ST Sitronix ST7036 Dot Matrix LCD Controller/Driver Features 5 x 8 dot matrix possible Low power operation support: -- 2.7 to 5.5V Range of LCD driver power -- 3.0 to 7.0V 2 4-bit, 8-bit, serial or I C-bus MPU interface enabled 80 x 8-bit display RAM (80 characters max.) 10,240-bit character generator ROM for a total of 256 character fonts(max) 64 x 8-bit character generator RAM(max) Support two display mode: 16-com x 100-seg and 80 ICON 24-com x 80-seg and 80 ICON 16 x 5 –bit ICON RAM(max) Description The ST7036 dot-matrix liquid crystal display controller can display alphanumeric, Japanese kana characters, and symbols. It can be configured to drive a dot-matrix liquid crystal display under the control of a 4 / 8-bit with 2 6800-series, serial or fast I C interface microprocessor. Since all the functions such as display RAM, character generator ROM/RAM and liquid crystal driver, required for driving a dot-matrix liquid crystal display are internally provided on one chip, a minimal system can be used with this controller/driver. Wide range of instruction functions: Display clear, cursor home, display on/off, cursor on/off, display character blink, cursor shift, display shift, double height font Automatic reset circuit that initializes the controller/driver after power on and external reset pin Internal oscillator(Frequency=540kHz) and external clock Built-in voltage booster and follower circuit (low power consumption ) COM/SEG direction selectable Multi-selectable for CGRAM/CGROM size Instruction compatible to ST7066U and KS0066U and HD44780 Available in COG type The ST7036 is suitable for low voltage supply (2.7V to 5.5V) and is perfectly suitable for any portable product which is driven by the battery and requires low power consumption. The display resolution of ST7036 dot-matrix LCD driver can be either 1-line x 20 characters, 2-line x 20 characters or 3-line x 16 characters with 80 bit ICON. The ST7036 dot-matrix LCD driver does not need extra cascaded drivers. The ST7036 character generator ROM size is 256 5x8dot bits which can be used to generate 256 different character fonts (5x8dot). product Name Character generator ROM Size ST7036-0A - 256 - 1 - ST7036 6800-4bit / 8bit,4-Line interface (without IIC interface) ST7036i IIC interface V1.7a OPR1 OPR2 Support Character 1/70 1 - English / Japan/Europe - 2007/10/17 ST7036 Version st 0.1a 2003/04/28 1 Edition 0.1b PAD Dimension: 2003/06/03 IC L mark location modified Chip Size X/Y modified 0.2a 2003/09/01 1. Include ST7036i 1.0 2003/10/24 1.1 V1.7a ST7036 Serial Specification Revision History Date Description 1. 2. 1. 2003/12/24 2. Add application circuit for 3 line display. 4 bit interface program example modified. Remove the instruction of frequency adjust. Add the detail of CGRAM/CGROM arrangement. 1.2 2004/5/13 Remove ‘Preliminary’. 1.3 2004/5/26 1.4 2004/10/20 1. To modify icon RAM mapping. ( P.24 ) 1.5 2005/06/13 Modify operating temperature range Ta=-35°C to 85°C 1.6 1. 2. 2005/10/17 3. 4. 5. 1.7 2006/7/10 1. To modify Chip Thickness: 480 um 1.7a 2007/10/17 1. Adding description of 4-line interface in cover 1. Correct the I/O pad configuration. 2 2. Add comments for I C application. To modify Operating Temperature Range Ta=-30°C to 85°C To modify Storage Temperature Range Ta=-65°C to 150°C To modify the vlcd voltage Range 3.0v~7.0v To modify the limiting values -0.3v~+6.0v To add Chip Thickness: 635 um 2/70 2007/10/17 ST7036 Pad Dimensions Chip Size: 5190.0 X 910.0 µm Chip Thickness: 480 µm Bump Pitch : 55 µm ( min ) Bump Height : 17 µm ( typ. ) Bump Size : Pad No.1~52 : 56 x 72 µm Pad No.53~170 : 35 x 101 µm V1.7a 3/70 2007/10/17 ST7036 Pad Location Coordinates(N3=0 1 line/2 line) Pad No. Function V1.7a X Y Pad No. Function X Y 1 XRESET 1859 393 41 CLS -1181 393 2 OSC 1783 393 42 CAP1N -1257 393 3 VDD 1707 393 43 CAP1N -1333 393 4 RS 1631 393 44 VOUT -1409 393 5 CSB 1555 393 45 VOUT -1485 393 6 RW 1479 393 46 V0 -1561 393 7 E 1403 393 47 V0 -1637 393 8 DB0 1327 393 48 V1 -1713 393 9 DB1 1251 393 49 V2 -1789 393 10 DB2 1175 393 50 V3 -1865 393 11 DB3 1099 393 51 V4 -1941 393 12 DB4 1023 393 52 NC -2017 393 13 DB5 947 393 53 COM[8] -2125 378 14 DB6 871 393 54 COM[7] -2180 378 15 DB7 795 393 55 COM[6] -2235 378 16 VSS 719 393 56 COM[5] -2290 378 17 VSS 643 393 57 COM[4] -2518 365 18 VSS 567 393 58 COM[3] -2518 310 19 OPF1 491 393 59 COM[2] -2518 255 20 OPF2 415 393 60 COM[1] -2518 200 21 OPR1 339 393 61 COMI1 -2518 145 22 OPR2 263 393 62 SEG[1] -2518 90 23 SHLC 187 393 63 SEG[2] -2518 35 24 SHLS 111 393 64 SEG[3] -2518 -20 25 N3 35 393 65 SEG[4] -2518 -75 26 TEST1 -41 393 66 SEG[5] -2518 -130 27 VDD -117 393 67 SEG[6] -2518 -185 28 VDD -193 393 68 SEG[7] -2518 -240 29 VDD -269 393 69 SEG[8] -2518 -295 30 VIN -345 393 70 SEG[9] -2518 -350 31 VIN -421 393 71 SEG[10] -2253 -378 32 VOUT -497 393 72 SEG[11] -2198 -378 33 VOUT -573 393 73 SEG[12] -2143 -378 34 PSB -649 393 74 SEG[13] -2088 -378 35 VSS -725 393 75 SEG[14] -2033 -378 36 PSI2B -801 393 76 SEG[15] -1978 -378 37 CAP1P -877 393 77 SEG[16] -1923 -378 38 CAP1P -953 393 78 SEG[17] -1868 -378 39 EXT -1029 393 79 SEG[18] -1813 -378 40 VSS -1105 393 80 SEG[19] -1758 -378 4/70 2007/10/17 ST7036 Pad No. Function X Y Pad No. Function X Y 81 SEG[20] -1703 -378 121 SEG[60] 497 -378 82 SEG[21] -1648 -378 122 SEG[61] 552 -378 83 SEG[22] -1593 -378 123 SEG[62] 607 -378 84 SEG[23] -1538 -378 124 SEG[63] 662 -378 85 SEG[24] -1483 -378 125 SEG[64] 717 -378 86 SEG[25] -1428 -378 126 SEG[65] 772 -378 87 SEG[26] -1373 -378 127 SEG[66] 827 -378 88 SEG[27] -1318 -378 128 SEG[67] 882 -378 89 SEG[28] -1263 -378 129 SEG[68] 937 -378 90 SEG[29] -1208 -378 130 SEG[69] 992 -378 91 SEG[30] -1153 -378 131 SEG[70] 1047 -378 92 SEG[31] -1098 -378 132 SEG[71] 1102 -378 93 SEG[32] -1043 -378 133 SEG[72] 1157 -378 94 SEG[33] -988 -378 134 SEG[73] 1212 -378 95 SEG[34] -933 -378 135 SEG[74] 1267 -378 96 SEG[35] -878 -378 136 SEG[75] 1322 -378 97 SEG[36] -823 -378 137 SEG[76] 1377 -378 98 SEG[37] -768 -378 138 SEG[77] 1432 -378 99 SEG[38] -713 -378 139 SEG[78] 1487 -378 100 SEG[39] -658 -378 140 SEG[79] 1542 -378 101 SEG[40] -603 -378 141 SEG[80] 1597 -378 102 SEG[41] -548 -378 142 SEG[81] 1652 -378 103 SEG[42] -493 -378 143 SEG[82] 1707 -378 104 SEG[43] -438 -378 144 SEG[83] 1762 -378 105 SEG[44] -383 -378 145 SEG[84] 1817 -378 106 SEG[45] -328 -378 146 SEG[85] 1872 -378 107 SEG[46] -273 -378 147 SEG[86] 1927 -378 108 SEG[47] -218 -378 148 SEG[87] 1982 -378 109 SEG[48] -163 -378 149 SEG[88] 2037 -378 110 SEG[49] -108 -378 150 SEG[89] 2092 -378 111 SEG[50] -53 -378 151 SEG[90] 2147 -378 112 SEG[51] 2 -378 152 SEG[91] 2202 -378 113 SEG[52] 57 -378 153 SEG[92] 2518 -350 114 SEG[53] 112 -378 154 SEG[93] 2518 -295 115 SEG[54] 167 -378 155 SEG[94] 2518 -240 116 SEG[55] 222 -378 156 SEG[95] 2518 -185 117 SEG[56] 277 -378 157 SEG[96] 2518 -130 118 SEG[57] 332 -378 158 SEG[97] 2518 -75 119 SEG[58] 387 -378 159 SEG[98] 2518 -20 120 SEG[59] 442 -378 160 SEG[99] 2518 35 V1.7a 5/70 2007/10/17 ST7036 Pad No. Function X Y 161 SEG[100] 2518 90 162 COM[9] 2518 145 163 COM[10] 2518 200 164 COM[11] 2518 255 165 COM[12] 2518 310 166 COM[13] 2518 365 167 COM[14] 2290 378 168 COM[15] 2235 378 169 COM[16] 2180 378 170 COMI2 2125 378 V1.7a Pad No. Function 6/70 X Y 2007/10/17 ST7036 Pad Location Coordinates(N3=1 3 line) Pad No. Function V1.7a X Y Pad No. Function X Y 1 XRESET 1859 393 41 CLS -1181 393 2 OSC 1783 393 42 CAP1N -1257 393 3 VDD 1707 393 43 CAP1N -1333 393 4 RS 1631 393 44 VOUT -1409 393 5 CSB 1555 393 45 VOUT -1485 393 6 RW 1479 393 46 V0 -1561 393 7 E 1403 393 47 V0 -1637 393 8 DB0 1327 393 48 V1 -1713 393 9 DB1 1251 393 49 V2 -1789 393 10 DB2 1175 393 50 V3 -1865 393 11 DB3 1099 393 51 V4 -1941 393 12 DB4 1023 393 52 NC -2017 393 13 DB5 947 393 53 COM[12] -2125 378 14 DB6 871 393 54 COM[11] -2180 378 15 DB7 795 393 55 COM[10] -2235 378 16 VSS 719 393 56 COM[9] -2290 378 17 VSS 643 393 57 COM[8] -2518 365 18 VSS 567 393 58 COM[7] -2518 310 19 OPF1 491 393 59 COM[6] -2518 255 20 OPF2 415 393 60 COM[5] -2518 200 21 OPR1 339 393 61 NC -2518 145 22 OPR2 263 393 62 COM[4] -2518 90 23 SHLC 187 393 63 COM[3] -2518 35 24 SHLS 111 393 64 COM[2] -2518 -20 25 N3 35 393 65 COM[1] -2518 -75 26 TEST1 -41 393 66 COMI1 -2518 -130 27 VDD -117 393 67 NC -2518 -185 28 VDD -193 393 68 NC -2518 -240 29 VDD -269 393 69 NC -2518 -295 30 VIN -345 393 70 NC -2518 -350 31 VIN -421 393 71 NC -2253 -378 32 VOUT -497 393 72 SEG[1] -2198 -378 33 VOUT -573 393 73 SEG[2] -2143 -378 34 PSB -649 393 74 SEG[3] -2088 -378 35 VSS -725 393 75 SEG[4] -2033 -378 36 PSI2B -801 393 76 SEG[5] -1978 -378 37 CAP1P -877 393 77 SEG[6] -1923 -378 38 CAP1P -953 393 78 SEG[7] -1868 -378 39 EXT -1029 393 79 