Tbtcp TCK Tbtvo Tbtco Valid Data TDO Tbtcsu Data to be captured Valid Data Tbtch Data Captured Tbtuov Tbtuco Data to be driven out Valid Data Tbtuoz Valid Data MIN MAX UNITS TCK Clock Pulse Width 0.1 400 µs TCK Pulse Width High 0.05 200 µs TCK Pulse Width Low 0.05 200 µs TDI, TMS Setup Time to TCK 25 — ns TDI, TMS Hold Time from TCK 25 — ns TCK, TDI, TMS Rise and Fall Time 50 — mV/ns TAP Controller, TCK to TDO Valid — 25 ns TAP Controller, TCK to TDO High-Impedance — 25 ns TAP Controller, TCK to TDO High-Impedance to Valid Output — 25 ns BSCAN Test Capture Register Setup Time 20 — ns BSCAN Test Capture Register Hold Time 25 — ns BSCAN Test Update Register Clock to Valid Output — 25 ns BSCAN Test Update Register Clock to High-Impedance — 25 ns BSCAN Test Update Register High-Impedance to Valid Output — 25 SYMBOL tbtcp tbtch tbtcl tbtsu tbth trf tbtco tbtoz tbtvo tbtcsu tbtch tbtuco tbtuoz tbtuov Tbtoz PARAMETER ns Table 2-0010/8840 10 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Figure 8. Boundary Scan Waveforms and Timing Specifications Specifications ispLSI 8840 Supply Voltage Vcc .................................. -0.5 to +7.0V Input Voltage Applied ........................ -2.5 to VCC +1.0V Tri-Stated Output Voltage Applied .... -2.5 to VCC +1.0V Storage Temperature ................................ -65 to 150°C Case Temp. with Power Applied .............. -55 to 125°C Max. Junction Temp. (TJ) with Power Applied ... 140°C 1. Stresses above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications). 2. Compliance with the Thermal Management section of the Lattice Semiconductor Data Book or CD-ROM is a requirement. DC Recommended Operating Condition PARAMETER SYMBOL VCC VCCIO VIH VIL VOH VOL Supply Voltage Commercial TA = 0°C to 70°C MIN. MAX. UNITS 4.75 5.25 V Output Supply Voltage 3.0 5.25 V Input High Voltage 2.0 VCC +1 V Input Low Voltage 0.0 0.8 V Output High Voltage 2.4 — V Output Low Voltage — 0.4 V Table 2-0005/8840 Capacitance (TA=25°C,f=1.0 MHz) TYPICAL UNITS I/O Capacitance 10 pf VCC = 5.0V, VI/O = 2.0V Clock Capacitance 10 pf VCC = 5.0V, VCK = 2.0V Global Input Capacitance 10 pf VCC = 5.0V, VG = 2.0V SYMBOL C1 C2 C3 PARAMETER TEST CONDITIONS Table 2-0006/8840 Erase/Reprogram Specification PARAMETER ispLSI Erase/Reprogram Cycles MINIMUM MAXIMUM UNITS 10000 – Cycles Table 2-0008/3320 11 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Absolute Maximum Ratings 1,2 Specifications ispLSI 8840 Figure 9. Test Load GND to 3.0V Input Pulse Levels ≤ 1.5 ns 10% to 90% Input Rise and Fall Time Input Timing Reference Levels 1.5V Ouput Timing Reference Levels 1.5V Output Load + 5V (VCC and VCCIO) R1 See Figure 2 Device Output Table 2-0003/8840 3-state levels are measured 0.5V from steady-state active level. Test Point R2 Output Load Conditions (See Figure 9) TEST CONDITION R1 R2 CL 470Ω 390Ω 35pF Active High ∞ 390Ω 35pF Active Low 470Ω 390Ω 35pF Active High to Z at VOH -0.5V ∞ 390Ω 5pF Active Low to Z at VOL +0.5V 470Ω 390Ω 5pF A B C CL* *CL includes Test Fixture and Probe Capacitance. 0213A/8840 Table 2-0004A/8840 DC Electrical Characteristics Over Recommended Operating Conditions SYMBOL VOL VOH IIL IIH IPU IBHL IBHH IBHLO IBHHO VBHT IOS 1 ICC 2,4 CONDITION PARAMETER 3 MIN. TYP. MAX. UNITS – – 0.4 V 2.4 – – V Output Low Voltage IOL = 8 mA Output High Voltage IOH = -4 mA Input or I/O Low Leakage Current 0.0V ≤ VIN ≤ 0.8V – – -10 µA 3.5V ≤ VIN ≤ VCC VCCIO = 5V – – 10 µA (VCCIO - 0.2) ≤ VIN ≤ VCCIO VCCIO = 3.3V – – 10 µA VCCIO < VIN ≤ 5.25V VIN >VCCIO – – 10 µA Input or I/O High Leakage Current Active Pullup Current, Input or I/O 0V ≤ VIN ≤ 2.0V -10 – -250 µA Bus-Hold Low Sustaining Current VIN = 0.8V 50 – – µA Bus-Hold High Sustaining Current VIN = 2.0V -50 – – µA Bus-Hold Low, Overdrive Current 0V ≤ VIN ≤ VCCIO – – 550 µA Bus-Hold High, Overdrive Current 0V ≤ VIN ≤ VCCIO – – -550 µA 0.8 – 2.0 V VCC = 5V, VOUT = 0.5V – – -200 mA VIL = 0.0V, VIH = 3.0V High Speed Mode – 630 – mA fCLOCK = 1MHz – 340 – mA Bus-Hold Trip Point (1.4V Nominal) Output Short Circuit Current Operating Power Supply Current Low Power Mode 1. One output at a time for a maximum duration of one second. VOUT = 0.5V was selected to avoid test problems by tester ground degradation. Characterized but not 100% tested. 