Manual Absolute Encoder with for ATD Absolute Encoder Series Document version 1.62 EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany. Baumer Thalheim GmbH & Co. KG Hessenring 17 DE-37269 Eschwege Phone + 49 (0)5651 9239-0 Fax + 49 (0)5651 9239-80 [email protected] www.baumer.com 05.11 Subject to modification in technic and design. Errors and omissions excepted Document History Version 1.0 1.1 1.2 1.3 1.4 1.5 1.55 1.60 1.61 1.62 EtherCAT 2011-10-04/rnik Comments Official Release Single turn timing differences added Customer driven changes on error behavior Synchronous diagnosis principle Max resolution values changed Update to other product codes KPA Studio Setup Revised version Max resolution values changed No scaling function control 2/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany Content 1 DOCUMENT DESCRIPTION ...........................................................................................................................7 2 DEVICE OPERATION BASICS .......................................................................................................................8 2.1 POWER SUPPLY ............................................................................................................................................9 2.2 OPERATING TEMPERATURE RANGE ..............................................................................................................9 2.3 ECAT COMMUNICATION MODES ................................................................................................................. 10 2.3.1 ECAT State Machine........................................................................................................................ 10 2.3.2 Sync Manager................................................................................................................................... 11 2.3.2.1 2.3.2.2 2.3.2.3 Buffered Mode (3-Buffer Mode) ...................................................................................................................12 Mailbox Mode (1-Buffer Mode) ....................................................................................................................12 Slave Configuration (EEPROM) ..................................................................................................................12 2.4 COE COMMUNICATION ............................................................................................................................... 12 2.4.1 Object Dictionary .............................................................................................................................. 12 2.4.1.1 2.4.1.2 2.4.1.3 2.4.1.4 2.4.1.5 2.4.1.6 2.4.1.7 2.4.1.8 2.4.1.9 2.4.1.10 2.4.1.11 2.4.1.12 2.4.1.13 2.4.1.14 2.4.1.15 2.4.1.16 2.4.1.17 2.4.1.18 2.4.1.19 3 Object 0x1018 Identity..................................................................................................................................13 Product Code................................................................................................................................................14 Object 0x1C00 Sync Manager Communication Type ................................................................................14 Object 0x1C12 Sync Manager RxPDO Assign...........................................................................................14 Object 0x1C13 Sync Manager TxPDO Assign ...........................................................................................14 Object 0x1C33 Sync Manager 3 Parameter ...............................................................................................14 Object 0x6000 Operating parameters .........................................................................................................15 Object 0x6001 Units per Revolution............................................................................................................16 Object 0x6002 Total measuring range in measuring units.........................................................................16 Object 0x6003 Preset Value ....................................................................................................................16 Object 0x6004 Position Value..................................................................................................................17 Object 0x6500 Operating Status .............................................................................................................17 Object 0x6502 Number of distinguishable revolutions (Multi turn) ........................................................17 Object 0x6503 Alarms..............................................................................................................................17 Object 0x6504 Supported Alarms............................................................................................................17 Object 0x6505 Warnings..........................................................................................................................17 Object 0x6506 Supported Warnings .......................................................................................................17 Object 0x6508 Operating Time................................................................................................................18 Object 0x6509 Offset Value.....................................................................................................................18 ENCODER INITIALIZATION.......................................................................................................................... 19 3.1 ENCODER PARAMETER CHANGES .............................................................................................................. 19 3.1.1 Encoder Resolution Change Examples (multi turn)....................................................................... 19 3.1.2 Scaling Function Control Usage...................................................................................................... 19 3.1.3 Device Description File (xml Format).............................................................................................. 19 3.2 ERROR HANDLING ....................................................................................................................................... 20 3.2.1 Encoder specific errors .................................................................................................................... 20 3.2.1.1 3.2.1.2 3.2.1.3 3.2.2 3.2.2.1 3.2.2.2 3.2.2.3 3.2.2.4 3.2.2.5 4 Device Watch Dog........................................................................................................................................20 Position Error ................................................................................................................................................20 Warnings .......................................................................................................................................................21 EtherCAT Specific Errors................................................................................................................. 