SEG[8] -1813 -378 40 VSS -1105 393 80 SEG[9] -1758 -378 7/70 2007/10/17 ST7036 Pad No. Function X Y Pad No. Function X Y 81 SEG[10] -1703 -378 121 SEG[50] 497 -378 82 SEG[11] -1648 -378 122 SEG[51] 552 -378 83 SEG[12] -1593 -378 123 SEG[52] 607 -378 84 SEG[13] -1538 -378 124 SEG[53] 662 -378 85 SEG[14] -1483 -378 125 SEG[54] 717 -378 86 SEG[15] -1428 -378 126 SEG[55] 772 -378 87 SEG[16] -1373 -378 127 SEG[56] 827 -378 88 SEG[17] -1318 -378 128 SEG[57] 882 -378 89 SEG[18] -1263 -378 129 SEG[58] 937 -378 90 SEG[19] -1208 -378 130 SEG[59] 992 -378 91 SEG[20] -1153 -378 131 SEG[60] 1047 -378 92 SEG[21] -1098 -378 132 SEG[61] 1102 -378 93 SEG[22] -1043 -378 133 SEG[62] 1157 -378 94 SEG[23] -988 -378 134 SEG[63] 1212 -378 95 SEG[24] -933 -378 135 SEG[64] 1267 -378 96 SEG[25] -878 -378 136 SEG[65] 1322 -378 97 SEG[26] -823 -378 137 SEG[66] 1377 -378 98 SEG[27] -768 -378 138 SEG[67] 1432 -378 99 SEG[28] -713 -378 139 SEG[68] 1487 -378 100 SEG[29] -658 -378 140 SEG[69] 1542 -378 101 SEG[30] -603 -378 141 SEG[70] 1597 -378 102 SEG[31] -548 -378 142 SEG[71] 1652 -378 103 SEG[32] -493 -378 143 SEG[72] 1707 -378 104 SEG[33] -438 -378 144 SEG[73] 1762 -378 105 SEG[34] -383 -378 145 SEG[74] 1817 -378 106 SEG[35] -328 -378 146 SEG[75] 1872 -378 107 SEG[36] -273 -378 147 SEG[76] 1927 -378 108 SEG[37] -218 -378 148 SEG[77] 1982 -378 109 SEG[38] -163 -378 149 SEG[78] 2037 -378 110 SEG[39] -108 -378 150 SEG[79] 2092 -378 111 SEG[40] -53 -378 151 SEG[80] 2147 -378 112 SEG[41] 2 -378 152 NC 2202 -378 113 SEG[42] 57 -378 153 NC 2518 -350 114 SEG[43] 112 -378 154 NC 2518 -295 115 SEG[44] 167 -378 155 NC 2518 -240 116 SEG[45] 222 -378 156 NC 2518 -185 117 SEG[46] 277 -378 157 NC 2518 -130 118 SEG[47] 332 -378 158 COM[13] 2518 -75 119 SEG[48] 387 -378 159 COM[14] 2518 -20 120 SEG[49] 442 -378 160 COM[15] 2518 35 V1.7a 8/70 2007/10/17 ST7036 Pad No. Function X Y 161 COM[16] 2518 90 162 COM[17] 2518 145 163 COM[18] 2518 200 164 COM[19] 2518 255 165 COM[20] 2518 310 166 COM[21] 2518 365 167 COM[22] 2290 378 168 COM[23] 2235 378 169 COM[24] 2180 378 170 COMI2 2125 378 V1.7a Pad No. Function 9/70 X Y 2007/10/17 ST7036 Block Diagram OSC XRESET Reset circuit CLS Timing generator CPG Instruction register(IR) Instruction decoder RS RW E CSB Display data RAM (DDRAM) 80x8 bits COMI Address counter (AC) 100-bit shift register PSI2B EXT N3 100-bit latch circuit SEG1 to SEG100 Segment signal driver Data register (DR) DB4 to DB7 SHLC SHLS COM1 to COM16 (OR 24) Common signal driver MPU interface PSB DB0 to DB3 24-bit shift register Input/ output buffer V0~V4 LCD drive voltage follower Busy flag Character generator RAM (CGRAM) 64 bytes ICON RAM 80 bits Character generator ROM (CGROM) 10.240 bits Cursor and blink controller Voltage booster circuit VOUT VIN CAP1P CAP1N OPR1,2 OPF1,2 VSS Parallel/serial converter and attribute circuit VDD V1.7a 10/70 2007/10/17 ST7036 Pin Function Name XRESET Number 1 I/O Interfaced with I MPU Function External reset pin. Only if the power on reset be used, the XRESET pin could be fixed to VDD. Low active. Select registers. RS 1 I MPU 0: Instruction register (for write) Busy flag & address counter (for read) 1: Data register (for write and read) Select read or write(In parallel mode). R/W 1 I MPU 0: Write 1: Read E 1 I MPU CSB 1 I MPU Starts data read/write. (“E” must connect to “VDD” when serial mode is selected.) Chip select in parallel mode and serial interface(Low active). When the CSB in falling edge state ( in serial interface ), the shift register and the counter are reset. DB0~DB3 are four low order bi-directional data bus pins. DB0~DB3 are used for data transfer and receive between the MPU and the ST7036. These pins are not used during 4-bit operation and must connect to VDD. DB4~DB7 are four high order bi-directional data bus pins. DB4~DB7 are used for data transfer and receive between DB0 to DB7 8 I/O MPU the MPU and the ST7036. DB7 can be used as a busy flag. In serial interface mode DB7 is SI(input data),DB6 is SCL(serial clock). 2 In I C interface DB7 is slave address A1, DB6 is slave address A0, DB5 DB4 DB3 are SDA –out, DB2 DB1 are SDA-in and D0 is SCL. 2 2 SDA and SCL must connect to I C bus ( I C bus means that connecting a resister between SDA/SCL and the power of 2 I C bus ). Extension instruction select: 0:enable extension instruction(add contrast/ICON/double Ext 1 I ITO option height font/ extension instruction) 1:disable extension instruction(compatible to ST7066U, but without 5x11dot font) Interface selection 0:serial mode PSB 1 I ITO option (“E” must connect to “VDD” when serial mode is selected.) 1:parallel mode(4/8 bit) 2 In I C interface PSB must connect to VDD PSI2B V1.7a 1 I ITO option PSB PSI2B 0 0 No use 0 1 4-line SPI 1 0 IC 1 1 Parallel 68 11/70 Interface 2 2007/10/17 ST7036 Name Number I/O Interfaced with Function Character generator select: OPR1,OPR2 2 I OPR1 OPR2 CGROM CGRAM 0 0 240 8 0 1 250 6 1 0 248 8 1 1 256 0 ITO option Common signals direction select: SHLC 1 I ITO option 0:Com1~24←Row address 23~0(Invert) 1:Com1~24←Row address 0~23(Normal) Segment signals direction select: SHLS 1 I ITO option 0:Seg1~100←Column address 99~0(Invert) 1:Seg1~100←Column address 0~99(Normal) COM1 to COM16 COMI2 COMI1 Seg1~Seg10 Seg91~Seg100 Common signals that are not used are changed 16 O LCD to non-selection waveform. COM9 to COM16 are non-selection waveforms at 1/8 or 1/9 duty factor 1 O LCD 21 O LCD ICON common signals Select “N3” pin for common or segment waveform output (follow up table 2 defined) 1 line/2 line or 3 line select : N3 1 I ITO option 0:1 line/2 line SEG0~SEG100:normal 1:3 line COMI1,SEG1~SEG5,SEG97~SEG100 re-defined SEG11 to SEG90 80 O LCD Segment signals The built-in voltage follower circuit selection OPF1 OPF2 OPF1,OPF2 CAP1P 2 2 I - ITO option Bias select 0 0 Built-in voltage follower(only use at EXT=0) 0 1 Built-in bias resistor(3.3KΩ) 1 0 Built-in bias resistor(9.6KΩ) 1 1 External bias resistor select Power supply For voltage booster circuit(VDD-VSS) CAP1N 2 - Power supply External capacitor about 0.1u~4.7uf VIN 2 - Power supply Input the voltage to booster VOUT 4 - Power supply DC/DC voltage converter. Connect a capacitor between this terminal and VIN when the built-in booster is used. Power supply for LCD drive V0 to V4 6 - Power supply V0-Vss = 7V (Max) Built-in/external Voltage follower circuit VDD,VSS 4,5 - Power supply CLS 1 I ITO option VDD : 2.7V to 5.5V, VSS: 0V Internal/External oscillation select 0:external clock 1:internal oscillation When the pin input is an external clock, it must be input to OSC 1 I Oscillation TEST1 1 I/O Test pin OSC. When the on-chip oscillator is used, it must be connected to VDD. V1.7a TEST1 must connect to VDD. 12/70 2007/10/17 ST7036 EXT option pin difference table Normal mode (EXT=1) Mode Difference Booster ( Instruction compatible to ST7066U ) Always OFF Extension mode (EXT=0) ON/OFF controlled by instruction Can’t use the follower circuit Bias (V0~V4) Only use external resistor or internal resistor(1/5 Follower or internal/external resistor selectable bias) 1. Controlled by instruction with follower Contrast adjust Control by external VR 2. Controlled by external VR with internal/external resistor ICON RAM Can’t be use Instruction Control normal instruction similar to ST7066U. Double height font Only 5x8 font V1.7a RAM size has 80 bit width(S1~S80). Control extension instruction for low power consumption. Can set 5x8 or 5x16 font 13/70 2007/10/17 ST7036 Function Description System Interface 2 This chip has all four kinds of interface type with MPU: 4-bit bus, 8-bit bus, serial and fast I C interface. 4-bit bus or 8-bit bus is selected by DL bit in the instruction register. During read or write operation, two 8-bit registers are used. One is data register (DR), the other is instruction register(IR). The data register(DR) is used as temporary data storage place for being written into or read from DDRAM/CGRAM/ICON RAM, target RAM is selected by RAM address setting instruction. Each internal operation, reading from or writing into RAM, is done automatically. So to speak, after MPU reads DR data, the data in the next DDRAM/CGRAM/ICON RAM address is transferred into DR automatically. Also after MPU writes data to DR, the data in DR is transferred into DDRAM/CGRAM/ICON RAM automatically. The Instruction register(IR) is used only to store instruction code transferred from MPU. MPU cannot use it to read instruction data. To select register, use RS input pin in 4-bit/8-bit bus mode. RS R/W L L H H L H L H Operation Instruction Write operation (MPU writes Instruction code into IR) Read Busy Flag(DB7) and address counter (DB0 ~ DB6) Data Write operation (MPU writes data into DR) Data Read operation (MPU reads data from DR) Table 1. Various kinds of operations according to RS and R/W bits. 2 I C interface It just only could write Data or Instruction to ST7036 by the IIC Interface. It could not read Data or Instruction from ST7036 (except Acknowledge signal). SCL: serial clock input SDA_IN: serial data input SDA_OUT: acknowledge response output Slaver address could set from “0111100” to “0111111”. 