2. Measured using 42 20-bit counters. 3. Typical values are at VCC = 5V and TA = 25°C. 4. Maximum I CC varies widely with specific device configuration and operating frequency. 12 Table 2-0007/8840 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Switching Test Conditions Specifications ispLSI 8840 Over Recommended Operating Conditions 2 PARA- TEST 4 # METER COND. tpd1 tpd2 fmax tsuq thq tcoq tsug thg tcog tsu1 th1 tco1 tsuceq thceq tsuceg thceg tgoe trglb trio trw twh twl 1. 2. 3. 4. A -90 -110 DESCRIPTION -60 MIN. MAX. MIN. MAX. MIN. MAX. A 1 Prop Delay, BFM Input to Same BFM Output, 4 PT Bypass 2 Prop Delay, Global Input to Global Output – UNITS – 8.5 – 10.0 – 15.0 ns – 13.5 – 16.0 – 24.0 ns 3 3 Clk Frequency, Local Feedback, Same GLB 110 – 90.0 – 60.0 – MHz – 4 I/O Cell Reg, Data Setup Time, Quadrant I/O Clock 6.0 8.0 – 12.0 – ns – 5 I/O Cell Reg, Data Hold Time, Quadrant I/O Clock 0.0 – 0.0 – 0.0 – ns A 6 I/O Cell Reg, Quadrant Clock to Output Delay – 4.5 – 6.0 – 9.0 ns – 7 I/O Cell Reg, Data Setup Time, Global I/O Clock 4.5 – 6.0 – 9.0 – ns – 8 I/O Cell Reg, Data Hold Time, Global I/O Clock 0.0 – 0.0 – 0.0 – ns A 9 I/O Cell Reg, Global Clock to Output Delay – 6.0 – 7.5 – 11.0 ns – 10 GLB Reg Setup, BFM Input to Same BFM GLB, 4 PT Bypass 5.0 – 7.0 – 10.0 – ns – 11 GLB Reg Hold Time, BFM Input to Same BFM GLB 0.0 – 0.0 – 0.0 – ns A 12 GLB Reg, Global Clock to Same BFM Output Delay – 8.0 – 10.0 – 15.0 ns – 13 I/O Cell Reg, CLKEN Setup Time, Quadrant I/O Clock 5.0 – 6.5 – 9.5 – ns – 14 I/O Cell Reg, CLKEN Hold Time, Quadrant I/O Clock 0.0 – 0.0 – 0.0 – ns – 15 GLB Reg, CLKEN Setup Time, Global Clock 3.5 – 4.5 – 6.5 – ns – 16 GLB Reg, CLKEN Hold Time, Global Clock 0.0 – 0.0 – 0.0 – ns B/C 17 Global Output Enable/Disable Delay – 8.0 – 10.0 – 15.0 ns – 18 Global Reset/Preset Time, GLB Reg – 12.0 – 15.0 – 22.0 ns – 19 Global Reset/Preset Time, I/O Cell Reg – 8.0 – 10.0 – 15.0 ns – 20 Global Reset/Preset Pulse Duration 5.0 – 6.5 – 9.5 – ns – 21 Global or Quadrant Clock Pulse, High Duration 4.0 – 6.0 – 9.0 – ns – 22 Global or Quadrant Clock Pulse, Low Duration 4.0 – 6.0 – 9.0 – ns Unless noted otherwise, all parameters use PTSA and CLK0. Refer to Timing Model in this data sheet for further details. Standard 20-bit counter with local feedback. Refer to Switching Test Conditions section. 13 Table 2-0030/8840 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm External Switching Characteristics1 Specifications ispLSI 8840 Over Recommended Operating Conditions PARAMETER -110 #2 DESCRIPTION -90 -60 MIN MAX MIN MAX MIN MAX UNITS 23 Input Pad and Input Buffer, Combinatorial Input – 0.1 – 0.1 24 Input Pad and Input Buffer, Registered Input – 8.0 – 9.4 – 0.2 ns – 13.9 ns 25 Output Register/Latch Bypass to Output Buffer – 0.0 – 0.0 – 0.0 ns 26 Input Register/Latch Bypass to BFM Routing or GRP – 0.2 – 0.2 – 0.4 ns 27 I/O Cell Latch, Transparent Mode – 2.0 – 2.4 – 3.6 ns 28 I/O Cell Register/Latch, Clk/Gate to Output – 1.0 – 1.2 – 2.0 ns I/O Cell Delay tidcom tidreg tobp tibp tiolat tioco tiosu tioh tiorst tiosuce tiohce todreg todcom todz tslf tsls 29 I/O Cell Register/Latch, Setup Time 0.4 – 0.7 – 1.4 – ns 30 I/O Cell Register/Latch, Hold Time 4.1 – 4.4 – 6.9 – ns – 2.3 – 2.9 – 4.4 ns 32 I/O Cell Register/Latch, Setup Time for Clk Enable 31 I/O Cell Register/Latch, Reset or Set Time 2.6 – 2.7 – 3.8 – ns 33 I/O cell Register/Latch, Hold Time for Clk Enable 1.9 – 1.9 – 2.9 – ns – 1.1 – 1.3 – 1.9 ns 34 I/O Cell Output Buffer Delay, Registered Output 35 I/O Cell Output Buffer