21 Sync Manager Watch Dog...........................................................................................................................21 EtherCAT State Machine Synchronization Errors ......................................................................................22 AL Status Errors ...........................................................................................................................................22 Error diagnostics (RED LED).......................................................................................................................23 Working Counter...........................................................................................................................................23 ENCODER FAMILY OVERVIEW................................................................................................................... 24 4.1 DEVICE IDENTIFICATION FIELDS .................................................................................................................. 24 5 SYNC TO SM EVENT TIMING....................................................................................................................... 26 6 DC TIMING ...................................................................................................................................................... 28 6.1 6.2 6.3 CONSECUTIVE SAMPLE POINT JITTER .......................................................................................................... 28 SHIFT TIME ................................................................................................................................................. 28 CALC AND COPY TIME ................................................................................................................................ 28 EtherCAT 2011-10-04/rnik 3/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany 7 SYSTEM SET UP WITH THE TWINCAT SOFTWARE ............................................................................... 31 7.1 7.2 8 SYSTEM SET UP WITH CAT STUDIO.NET SOFTWARE.......................................................................... 38 8.1 8.2 9 FREE RUN/SYNC0 INIT ............................................................................................................................... 31 DISTRIBUTED CLOCKS MODE INIT ............................................................................................................... 33 FRAME SYNCHRONOUS MODE .................................................................................................................... 38 DISTRIBUTED CLOCK MODE ....................................................................................................................... 41 ETHERCAT CONFORMANCE TEST ........................................................................................................... 42 EtherCAT 2011-10-04/rnik 4/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany Tables TABLE 1 ECAT CONNECTOR PIN OUT DESCRIPTION .....................................................................................................8 TABLE 2 POWER SUPPLY CONNECTOR PINNING ...........................................................................................................8 TABLE 3 OPERATING/STORAGE TEMPERATURE RANGE ............................................................................................. 10 TABLE 4 RUN STATE STATUS .................................................................................................................................... 11 TABLE 5 SYNC MANAGER CONFIGURATION ................................................................................................................ 12 TABLE 6 EEPROM SIZE ON SII................................................................................................................................. 12 TABLE 7 NOT SUPPORTED COE OBJECT DICTIONARY ENTRIES. ................................................................................ 12 TABLE 8 OBJECT DICTIONARY ................................................................................................................................... 13 TABLE 9 IDENTITY ...................................................................................................................................................... 14 TABLE 10 PRODUCT CODE CODIFICATION .................................................................................................................. 14 TABLE 11 SYNC MANAGER COMMUNICATION TYPE ................................................................................................... 14 TABLE 12 SYNC MANAGER RXPDO ASSIGN ............................................................................................................. 14 TABLE 13 SYNC MANAGER TXPDO ASSIGN .............................................................................................................. 14 TABLE 14 SYNC MANAGER 3 PARAMETER LIST ......................................................................................................... 15 TABLE 15 OPERATING PARAMETERS .......................................................................................................................... 15 TABLE 16 PRODUCT SPECIFIC MAXIMA UNITS PER REVOLUTION VALUE ..................................................................... 16 TABLE 17 POSITION VALUE DATA ALIGNMENT EXAMPLE (15/16 BIT) .......................................................................... 17 TABLE 18 SUPPORTED ALARMS ................................................................................................................................. 17 TABLE 19 SUPPORTED W ARNINGS ............................................................................................................................ 17 TABLE 20 MANUFACTURER SPECIFIC WARNINGS ....................................................................................................... 18 TABLE 21 ENCODER HARDWARE EMERGENCY ........................................................................................................... 21 TABLE 22 HARDWARE EMERGENCY CODE DESCRIPTION ............................................................................................ 21 TABLE 23 SYNC MANAGER W ATCHDOG INIT .............................................................................................................. 22 TABLE 24 CODIFICATION OF SM SYNCHRONIZATION ERRORS.................................................................................... 22 TABLE 25 SUPPORTED AL STATUS CODES ................................................................................................................ 22 TABLE 26 ERROR STATE STATUS .............................................................................................................................. 23 TABLE 27 ATD4 ENCODER FAMILY OVERVIEW ........................................................................................................... 24 TABLE 28 ATD2 ENCODER FAMILY OVERVIEW ........................................................................................................... 24 TABLE 29 FREE RUN TIMING SPECIFICATION FOR ST AND MT DEVICES ..................................................................... 