2 2 The I C interface send RAM data and executes the commands sent via the I C Interface. It could send data in to the RAM. 2 The I C Interface is two-line communication between different ICs or modules. The two lines are a Serial Data line (SDA) and a Serial Clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy. BIT TRANSFER One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse because changes in the data line at this time will be interpreted as a control signal. Bit transfer is illustrated in Fig.1. START AND STOP CONDITIONS Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P). The START and STOP conditions are illustrated in Fig.2. SYSTEM CONFIGURATION The system configuration is illustrated in Fig.3. · Transmitter: the device, which sends the data to the bus · Master: the device, which initiates a transfer, generates clock signals and terminates a transfer · Slave: the device addressed by a master · Multi-Master: more than one master can attempt to control the bus at the same time without corrupting the message V1.7a 14/70 2007/10/17 ST7036 · Arbitration: procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted · Synchronization: procedure to synchronize the clock signals of two or more devices. ACKNOWLEDGE Acknowledge signal (ACK) is not BF signal in parallel interface. Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. A master receiver must also generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end-of-data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STOP 2 condition. Acknowledgement on the I C Interface is illustrated in Fig.4. SDA SCL data line stable; data valid change of data allowed Fig .1 Bit transfer SDA SCL S P START condition STOP condition Fig .2 Definition of START and STOP conditions MASTER TRANSMITTER/ RECEIVER SLAVE RECEIVER (1) 0111100 SLAVE RECEIVER (2) 0111101 SLAVE RECEIVER (3) 0111110 SLAVE RECEIVER (4) 0111111 SDA SCL Fig .3 System configuration V1.7a 15/70 2007/10/17 ST7036 DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER SCL FROM MASTER acknowledge 2 1 8 S 9 clock pulse for acknowledgement START condition Fig .4 Acknowledgement on the IIC Interface 2 I C Interface protocol The ST7036 supports command, data write addressed slaves on the bus. 2 Before any data is transmitted on the I C Interface, the device, which should respond, is addressed first. Four 7-bit slave addresses (0111100 to 0111111) are reserved for the ST7036. The R/W is assigned to 0 for Write only. 2 The I C Interface protocol is illustrated in Fig.5. 2 The sequence is initiated with a START condition (S) from the I C Interface master, which is followed by the slave address. 2 All slaves with the corresponding address acknowledge in parallel, all the others will ignore the I C Interface transfer. After acknowledgement, one or more command words follow which define the status of the addressed slaves. A command word consists of a control byte, which defines Co and RS, plus a data byte. The last control byte is tagged with a cleared most significant bit (i.e. the continuation bit Co). After a control byte with a cleared Co bit, only data bytes will follow. The state of the RS bit defines whether the data byte is interpreted as a command or as RAM data. All addressed slaves on the bus also acknowledge the control and data bytes. After the last control byte, depending on the RS bit setting; either a series of display data bytes or command data bytes may follow. If the RS bit is set to logic 1, these display bytes are stored in the display RAM at the address specified by the data pointer. The data pointer is automatically updated and the data is directed to the intended ST7036i device. If the RS bit of the last control byte is set to logic 0, these command bytes will be decoded and the setting of the device will be changed according to the received 2 commands. Only the addressed slave makes the acknowledgement after each byte. At the end of the transmission the I C INTERFACE-bus master issues a STOP condition (P). Write mode acknowledgement from ST7036i S 0 1 1 1 1 1 0 0 A 1 slave address R S acknowledgement from ST7036i control byte acknowledgement from ST7036i data byte A A 0 Co 0 1 1 1 1 1 0 slave address 0 1 control byte 1 byte R/W 2n>=0 bytes command word Co R S acknowledgement from ST7036i A acknowledgement from ST7036i data byte A P n>=0 bytes MSB.......................LSB Co R / W C R 0 0 0 0 0 0 o S control byte D D D D D D D D 7 6 5 4 3 2 1 0 data byte Fig .5 IIC Interface protocol Last control byte to be sent. Only a stream of data bytes is allowed to follow. This stream may only be terminated by a STOP condition. Another control byte will follow the data byte unless a STOP condition is received. During write operation, two 8-bit registers are used. One is data register (DR), the other is instruction register(IR). The data register(DR) is used as temporary data storage place for being written into DDRAM/CGRAM/ICON RAM, target RAM is selected by RAM address setting instruction. Each internal operation, writing into RAM, is done automatically. So to speak, after MPU writes data to DR, the data in DR is transferred into DDRAM/CGRAM/ICON RAM automatically. V1.7a 16/70 2007/10/17 ST7036 The Instruction register(IR) is used only to store instruction code transferred from MPU. MPU cannot use it to read instruction data. To select register, use RS bit input in IIC interface. RS R/W L H L L Operation Instruction Write operation (MPU writes Instruction code into IR) Data Write operation (MPU writes data into DR) Table 2. Various kinds of operations according to RS and R/W bits. Busy Flag (BF) When BF = "High”, it indicates that the internal operation is being processed. So during this time the next instruction cannot be accepted. BF can be read, when RS = Low and R/W = High (Read Instruction Operation), through DB7 port. Before executing the next instruction, be sure that BF is not High. Address Counter (AC) Address Counter(AC) stores DDRAM/CGRAM/ICON RAM address, transferred from IR. After writing into (reading from) DDRAM/CGRAM/ICON RAM, AC is automatically increased (decreased) by 1. When RS = "Low" and R/W = "High", AC can be read through DB0 ~ DB6 ports. Display Data RAM (DDRAM) Display data RAM (DDRAM) stores display data represented in 8-bit character codes. Its extended capacity is 80 x 8 bits, or 80 characters. The area in display data RAM (DDRAM) that is not used for display can be used as general data RAM. See Figure 6 for the relationships between DDRAM addresses and positions on the liquid crystal display. The DDRAM address (ADD ) is set in the address counter (AC) as hexadecimal. 1-line display (N3=0,N = 0) (Figure 7) When there are fewer than 80 display characters, the display begins at the head position. For example, if using only the ST7036, 20 characters are displayed. See Figure 7. When the display shift operation is performed, the DDRAM address shifts. See Figure 8. V1.7a 17/70 2007/10/17 ST7036 2-line display (N3=0,N = 1) (Figure 9) Case 1: When the number of display characters is less than 40 x 2 lines, the two lines are displayed from the head. Note that the first line end address and the second line start address are not consecutive. For example, when just the ST7036 is used, 20 characters x 2 lines are displayed. See Figure 9. When display shift operation is performed, the DDRAM address shifts. See Figure 10. Display Position 1 DDRAM Address (hexadecimal) 2 3 4 5 6 38 39 40 00 01 02 03 04 05 ........ 25 26 27 40 41 42 43 44 45 ........ 65 66 67 Fig. 9 2-Line Display Display Position 1 2 3 4 5 6 7 8 17 18 19 20 DDRAM Address 00 01 02 03 04 05 06 07 …………… 10 11 12 13 40 41 42 43 44 45 46 47 …………… 50 51 52 53 For Shift Left 01 02 03 04 05 06 07 08 …………… 11 12 13 14 41 42 43 44 45 46 47 48 …………… 51 52 53 54 For Shift Right 27 00 01 02 03 04 05 06 …………… 0F 10 11 12 67 40 41 42 43 44 45 46 …………… 4F 50 51 52 Fig. 10 2-Line by 20-Character Display Example V1.7a 18/70 2007/10/17 ST7036 3-line display (N3=1,N =1) (Figure 11) Case 1: When the number of display characters is less than 16 x 3 lines, the tree lines are displayed from the head. For example, when just the ST7036 is used, 16 characters x 3 lines are displayed. See Figure 11. When display shift operation is performed, the DDRAM address shifts. See Figure 12. Display Position 1 DDRAM Address (hexadecimal) 2 3 4 5 6 14 15 16 00 01 02 03 04 05 ........ 