Delay, Combinatorial Output – 1.7 – 2.0 – 3.0 ns 36 Output Driver Disable Time – 2.0 – 2.3 – 3.5 ns 37 Slew Rate Adder, Fast Slew Rate – 0.0 – 0.0 – 0.0 ns 38 Slew Rate Adder, Slow Slew Rate – 5.0 – 5.0 – 7.5 ns 39 AND Array, High Speed Mode – 3.6 – 4.2 – 6.4 ns 40 AND Array, Low Power Mode – 7.1 – 8.4 – 12.6 ns 41 Single Product Term Bypass – 3.6 – 4.3 – 6.2 ns 42 Four Product Term Bypass, Combinatorial Macrocell – 0.2 – 0.3 – 0.4 ns 43 Four Product Term Bypass, Registered Macrocell – 3.4 – 4.4 – 6.1 ns GLB / Macrocell Delay tandhs tandlp t1pt t4ptcom t4ptreg tptsa tmbp tmlat tmco tmsu tmh tmrst tmsuce tmhce tftog tfloc tpck tpcken tsck tscken tprst trdir 44 Product Term Sharing Array – 3.7 – 4.5 – 6.8 ns 45 Macrocell Register/Latch Bypass – 0.0 – 0.0 – 0.0 ns 46 Macrocell Latch, Transparent Mode – 0.2 – 0.3 – 0.9 ns 47 Macrocell Register/Latch, Clk/Gate to Output – 0.2 – 0.3 – 0.5 ns 48 Macrocell Register/Latch, Setup Time 0.4 – 0.8 – 1.2 – ns 49 Macrocell Register/Latch, Hold Time 3.8 – 4.5 – 6.1 – ns – 4.0 – 5.2 – 7.3 ns 51 Macrocell Register/Latch, Setup Time for Clk Enable 50 Macrocell Register/Latch, Reset or Set Time 1.7 – 1.8 – 2.4 – ns 52 Macrocell Register/Latch, Hold Time for Clk Enable 1.0 – 0.9 – 1.3 – ns – 3.9 – 4.7 – 6.8 ns 53 Toggle Flip-Flop Feedback 54 Local Feedback to AND Array 55 Single Product Term, Clk 56 Single Product Term, Clk Enable – 1.1 – 1.3 – 1.9 ns 1.0 2.5 1.5 3.5 2.3 5.3 ns – 2.6 – 3.1 – 4.6 ns 1.6 2.4 1.8 2.5 2.7 3.8 ns 58 Shared Product Term, Clk Enable – 2.4 – 2.5 – 3.8 ns 59 Single Product Term, Reset or Set Delay – 1.7 – 2.0 – 3.0 ns 60 Macrocell Register, Direct Input from GRP – 1.8 – 2.1 – 2.7 ns 57 Shared Product Term, Clk 14 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Internal Timing Parameters Specifications ispLSI 8840 Over Recommended Operating Conditions PARAMETER -110 #2 DESCRIPTION -90 -60 MIN MAX MIN MAX MIN MAX UNITS 61 BFM Routing Delay, Signal from I/O Cell – 0.2 – 0.3 – 0.4 ns BFM / Global Routing Pool Delay tbfmi tgrpi tgrpiz tbfmm tgrpm tgrpmz tbfmg tgrpb tbcom tbreg tgcom tgreg 62 GRP Delay, Signal from I/O Cell – 0.2 – 0.2 – 0.4 ns 63 Internal Tristate Bus Enable/Disable, I/O Cell Buffer – 2.2 – 2.5 – 3.8 ns 64 BFM Routing Delay, Signal from Macrocell – 1.9 – 2.3 – 3.4 ns 65 GRP Delay, Signal from Macrocell – 2 – 2.4 – 3.5 ns 66 Internal Tristate Bus Enable/Disable, Macrocell Buffer – 4 – 4.7 – 7.1 ns 67 BFM Routing Delay, Signal from GRP – 1.6 – 1.8 – 2.8 ns 68 GRP Delay, Signal from BFM Routing – 2.5 – 3.0 – 4.4 ns 69 BFM Routing to I/O Cell, Combinatorial Path – 0.5 – 0.6 – 0.8 ns 70 BFM Routing to I/O Cell, Registered Path – 3.5 – 4.1 – 6.1 ns 71 GRP to I/O Cell, Combinatorial Path – 0.4 – 0.4 – 0.6 ns 72 GRP to I/O Cell, Registered Path – 3.4 – 3.9 – 5.9 ns I/O Control Bus Delay tpiock tpiocken tpoe tpiorst tpioz 73 Product Term as I/O Cell Register Clock – 6.5 – 7.7 – 11.6 ns 74 Product Term as I/O Cell Register Clock Enable – 6.5 – 7.7 – 11.6 ns 75 Product Term as Output Buffer Enable/Disable – 6.7 – 7.9 – 11.9 ns 76 Product Term as I/O Cell Register Reset or Set Delay – 7.3 – 8.8 – 13.2 ns 77 Internal Tristate Bus Control Signal for I/O Cell Buffer – 6.0 – 7.1 – 10.7 ns Global Control Delay tgck tgcken tgiock tgiocken tqck tgoe ttoe tgmrst tgiorst 78 Global Macrocell Register Clk 2.9 3.7 3.1 4.9 4.6 7.3 ns 79 Global Macrocell Register Clk Enable 4.7 4.7 5.8 5.8 8.7 8.7 ns 80 Global I/O Register Clk 3.9 3.9 4.1 5.0 6.2 7.0 ns 81 Global I/O Register Clk Enable 4.8 4.8 5.9 5.9 8.9 8.9 ns 82 Quadrant I/O Register Clk 2.4 2.4 2.1 3.5 3.2 5.1 ns 83 Global Output Enable – 6 – 7.7 – 11.5 ns 84 Test Output Enable – 7.3 – 8.6 – 12.9 ns 85 Global GLB Register Reset – 4 – 5.1 – 7.6 ns 86 Global I/O Cell Register Reset – 4.6 – 5.9 – 8.8 ns 1. Internal Timing Parameters are not tested and are for reference only. 2. Refer to Timing Model in this data sheet for further details. 