25 TABLE 30 SYNC TO SM EVENT TIMING SPECIFICATION ............................................................................................... 27 TABLE 31 CALC AND COPY TIME ............................................................................................................................... 28 TABLE 32 DC CYCLE TIME SPECIFICATION ................................................................................................................. 29 Pictures PICTURE 1 LINE BUS TOPOLOGY EXAMPLE ...................................................................................................................8 PICTURE 2 I/O CONNECTORS .......................................................................................................................................8 PICTURE 3 ENCODER SW LAYER DIAGRAM ..................................................................................................................9 PICTURE 4 TYPICAL ELECTRICAL POWER DISSIPATION AS FUNCTION OF INPUT VOLTAGE ..............................................9 PICTURE 5 LED ARRANGEMENT (ATD4 EXEMPLARY) ................................................................................................ 11 PICTURE 6 ENCODER SPECIFIC ERROR HANDLING ..................................................................................................... 20 PICTURE 7 ENCODER SPECIFIC ERROR CLASSIFICATION ............................................................................................ 20 PICTURE 8 ATD FAMILIES COMPARISON .................................................................................................................... 24 PICTURE 9 NON SYNC (FREE RUN) TIMING DIAGRAM FOR A MULTI TURN ENCODER .................................................... 25 PICTURE 10 SYNC TO SM EVENT SAMPLING DIAGRAM ............................................................................................... 26 PICTURE 11 SAMPLE JITTER FOR A SYNC TO SM EVENT OPERATING MULTI TURN ENCODER. ..................................... 26 PICTURE 12 TIMING DIAGRAM FOR DC OR SYNC COMMUNICATION TYPE .................................................................. 29 PICTURE 13 SAMPLE POINT (N) TO CONSECUTIVE SAMPLE (N+1) POINT JITTER ( CH1: SYNC, CH2: SAMPLE) FOR A MULTI TURN DEVICE ............................................................................................................................................ 30 PICTURE 14 ETHERCAT CONFORMANCE TEST (BETA RELEASE) RESULT. ................................................................ 42 EtherCAT 2011-10-04/rnik 5/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany Abbreviations Abbreviation ECAT DC PREOP SAFEOP OP TBD SDO PDO DPRAM RAM MT ST SII Description EtherCAT Distributed Clock Pre-Operational Safe Operational Operational To be defined Service Data Object Process Data Object Dual Port RAM Random Access Memory Multi turn encoder device Single turn encoder device Slave Information Interface Literature Ref LIT[00] LIT[01] LIT[02] LIT[03] LIT[04] LIT[05] LIT[06] LIT[07] EtherCAT 2011-10-04/rnik Literature Data sheet ATD 4B A 4 Y11 absolute encoder with hollow shaft EtherCAT 61158-6-12/FDIS EtherCAT Guidelines and Protocol Enhancements V01.1 CiA Draft Standard 406 Version: 3.2 Device profile for encoders EtherCAT Indicator Specification V0.91 Documentation to EtherCAT - Distributed Clocks Version: 1.0 Date: 2008-02-11 CiA Draft Standard 301 Application Layer and Communication Profile Data sheet ATD 2B A 4 Y26, ATD 2B B14 Y22 absolute encoder with EtherCAT 6/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany 1 Document Description This document describes how absolute encoders ATD*B***Y*** are operated in an ECAT environment. For more device specific information about encoder physics, datasheet and ordering information please refer to LIT[00], LIT[07] or direct to [email protected]. Software and Hardware requirements on the host side are not part of this document. Device handling and mounting instructions for save operation are not described in this document, for more information please refer to the Baumer homepage. All in this document provided information is related to a specific software revision number and may change without customer notification. Please check the Software Revision data on Table 4 Object Dictionary. EtherCAT 2011-10-04/rnik 7/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany 2 Device Operation Basics The encoder device may be operated with a cable length of maximum 100 m between two bus devices (assumption cable CAT5e or better). Different bus topologies are possible: Line, Tree or Star configurations may be implemented. A maximum of 65535 devices may be connected to the bus. Picture 1 Line bus topology example ECAT devices don’t need any hardware configuration prior connection to the bus e.g. device address. Input and output connectors are not interchangeable, input connector should be connected towards the ECAT master: OUT POWER IN Picture 2 I/O connectors For the devices network connection a M12 4 poles D coded connector is used; connection schemata for the two network ports is: Signal name TxD+ RxD+ TxDM12 Connector pin 1 2 3 Table 1 ECAT connector pin out description RxD4 Power supply connector is M12 4 poles connector: Signal name Vdc n.c. GND M12 Connector pin 1 2 3 Table 2 Power supply connector pinning n.c. 4 The encoder supports the CANopen over EtherCAT (CoE) data transfer protocol, the Service Data Objects are transferred via Mailbox services. EtherCAT 2011-10-04/rnik 8/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany The ECAT controller state machine has four possible states: INIT, PREOP, SAFEOP and OP mode. Those states and the transition between states are managed via AL Control/Status register. Picture 3 Encoder SW layer diagram 2.1 Power supply Power consumption depends on the input voltage; the following diagram shows this dependency for MT devices: P(Uin)@20°C, DC Mode 1,7 1,6 P[w] 1,5 1,4 1,3 1,2 10 12 14 16 18 20 22 24 26 28 30 Uin[V] Picture 4 Typical electrical power dissipation as function of input voltage Typical current consumption values are 129 mA @10V and 51 mA @ 30V. 2.2 Operating Temperature Range Device operating temperature range is limited by the chip temperature of the data sampling block. Continuous exceeding of the upper temperature limit may lead to an over temperature warning message. Ignoring the over or under temperature warning may lead to consecutive fault e.g. position error. Short time violations of operating temperature limits may not lead to a device overheating and thus are not detected by the system. The mechanical setup (hollow shaft, bearing, IP protection level, etc) of the encoder determines the temperature operation limits. EtherCAT 2011-10-04/rnik 9/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany min temperature max temperature -20°C 85°C1 Table 3 Operating/Storage Temperature Range 2.3 ECAT Communication modes The encoder supports three communication modes: Asynchronous (Free run) Synchronous to SM Read event DC Sync Communication mode heavily impacts the encoder real time capability, system timing behavior and the system resource workload of the Masters. For systems with high real time requirements such as for closed loop applications the DC sync mode may be used. For position information systems with low real time requirements Free Run or Sync mode may be used instead. Communication modes management takes place via XML file. The user may check the actual operating mode by reading out the 0x1C33:01 object dictionary entry, this entry reflects the ECAT operating mode (Please refer to Table 14 Sync Manager 3 Parameter List). 