0D 0E 0F 10 11 12 13 14 15 ........ 1D 1E 1F 20 21 22 23 24 25 ........ 2D 2E 2F Fig. 11 3-Line Display Display Position 1 DDRAM Address (hexadecimal) 4 5 6 14 15 16 ........ 0D 0E 0F 10 11 12 13 14 15 ........ 1D 1E 1F 20 21 22 23 24 25 ........ 2D 2E 2F 2 3 4 5 6 14 15 16 01 02 03 04 05 06 ........ 0E 0F 00 11 12 13 14 15 16 ........ 1E 1F 10 21 22 23 24 25 26 ........ 2E 2F 20 1 For Shift Right 3 00 01 02 03 04 05 1 For Shift Left 2 2 3 4 5 6 14 15 16 0F 00 01 02 03 04 ........ 0C 0D 0E 1F 10 11 12 13 14 ........ 1C 1D 1E 2F 20 21 22 23 24 ........ 2C 2D 2E Fig. 12 3-Line Display V1.7a 19/70 2007/10/17 ST7036 Character Generator ROM (CGROM) The character generator ROM generates 5 x 8 dot character patterns from 8-bit character codes. It can generate 240/250/248/256 5 x 8 dot character patterns(select by OPR1/2 ITO pin). User-defined character patterns are also available by mask-programmed ROM. Character Generator RAM (CGRAM) In the character generator RAM, the user can rewrite character patterns by program. For 5 x 8 dots, eight character patterns can be written. Write into DDRAM the character codes at the addresses shown as the left column of Table 5 to show the character patterns stored in CGRAM. See Table 5 for the relationship between CGRAM addresses and data and display patterns. Areas that are not used for display can be used as general data RAM. ICON RAM In the ICON RAM, the user can rewrite icon pattern by program. There are totally 80 dots for icon can be written. See Table 6 for the relationship between ICON RAM address and data and the display patterns. Timing Generation Circuit The timing generation circuit generates timing signals for the operation of internal circuits such as DDRAM, CGROM and CGRAM. RAM read timing for display and internal operation timing by MPU access are generated separately to avoid interfering with each other. Therefore, when writing data to DDRAM, for example, there will be no undesirable interference, such as flickering, in areas other than the display area. LCD Driver Circuit(N3=0) LCD Driver circuit has 17 common and 100 segment signals for LCD driving. Data from CGRAM/CGROM/ICON is transferred to 100 bit segment latch serially, and then it is stored to 100 bit shift latch. When each common is selected by 17 bit common register, segment data also output through segment driver from 100 bit segment latch. In case of 1-line display mode, COM1 ~ COM8(with COMI) have 1/9 duty, and in 2-line mode, COM1 ~ COM16(with COMI) have 1/17 duty ratio. LCD Driver Circuit(N3=1) LCD Driver circuit has 25 common and 80 segment signals for LCD driving. Data from CGRAM/CGROM/ICON is transferred to 80 bit segment latch serially, and then it is stored to 80 bit shift latch. When each common is selected by 25 bit common register, segment data also output through segment driver from 80 bit segment latch. In case of 3-line display mode, COM1 ~ COM24(with COMI) have 1/25 duty. COM/SEG Output pins N3 COMI1 VSS COMI1 VDD NC COM [1:8] COM [1:8] COM [5:12] SEG [1:5] SEG [1:5] COM[4:1] + COMI1 SEG [6:10] SEG [6:10] NC SEG [11:90] SEG [11:90] SEG [1:80] SEG [91:96] SEG [91:96] NC SEG [97:100] SEG [97:100] COM [13:16] COM [9:16] COM [9:16] COM [17:24] COMI2 COMI2 COMI2 Table 3. COM/SEG output define Cursor/Blink Control Circuit It can generate the cursor or blink in the cursor/blink control circuit. The cursor or the blink appears in the digit at the display data RAM address set in the address counter. V1.7a 20/70 2007/10/17 ST7036 Table 4 Correspondence between Character Codes and Character Patterns V1.7a 21/70 2007/10/17 ST7036 CGRAM/CGROM arrangement with (OPR1, OPR2)= V1.7a 22/70 2007/10/17 ST7036 Character Code (DDRAM Data) b7 b6 b5 b4 b3 b2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CGRAM Address b0 b5 b4 b3 b2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 b1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 Character Patterns (CGRAM Data) b0 b7 b6 b5 b4 0 1 1 0 0 0 1 0 - - 0 0 1 0 0 0 1 0 0 1 1 1 0 1 1 1 - - 0 1 1 1 0 1 1 0 b3 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 b2 1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 0 b1 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 b0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 Table 5 Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character patterns (CGRAM Data) Notes: 1. Character code bits 0 to 2 correspond to CGRAM address bits 3 to 5 (3 bits: 8 types). 2. CGRAM address bits 0 to 2 designate the character pattern line position. The 8th line is the cursor position and its display is formed by a logical OR with the cursor. Maintain the 8th line data, corresponding to the cursor display position, at 0 as the cursor display. If the 8th line data is 1, 1 bits will light up the 8th line regardless of the cursor presence. 3. Character pattern row positions correspond to CGRAM data bits 0 to 4 (bit 4 being at the left). 4. As shown Table 5, CGRAM character patterns are selected when character code bits 4 to 7 are all 0. However, since character code bit 3 has no effect, the T display example above can be selected by either character code 00H or 08H. 5. “1” for CGRAM data corresponds to display selection and “0” to non-selection,“-“ Indicates no effect. 6. Different OPR1/2 ITO option can select different CGRAM size. V1.7a 23/70 2007/10/17 ST7036 When ICON RAM data is filled the corresponding position displayed is described as the following table. When SHLS=1, ICON RAM map refer below table ICON D7~D5 Address 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH - D4 ICON RAM bits D2 D3 D1 D0 N3 = 0 N3 = 1 N3 = 0 N3 = 1 N3 = 0 N3 = 1 N3 = 0 N3 = 1 N3 = 0 N3 = 1 S1/S81 S6/S86 S11/S91 S16/S96 S21 S26 S31 S36 S41 S46 S51 S56 S61 S66 S71 S76 S1 S6 S11 S16 S21 S26 S31 S36 S41 S46 S51 S56 S61 S66 S71 S76 S2/S82 S7/S87 S12/S92 S17/S97 S22 S27 S32 S37 S42 S47 S52 S57 S62 S67 S72 S77 S2 S7 S12 S17 S22 S27 S32 S37 S42 S47 S52 S57 S62 S67 S72 S77 S3/S83 S8/S88 S13/S93 S18/S98 S23 S28 S33 S38 S43 S48 S53 S58 S63 S68 S73 S78 S3 S8 S13 S18 S23 S28 S33 S38 S43 S48 S53 S58 S63 S68 S73 S78 S4/S84 S9/S89 S14/S94 S19/S99 S24 S29 S34 S39 S44 S49 S54 S59 S64 S69 S74 S79 S4 S9 S14 S19 S24 S29 S34 S39 S44 S49 S54 S59 S64 S69 S74 S79 S5/S85 S10/S90 S15/S95 S20/S100 S25 S30 S35 S40 S45 S50 S55 S60 S65 S70 S75 S80 S5 S10 S15 S20 S25 S30 S35 S40 S45 S50 S55 S60 S65 S70 S75 S80 When SHLS=0, ICON RAM map refer below table ICON D7~D5 Address 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH - D4 ICON RAM bits D2 D3 D1 D0 N3 = 0 N3 = 1 N3 = 0 N3 = 1 N3 = 0 N3 = 1 N3 = 0 N3 = 1 N3 = 0 N3 = 1 S100/S20 S95/S15 S90/S10 S85/S5 S80 S75 S70 S65 S60 S55 S50 S45 S40 S35 S30 S25 S80 S75 S70 S65 S60 S55 S50 S45 S40 S35 S30 S25 S20 S15 S10 S5 S99/S19 S94/S14 S89/S9 S84/S4 S79 S74 S69 S64 S59 S54 S49 S44 S39 S34 S29 S24 S79 S74 S69 S64 S59 S54 S49 S44 S39 S34 S29 S24 S19 S14 S9 S4 S98/S18 S93/S13 S88/S8 S83/S3 S78 S73 S68 S63 S58 S53 S48 S43 S38 S33 S28 S23 S78 S73 S68 S63 S58 S53 S48 S43 S38 S33 S28 S23 S18 S13 S8 S3 S97/S17 S92S12 S87/S7 S82/S2 S77 S72 S67 S62 S57 S52 S47 S42 S37 S32 S27 S22 S77 S72 S67 S62 S57 S52 S47 S42 S37 S32 S27 S22 S17 S12 S7 S2 S96/S16 S91/S11 S86/S6 S81/S1 S76 S71 S66 S61 S56 S51 S46 S41 S36 S31 S26 S21 S76 S71 S66 S61 S56 S51 S46 S41 S36 S31 S26 S21 S16 S11 S6 S1 Table 6 ICON RAM map V1.7a 24/70 2007/10/17 ST7036 Instructions There are four categories of instructions that: Designate ST7036 functions, such as display format, data length, etc. Set internal RAM addresses Perform data transfer with internal RAM Others instruction table at “Normal mode” (when “EXT” option pin connect to VDD, the instruction set follow below table) Instruction Execution Time Instruction Code Instruction Description RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Clear Display Return Home 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Write "20H" to DDRAM. and set DDRAM address to "00H" from AC 0 1 1 Set DDRAM address to "00H" from AC and return cursor to its original X position if shifted. The contents of DDRAM are not changed. OSC= OSC= OSC= 380kHz 540kHz 700kHz 1.08 ms 0.76 ms 0.59 ms 1.08 ms 0.76 ms 0.59 ms Entry Mode Set 0 0 0 0 0 0 0 1 I/D Sets cursor move direction and specifies display shift. These S operations are performed during data write and read. Display ON/OFF 0 0 0 0 0 0 1 D C B X S/C and R/L: Set cursor moving and display shift 26.3 µs 18.5 µs 14.3 µs X control bit, and the direction, without changing DDRAM data. X X Cursor or Display Shift 0 0 0 0 0 1 Function Set 0 0 0 0 1 DL Set