15 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Internal Timing Parameters Specifications ispLSI 8840 #69, tbcom #70, tbreg #71, tgcom #72, tgreg Input Buffer and I/O Cell Register I/O register delays I/O pad Input buffer delays #23, tidcom #24, tidreg #25, tobp #26, tibp #27, tiolat #28, tioco #29, tiosu #30, tioh #31, tiorst #32, tiosuce #33, tiohce Output path Output buffer delays Output routing #34, todreg #35, todcom #36, todz Input path BFM Routing Pool #61, tbfmi #67, tbfmg #64, tbfmm z GLB/ Macrocell AND array #39, tandhs #40, tandlp Local feedback #54, tfloc Toggle feedback Global Routing Plane #53, Mcell register PTSA tftog #41, t1pt #45, tmbp #42, t4ptcom #46, tmlat #43, t4ptreg #47, tmco #44, tptsa #48, tmsu #49, tmh PT Mcell controls #50, tmrst #55, tpck #51, tmsuce #56, tpcken #52, tmbce #57, t #62, tgrpi #63, tgrpiz #65, tgrpm #66, tgrpmz #68, tgrpb sck #58, tscken #59, tprst Bus direct #60, trdir PT I/O control bus Global control delay Input pad #78, tgck #79, tgcken #80, tgiock #81, tgiocken #82, tqck #83, tgoe #84, ttoe #85, tgmrst #86, tgiorst #73, tpiock #74, tpiocken #75, tpoe #76, tpiorst #77, tpioz 8K_Model.eps 16 Output slew rate adders #37, tslf #38, tsls I/O pad Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm ispLSI 8840 Timing Model Specifications ispLSI 8840 tpd1 = (BFM Input Path Delay) + (GLB Delay) + (Output Path Delay) = (tidcom + tibp + tbfmi) + (tandhs + t4ptcom + tmbp) + (tbfmm + tbcom + tobp + todcom + tslf) = (#23 + #26 + #61) + (#39 + #42 + #45) + (#64 + #69 + #25 + #35 + #37) = (0.1 + 0.2 + 0.2) + (3.6 + 0.2 + 0.0) + (1.9 + 0.5 + 0.0 + 1.7 + 0.0) = 8.4 ns tpd (within BFM) = (BFM Delay) + (GLB Delay) = (tbfmm) + (tandhs + t4ptcom + tmbp) = (#64) + (#39 + #42 + #45) = (1.9) + (3.6 + 0.2 + 0.0) = 5.7 ns tpd (between BFMs) = (GRP Delay) + (BFM Delay) + (GLB Delay) = (tgrpm) + (tbfmg) + (tandhs + t4ptcom + tmbp) = (#65) + (#67) + (#39 + #42 + #45) = (2.0) + (1.6) + (3.6 + 0.2 + 0.0) = 7.4 ns BFM I/O to internal tri-state Enable/Disable = (BFM Input Path Delay) + (GLB Delay, 1PT) + (Tri-state Control Delay) = (tidcom + tibp + tbfmi) + (tandhs + t1pt + tmbp) + (tgrpmz) = (#23 + #26 + #61) + (#39 + #41 + #45) + (#66) = (0.1 + 0.2 + 0.2) + (3.6 + 3.6 + 0.0) + (4.0) = 11.7 ns tsu1 = (BFM Input Path Delay) + (GLB Setup Time) - (Min. Global Clock Delay) = (tidcom + tibp + tbfmi) + (tandhs + t4ptreg + tmsu) – (tgck min) = (#23 + #26 + #61) + (#39 + #43 + #48) – (#78) = (0.1 + 0.2 + 0.2) + (3.6 + 3.4 + 0.4) – (2.9) = 5 ns 1/Fmax = (Global Clk to MC Output) + (Local Feedback) + (GLB Setup Time) = (tmco) + (tfloc) + (tandhs + tptsa + tmsu) = (#47) + (#54) + (#39 + #44 + #48) = (0.2) + (1.1) + (3.6 + 3.7 + 0.4) = 9 ns Fmax = 111 MHz Note: Calculations are based upon timing specifications for the ispLSI 8840-110L 17 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Example Timing Calculations Specifications ispLSI 8840 Power consumption in the ispLSI 8840 device depends on two primary factors: the speed at which the device is operating and the number of product terms used. The product terms have a fuse-selectable speed/power tradeoff setting. Each group of four product terms has a single speed/power tradeoff control fuse that acts on the complete group of four. The fast “high-speed” setting operates product terms at their normal full power consumption. For portions of the logic that can tolerate longer propagation delays, selecting the slower “lowpower” setting will significantly reduce the power dissipation for these product terms. Figure 10 shows the relationship between power and operating speed. Figure 10. Typical Device Power Consumption vs fmax 1200 1100 1000 ispLSI 8840 ICC (mA) 900 800 700 600 Turbo Non-Turbo 500 400 300 200 0 10 20 30 40 50 60 70 80 90 100 110 120 fmax (MHz) Notes: Configuration of 42 20-bit counters Typical current at 5V, 25° C ICC can be estimated for the ispLSI 8840 