2.3.1 ECAT State Machine The ECAT slave state machine reflects the system communication and operation state via the AL Control/Status registers, there are four possible supported states: INIT state, is the default device state after power up AND OR without communication link. In the PREOP State the Mailbox (SDO) communication on the Application Layer is enabled and Process Data communication is disabled. In the SAFEOP Mode the Master may configure encoder parameters using the Mailbox service data transfer mechanism. The Process Data communication is enabled. DC timing characteristic e.g. jitter does not fully reach the values as specified for OP mode. In the OP Mode the encoder behaves as in SAFEOP with restrictions regarding encoder parameter changes. DC timing characteristic are fully reached. The encoder State Machine operating status is signalized via the RUN State LED and via AL Status Register. LED arrangement is showed by the next picture, this arrangement is common for the whole EtherCAT encoder family (please refer to Chapter 4 Encoder Family Overview): 1 Operation on max temperature may degrade the max RPM, please refer to LIT[01], LIT[07] EtherCAT 2011-10-04/rnik 10/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany Link/Activity OUT (gelb) ERROR (rot) RUN (grün) Link/Activity IN (gelb) Picture 5 LED arrangement (ATD4 exemplary) The RUN State LED behaves according to LIT[04] for devices with Input data only: RUN STATE State description OFF INIT State Blinking PREOP State Single Flash SAFE Operational State ON OPERATIONAL State Table 4 Run State Status The AL Status register contains four Information Blocks: AL State: contains the AL state of the device (INIT, PREOP, SAFEOP, OP) Error Indication: gives the information if an error is detected State Info: application specific information set by the slave (not supported by this encoder) AL status code: this parameter indicates the actual state of slave device, the encoder supports partially error codes acc. LIT[01], please refer to Chapter 3.2.2.3. 2.3.2 Sync Manager Sync Manager is responsible for the data transfer synchronization between ESC and Master. Data transfer between master and ESC is done via DPRAM. The encoder supports two kind of Sync Manager buffer modes: 3-Buffer Mode 1-Buffer Mode The encoder manages the initialization of the Sync Manager operating Modes via XML file ob by the data supplied by the encoders SII himself2: Configuration Name ATD4 asynchronous ATD4 synchronous ATD2 asynchronous 2 Product / Revision Number 0x0001 0001 0x0001 0002 0x0002 0001 Operating Mode 3-Buffer Mode 1-Buffer Mode 3-Buffer Mode For Encoders with a 1024 Bytes EEPROM. EtherCAT 2011-10-04/rnik 11/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany ATD2 synchronous 0x0002 0002 Table 5 Sync Manager configuration 1-Buffer Mode 2.3.2.1 Buffered Mode (3-Buffer Mode) In this mode both sides, ECAT master and ESC are able to access the buffer at the same time. The consumer (master) gets always the latest consistent dataset from the producer (slave). In this mode consumer and producer may access the buffer all the time without timing restrictions. This mode is used for the Free Run mode because this is an unsynchronized mode. 2.3.2.2 Mailbox Mode (1-Buffer Mode) In this mode the producer first writes to the buffer and after this is completely done the consumer may read out data. During the time the producer writes the buffer the consumer is not able to read. This mode is used for the DC and Sync to SM event modes. 2.3.2.3 Slave Configuration (EEPROM) Slave communication configuration (Sync Manager Configuration, Addresses, etc) may be determined through XML file or from the encoders EEPROM. For encoders with 128 bytes EEPROM the XML file is needed for configuration, else the PREOP state will not be passed. The user may diagnose if a small or large EEPROM is used by checking the Object 0x1009 (Hardware Version): Device Name ATD4B***Y*** Hardware Version < V02.00 > V02.00 ATD2B***Y*** < V02.00 > V02.00 Table 6 EEPROM Size on SII 2.4 SII EEPROM 128 Bytes 512 Bytes 128 Bytes 512 Bytes CoE Communication The object dictionary is based on the CiA Draft Standards. Some mandatory objects for Class 2 Encoders (according LIT[03]) are not supported directly. But those object entries are reflected in other dictionary entries. Back-up feature is automatically implemented for object 0x6000, 0x6001, 0x6002 and 0x6009. This means changes made to those objects are automatically saved non volatile into devices EEPROM. 2.4.1 Object Dictionary Even though the following entries are listed as mandatory objects, they are not supported by the encoder: Object Description Reason 0x6005 Linear encoder measuring step setNot applicable for single sensor device tings 0x6010 Preset value for multi-sensor devices Not applicable for single sensor device 0x6020 Position value for multi-sensor devices Not applicable for single sensor device 0x6507 Profile and software version Not supported, because same data as Object 0x100A 0x650A Module identification Not supported 0x650B Serial number Not supported, because same data as Object 0x1018:04 Table 7 Not supported CoE Object Dictionary entries. EtherCAT 2011-10-04/rnik 12/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany Index SubIndex 1000 Name Type Deafult Value Device Type U32 / R 1008 Device Name U32 / R 1009 100A 1018 : 00 01 02 Hardware Version Software Version Identity Vendor Id Product Code U32 / R U32 / R U8 / R U32 / R U32 / R 03 04 1A00 : 00 01 1C00 : 00 01 02 03 04 1C12 1C13 : 00 01 1C33 : 00 01 02 03 04 05 06 6000 6001 6002 6003 6004 6500 6501 6502 Revision Number Serial Number Transmit PDO Mapping Sub Index 002 Sync Manager Communication Type Sub Index 001 Sub Index 002 Sub Index 003 Sub Index 004 Sync Manager RxPDO Assign Sync Manager TxPDO Assign Sub Index 001 Sync Manager 3 Parameter Synchronization Type Cycle Time Shift Time Synchronization Types supported Minimum Cycle Time Cal and Copy Time Operating parameters Measuring units per revolution Total measuring range in measuring units Preset value Position value Operating status Single turn resolution Number of distinguishable revolutions U32 / R U32 / R U8 / R U32 / R U8 / R U8 / R U8 / R U8 / R U8 / R U8 / RW U8 / RW U16 / RW U8 / R U16 / RW U32 / RW U32 / R U16 / R U32 / R U32 / R U16 / RW U32 / RW U32 / RW U32 / RW U32 / R U16 / R U32 / R U16 / R 0x0002 0196 : MT 0x0001 0196 : ST ATD*B***Y*****/**ECM12 : MT ATD*B***Y*****ECM12 : ST V**.** *.