CGRAM 0 0 0 1 Set DDRAM Address 0 0 1 Read Busy Flag and Address Write Data to RAM Read Data from RAM S/C R/L D=1:entire display on C=1:cursor on B=1:cursor position on 26.3 µs 18.5 µs 14.3 µs 26.3 µs 18.5 µs 14.3 µs DL: interface data is 8/4 bits N: number of line is 2/1 26.3 µs 18.5 µs 14.3 µs AC5 AC4 AC3 AC2 AC1 AC0 Set CGRAM address in address counter 26.3 µs 18.5 µs 14.3 µs AC6 AC5 AC4 AC3 AC2 AC1 AC0 Set DDRAM address in address counter 26.3 µs 18.5 µs 14.3 µs N X 0 1 Whether during internal operation or not can be known by reading BF. BF AC6 AC5 AC4 AC3 AC2 AC1 AC0 The contents of address counter can also be read. 1 0 D7 D6 D5 D4 D3 D2 D1 D0 Write data into internal RAM (DDRAM/CGRAM) 26.3 µs 18.5 µs 14.3 µs 1 1 D7 D6 D5 D4 D3 D2 D1 D0 Read data from internal RAM (DDRAM/CGRAM) 26.3 µs 18.5 µs 14.3 µs 0 0 0 Note: Be sure the ST7036 is not in the busy state (BF = 0) before sending an instruction from the MPU to the ST7036. If an instruction is sent without checking the busy flag, the time between the first instruction and next instruction will take much longer than the instruction time itself. Refer to Instruction Table for the list of each instruction execution time. V1.7a 25/70 2007/10/17 ST7036 instruction table at “Extension mode” (when “EXT” option pin connect to VSS, the instruction set follow below table) Instruction Execution Time Instruction Code Instruction Description RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Clear Display Return Home 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 Write "20H" to DDRAM. and set DDRAM address to "00H" from AC 1.08 ms 0.76 ms 0.59 ms x Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed. 1.08 ms 0.76 ms 0.59 ms Entry Mode Set 0 0 0 0 0 0 0 1 I/D Sets cursor move direction and specifies display shift. These S operations are performed during data write and read. Display ON/OFF 0 0 0 0 0 0 1 D C B Function Set 0 0 0 Set DDRAM Address 0 0 1 Read Busy Flag and Address Write Data to RAM Read Data from RAM V1.7a 0 1 DL N OSC= OSC= OSC= 380kHz 540kHz 700kHz D=1:entire display on C=1:cursor on B=1:cursor position on DL: interface data is 8/4 bits N: number of line is 2/1 DH IS2 IS1 DH: double height font IS[2:1]: instruction table select AC6 AC5 AC4 AC3 AC2 AC1 AC0 Set DDRAM address in address counter 26.3 µs 18.5 µs 14.3 µs 26.3 µs 18.5 µs 14.3 µs 26.3 µs 18.5 µs 14.3 µs 26.3 µs 18.5 µs 14.3 µs 0 1 Whether during internal operation or not can be known by reading BF. BF AC6 AC5 AC4 AC3 AC2 AC1 AC0 The contents of address counter can also be read. 1 0 D7 D6 D5 D4 D3 D2 D1 D0 Write data into internal RAM (DDRAM/CGRAM/ICONRAM) 26.3 µs 18.5 µs 14.3 µs 1 1 D7 D6 D5 D4 D3 D2 D1 D0 Read data from internal RAM (DDRAM/CGRAM/ICONRAM) 26.3 µs 18.5 µs 14.3 µs 26/70 0 0 0 2007/10/17 ST7036 Instruction table 0(IS[2:1]=[0,0]) Cursor or Display Shift 0 0 0 0 Set CGRAM 0 0 0 1 0 1 S/C R/L X S/C and R/L: Set cursor moving and display shift 26.3 µs 18.5 µs 14.3 µs X control bit, and the direction, without changing DDRAM data. AC5 AC4 AC3 AC2 AC1 AC0 Set CGRAM address in address counter 26.3 µs 18.5 µs 14.3 µs Instruction table 1(IS[2:1]=[0,1]) Bias Set 0 0 0 0 0 1 Set ICON Address 0 0 0 1 0 0 BS 1 0 BS=1:1/4 bias BS=0:1/5 bias 26.3 µs 18.5 µs 14.3 µs FX FX: fixed on high in 3-line application and fixed on low in other applications. AC3 AC2 AC1 AC0 Power/ICON Control/ Contrast Set 0 0 0 1 0 1 Ion Bon C5 Follower Control 0 0 0 1 1 0 Fon Contrast Set 0 0 0 1 1 1 C3 Set ICON address in address counter. Ion: ICON display on/off Bon: set booster circuit on/off C4 C5,C4: Contrast set for internal follower mode. Rab Rab Rab 2 1 0 C2 C1 C0 26.3 µs 18.5 µs 14.3 µs 26.3 µs 18.5 µs 14.3 µs Fon: set follower circuit on/off Rab2~0: select follower amplified ratio. 26.3 µs 18.5 µs 14.3 µs Contrast set for internal follower mode. 26.3 µs 18.5 µs 14.3 µs Instruction table 2(IS[2:1]=[1,0]) Double Height Position Select 0 0 0 0 0 1 UD X x x UD: Double height position select 26.3 µs 18.5 µs 14.3 µs Reserved 0 0 0 1 X X X X X X Do not use (reserved for test) 26.3 µs 18.5 µs 14.3 µs Instruction table 3(IS[2:1]=[1,1]):Do not use (reserved for test) V1.7a 27/70 2007/10/17 ST7036 Instruction Description Clear Display RS R/W 0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 0 0 0 1 Clear all the display data by writing "20H" (space code) to all DDRAM address, and set DDRAM address to "00H" into AC (address counter). Return cursor to the original status, namely, bring the cursor to the left edge on first line of the display. Make entry mode increment (I/D = "1"). Return Home RS R/W 0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 0 0 1 X Return Home is cursor return home instruction. Set DDRAM address to "00H" into the address counter. Return cursor to its original site and return display to its original status, if shifted. Contents of DDRAM does not change. Entry Mode Set RS R/W 0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 0 1 I/D S Set the moving direction of cursor and display. I/D : Increment / decrement of DDRAM address (cursor or blink) When I/D = "High", cursor/blink moves to right and DDRAM address is increased by 1. When I/D = "Low", cursor/blink moves to left and DDRAM address is decreased by 1. * CGRAM operates the same as DDRAM, when read from or write to CGRAM. S: Shift of entire display When DDRAM read (CGRAM read/write) operation or S = "Low", shift of entire display is not performed. If S = "High" and DDRAM write operation, shift of entire display is performed according to I/D value (I/D = "1" : shift left, I/D = "0" : shift right). V1.7a S I/D Description H H Shift the display to the left H L Shift the display to the right 28/70 2007/10/17 ST7036 Display ON/OFF RS R/W 0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 1 D C B Control display/cursor/blink ON/OFF 1 bit register. D : Display ON/OFF control bit When D = "High", entire display is turned on. When D = "Low", display is turned off, but display data is remained in DDRAM. C : Cursor ON/OFF control bit When C = "High", cursor is turned on. When C = "Low", cursor is disappeared in current display, but I/D register remains its data. B : Cursor Blink ON/OFF control bit When B = "High", cursor blink is on, that performs alternate between all the high data and display character at the cursor position. When B = "Low", blink is off. Alternating display Every 64 frames Cursor Cursor or Display Shift RS R/W 0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 S/C R/L X X S/C: Screen/Cursor select bit When S/C=”High”, Screen is controlled by R/L bit. When S/C=”Low”, Cursor is controlled by R/L bit. R/L: Right/Left When R/L=”High”, set direction to right. When R/L=”Low”, set direction to left. Without writing or reading of display data, shift right/left cursor position or display. This instruction is used to correct or search display data. During 2-line mode display, cursor moves to the 2nd line after 40th digit of 1st line. Note that display shift is performed simultaneously in all the line. When displayed data is shifted repeatedly, each line shifted individually. When display shift is performed, the contents of address counter are not changed. V1.7a S/C R/L Description L L Shift cursor to the left AC=AC-1 L H Shift cursor to the right AC=AC+1 H L Shift display to the left. Cursor follows the display shift AC=AC H H Shift display to the right. Cursor follows the display shift AC=AC 29/70 AC Value 2007/10/17 ST7036 Function Set RS R/W 0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 1 DL N DH IS2 IS1 DL : Interface data length control bit When DL = "High", it means 8-bit bus mode with MPU. When DL = "Low", it means 4-bit bus mode with MPU. So to speak, DL is a signal to select 8-bit or 4-bit bus mode. When 4-bit bus mode, it needs to transfer 4-bit data by two times. N : Display line number control bit When N = "High", 2-line display mode is set. When N = "Low", it means 1-line display mode. When “N3” option pin connect to VDD, N must set “N=1”. DH : Double height font type control bit When DH = " High " and N= “Low”, display font is selected to double height mode(5x16 dot),RAM address can only use 00H~27H. When DH= “High” and N= “High”, it is forbidden. When DH = " Low ", display font is normal (5x8 dot). N L L H H EXT option pin connect to high DH Character Display Lines Font L H L H 1 1 2 2 5x8 5x8 5x8 5x8 EXT option pin connect to low Character Display Lines Font 1 1 2 5x8 5x16 5x8 Forbidden 2 line mode normal display (DH=0/N=1) 1 line mode with double height font (DH=1/N=0) V1.7a 30/70 2007/10/17 ST7036 IS[2:1]: instruction table select When IS[2:1]=(0,0): normal instruction be selected(refer instruction table 0) When IS[2:1]=(0,1):extension instruction be selected(refer instruction table 1 ) When IS[2:1]=(1,0):extension instruction be selected(refer instruction table 2 ) When IS[2:1]=(1,1):Do not use (reserved for test) Double height position set: IS[2:1]=(1,0) RS R/W 0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 UD X X X UD: Select double height font display position of screen.