using the following equation: ICC = 48.0 + (# of Turbo PTs * 0.346) + (# of Non-Turbo PTs * 0.165) + (# of Macrocells Used * fmax * AF * 0.049) # of Turbo PTs = Number of Turbo Product Terms Used in Design # of Non-Turbo PTs = Number of Non-Turbo Product Terms Used in Design fmax = Maximum Operating Frequency AF (Activity Factor) = Average Macrocell Toggle Frequency Fmax Note: An Activity Factor of 1.0 means all macrocell registers toggle at Fmax. An Activity Factor of 0.5 means the average macrocell registers toggle at half of fmax. The ICC estimate is based on typical conditions (VCC = 5.0V, room temperature) and an assumption of two GLB loads on average exists. These values are for estimates only. Since the value of ICC is sensitive to operating conditions and the program in the device, the actual ICC should be verified. 0127/8840 18 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Power Consumption Specifications ispLSI 8840 Signal Name CLK0, CLK1, CLK2 Description Dedicated clock input for the GLB registers only. These clock inputs are connected to one of the clock inputs of all GLB registers in the device. CLKEN Dedicated clock enable input for the GLB registers only. This input is available as a clock enable for each GLB register in the device. Use of the clock enable input eliminates the need for the user to gate the clock to the register. GIOCLK0, GIOCLK1 Dedicated clock inputs for the I/O registers only. These clock inputs are connected to one of the clock inputs of all I/O registers in the device. GND Ground (GND) GOE Global Output Enable inputs. SET/RESET Dedicated reset/preset pin connected to ALL registers in the device, GLB registers and I/O registers. Each register can independently choose to be reset or preset when this signal goes active. The active polarity is user-selectable. IOCLKEN Dedicated clock enable input for the I/O registers only. This input is available as a clock enable input for all I/O registers in the device. Use of the clock enable input eliminates the need for the user to tie the clock to the I/O register. I/O Input/Output – These are the general purpose I/O used by the logic array. BSCAN/ispEN Input – Dedicated in-system programming enable input. When this is high, the BSCAN TAP controller signals TMS, TDI, TDO and TCK are enabled. When this is brought low, the ISP State Machine control signals MODE, SDI, SDO and SLCK are enabled. High-to-low transition will put the device in the Lattice ISP programming mode and put all I/O in the high-Z state. TMS/MODE Input – This signal performs two functions. It is the Test Mode Select input signal when ispEN is logic high. When ispEN is logic low, it controls the operation of the ISP State Machine. NC1 No connect. QIOCLK0 QIOCLK1 QIOCLK2 QIOCLK3 Dedicated clock inputs for the I/O registers only. These clock inputs are connected to the I/O registers on the same side of the device only, they are not connected to all of the I/O registers. Use of these quadrant I/O clocks gives the fastest tco from the device. TCK/SCLK Input – This signal performs two functions. It is the Test Clock input signal when ispEN is logic high. When ispEN is logic low, it functions as a clock signal for the Serial Shift Register. TDI/SDI Input – This signal performs two functions. It is the Test Data input signal when ispEN is logic high. When ispEN is logic low, it functions as an input to load programming data into the device. SDI is also used as one of the two control signals for the ISP State Machine. TDO/SDO Output – This signal performs two functions. When ispEN is logic low, it reads the ISP data. When ispEN is high, it functions as Test Data Out. TOE Test Output Enable pin – This pin tristates all I/O pins when a logic low is driven. VCC Vcc VCCIO Power supply for the output drivers. The internal logic of the device is connected to VCC which is always 5V. The output drivers are connected to VCCIO which can be equal to VCC or 3.3V. This allows the output drivers to be powered from 3.3V, for example, to interface directly with another 3.3V device. 