** 0x04 0x0000 0204 0x**** 0001 : MT 0x**** 0002 : ST 0x0000 **** 0x**** **** 0x01 0x6004:00, 32 0x04 0x01 0x02 0x03 0x04 0x00 0x01 0x1A00 0x05 0x0000 0000 0x0000 0000 0x0000 1004 0x0007 0x0000 C350 0x0000 6E8C 0x0004 0x0000 8000 0x**** **** 0x0000 0000 0x**** **** 0x0004 0x0000 8000 0x**** : MT 0x0000 : ST 0x0000 0x0001 0x0000 0xD010 0x0000 0000 0x0000 0000 6503 Errors 6504 Supported Errors 6505 Warnings 6506 Supported warnings 6508 Operating Time 6509 Offset Value Table 8 Object Dictionary U16 / R U16 / R U16 / R U16 / R U32 / R U32 / R 2.4.1.1 Object 0x1018 Identity This object data shows the encoder identity: EtherCAT 2011-10-04/rnik 13/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany Sub Description Index 01 Vendor Id for Baumer Thalheim GmbH & Co KG 02 Product Cod for ATD*B***Y*****/**ECM12 03 Revision Number of Device Modules (B,S) 04 Serial Number Table 9 Identity Value 0x0000 0204 0x**** **** 0x0000 **** 0x**** **** 2.4.1.2 Product Code Product Code Encoder Type 0x0001 0001 ATD4B***Y***15/16ECM12 0x0001 0002 ATD4B***Y***17ECM12 0x0002 0001 ATD2B***Y***14/16ECM12 0x0002 0002 ATD2B***Y***17ECM12 Table 10 Product Code codification 2.4.1.3 Object 0x1C00 Sync Manager Communication Type The 0x1C00 object data indicates the sync manager communication Type (acc. to LIT[01]) Sub Description Index 00 Number of used Sync Manager channels 01 Communication Type Sync Manager 02 Communication Type Sync Manager 03 Communication Type Sync Manager 04 Communication Type Sync Manager Table 11 Sync Manager Communication Type Value 0x04 0x00 (mailbox receive) 0x01 (mailbox send) 0x02 (PDO output) 0x03 (PDO input) 2.4.1.4 Object 0x1C12 Sync Manager RxPDO Assign The 0x1C12 object data shows the sync manager 2 (Rx PDO output) communication Type (acc to LIT[01]) Sub Description Index 00 Number of assigned Rx PDO Table 12 Sync Manager RxPDO Assign Value 0x00 (no output PDO) 2.4.1.5 Object 0x1C13 Sync Manager TxPDO Assign The 0x1C13 object data shows the sync manager 3 (Tx PDO Input) communication Type (acc. to LIT[02]) Sub Description Index 00 Number of assigned TxPDO 01 PDO Mapping object index of assigned TxPDO Table 13 Sync Manager TxPDO Assign Value 0x01 (one input PDO) 0x1A00 2.4.1.6 Object 0x1C33 Sync Manager 3 Parameter The 0x1C313 object data shows the sync manager 3 parameters (acc. to LIT[02]). EtherCAT 2011-10-04/rnik 14/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany Encoders devices does not support dynamic object dictionary. Some of the values under this object are dependent of the encoder operation mode (Sync or DC) and also dependent of the resolution. This means timing data is only true for: 1. Scaling Function Control disabled SFC=0 2. Distributed Clock mode operation Sub Index 01 02 03 04 05 06 Description Value Synchronization Type: 0: Free Run (not synchronized) 1: Sync – synchronized with SM3 Event 2: DC Sync0 – synchronized with Sync0 Event Cycle Time : Free Run (Synchronization Type = 0) time between two local timer events in ns. Sync with SM2 (Synchronization Type = 1) Minimum time between two SM2 events in ns. DC Sync0 (Synchronization Type = 2) Sync0 Cycle Time (Register 0x9A00x9A3) in ns. Shift Time: Time between related event and the associated action (inputs latched from hardware) in ns. Synchronization Types supported: Bit 0: Free Run supported Bit 1: Sync supported Bit 2: DC Sync0 supported Bit 5:4 No input shift supported Minimum cycle time supported of the slave (maximum duration time of the local cycle) in ns. Calc and Copy Time 0x00003 0x0000 00004 TBD 0x0007 0x**** ****5 0x**** **** Table 14 Sync Manager 3 Parameter List 2.4.1.7 Object 0x6000 Operating parameters This object indicates the function for code sequence control. Code sequence: The code sequence defines, whether increasing or decreasing position values are output, in case the encoder shaft rotates clockwise or counter clockwise as seen from the point of view of the shaft. 15 14 13 12 11 10 Table 15 Operating parameters cs = Code Sequence 0 : CW 1 : CCW sfc = Scaling Function Control 0 : disabled 1 : enabled 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 1 1 - 0 cs 3 The value 0x0000 is the default value (Free Run mode) Cycle Time data is only supported for DC mode. 5 Please check Chapter 6DC Timing. 4 EtherCAT 2011-10-04/rnik 15/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany This object data will be stored non-volatile after any change. This register may only be changed in case of ECAT state PREOP or SAFEOP. 2.4.1.8 Object 0x6001 Units per Revolution This object indicates the number of distinguishable steps per revolution. The 0x6001 object is a RW register that may be changed if sfc is enabled. The default value gives the Encoder single turn resolution (e.g. 215 = 0x8000). Resolutions of: 2n with n = nST 8 < nST < Product Code specific resolution Value ranges are Product Code Encoder Type Units per Revolution 0x0001 0001 ATD4B***Y***15/16ECM12 0x0000 8000 0x0001 0002 ATD4B***Y***17ECM12 0x0008 0000 0x0002 0001 ATD2B***Y***14/16ECM12 0x0000 4000 0x0002 0002 ATD2B***Y***17ECM12 0x0008 0000 Table 16 Product specific maxima Units per Revolution value This object data will be stored non-volatile into the encoder memory immediately after any change. This register may only be changed in case of ECAT state PREOP or SAFEOP. 2.4.1.9 Object 0x6002 Total measuring range in measuring units6 This object indicates the number of distinguishable steps over the total measuring range. The 0x6002 object is a RW register that may be changed if sfc is enabled. The default value gives the Encoder maxima single turn resolution (e.g. 215 = 0x8000) plus a multi turn maxima resolution (e.g. 216 -1 = 0xFFFF).Reducing this value always removes multi turn resolution bits keeping the single turn at it maxima the value set up under object 0x6001. This register may only be changed in case of ECAT state PREOP or SAFEOP. Total measuring range in measuring units is: 2n with n = nMT (8 + nST) < nMT < (16 + nST) The total measuring range can be calculated by the following formula: = Single turn resolution (0x6001) x Number of distinguishable revolutions (0x6502) = nST + nMT In case of an ST this Object is a mirror of the 0x6001 Object. This object data will be stored non-volatile into the encoder. 2.4.1.10 Object 0x6003 Preset Value This object indicates the preset value for the output position value. The 0x6003 object is a RW register in case of ECAT state PREOP or SAFEOP, this means in OP state changes are not allowed. The device quits changes during OP state with the SDO message “Abort ('Attempt to write a read only object', 0x06010002)”. This object data shows a volatile (non back up) data default value is 0x00000000, true encoder offset value is given by Object 0x6509. 6 For Multi Turn devices only EtherCAT 2011-10-04/rnik 16/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany 2.4.1.11 Object 0x6004 Position Value This object gives the Encoder Position Value and reflects the process data: 31 30 16 15 0 216 Multi turn position value 215 Single turn position value Table 17 Position Value data alignment example (15/16 Bit) 0 2.4.1.12 Object 0x6500 Operating Status This object provides the operating status of the encoder. It gives information on the encoder internal programmed parameters. It reflects the object 0x6000 2.4.1.13 Object 0x6502 Number of distinguishable revolutions (Multi turn) According to LIT[03] this object provides the number of distinguishable revolutions of the encoder. For a multi-turn encoder the number of distinguishable revolutions and the single-turn resolution gives the measuring range. For a ST device this object is 0x0000. This value plus the Single Turn Resolution gives the Total Measuring Range of the encoder. 