(N3=VDD) When UD = "High", double height font is show on Com1~Com16. RS R/W 0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 0 0 AC3 AC2 AC1 AC0 When UD = "Low", double height font is show on Com9~Com24. V1.7a DH UD 2 LINES(N3=VSS) H H Com1~Com16 Double Height H L L X 3 LINES(N3=VDD) Com1~Com16 Double Height Com17~Com24 Normal Display Com1~Com8 Normal Display Com1~Com16 Double Height Com9~Com24 Double Height Normal Display 31/70 Normal Display 2007/10/17 ST7036 3 Line mode normal display (DH = 0 / N = 1 / UD = don`t care ) COM1 ..8 is normal , COM9 .. 24 is a double height font (DH = 1 / N = 1 / UD = 0 ) COM17 ..24 is normal , COM1 .. 16 is a double height font (DH = 1 / N = 1 / UD = 1 ) V1.7a 32/70 2007/10/17 ST7036 Set CGRAM Address RS R/W 0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 AC5 AC4 AC3 AC2 AC1 AC0 Set CGRAM address to AC. This instruction makes CGRAM data available from MPU. Set DDRAM Address RS R/W 0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 1 AC6 AC5 AC4 AC3 AC2 AC1 AC0 Set DDRAM address to AC. This instruction makes DDRAM data available from MPU. When 1-line display mode (N = 0), DDRAM address is from "00H" to "4FH". In 2-line display mode (N = 1), DDRAM address in the 1st line is from "00H" to "27H", and DDRAM address in the 2nd line is from "40H" to "67H". In 3-line display mode (N3=1, N=1), DDRAM address in the 1st line is from “00H” to “OFH”, DDRAM in the 2nd line is from “10H” to “1FH”, and DDRAM in the 3rd line is from “20H” to “2FH”. Read Busy Flag and Address RS R/W 0 1 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 BF AC6 AC5 AC4 AC3 AC2 AC1 AC0 When BF = “High”, indicates that the internal operation is being processed. So during this time the next instruction cannot be accepted. The address Counter (AC) stores DDRAM/CGRAM addresses, transferred from IR. After writing into (reading from) DDRAM/CGRAM, AC is automatically increased (decreased) by 1. Write Data to CGRAM,DDRAM or ICON RAM RS R/W 1 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 D7 D6 D5 D4 D3 D2 D1 D0 Write binary 8-bit data to CGRAM,DDRAM or ICON RAM The selection of RAM from DDRAM, CGRAM or ICON RAM, is set by the previous address set instruction : DDRAM address set, CGRAM address set, ICON RAM address set. RAM set instruction can also determine the AC direction to RAM. After write operation, the address is automatically increased/decreased by 1, according to the entry mode. V1.7a 33/70 2007/10/17 ST7036 Read Data from CGRAM,DDRAM or ICON RAM RS R/W 1 1 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 D7 D6 D5 D4 D3 D2 D1 D0 Read binary 8-bit data from DDRAM/CGRAM./ICON RAM The selection of RAM is set by the previous address set instruction. If address set instruction of RAM is not performed before this instruction, the data that read first is invalid, because the direction of AC is not determined. If you read RAM data several times without RAM address set instruction before read operation, you can get correct RAM data from the second, but the first data would be incorrect, because there is no time margin to transfer RAM data. Bias Set BS: bias selection When BS=”High”, the bias will be 1/4 When BS=”Low”, the bias will be 1/5 BS will be invalid when external bias resistors are used(OPF1=1,OPF2=1) FX: must be fixed on high in 3-line application and fixed on low in other applications. Set ICON RAM address Set ICON RAM address to AC. This instruction makes ICON data available from MPU. When IS=1 at Extension mode, The ICON RAM address is from "00H" to "0FH". V1.7a 34/70 2007/10/17 ST7036 Power/ICON control/Contrast set(high byte) RS R/W 0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 0 1 ION BON C5 C4 Ion: set ICON display on/off When Ion = "High", ICON display on. When Ion = "Low", ICON display off. Bon: switch booster circuit Bon can only be set when internal follower is used (OPF1=0,OPF2=0). When Bon = "High", booster circuit is turn on. When Bon = "Low", booster circuit is turn off. C5,C4 : Contrast set(high byte) C5,C4,C3,C2,C1,C0 can only be set when internal follower is used (OPF1=0,OPF2=0).They can more precisely adjust the input reference voltage of V0 generator. The details please refer to the supply voltage for LCD driver. Follower control RS R/W 0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Rab Rab Rab 0 1 1 0 FON 2 1 0 Fon: switch follower circuit Fon can only be set when internal follower is used (OPF1=0,OPF2=0). When Fon = "High", internal follower circuit is turn on. When Fon = "Low", internal follower circuit is turn off. Note that Fon must be set to “Low” if (OPF1, OPF2) is not (0,0). Rab2,Rab1,Rab0 : V0 generator amplified ratio Rab2,Rab1,Rab0 can only be set when internal follower is used (OPF1=0,OPF2=0).They can adjust the amplified ratio of V0 generator. The details please refer to the supply voltage for LCD driver. Contrast set(low byte) RS R/W 0 0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 1 1 1 C3 C2 C1 C0 C3,C2,C1,C0:Contrast set(low byte) C5,C4,C3,C2,C1,C0 can only be set when internal follower is used (OPF1=0,OPF2=0).They can more precisely adjust the input reference voltage of V0 generator. The details please refer to the supply voltage for LCD driver. V1.7a 35/70 2007/10/17 ST7036 Reset Function Initializing by Internal Reset Circuit An internal reset circuit automatically initializes the ST7036 when the power is turned on. The following instructions are executed during the initialization. The busy flag (BF) is kept in the busy state (BF = 1) until the initialization ends. The busy state lasts for 40 ms after VDD rises to stable. 1. Display clear 2. Function set: DL = 1; 8-bit interface data N = 0; 1-line display DH=0; normal 5x8 font IS[2:1]=(0,0); use instruction table 0 3. Display on/off control: D = 0; Display off C = 0; Cursor off B = 0; Blinking off 4. Entry mode set: I/D = 1; Increment by 1 S = 0; No shift 5. 3 line: FX=1 1/2 line: FX=0 6. ICON control Ion=0; ICON off 7. Power control BS=0; 1/5bias Bon=0; booster off Fon=0; follower off (C5,C4,C3,C2,C1,C0)=(1,0,0,0,0,0) (Rab2,Rab1,Rab0)=(0,1,0) 8. Double Height Position Select UD=0, double height font is show on Com9~Com24. Note: If the electrical characteristics conditions listed under the table Power Supply Conditions Using Internal Reset Circuit are not met, the internal reset circuit will not operate normally and will fail to initialize the ST7036. When internal Reset Circuit not operate,ST7036 can be reset by XRESET pin from MPU control signal. V1.7a 36/70 2007/10/17 ST7036 Initializing by Instruction 8-bit Interface (fosc=380kHz) P O W E R O N o r e x te r n a l r e s e t W a it tim e > 4 0 m S A fte r V D D s ta b le F u n c tio n s e t RS 0 R /W 0 DB7 0 DB6 0 DB5 1 DB4 1 DB3 N DB2 DH DB1 IS 2 DB0 IS 1 B F cannot be c h e c k e d b e fo r e th is in s tr u c tio n . DB2 DH DB1 IS 2 DB0 IS 1 B F cannot be c h e c k e d b e fo r e th is in s tr u c tio n . DB2 1 DB1 0 DB0 FX DB2 DB1 DB0 C2 C1 C0 W a it tim e > 2 6 .3 μ S F u n c tio n s e t RS 0 R /W 0 DB7 0 DB6 0 DB5 1 DB4 1 DB3 N W a it tim e > 2 6 .3 μ S B ia s S e t RS 0 R /W 0 DB7 0 DB6 0 DB5 0 DB4 1 DB3 BS W a it tim e > 2 6 .3 μ S C o n tr a s t s e t RS 0 R /W 0 DB7 0 DB6 1 DB5 1 DB4 1 DB3 C3 W a it tim e > 2 6 .3 μ S P o w e r /IC O N /C o n tr a s t c o n t ro l RS 0 R /W 0 DB7 0 DB6 1 DB5 0 DB4 1 DB3 Io n DB2 DB1 DB0 Bon C5 C4 DB2 DB1 DB0 R ab2 R ab1 R ab0 DB1 C DB0 B W a it tim e > 2 6 .3 μ S F o llo w e r c o n tr o l RS 0 R /W 0 DB7 0 DB6 1 DB5 1 DB4 0 DB3 Fon W a it tim e > 2 6 .3 μ S D is p la y O N /O F F c o n tr o l RS 0 R /W 0 DB7 0 DB6 0 DB5 0 DB4 0 DB3 1 DB2 D W a it tim e > 2 6 .3 μ S In itia liz a tio n e n d V1.7a 37/70 2007/10/17 ST7036 Initial Program Code Example For 8051 MPU(8 Bit Interface): ;--------------------------------------------------------------------------------INITIAL_START: CALL DELAY40mS MOV A,#38H ;FUNCTION SET CALL WRINS_NOCHK ;8 bit, N=1,5*7dot CALL DELAY30uS MOV A,#38H ;FUNCTION SET CALL WRINS_NOCHK ;8 bit, N=1,5*7dot CALL DELAY30uS MOV A,#14H ;set bias CALL WRINS_CHK CALL DELAY30uS MOV A,#78H ;Contrast set adjustment CALL WRINS_CHK CALL DELAY30uS MOV A,#5EH ;Power/ICON/Contrast control CALL WRINS_CHK CALL DELAY30uS MOV A,#6AH ;Follower control CALL WRINS_CHK CALL DELAY30uS MOV A,#0CH ;DISPLAY ON CALL WRINS_CHK CALL