1. NC pins are not to be connected to any active signals, VCC or GND. 19 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Signal Descriptions Specifications ispLSI 8840 Signal 432-Ball BGA CLK0, CLK1, CLK2 A18, P29, AL19 CLKEN C18 GIOCLK0, GIOCLK1 A19, AJ18 GND A1, A2, A16, A30, A31, B1, B5, B9, B13, B19, B23, B27, B31, E2, E30, J2, J30, N2, N30, T1, T31, W2, W30, AC2, AC30, AG2, AG30, AK1, AK5, AK9, AK13, AK19, AK23, AK27, AK31, AL1, AL2, AL16, AL30, AL31 GOE0, GOE1 GOE2, GOE3 D18, T29, AH18, T2 SET/RESET P1 IOCLKEN AL20 BSCAN/ispEN AG28 TMS/MODE E4 NC1 A4, B30, D1, D31, AH1, AH31, AK2, AK30, AL4, AL28 QIOCLK0, QIOCLK1, QIOCLK2, QIOCKK3 D17, R31, AL18, T3 TCK/SCLK AH2 TDI/SDI E3 TDO/SDO AH3 TOE V3 VCC A3, A10, A22, A29, B14, B18, C1, C31, K1, K31, P2, P30, V2, V30, AB1, AB31, AJ1, AJ31, AK14, AK18, AL3, AL10, AL22, AL29 VCCIO D5, D9, D12, D15, D20, D23, D27, H4, H28, M4, M28, T4, T28, Y4, Y28, AE4, AE28, AH5, AH9, AH12, AH15, AH20, AH23, AH27 1. NC pins are not to be connected to any active signals, VCC or GND. 20 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Signal Locations (432-Ball BGA Package) Specifications ispLSI 8840 Signal I/O G0 <0> I/O G0 <1> I/O G0 <2> I/O G0 <3> I/O G0 <4> I/O G0 <5> I/O G0 <6> I/O G0 <7> I/O G0 <8> I/O G0 <9> I/O G0 <10> I/O G0 <11> I/O G0 <12> I/O G0 <13> I/O G0 <14> I/O G0 <15> I/O G0 <16> I/O G0 <17> I/O G0 <18> I/O G0 <19> I/O G0 <20> I/O G0 <21> I/O G0 <22> I/O G0 <23> I/O G1 <0> I/O G1 <1> I/O G1 <2> I/O G1 <3> I/O G1 <4> I/O G1 <5> I/O G1 <6> I/O G1 <7> I/O G1 <8> I/O G1 <9> I/O G1 <10> I/O G1 <11> I/O G1 <12> I/O G1 <13> I/O G1 <14> I/O G1 <15> I/O G1 <16> I/O G1 <17> I/O G1 <18> I/O G1 <19> I/O G1 <20> I/O G1 <21> I/O G1 <22> I/O G1 <23> I/O G2 <0> I/O G2 <1> I/O G2 <2> I/O G2 <3> I/O G2 <4> I/O G2 <5> I/O G2 <6> I/O G2 <7> I/O G2 <8> I/O G2 <9> I/O G2 <10> I/O G2 <11> I/O G2 <12> I/O G2 <13> I/O G2 <14> BGA C2 F4 F3 D2 G4 F2 G3 E1 G2 H3 F1 J4 F31 G30 H29 F30 E31 G29 G28 F29 E29 F28 D30 E28 L1 L2 L3 L4 K2 J1 K3 K4 H1 G1 J3 H2 J28 J29 H30 G31 H31 K28 K29 K30 J31 L28 L29 L30 M3 M2 M1 N4 N3 N1 P3 P4 R2 R3 R4 R1 R30 R29 R28 Signal I/O G2 <15> I/O G2 <16> I/O G2 <17> I/O G2 <18> I/O G2 <19> I/O G2 <20> I/O G2 <21> I/O G2 <22> I/O G2 <23> I/O G3 <0> I/O G3 <1> I/O G3 <2> I/O G3 <3> I/O G3 <4> I/O G3 <5> I/O G3 <6> I/O G3 <7> I/O G3 <8> I/O G3 <9> I/O G3 <10> I/O G3 <11> I/O G3 <12> I/O G3 <13> I/O G3 <14> I/O G3 <15> I/O G3 <16> I/O G3 <17> I/O G3 <18> I/O G3 <19> I/O G3 <20> I/O G3 <21> I/O G3 <22> I/O G3 <23> I/O G4 <0> I/O G4 <1> I/O G4 <2> I/O G4 <3> I/O G4 <4> I/O G4 <5> I/O G4 <6> I/O G4 <7> I/O G4 <8> I/O G4 <9> I/O G4 <10> I/O G4 <11> I/O G4 <12> I/O G4 <13> I/O G4 <14> I/O G4 <15> I/O G4 <16> I/O G4 <17> I/O G4 <18> I/O G4 <19> I/O G4 <20> I/O G4 <21> I/O G4 <22> I/O G4 <23> I/O G5 <0> I/O G5 <1> I/O G5 <2> I/O G5 <3> I/O G5 <4> I/O G5 <5> BGA P31 P28 N31 N29 N28 M31 M30 L31 M29 Y3 Y1 Y2 W4 W3 W1 V1 V4 U1 U4 U3 U2 T30 U28 U29 U30 U31 V28 V29 V31 W29 W28 W31 Y31 AA2 AA3 AA4 AA1 AB3 AB4 AB2 AC3 AC4 AC1 AD2 AD3 AC28 AC29 AC31 AB28 AB29 AB30 AA29 AA28 AA30 AA31 Y30 Y29 AG4 AG3 AG1 AF1 AF4 AF3 Signal BGA I/O G5 <6> I/O G5 <7> I/O G5 <8> I/O G5 <9> I/O G5 <10> I/O G5 <11> I/O G5 <12> I/O G5 <13> I/O G5 <14> I/O G5 <15> I/O G5 <16> I/O G5 <17> I/O G5 <18> I/O G5 <19> I/O G5 <20> I/O G5 <21> I/O G5 <22> I/O G5 <23> I/O B0 <0> I/O B0 <1> I/O B0 <2> I/O B0 <3> I/O B0 <4> I/O B0 <5> I/O B0 <6> I/O B0 <7> I/O B0 <8> I/O B0 <9> I/O B0 <10> I/O B0 <11> I/O B0 <12> I/O B0 <13> I/O B0 <14> I/O B0 <15> I/O B0 <16> I/O B0 <17> I/O B0 <18> I/O B0 <19> I/O B0 <20> I/O B0 <21> I/O B0 <22> I/O B0 <23> I/O B1 <0> I/O B1 <1> I/O B1 <2> I/O B1 <3> I/O B1 <4> I/O B1 <5> I/O B1 <6> I/O B1 <7> I/O B1 <8> I/O B1 <9> I/O B1 <10> I/O B1 <11> I/O B1 <12> I/O B1 <13> I/O B1 <14> I/O B1 <15> I/O B1 <16> I/O B1 <17> I/O B1 <18> I/O B1 <19> I/O B1 <20> 21 AF2 AE1 AE3 AE2 AD1 AD4 AD31 AD29 AD28 AD30 AE29 AE30 AE31 AF31 AF28 AF29 AF30 AG31 D3 D4 B2 C3 C4 C5 D6 C6 B3 D7 B4 B6 AJ7 AK6 AH7 AJ6 AK4 AH6 AJ5 AK3 AJ4 AJ3 AH4 AJ2 D8 C7 A5 C8 B7 A6 C9 A7 D10 B8 C10 A8 AH11 AL8 AJ10 AK8 AH10 AL7 AJ9 AK7 AJ8 Signal I/O B1 <21> I/O B1 <22> I/O B1 <23> I/O B2 <0> I/O B2 <1> I/O B2 <2> I/O B2 <3> I/O B2 <4> I/O B2 <5> I/O B2 <6> I/O B2 <7> I/O B2 <8> I/O B2 <9> I/O B2 <10> I/O B2 <11> I/O B2 <12> I/O B2 <13> I/O B2 <14> I/O B2 <15> I/O B2 <16> I/O B2 <17> I/O B2 <18> I/O B2 <19> I/O B2 <20> I/O B2 <21> I/O B2 <22> I/O B2 <23> I/O B3 <0> I/O B3 <1> I/O B3 <2> I/O B3 <3> I/O B3 <4> I/O B3 <5> I/O B3 <6> I/O B3 <7> I/O B3 <8> I/O B3 <9> I/O B3 <10> I/O B3 <11> I/O B3 <12> I/O B3 <13> I/O B3 <14> I/O B3 <15> I/O B3 <16> I/O B3 <17> I/O B3 <18> I/O B3 <19> I/O B3 <20> I/O B3 <21> I/O B3 <22> I/O B3 <23> I/O B4 <0> I/O B4 <1> I/O B4 <2> I/O B4 <3> I/O B4 <4> I/O B4 <5> I/O B4 <6> I/O B4 <7> I/O B4 <8> I/O B4 <9> I/O B4 <10> I/O B4 <11> BGA AL6 AH8 AL5 D11 A9 C11 B10 C12 B11 A11 B12 D13 C13 A12 A13 AJ14 AL13 AJ13 AH13 AL12 AL11 AK12 AJ12 AK11 AK10 AJ11 AL9 D14 C14 A14 C15 B15 A15 B16 C16 D16 A17 B17 C17 AH17 AJ17 AK17 AL17 AH16 AJ16 AK16 AL15 AJ15 AK15 AL14 AH14 A20 B20 C19 A21 D19 C20 B21 A23 C21 B22 A24 D21 Signal BGA I/O B4 <12> I/O B4 <13> I/O B4 <14> I/O B4 <15> I/O B4 <16> I/O B4 <17> I/O B4 <18> I/O B4 <19> I/O B4 <20> I/O B4 <21> I/O B4 <22> I/O B4 <23> I/O B5 <0> I/O B5 <1> I/O B5 <2> I/O B5 <3> I/O B5 <4> I/O B5 <5> I/O B5 <6> I/O B5 <7> I/O B5 <8> I/O B5 <9> I/O B5 <10> I/O B5 <11> I/O B5 <12> IO B5 <13> I/O B5 <14> I/O B5 <15> I/O B5 <16> I/O B5 <17> I/O B5 <18> I/O B5 <19> I/O B5 <20> I/O B5 <21> I/O B5 <22> I/O B5 <23> I/O B6 <0> I/O B6 <1> I/O B6 <2> I/O B6 <3> I/O B6 <4> I/O B6 <5> I/O B6 <6> I/O B6 <7> I/O B6 <8> I/O B6 <9> I/O B6 <10> I/O B6 <11> I/O B6 <12> I/O B6 <13> I/O B6 <14> I/O B6 <15> I/O B6 <16> I/O B6 <17> I/O B6 <18> I/O B6 <19> I/O B6 <20> I/O B6 <21> I/O B6 <22> I/O B6 <23> AH21 AK24 AL24 AJ21 AK22 AJ20 AL23 AH19 AK21 AJ19 AK20 AL21 A25 C22 B24 D22 B25 C23 A26 C24 B26 D24 C25 A27 AJ26 AJ25 AH24 AL27 AK26 AJ24 AJ23 AL26 AH22 AK25 AL25 AJ22 D25 A28 C26 B28 D26 C27 B29 C28 C29 C30 D28 D29 AG29 AH30 AH29 AH28 AJ30 AJ29 AJ28 AH26 AJ27 AK29 AK28 AH25 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm I/O Pin Locations (432-Ball BGA Package) Specifications ispLSI 8840 ispLSI 8840 432-Ball BGA Signal Diagram 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 GND GND VCC I/O I/O I/O B6 B5 B5 <1> <11> <6> I/O I/O I/O I/O B5 B4 B4 VCC B4 <0> <10> <7> <3> I/O GIO I/O I/O B4 CLK0 B3 GND B3 <0> CLK0 <9> <5> B GND NC 1 I/O B6 <6> I/O I/O B6 GND B5 <3> <8> I/O B5 <4> I/O B4 <6> I/O I/O I/O B4 GND VCC B3 B3 <1> <10> <6> I/O I/O B3 VCC GND B2 <4> <7> I/O B2 <5> C I/O VCC B6 <9> I/O B6 <8> I/O B6 <7> I/O B4 <8> I/O B4 <5> I/O B3 <3> I/O B3 <1> I/O B2 <9> I/O I/O I/O B2 B1 B1 <2> <10> <6> VCCIO I/O B3 <0> I/O B2 <8> I/O B2 <0> A I/O I/O I/O G0 B6 B6 <22> <11> <10> I/O B6 <5> I/O I/O B5 GND B4 <2> <9> I/O I/O I/O B6 B5 B5 <2> <10> <7> I/O B6 <4> I/O B6 <0> I/O B5 <9> I/O B5 <5> I/O B5 <1> I/O I/O B5 B4 <3> <11> I/O B4 <2> CLK EN I/O I/O B3 B3 <11> <7> I/O GOE QIO I/O B4 B3 0 CLK0 <8> <4> 8 7 I/O I/O I/O I/O I/O I/O I/O B3 B2 B2 B2 VCC B2 B1 B1 <2> <11> <10> <6> <1> <11> <7> I/O B2 <4> I/O I/O B2 GND B1 <3> <9> I/O B1 <8> 6 5 I/O B1 <5> I/O B1 <2> 4 3 2 1 NC1 VCC GND GND A I/O I/O I/O I/O B1 B0 GND B0 B0 <4> <11> <10> <8> I/O B0 GND <2> B I/O B1 <3> I/O B1 <1> I/O B0 <7> I/O B1 <0> I/O B0 <9> I/O B0 <6> I/O B0 <5> I/O B0 <4> I/O B0 <3> I/O G0 VCC <0> C VCCIO I/O B0 <1> I/O B0 <0> I/O G0 <3> NC1 D TDI/ GND SDI I/O G0 <7> E D NC1 E I/O I/O I/O G0 GND G0 G0 <16> <20> <23> TMS/ MODE F I/O I/O I/O I/O G0 G0 G0 G0 <12> <15> <19> <21> I/O G0 <1> I/O G0 <2> I/O I/O G0 G0 <5> <10> F