2.4.1.14 Object 0x6503 Alarms This register shows error information, according to the object 0x6504. 2.4.1.15 Object 0x6504 Supported Alarms The 0x6503 object supports the following alarm information: 15 14 13 12 11 Table 18 Supported Alarms pe = 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0 pe 4 7 bc 3 - 2 - 1 - 0 - 1 : Position Error detected 0 : No Position Error detected 2.4.1.16 Object 0x6505 Warnings This register shows error information, according to the object 0x6506. 2.4.1.17 Object 0x6506 Supported Warnings The 0x6505 object supports the following warnings: 15 14 13 12 11 10 9 8 msw msw msw msw Table 19 Supported Warnings bc = 7 - 6 - 5 - 1 : Low Battery Charge 0 : Battery Charge OK msw = Manufacturer Specific Warnings (according to Table 20 Manufacturer specific warnings): MSW Nibble 0x0 0x1 7 Description No warning Light source error For multi turn devices only EtherCAT 2011-10-04/rnik 17/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany 0x2 0x4 Optic chip (ADC, EEPROM, SI) 0x8 Temperature error (over / under) Table 20 Manufacturer specific warnings 2.4.1.18 Object 0x6508 Operating Time This object provides the devices operating time. It will be incremented in steps of 0.1 h. Operating time periods of less than 0.1h are not counted. 2.4.1.19 Object 0x6509 Offset Value This object provides the offset value. The offset value is calculated via the preset object input data (0x6003) and shifts the position value with the calculated value. This object data is stored non-volatile immediately after any change to the Object Preset Value. EtherCAT 2011-10-04/rnik 18/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany 3 Encoder Initialization Encoder initialization may differ from encoder version to version however general customizing steps are common for all variants. 3.1 Encoder Parameter Changes If the encoder output resolution should be changed the bit sfc in the object 0x6000 must be enabled. Else changes in the resolution e.g. total resolution or single turn resolution are not accepted by the Encoder. Minimum system cycle time performance in DC mode decreases if sfc is enabled. This behavior should be considered if lowest cycle time in DC mode is desired. Following encoder parameters may be changed by user via SDO: counting direction e.g. CW or CCW measuring units per revolution from 256 to 32.768 total measuring units 65.536 to 2.147.483.647 this means a multi turn counting range of 255 to 65.535 Preset value from 0 to 2.147.483.647 3.1.1 Encoder Resolution Change Examples (multi turn) Default setup MAX single turn, MAX Multi turn resolution with PDO Data for 0x6002 = 0x8000 0000 and 0x6001 = 0x0000 8000 31 30 16 15 0 216 Multi turn position value 215 Single turn position value MIN single turn, MAX Multi turn resolution with PDO Data for 0x6002 = 0x0100 0000 and 0x6001 = 0x0000 0100: 31 23 216 Multi turn position value 8 7 0 28 ST position value MAX single turn, MIN Multi turn resolution with PDO Data for 0x6002 = 0x0080 0000 and 0x6001 = 0x0000 8000: 31 22 15 14 28 Multi turn position value 0 215 Single turn position value MIN single turn, MIN Multi turn resolution with PDO Data for 0x6002 = 0x0001 0000 and 0x6001 = 0x000 0100: 31 15 8 28 MT position value 3.1.2 7 0 28 ST position value Scaling Function Control Usage Using the Scaling Function Control degrades the Minimum Cycle Time of the encoder slightly because the encoder has to calculate and shift real physical data from the optic block to fit user resolution values. 3.1.3 Device Description File (xml Format) The “ATD 4B A 4 Y11.xml” file contains Vendor and Device specific information and is provided at the Baumer home page for download. EtherCAT 2011-10-04/rnik 19/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany 3.2 Error handling All errors and warnings are forwarded by the encoder via emergency messages. Those messages are dispatched by the encoder automatically. System warnings are such, but not exclusive like listed under 2.4.1.17. Also ECAT specific communication (e.g. SM init mismatch, etc) errors are forwarded via the mailbox emergency message. Encoder Hardware Error Handler Hardware error detected? N N Alarm? (warning) Set corresponding warning bits (0x6505) Set corresponding alarm bits (0x6503) Clear warning and alarm (0x6503 and 0x6505) Send ECAT MBOX message (No Error) State = OP Y Send EMCY(Error Code) end Picture 6 Encoder specific error handling 3.2.1 Encoder specific errors This encoder supports hardware and software error detection. Error (Generic) Alarm Position Warning Battery Temperature Internal ADC Light source Picture 7 Encoder specific error classification 3.2.1.1 Device Watch Dog Device Watchdog error is a fatal error. This error may happen in case of a non-predictable problem in software, hardware, operating environment, etc that leads to system crash. In this case the encoders own WD generates a system reset. This event will be forwarded to the master system via ERROR Status LED. The AL Status register is than set to ALSTATUSCODE_WAITFORCOLDRESET, please refer to Chapter 3.2.2.3. 3.2.1.2 Position Error This bit is set whenever a mayor internal communication error happens in such case the position value is not valid any more. EtherCAT 2011-10-04/rnik 20/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany 3.2.1.3 Warnings The encoder supports four classes of warnings: Low Battery: The internal battery charge is checked one time after power up, if the capacity is low this warning bit will be set. High/Low-Temperature: This warning bit will be set if the temperature of the ADC exceeds the data specified under 2.2. Short time exceeding is not registered by this system. Continuous temperature overrun may lead to position errors. Internal ADC: This warning bit may be set if an internal serial interface error happen. Light source: This bit reflects the light intensity of the light source. Light intensity decreases proportional to life time and rotation speed of the system. Continuous low light intensity may lead to position errors. The Emergency Error Message data formatting partially according to IEC 61158-6-12 is: Error Code Field Data Type Description Error Code Word 0x5000 (Device Hardware Error) EtherCAT State Byte 1 : INIT 2 : PREOP 4 : SAFEOP 8 : OP Error Description Byte[5] [0] : 0x50 [1] : Encoder Hardware Emergency Code [2] : 0x00 [3] : 0x00 [4] : 0x00 Table 21 Encoder hardware emergency Encoder Hardware Emergency Code codification: Byte Code Hardware Emergency Code Qualification 0x80 Opto chip over temperature Warning 0x40 Low battery8 Warning 0x20 Internal ADC Warning 0x10 0x08 0x04 Position Error Error 0x02 0x01 Light source Warning 0x00 No Error Info Table 22 Hardware emergency code description 3.2.2 EtherCAT Specific Errors ECAT specific errors are such configuration or communication errors that are communicated via AL Status register and emergency messages. 