AOT10N65/AOTF10N65 650V,10A N-Channel MOSFET General Description Product Summary The AOT10N65 & AOTF10N65 have been fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular AC-DC applications. By providing low RDS(on), Ciss and Crss along with guaranteed avalanche capability these parts can be adopted quickly into new and existing offline power supply designs. VDS ID (at VGS=10V) 750V@150℃ 10A RDS(ON) (at VGS=10V) < 1Ω 100% UIS Tested 100% Rg Tested For Halogen Free add "L" suffix to part number: AOT10N65L & AOTF10N65L TO-220 G D Top View TO-220F D G G D S S S Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol AOT10N65 Drain-Source Voltage VDS 650 Gate-Source Voltage ±30 Continuous Drain Current VGS TC=25°C TC=100°C AOTF10N65 V 10 ID Units V 10* 6.2 6.2* A Pulsed Drain Current C IDM Avalanche Current C IAR 3.4 A Repetitive avalanche energy C EAR 173 mJ Single pulsed avalanche energy G Peak diode recovery dv/dt TC=25°C Power Dissipation B Derate above 25oC Junction and Storage Temperature Range Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds Thermal Characteristics Parameter Maximum Junction-to-Ambient A,D EAS dv/dt 347 5 mJ V/ns W 36 PD 50 2 0.4 TJ, TSTG -55 to 150 W/ oC °C 300 °C TL Symbol RθJA RθCS AOT10N65 65 AOTF10N65 65 Units °C/W 0.5 0.5 -2.5 °C/W °C/W Maximum Case-to-sink A Maximum Junction-to-Case RθJC * Drain current limited by maximum junction temperature. Rev3:March 2011 250 www.aosmd.com Page 1 of 6 AOT10N65/AOTF10N65 Electrical Characteristics (TJ=25°C unless otherwise noted) Parameter Symbol Conditions Min ID=250µA, VGS=0V, TJ=25°C 650 Typ Max Units STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage BVDSS /∆TJ Zero Gate Voltage Drain Current IDSS Zero Gate Voltage Drain Current IGSS Gate-Body leakage current VDS=0V, VGS=±30V VGS(th) Gate Threshold Voltage VDS=5V, ID=250µA ID=250µA, VGS=0V, TJ=150°C 750 ID=250µA, VGS=0V VDS=650V, VGS=0V 0.75 V V/ oC 1 VDS=520V, TJ=125°C µA 10 ±100 3 4 4.5 nΑ V 1 Ω 1 V RDS(ON) Static Drain-Source On-Resistance VGS=10V, ID=5A 0.77 gFS Forward Transconductance VDS=40V, ID=5A 13 VSD Diode Forward Voltage IS=1A,VGS=0V S 0.73 IS Maximum Body-Diode Continuous Current 10 A ISM Maximum Body-Diode Pulsed Current 36 A DYNAMIC PARAMETERS Input Capacitance Ciss Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance VGS=0V, VDS=25V, f=1MHz VGS=0V, VDS=0V, f=1MHz SWITCHING PARAMETERS Qg Total Gate Charge Qgs Gate Source Charge Qgd Gate Drain Charge VGS=10V, VDS=520V, ID=10A 1095 1369 1645 pF 95 118 145 pF 8 10 12 pF 1.7 3.5 5.5 Ω 22 27.7 33 nC 6 7.4 9 nC 9 11.3 14 nC tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime tf trr Turn-Off Fall Time IF=10A,dI/dt=100A/µs,VDS=100V 255 320 385 Qrr Body Diode Reverse Recovery Charge IF=10A,dI/dt=100A/µs,VDS=100V 4.8 6 7.2 Body Diode Reverse Recovery Time VGS=10V, VDS=325V, ID=10A, RG=25Ω 30 ns 61 ns 74 ns 53 ns ns µC A. The value of R θJA is measured with the device in a still air environment with TA =25°C. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature T J(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial T J =25°C. D. The R θJA is the sum of the thermal impedance from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating. G. L=60mH, IAS=3.4A, VDD=150V, RG=25Ω, Starting TJ=25°C THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev3: March 2011 www.aosmd.com Page 2 of 6 AOT10N65/AOTF10N65 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 18 10V 15 10 12 6V 125°C ID(A) ID (A) -55°C VDS=40V 6.5V 9 VGS=5.5V 6 1 25°C 3 0.1 0 0 5 10 15 20 25 2 30 4 VDS (Volts) Fig 1: On-Region Characteristics 8 10 VGS(Volts) Figure 2: Transfer Characteristics 3 1.6 1.4 Normalized On-Resistance VGS=10V 1.2 RDS(ON) (Ω ) 6 1.0 0.8 0.6 2.5 VGS=10V ID=5A 2 1.5 1 0.5 0.4 0 4 8 12 16 0 20 -100 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage -50 50 100 150 200 Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature 1.0E+02 1.2 1.0E+01 1.1 125°C 1.0E+00 IS (A) BVDSS (Normalized) 0 1 25°C 1.0E-01 1.0E-02 2.2 1.0E-03 0.9 1.0E-04 0.8 1.0E-05 -100 -50 0 50 100 150 200 TJ (oC) Figure 5: Break Down vs. Junction Temperature Rev3: March 2011 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AOT10N65/AOTF10N65 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10000 15 1000 Capacitance (pF) VGS (Volts) Ciss VDS=520V ID=10A 12 9 6 Coss 100 10 3 Crss 1 0 0 5 10 15 20 25 30 35 Qg (nC) Figure 7: Gate-Charge Characteristics 0.1 40 100 1 10 VDS (Volts) Figure 8: Capacitance Characteristics 100 10µs 10µs RDS(ON) limited 10 RDS(ON) limited 100µs 1ms 1 10ms DC ID (Amps) 10 ID (Amps) 100 100µs 1ms 10ms 0.1s 1 1s DC 0.1 0.1 TJ(Max)=150°C TC=25°C TJ(Max)=150°C TC=25°C 0.01 0.01 1 10 100 1000 VDS (Volts) 1 10 100 1000 VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area for AOT10N65 (Note F) Figure 10: Maximum Forward Biased Safe Operating Area for AOTF10N65 (Note F) 12 Current rating ID(A) 10 8 6 4 2 0 0 25 50 75 100 125 150 TCASE (°C) Figure 11: Current De-rating (Note B) Rev3: March 2011 www.aosmd.com Page 4 of 6 AOT10N65/AOTF10N65 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS Zθ JC Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=Tc+PDM.ZθJC.RθJC RθJC=0.5°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD Ton 0.01 T Single Pulse 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 12: Normalized Maximum Transient Thermal Impedance for AOT10N65 (Note F) Zθ JC Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=Tc+PDM.ZθJC.RθJC RθJC=2.5°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD 0.01 Ton T Single Pulse 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 13: Normalized Maximum Transient Thermal Impedance for AOTF10N65 (Note F) Rev3: March 2011 www.aosmd.com Page 5 of 6 AOT10N65/AOTF10N65 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC DUT - Vgs Ig Charge Res istive Switching Test Circuit & Waveforms RL Vds Vds DUT Vgs 90% + Vdd VDC - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf t off Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L EAR= 1/2 LI Vds 2 BVDSS AR Vds Id + Vgs Vgs VDC - Rg Vdd I AR Id DUT Vgs Vgs Diode Recovery Tes t Circuit & Waveforms Qrr = - Idt Vds + DUT Vgs Vds - Isd Vgs Ig Rev3: March 2011 L Isd + Vdd trr dI/dt IRM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6