G I/O I/O I/O I/O G1 G0 G0 G0 <15> <13> <17> <18> I/O G0 <4> I/O G0 <6> I/O G0 <8> I/O G1 <9> G H I/O I/O I/O G1 G1 G0 <16> <14> <14> I/O I/O I/O G0 G1 G1 <9> <11> <8> H J I/O I/O I/O G1 GND G1 G1 <20> <13> <12> I/O I/O I/O G0 G1 GND G1 <11> <10> <5> J K I/O I/O I/O VCC G1 G1 G1 <19> <18> <17> I/O G1 <7> I/O G1 <6> I/O G1 VCC <4> K L I/O I/O I/O I/O G2 G1 G1 G1 <22> <23> <22> <21> I/O G1 <3> I/O G1 <2> I/O G1 <1> I/O G1 <0> L M I/O I/O I/O G2 G2 G2 <20> <21> <23> VCCIO I/O G2 <0> I/O G2 <1> I/O G2 <2> M N I/O I/O I/O G2 GND G2 G2 <17> <18> <19> I/O G2 <3> I/O I/O G2 GND G2 <4> <5> N P I/O I/O G2 VCC CLK1 G2 <15> <16> I/O G2 <7> I/O G2 VCC <6> R I/O I/O QIO I/O G2 G2 G2 CLK1 <12> <13> <14> I/O I/O G2 G2 <10> <9> T GND U I/O I/O I/O I/O G3 G3 G3 G3 <16> <15> <14> <13> VCCIO VCCIO VCCIO VCCIO VCCIO VCCIO VCCIO VCCIO SET/ RESET P I/O I/O G2 G2 <8> <11> R QIO GOE GND CLK3 3 T I/O I/O I/O I/O G3 G3 G3 G3 <9> <10> <11> <8> U V I/O I/O I/O G3 VCC G3 G3 <19> <18> <17> I/O I/O G3 TOE VCC G3 <7> <6> V W I/O I/O I/O G3 GND G3 G3 <22> <20> <21> I/O G3 <3> Y I/O I/O I/O G3 G4 G4 <23> <22> <23> I/O G3 GOE 1 <12> ispLSI 8840 VCCIO VCCIO Bottom View I/O I/O G3 GND G3 <4> <5> W I/O G3 <2> I/O G3 <1> Y VCCIO I/O G3 <0> AA I/O I/O I/O I/O G4 G4 G4 G4 <21> <20> <18> <19> I/O G4 <2> I/O G4 <1> I/O G4 <0> I/O G4 <3> AA AB I/O I/O I/O VCC G4 G4 G4 <17> <16> <15> I/O G4 <5> I/O G4 <4> I/O G4 VCC <6> AB AC I/O I/O I/O G4 GND G4 G4 <14> <13> <12> I/O G4 <8> I/O I/O G4 GND G4 <7> <9> AC AD I/O I/O I/O I/O G5 G5 G5 G5 <12> <15> <13> <14> I/O I/O I/O I/O G5 G4 G4 G5 <11> <11> <10> <10> AD AE I/O I/O I/O G5 G5 G5 <18> <17> <16> AF I/O I/O I/O I/O G5 G5 G5 G5 <19> <22> <21> <20> AG I/O I/O G5 GND B6 <23> <12> VCCIO VCCIO I/O G5 <8> I/O G5 <9> I/O G5 <7> AE I/O G5 <4> I/O G5 <5> I/O G5 <6> I/O G5 <3> AF I/O G5 <0> I/O I/O G5 GND G5 <1> <2> AG AH NC I/O TDO/ TCK/ B0 NC1 <22> SDO SCLK AH AJ I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O GIO I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O VCC B6 B6 B6 B6 B5 B5 B5 B5 B5 B4 B4 B4 B3 B3 B3 B2 B2 B2 B2 B1 B1 B1 B0 B0 B0 B0 B0 B0 VCC <16> <17> <18> <20> <12> <13> <17> <18> <23> <15> <17> <21> CLK1 <13> <17> <20> <12> <14> <19> <22> <14> <18> <20> <12> <15> <18> <20> <21> <23> AJ AK I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O B6 B6 GND B5 B5 B4 GND B4 B4 B4 GND VCC B3 B3 B3 VCC GND B2 B2 B2 GND B1 B1 B0 GND B0 B0 NC1 GND <21> <22> <16> <21> <13> <16> <20> <22> <14> <18> <21> <18> <20> <21> <15> <19> <13> <16> <19> AK AL 1 VCCIO BSCAN / ispEN I/O I/O I/O B6 B6 B6 <13> <14> <15> GND NC1 GND GND VCC NC1 VCCIO I/O I/O I/O B6 B6 B5 <19> <23> <14> VCCIO I/O I/O B5 B4 <20> <12> I/O I/O I/O I/O I/O I/O B5 B5 B5 B4 B4 VCC B4 <15> <19> <22> <14> <18> <23> VCCIO IOCLK EN I/O GOE I/O I/O B4 B3 B3 <19> 2 <12> <16> VCCIO I/O I/O B3 B2 <23> <15> VCCIO I/O I/O B1 B1 <12> <16> VCCIO I/O I/O I/O B1 B0 B0 <22> <14> <17> VCCIO I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O QIO I/O CLK2 CLK2 B3 GND B3 B3 B2 B2 B2 VCC B2 B1 B1 B1 B1 NC1 VCC GND GND <15> <19> <22> <13> <16> <17> <23> <13> <17> <21> <23> 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 1. NC pins are not to be connected to any active signals, VCC or GND. 22 9 8 7 6 5 4 3 2 1 AL Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Signal Configuration Specifications ispLSI 8840 ispLSI 8840 – XXX X XXXX Device Family X Grade Blank = Commercial Device Number Package B432 = BGA Speed 110 = 110 MHz fmax 90 = 90 MHz fmax 60 = 60 MHz fmax Power L = Low 0212/8840 Ordering Information COMMERCIAL FAMILY ispLSI fmax (MHz) tpd (ns) ORDERING NUMBER PACKAGE 110 8.5 ispLSI 8840-110LB432 432-Ball BGA 90 10 ispLSI 8840-90LB432 432-Ball BGA 60 15 ispLSI 8840-60LB432 432-Ball BGA Table 2-0041/8840 23 Discontinued Product (PCN #02-06). Contact Rochester Electronics for Availability. www.latticesemi.com/sales/discontinueddevicessales.cfm Part Number Description