DELAY30uS MOV A,#01H ;CLEAR DISPLAY CALL WRINS_CHK CALL DELAY2mS MOV A,#06H ;ENTRY MODE SET CALL WRINS_CHK ;CURSOR MOVES TO RIGHT CALL DELAY30uS ;--------------------------------------------------------------------------------MAIN_START: XXXX XXXX XXXX XXXX ;--------------------------------------------------------------------------------WRINS_CHK: CALL CHK_BUSY WRINS_NOCHK: CLR RS ;EX: Port 3.0 CLR RW ;EX: Port 3.1 SETB E ;EX:Port 3.2 MOV P1,A ;EX:Port 1=Data Bus CLR E MOV P1,#FFH ;For Check Busy Flag RET ;--------------------------------------------------------------------------------CHK_BUSY: ;Check Busy Flag CLR RS SETB RW SETB E JB P1.7,$ CLR E RET V1.7a 38/70 2007/10/17 ST7036 V1.7a 4-bit Interface (fosc=380kHz) 39/70 2007/10/17 ST7036 Initial Program Code Example For 8051 MPU(4 Bit Interface): ;------------------------------------------------------------------INITIAL_START: CALL DELAY40mS MOV A,#30H ; FUNCTION SET CALL WRINS_ONCE ; 8 bit, DL = 1 CALL DELAY2mS MOV CALL CALL A,#30H ; FUNCTION SET WRINS_ONCE ; 8 bit, DL = 1 DELAY30uS MOV CALL CALL A,#30H ; FUNCTION SET WRINS_ONCE ; 8 bit, DL = 1 DELAY30uS CALL MOV CALL CALL CHK_BUSY A,#20H ; FUNCTION SET WRINS_ONCE ; 4 bit, DL = 0 DELAY30uS MOV CALL CALL A,#29H WRINS_CHK DELAY30uS ; FUNCTION SET ; 4 bit, DL = 0, N = 1, ; IS2 = 0, IS1 = 1 MOV CALL CALL A,#14H WRINS_CHK DELAY30uS ;bias MOV CALL CALL A,#78H WRINS_CHK DELAY30uS ;Contrast set MOV CALL CALL A,#5EH WRINS_CHK DELAY30uS ;Power/ICON/Contrast MOV CALL CALL A,#6AH WRINS_CHK DELAY30uS ;Follower control MOV CALL CALL A,#0CH WRINS_CHK DELAY30uS ;DISPLAY ON MOV CALL CALL A,#01H WRINS_CHK DELAY2mS ;CLEAR DISPLAY XXXX ;------------------------------------------------------------------WRINS_CHK: CALL CHK_BUSY WRINS_NOCHK: PUSH A ANL A,#F0H CLR RS ;EX: Port 3.0 CLR RW ;EX: Port 3.1 SETB E ;EX: Port 3.2 MOV P1,A ;EX:Port1=Data Bus CLR E POP A SWAP A WRINS_ONCE: ANL A,#F0H CLR RS CLR RW SETB E MOV P1,A CLR E MOV P1,#FFH ;For Check Bus Flag RET ;------------------------------------------------------------------CHK_BUSY: ;Check Busy Flag PUSH A MOV P1,#FFH $1 CLR RS SETB RW SETB E MOV A,P1 CLR E MOV P1,#FFH CLR RS SETB RW SETB E NOP CLR E JB A.7,$1 POP A RET MOV A,#06H ;ENTRY MODE SET CALL WRINS_CHK CALL DELAY30uS ;------------------------------------------------------------------MAIN_START: XXXX XXXX XXXX V1.7a 40/70 2007/10/17 ST7036 V1.7a Serial interface & IIC interface ( fosc = 380kHz ) 41/70 2007/10/17 ST7036 Initial Program Code Example For 8051 MPU ( Serial Interface ) : ;--------------------------------------------------------------------------------INITIAL_START: CALL HARDWARE_RESET CALL DELAY40mS MOV A,#38H ;FUNCTION SET CALL WRINS_NOCHK ;8 bit, N=1,5*7dot CALL DELAY30uS MOV A,#39H ;FUNCTION SET CALL WRINS_NOCHK ;8 bit, N=1,5*7dot,IS=1 CALL DELAY30uS MOV A,#14H ;bias CALL WRINS_NOCHK CALL DELAY30uS MOV A,#78H ;Contrast set CALL WRINS_NOCHK CALL DELAY30uS MOV A,#5EH ;Power/ICON/Contrast control CALL WRINS_NOCHK CALL DELAY30uS MOV A,#6AH ;Follower control CALL WRINS_NOCHK CALL DELAY200mS ;for power stable MOV A,#0CH ;DISPLAY ON CALL WRINS_NOCHK CALL DELAY30uS MOV A,#01H ;CLEAR DISPLAY CALL WRINS_NOCHK CALL DELAY2mS MOV A,#06H ;ENTRY MODE SET CALL WRINS_NOCHK ;CURSOR MOVES TO RIGHT CALL DELAY30uS ;--------------------------------------------------------------------------------MAIN_START: XXXX XXXX XXXX XXXX . . . ;--------------------------------------------------------------------------------WRINS_NOCHK: PUSH 1 MOV R1,#8 CLR RS $1 RLC A MOV SI,C SETB SCL NOP CLR SCL DJNZ R1,$1 POP 1 CALL RET V1.7a DLY1.5mS 42/70 2007/10/17 ST7036 Interfacing to the MPU The ST7036 can send data in two 4-bit operations/one 8-bit operation, serial 1 bit operation or fast I2C operation, thus allowing interfacing with 4-bit, 8-bit or I2C MPU. For 4-bit interface data, only four bus lines (DB4 to DB7) are used for transfer. Bus lines DB0 to DB3 are disabled. The data transfer between the ST7036 and the MPU is completed after the 4-bit data has been transferred twice. As for the order of data transfer, the four high order bits (for 8-bit operation, DB4 to DB7) are transferred before the four low order bits (for 8-bit operation, DB0 to DB3). The busy flag must be checked (one instruction) after the 4-bit data has been transferred twice. Two more 4-bit operations then transfer the busy flag and address counter data. Example of busy flag check timing sequence CSB RS R/W E Internal operation DB7 Functioning IR7 IR3 Instruction write Busy flag check AC3 Busy flag check IR7 IR3 Instruction write Intel 8051 interface(4 Bit) P1.0 to P1.3 COM1 to COM16/24 DB4 to DB7 4 P3.0 P3.1 P3.2 P3.3 RS R/W E CSB Intel 8051 Serial V1.7a Not Busy AC3 SEG1 to SEG100/80 16/24 100/80 ST7036 43/70 2007/10/17 ST7036 For 8-bit interface data, all eight bus lines (DB0 to DB7) are used. Example of busy flag check timing sequence CSB RS R/W E Internal operation Functioning DB7 Data Instruction write Busy Busy Busy flag check Busy flag check Busy flag check Data Instruction write Intel 8051 interface(8 Bit) P1.0 to P1.7 COM1 to COM16/24 DB0 to DB7 8 P3.0 P3.1 P3.2 P3.3 RS R/W E CSB Intel 8051 Serial V1.7a Not Busy 16/24 SEG1 to 100/80 SEG100/80 ST7036 44/70 2007/10/17 ST7036 For serial interface data, only two bus lines (DB6 to DB7) are used. Example of timing sequence CSB SI D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 SCL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 RS Intel 8051 interface ( Serial 4-line ) P1.6 to P1.7 COM1 to COM16/24 2 16/24 SI , SCL P3.0 P3.3 RS CSB SEG1 to 100/80 SEG100/80 Intel 8051 Serial V1.7a ST7036 45/70 2007/10/17 ST7036 For I2C interface data, all eight bus lines (DB0 to DB7) are used. Example of timing sequence SDA D7 D6 D5 D4 D3 D2 D1 D0 ACK 1 2 3 4 5 6 7 8 9 V1.7a D0 ACK ...... SCL ....... Intel 8051 interface ( I2C interface ) 46/70 2007/10/17 ST7036 Supply Voltage for LCD Drive When external bias resistors are used (OPF1=1,OPF2=1) VCC (2.7~ 5.5V) VCC (2.7~ 5.5V) Vext OPF1 OPF2 VDD VOUT V0 VIN CAP1P CAP1N OPF1 OPF2 VR VDD VR VOUT V0 VIN R V1 V2 V3 R CAP1P V1 CAP1N V2 VLCD V3 R V4 V4 R R VSS R R VLCD R 1/4 bias Vext VSS 1/5 bias GND GND When built-in bias resistors(9.6KΩ) are used (OPF1=1,OPF2=0) VCC(2.7~5.5V) OPF1 VOUT Vext VDD VR V0 VIN CAP1P V1 CAP1N V2 VLCD V3 V4 OPF2 VSS GND Note: Do not use built-in booster while built-in bias resistors are used. V1.7a 47/70 2007/10/17 ST7036 When built-in bias resistors(3.3KΩ) are used (OPF1=0,OPF2=1) VCC (2.7~ 5.5V) OPF2 Vext VDD VOUT VIN VR V0 CAP1P V1 CAP1N V2 VLCD V3 V4 OPF1 VSS GND Note: Do not use built-in booster while built-in bias resistors are used. When built-in voltage followers with external Vout are used (OPF1=0,OPF2=0 and instruction setting Bon=0,Fon=1) VCC (2.7~ 5.5V) Vext ≧ V0 Don't need to connect stable capacitor when use internal follower circuit VOUT VDD VIN V0 CAP1P V1 CAP1N V2 VLCD V3 V4 OPF1 OPF2 VSS GND V1.7a 48/70 2007/10/17 ST7036 When built-in booster and voltage followers are used(OPF1=0,OPF2=0) VCC (2.7~ 3.5V) Don't need to connect stable capacitor when use internal follower circuit VIN VOUT VDD V0 CAP1P V1 CAP1N V2 VOUT≦2xVDD VDD=2.7~3.5V VSS=0V VLCD V3 2 x step-up voltage relationships V4 OPF1 OPF2 VSS GND Note: Ensure V0 level stable, that must let |Vout-V0| over 0.5V(if panel size over 4.5”,the |Vout-V0| propose over 0.8V). |Vout-V0|>0.5V(minimum) Vout V0 VCC VDD GND VSS (System side) V1.7a (ST7036Side) 49/70 2007/10/17 ST7036 V0 voltage follower value calculation Vout(≧VDD) VDD Rb ) x Vref Ra α+36 ) While Vref=VDD x ( 100 Vref V0=(1+ V0 Rb Ra VSS C5 C4 C3 C2 C1 C0 α Rab2 Rab1 Rab0 1+Rb/Ra 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1.25 0 0 0 0 1 0 2 0 1 0 1.5 : : 0 1 1 1.8 1 0 0 2 : : 1 1 1 1 0 1 61 1 0 1 2.5 1 1 1 1 1 0 62 1 1 0 3 1 1 1 1 1 1 63 1 1 1 3.75 8 7 6 5 4 3 2 1 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 V0 level (Condition:Booster on, Follower on, VIN=3.5V, VDD=3.0V,Display off) The recommended curve: follower = 04H Notes: 1. Vout ≧V0 ≧V1 ≧V2 ≧V3 ≧V4 ≧Vss must be maintained. 2. If the calculation value of V0 is higher than Vout, the real V0 value will saturate to Vout. 3. internal built-in booster can only be used when OPF1=0,OPF2=0. V1.7a 50/70 2007/10/17 ST7036 8 7 6 5 4 3 2 1 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 V0 level (Condition: VDD=5.0V, external Vout=7.0V) The recommended curve: followe=01H Notes: 1. Vout ≧V0 ≧V1 ≧V2 ≧V3 ≧V4 ≧Vss must be maintained. 