3.2.2.1 Sync Manager Watch Dog The SM Watchdog may be enabled if necessary. Watchdog enable/disable mechanism may be controlled by the XML file. The XML description file has different device <device> <RevisionNo>, those revision numbers are usable to configure the Sync Manger with enabled/disabled Watch Dog. Please refer to Table 5 Sync Manager configuration. 8 For multi turn devices only EtherCAT 2011-10-04/rnik 21/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany In case that the Sync Manager is enabled the values for the Watchdog register are as follows: ESC Register Name ESC Register Address Init Values Watchdog divider 0x0400 2498 Watchdog Time Process Data 0x0420 1000 Table 23 Sync Manager Watchdog Init The Watchdog divider gives the number of 25 MHz tics (minus 2) that represents the basic watchdog increment (2498 = 100 µs). A Sync Manager Watchdog failure results in an ALSTATUSCODE_SMWATCHDOG (please refer to Table 25 Supported AL Status codes) this follows a state change to SAFEOP. The Sync Manager Watchdog function is only warranted for Sync operating modes but not for DC mode. In Distributed Clock Mode the Sync Watchdog will be triggered by the ESC internally and does not reflect real master operation. 3.2.2.2 EtherCAT State Machine Synchronization Errors EtherCAT synchronization errors are defined under LIT[01]: Error Code Field Error Code Data Type Description Word 0xA000 (ESM Transition Error PREOP to SAFEOP not successful) 0xA001 (ESM Transition Error SAFEOP to OP not successful) EtherCAT State Byte 1 : INIT 2 : PREOP 4 : SAFEOP 8 : OP Error DescripByte[5] [0] to [4] tion Please refer to LIT[01] for Diagnostic Data Table 24 Codification of SM Synchronization errors 3.2.2.3 AL Status Errors State changes requested by the master are communicated to the slave via the AL control register, the slave (device) responds to the change in the AL control register through a local AL Status write after successful or a failed state change. Supported AL Status Code definition: AL Status Codes ALSTATUSCODE_NOERROR ALSTATUSCODE_INVALIDALCONTROL ALSTATUSCODE_UNKNOWNALCONTROL ALSTATUSCODE_BOOTNOTSUPP ALSTATUSCODE_INVALIDMBXCFGINPREOP ALSTATUSCODE_INVALIDSMOUTCFG ALSTATUSCODE_INVALIDSMINCFG ALSTATUSCODE_INVALIDWDCFG ALSTATUSCODE_SMWATCHDOG ALSTATUSCODE_WAITFORCOLDRESET ALSTATUSCODE_BACKGROUNDWATCHDOG ALSTATUSCODE_DCINVALIDSYNCCFG ALSTATUSCODE_DCINVALIDSYNCCYCLETIME Table 25 Supported AL Status codes EtherCAT 2011-10-04/rnik Values 0x0000 0x0011 0x0012 0x0013 0x0016 0x001D 0x001E 0x001F 0x001B 0x0020 0x002A 0x0030 0x0035 22/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany 3.2.2.4 Error diagnostics (RED LED) Generic encoder errors or state transition errors are signalized to the user via ERROR State LED, supported LED states are: ERROR STATE State description OFF No Error Blinking Invalid Configuration Single Flash Unsolicited state change ON Watchdog Table 26 Error State Status 3.2.2.5 Working Counter In 1-Buffer mode (please refer to 2.3.2.2) the master may check the working counter value. This value will be incremented by +1 if the encoder internal application controller was able to successfully write process data into the ECAT controller. This mechanism enables the master to detect encoder freezing in a PDO transmission synchronous manner. EtherCAT 2011-10-04/rnik 23/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany 4 Encoder Family Overview Proper identification of product may be done via evaluation of the Device Name string (Object 0x1008). Another possibility is to read out the Device Type, Product Code and Resolution Data fields to have an exact device description. 4.1 Device identification fields 15ECM12 0x0001 **** 0x0001 **** 8…15 - 17ECM12 0x0001 **** 0x0001 **** 16…17 - ATD 2 ***Y*** 14/16ECM12 17/12ECM12 Product Code 0x0002**** 0x0002**** Device Type 0x0002 **** 0x0002 **** ST Resolution 8…14 16…17 MT Resolution 8…16 8…12 Table 28 ATD2 encoder family overview 14CM12 0x0002**** 0x0001 **** 8…14 - 17ECM12 0x0002**** 0x0001 **** 16…17 - Multi Turn Resolution ATD 4B ***Y*** 15/16ECM12 17/12ECM12 Product Code 0x0001 **** 0x0001 **** Device Type 0x0002 **** 0x0002 **** ST Resolution 8…15 16…17 MT Resolution 8…16 8…12 Table 27 ATD4 encoder family overview ATD2B Family 8...12 8...16 16...17 8...15 8...16 16...17 8...14 8...14 16...17 ATD4B Family 8...12 8...15 16...17 Single Turn Resolution Device classification via CoE Product Code (0x1018:02) and Device Type (0x1000): Picture 8 ATD Families comparison EtherCAT 2011-10-04/rnik 24/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany Asynchronous Timing In Asynchronous (Free Run) mode the encoder position data will be sampled asynchronous to the ECAT frame. In this mode the encoder data sampling frequency (fs) is about 11 kHz. The position data sample point may have a typical total jitter of 92µs. The following diagram shows the relationship between data read accesses to DPRAM (from the master point of view) at the ECAT controller and data sample and update to DPRAM from the slave (encoder). Cyclic read by master Frame n Frame n+1 Cylce time (PLC Task) Data sampling process at slave fs t Picture 9 Non sync (Free Run) timing diagram for a multi turn encoder At Operating temperature = 20°C, State = OP Name Min Typ Max Jitter (J) 0 100 Cycle Time (sfc = 0/1) 1.000 64.000 Table 29 Free Run timing specification for ST and MT devices µs µs In free run mode the minimum cycle time should be larger than the maximum jitter, else the data jitter to cycle time relation is poor for usual RT requirements. EtherCAT 2011-10-04/rnik 25/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany 5 Sync to SM event Timing In the this operating mode the process data will be sampled and copied subsequently into the Sync Manager buffer every time the data has been read out by the master, this means that the sampled data is synchronous to the read out events of the master. One disadvantage of this mode is that for large cycle times the data may be relative old for a RT system; however data is synchronized to the masters readout event. Cyclic read by master Frame n Frame n+1 Cylce time Min cylce time 1C33:05 t Sample + Cal & copy Sample + Cal & copy Data sampling process at slave SM3 Event Tj 1C33:03 Picture 10 Sync to SM event sampling diagram Picture 11 Sample jitter for a Sync to SM event operating multi turn encoder. CH3 not_SM event trigger signal CH1 Sample + Calc & Copy Signal EtherCAT 2011-10-04/rnik 26/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany At Operating temperature = 20°C, State = OP Name Min Jitter (J) 0 Cycle Time (sfc = 0/1) 62,50 Table 30 Sync to SM event timing specification EtherCAT 2011-10-04/rnik Typ 6,90 27/42 Max 10 64.000 µs µs Baumer Thalheim GmbH & Co. KG Eschwege, Germany 6 DC Timing The exact data sampling time while DC mode depends on the sum of the two parameters: 0x1C33:3 (= Shift Time) and Tjs (Jitter on sampling time). The minimum cycle time depends on the setting of the Scaling Function Control bit. The time the encoder needs (from the SYNC0 signal point) to be able to put process data into the DPRAM can be estimated by adding the Shift Time and the Calc and Copy Time (Table 31 Calc and Copy Time). 