2. If the calculation value of V0 is higher than Vout, the real V0 value will saturate to Vout. 3. internal built-in booster can only be used when OPF1=0,OPF2=0. V1.7a 51/70 2007/10/17 ST7036 AC Characteristics 68 Interface RS R/W tAW6 tAH6 CSB tCYC6 tEWH tEWL E tDS6 tDH6 D0 to D7 (Write) tACC6 tOH6 D0 to D7 (Read) Item Address hold time Signal RS Symbol Condition VDD=2.7 to 4.5V Rating ( Ta =-35°C to 85°C ) VDD=4.5 to 5.5V Rating Units Min. Max. Min. Max. 20 - 20 - 20 - 20 - 400 - 280 - 100 - 80 - 40 - 20 - - 500 - 400 300 - 150 - tAH6 — Address setup time RS tAW6 System cycle time RS tCYC6 D0 to D7 tDS6 Data setup time — ns — Data hold time D0 to D7 tDH6 Access time D0 to D7 tACC6 ns ns CL = 100 pF ns Output disable time D0 to D7 tOH6 Enable H pulse time E tEWH — 200 - 120 - ns Enable L pulse time E tEWL — 150 - 130 - ns Note: All timing is specified using 20% and 80% of VDD as the reference. V1.7a 52/70 2007/10/17 ST7036 Serial Interface tCSS tCSH CSB tSAS tSAH RS tSCYC tSLW tSHW SCL tSDS tSDH SI Item Signal Symbol Condition VDD=2.7 to 4.5V Rating Min. tSCYC Serial Clock Period SCL “H” pulse width SCL Address hold time Data setup time Data hold time CS-SCL time — tSLW SCL “L” pulse width Address setup time tSHW RS SI CS tSAS tSAH tSDS tSDH tCSS tCSH — — — Max. ( Ta =-35°C to 85°C ) VDD=4.5 to 5.5V Rating Units Min. Max. 200 - 100 - 20 - 20 - 160 - 120 - 10 - 10 - 250 - 150 - 10 - 10 - 10 - 20 - 20 - 20 - 350 - 200 - ns ns ns ns *1 All timing is specified using 20% and 80% of VDD as the standard. V1.7a 53/70 2007/10/17 ST7036 I2C interface SDA tBUF tHIGH tLOW tSU;DAT SCL tf tDH;STA tr SDA tHD;DAT tSU;STA Item Signal Symbol Condition SCL clock frequency SCL clock low period fSCLK SCL SCL clock high period Data set-up time Data hold time SCL,SDA rise time SDA SCL, SDA Setup time for STOP condition V1.7a — tHIGH SCL,SDA fall time Capacitive load represent by each bus line Setup time for a repeated START condition SDA Start condition hold time Bus free time between a Stop and START condition tLOW SCL tSU;DAT tHD:DAT tr — — tf tSU;STO VDD=2.7 to 4.5V Rating ( Ta =-35°C to 85°C ) VDD=4.5 to 5.5V Rating Units Min. Max. Min. Max. DC 300K — DC 2.5 1.3 400 — 0.6 — 0.6 — 1800 — 700 — ns 0 — 0 0.5 µs 20+0.1Cb 300 20+0.1Cb 300 20+0.1Cb 300 20+0.1Cb 300 kHz µs ns Cb — — 400 — 400 pf tSU;STA — 0.6 — 0.6 — µs tHD;STA — 1.8 — 1.0 — µs tSU;STO — 0.6 — 0.6 — µs tBUF — 1.3 — 1.3 — µs 54/70 2007/10/17 ST7036 Internal Power Supply Reset 2.7V/4.5V 0.2V 0.2V trcc 0.2V tOFF tOFF≧1mS 0.1mS≦trcc≦10mS Notes: tOFF compensates for the power oscillation period caused by momentary power supply oscillations. Specified at 4.5V for 5V operation, and at 2.7V for 3V operation. For if 2.7V/4.5V is not reached during 3V/5V operation, internal reset circuit will not operate normally. Hardware reset(XRESET) tr≦100nS 2.7V/4.5V 0.2V tL>100uS V1.7a 55/70 2007/10/17 ST7036 Absolute Maximum Ratings Characteristics Symbol Value Power Supply Voltage VDD -0.3 to +6.0 LCD Driver Voltage VLCD 7.0- Vss to -0.3+Vss Input Voltage VIN -0.3 to VDD+0.3 Operating Temperature TA -30 C to + 85 C Storage Temperature TSTO -65 C to + 150 C o o o o DC Characteristics Symbol Characteristics V1.7a (VDD = 2.7 V, TA =-35℃ to 85℃) Test Condition Min. Typ. Max. Unit VDD Operating Voltage - 2.7 - 4.5 V VLCD LCD Voltage V0-Vss 2.7 - 7.0 V VIN Power Supply - - - 3.5 V IDD Power Supply Current VDD=3.0V (Use internal booster/follower circuit) - 160 230 uA VIH1 Input High Voltage (Except OSC1) - 0.7 VDD - VDD V VIL1 Input Low Voltage (Except OSC1) - - 0.3 - 0.8 V VIH2 Input High Voltage (OSC1) - 0.7 VDD - VDD V VIL2 Input Low Voltage (OSC1) - - - 0.2 VDD V VOH Output High Voltage (DB0 - DB7) IOH = -1.0mA 0.7 VDD - - V VOL Output Low Voltage (DB0 - DB7) IOL = 1.0mA - - 0.8 V RCOM Common Resistance VLCD = 4V, Id = 0.05mA - 2 20 KΩ RSEG Segment Resistance VLCD = 4V, Id = 0.05mA - 2 30 KΩ ILEAK Input Leakage Current VIN = 0V to VDD -1 - 1 µA IPUP Pull Up MOS Current VDD = 3V 20 30 40 µA fOSC Oscillation frequency VDD = 3V,1/17duty 350 540 1100 kHz 56/70 2007/10/17 ST7036 DC Characteristics (VDD = 4.5 V ,TA = -35℃ to 85℃) Symbol Characteristics V1.7a Test Condition Min. Typ. Max. Unit VDD Operating Voltage - 4.5 - 5.5 V VLCD LCD Voltage V0-Vss 2.7 - 7.0 V VIN Power Supply - - - 3.5 V IDD Power Supply Current VDD=5.0V (Use internal booster/follower circuit) - 240 340 µA VIH1 Input High Voltage (Except OSC1) - 0.7 VDD - VDD V VIL1 Input Low Voltage (Except OSC1) - -0.3 - 0.8 V VIH2 Input High Voltage (OSC1) - 0.7 VDD - VDD V VIL2 Input Low Voltage (OSC1) - - - 1.0 V VOH Output High Voltage (DB0 - DB7) IOH = -1.0mA 0.8 VDD - VDD V VOL Output Low Voltage (DB0 - DB7) IOL = 1.0mA - - 0.8 V RCOM Common Resistance VLCD = 4V, Id = 0.05mA - 2 20 KΩ RSEG Segment Resistance VLCD = 4V, Id = 0.05mA - 2 30 KΩ ILEAK Input Leakage Current VIN = 0V to VDD -1 - 1 µA IPUP Pull Up MOS Current VDD = 5V 65 95 125 µA fOSC Oscillation frequency VDD = 5V,1/17duty 350 540 1100 kHz 57/70 2007/10/17 ST7036 LCD Frame Frequency 1/16 Duty(ST7066U normal mode); Assume the oscillation frequency is 540KHZ, 1 clock cycle time = 1.85us, 1/16 duty; 1/5 bias,1 frame =1.85us x 200 x 16 = 5.92ms=168.9Hz(SHLC and SHLS connect to High) 200 clocks 1 2 3 4 16 1 2 3 4 16 1 2 3 4 16 V0 V1 V2 COM1 V3 V4 Vss V0 V1 V2 COM2 V3 V4 Vss V0 V1 V2 COM16 V3 V4 Vss V0 V1 V2 SEGx off V3 V4 Vss V0 V1 V2 SEGx on V3 V4 Vss 1 frame V1.7a 58/70 2007/10/17 ST7036 1/17 Duty(Extension mode); Assume the oscillation frequency is 540KHZ, 1 clock cycle time = 1.85us, 1/17 duty; 1/5 bias,1 frame =1.85us x 200 x 17 = 6.29ms=159Hz(SHLC and SHLS connect to High) 200 clocks 1 2 3 4 17 1 2 3 4 17 1 2 3 4 17 V0 V1 V2 COM1 V3 V4 Vss V0 V1 V2 COM2 V3 V4 Vss V0 V1 V2 COM17 V3 V4 Vss V0 V1 V2 SEGx off V3 V4 Vss V0 V1 V2 SEGx on V3 V4 Vss 1 frame V1.7a 59/70 2007/10/17 ST7036 1/8 Duty(ST7066U normal mode); Assume the oscillation frequency is 540KHZ, 1 clock cycle time = 1.85us, 1/8 duty; 1/4 bias,1 frame = 1.85us x 400 x 8 = 5.92ms=168.9Hz(SHLC and SHLS connect to High) 400 clocks 1 2 3 4 8 1 2 3 4 8 1 2 3 4 8 V0 V1 COM1 V2 V3 V4 Vss V0 V1 COM2 V2 V3 V4 Vss V0 V1 COM8 V2 V3 V4 Vss V0 V1 SEGx off V2 V3 V4 Vss V0 V1 SEGx on V2 V3 V4 Vss 1 frame V1.7a 60/70 2007/10/17 ST7036 1/9 Duty(Extension mode); Assume the oscillation frequency is 540KHZ, 1 clock cycle time = 1.85us, 1/9 duty; 1/4 bias,1 frame = 1.85us x 400 x 9 = 6.66ms=150Hz(SHLC and SHLS connect to High) 400 clocks 1 2 3 4 9 1 2 3 4 9 1 2 3 4 9 V0 V1 COM1 V2 V3 V4 Vss V0 V1 COM2 V2 V3 V4 Vss V0 V1 COM9 V2 V3 V4 Vss V0 V1 SEGx off V2 V3 V4 Vss V0 V1 SEGx on V2 V3 V4 Vss 1 frame V1.7a 61/70 2007/10/17 ST7036 1/25 Duty( Extension mode and 3-line ); Assume the oscillation frequency is 540KHZ, 1 clock cycle time = 1.85us, 1/25 duty; 1/4 bias,1 frame = 1.85us x 160 x 25 = 7.40ms=135.1Hz(SHLC and SHLS connect to High) 160 clocks 1 2 3 4 25 1 2 3 4 25 1 2 3 4 25 V0 V1 COM1 V2 V3 V4 Vss V0 V1 COM2 V2 V3 V4 Vss V0 V1 COM25 V2 V3 V4 Vss V0 V1 SEGx off V2 V3 V4 Vss V0 V1 SEGx on V2 V3 V4 Vss 1 frame V1.7a 62/70 2007/10/17 ST7036 I/O Pad Configuration V1.7a 63/70 2007/10/17 ST7036 LCD and ST7036 Connection SHLC/SHLS ITO option pin can select at different direction for LCD panel Com normal direction/Seg normal direction 3 line x 16 characters, SHLC=1 SHLS=1 Com normal direction/Seg reverse direction 3 line x 16 characters, SHLC=1, SHLS=0 Com reverse direction/Seg normal direction 3 line x 16 characters, SHLC=0, SHLS=1 Com reverse direction/Seg reverse direction 3 line x 16 characters, SHLC=0, SHLS=0 V1.7a 64/70 2007/10/17 ST7036 Application Circuit ( Normal mode ) Use internal resistor(9.6K ohm) and contrast adjust with external VR. Booster always off. Has 240 character of CGROM. Internal oscillator. Dot Matrix LCD Panel VDD Vext VDD VOUT VIN Com 1-24 Seg 1-80 CAP1N CAP1P V0 V1 V2 V3 RS,R/W,E,CSB,DB0-DB7,XRESET V4 ST7036 CLS SHLC SHLS N3 EXT OPF1 OPF2 OPR1 OPR2 To MPU V1.7a 65/70 2007/10/17 ST7036 Application Circuit(Extension mode) Use internal follower circuit. Booster has 2 times pump. Has 240 character of CGROM. Internal oscillator. D ot M atrix LC D P anel V ext VDD VOUT V IN C om 1-24 S eg 1-80 C A P 1N C A P 1P V0 V1 V2 V3 R S ,R /W ,E ,C S B ,D B 0-D B 7,X R E S ET V4 S T7036 C LS S H LC S H LS N3 EXT OPF1 OPF2 OPR1 OPR2 To M P U V1.7a When the heavy load is applied, the dotted line part could be added. 66/70 2007/10/17 ST7036 Application Circuit ( for glass layout ) V1.7a ST7036 over Glass,6800 serial 8bit interface, with booster and follower circuit on 67/70 2007/10/17 ST7036 V1.7a ST7036 over Glass,6800 serial 4bit interface, with booster and follower circuit on 68/70 2007/10/17 ST7036 V1.7a ST7036 over Glass, serial interface, with booster and follower circuit on 69/70 2007/10/17 ST7036 2 ST7036 over Glass, I C interface, with booster and follower circuit on In I2C application, note that the impedence of SDAs and GNDs should be keep in the POWER PIN LEVEL. V1.7a 70/70 2007/10/17