6.1 Consecutive sample point jitter For the system designer there one value of interest: the absolute jitter between two consecutive sampling points (Jitter) J. This value includes all device systematic jitter sources. Please refer to Table 32. 6.2 Shift Time Shift time is defined to be the time the encoder needs to start sampling data. This time information plus the absolute system time gives the time stamp of the actual sample value. This means the sampled position data has a fix relationship to the DC clock of the network. 6.3 Calc and Copy Time The time the slave controller need for calculate and copy the sampled data to the SM data buffer (e.g. into Ethernet Frame) strongly depends on the SFC bit. Product Device Name Code ATD4 B ***Y*** 15/16EC 0x0001**** ATD4 B ***Y*** 17/12EC 0x0001**** ATD4 B ***Y*** 15EC 0x0001**** ATD4 B ***Y*** 17EC 0x0001**** ATD2 B ***Y*** 14/16EC 0x0002**** ATD2 B ***Y*** 17/12EC 0x0002**** ATD2 B ***Y*** 14EC 0x0002**** ATD2 B ***Y*** 17EC 0x0002**** Table 31 Calc and Copy Time Device Type 0x0002 **** 0x0002 **** 0x0001 **** 0x0001 **** 0x0002 **** 0x0002 **** 0x0001 **** 0x0001 **** Calc and Copy Time [µs] SFC=0 SFC=19 SFC=110 26,4 29,8 41,0 41,8 41,9 42,0 23,5 23,9 28,1 33,7 33,8 36,8 28,6 30,8 40,4 42,8 42,9 43,0 23,5 23,9 28,1 34,7 34,8 37,8 For a full information about relationship between shift time, calc and copy time, Ethernet Frame length and SYNC0 generation please refer to LIT[05]. 9 Value is given for Scaling Function Control enabled and default encoder resolution Value is given for Scaling Function Control enabled and lowest encoder specific resolution value. 10 EtherCAT 2011-10-04/rnik 28/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany CycleTime 1C33:02 SYNC0 event (n) SYNC0 event (n+x) MIN CycleTime 1C33:05 D Um Master Slave S J C&C PD sampling Shift Time 1C33:03 Picture 12 Timing Diagram for DC or Sync Communication type D Um S J C&C : Delay time of the EtherCAT slave to transfer data (approx. 600n + 5ns x L[m]) : Shift time that is adjusted internally by the master. : Fixed Slave Shift time until data acquisition is started (0x1C33:3) : Slave Jitter is the time the slave needs to start sampling data : Calc and copy time for data transfer ADC to DPRAM. At Operating temperature = 20°C, State = OP Name Min Shift Time (S) Jitter (J) 0 Cycle Time (SFC = 1) 62,5 Table 32 DC cycle time specification 11 Typ 11 4,880 65 Max 12 100 32.000 µs ns µs Firmware Version > 1.07 12 Device jitter may is dependent of many factors, an estimation of this jitter may be done by adding the SYNC0 Jitter (max = 40ns for ET1100) + optics sampling point jitter (max = 25ns) EtherCAT 2011-10-04/rnik 29/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany n n+1 Picture 13 Sample point (n) to consecutive sample (n+1) point jitter ( CH1: SYNC, CH2: SAMPLE) for a multi turn device Upper scope window: CH1: not_DC_Sync0 signal CH2: Sample + Calc & Copy signal. Lower scope window: Zoom of upper window in the area marked by the two gray bars [] on Upper. EtherCAT 2011-10-04/rnik 30/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany 7 System Set up with the TwinCAT Software In this chapter a short introduction for encoder device operation within a generic office PC environment is described. System setup standard 3 GHz DELL office PC D-Link Fast Ethernet Adapter TwinCAT V2.10.00 (Build 1313) 7.1 Free Run/Sync0 Init STEP A Start the TwinCAT System Manager software: Press F5 Key. and confirm the next message : Choose your EtherCAT dedicated network card from the List: HINT : If no network card is available you have to install one, this is possible under Options -> Show Real Time Ethernet Compatible Devices -> Install “Compatible devices”. After this you your network card should move from “Compatible devices” to “Installed and ready to use devices”. Confirm dialog with OK EtherCAT 2011-10-04/rnik 31/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany Confirm dialog with OK STEP B: Choose CoE – Online Choose: Online – via SDO Information, All Objects, Confirm. If the *.xml is stored under \\TwinCAT\Io\EtherCAT\xxx.xml the: Offline - from Device Description it is also possible to get the encoder Dictionary offline. This step is necessary only for SII memory <= 128 Bytes EtherCAT 2011-10-04/rnik 32/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany 7.2 Distributed Clocks Mode Init All initialization points described in the previous chapter have to be done before starting this Init EtherCAT 2011-10-04/rnik 33/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany STEP C : Choose DC -> Advanced Settings Choose Smart View -> Write E2PROM EtherCAT 2011-10-04/rnik 34/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany Choose sync mode (content depends on XML File that is used and may differ from picture): Confirm with OK Reset encoder (Power on / off 10 sec min) Repeat STEP A Change Operation Mode to Distributed Clock EtherCAT 2011-10-04/rnik 35/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany Set Up Cycle Time Confirm with OK EtherCAT 2011-10-04/rnik 36/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany Append a PLC Project (*.tpy file) Attach Variable From the Menu Actions choose Activate Configuration Confirm the next three dialogs EtherCAT 2011-10-04/rnik 37/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany Start the PLC Task. HINT : If no PLC Task is started the TwinCAT System Manager will start cyclic data transfer e.g. Position Values will not be updated by the encoder. 8 System Set up with CAT Studio.NET Software In this chapter a short description of device operation with a generic office PC environment using the KPA ECAT Studio.NET and the ECAT Master Win 32 software follows. System setup: standard 3 GHz DELL office PC D-Link Fast Ethernet Adapter EtherCAT Studio Version 1.9.16.0 with internal Master 1.3.41.0 8.1 Frame Synchronous Mode On start Window Press Shift+M to create anew Master After this right mouse click on Master icon: choose Attach master. EtherCAT 2011-10-04/rnik 38/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany On the following Window choose Accept After this step Master should be running at INIT state. Choose State on Master and change to Operational EtherCAT 2011-10-04/rnik 39/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany Process Data can be seen under Slave>Variables CoE Online Data may be checked under Slave>CoE-Online Possible Encoder errors are showed under the Emergency register EtherCAT 2011-10-04/rnik 40/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany 8.2 Distributed Clock Mode For Distributed Clock Setup the Master and Slave have to be detached. After this: 1)The Distributed Clock at Master has to be enabled 2)The Distributed Clock at the Slave has to be enabled (please refer to following picture) After this State Change may be done following the prior state change procedure. EtherCAT 2011-10-04/rnik 41/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany 9 EtherCAT Conformance Test The EtherCAT Encoder Family was subjected to a EtherCAT Conformance Test (Version 1.20.0.0), the result was satisfactory. Picture 14 EtherCAT Conformance Test (Version 1.20.0.0) result. EtherCAT 2011-10-04/rnik 42/42 Baumer Thalheim GmbH & Co. KG Eschwege, Germany