SITRONIX ST7565V

ST
Sitronix
ST7565V
65 x 132 Dot Matrix LCD Controller/Driver
FEATURES
Direct display of RAM data through the display data
RAM.
RAM capacity : 65 x 132 = 8580 bits
Display duty selectable by select pin
1/65 duty : 65 common x 132 segment
1/49 duty : 49 common x 132 segment
1/33 duty : 33 common x 132 segment
1/55 duty : 55 common x 132 segment
1/53 duty : 53 common x 132 segment
High-speed 8-bit MPU interface (The chip can be
connected directly to the both the 80x86 series MPUs
and the 68000 series MPUs)
/Serial interfaces are supported.
Abundant command functions
Display data Read/Write, display ON/OFF, Normal/
Reverse display mode, page address set, display start
line set, column address set, status read, display all
points ON/OFF, LCD bias set, electronic volume,
read/modify/write, segment driver direction selects,
power saver, common output status select, V5 voltage
regulation internal resistor ratio set.
Low-power liquid crystal display power supply circuit
equipped internally.
Booster circuit (with Boost ratios of 2X/3X/4X/5X/6X
, where the step-up voltage reference power
supply can be input externally).
High-accuracy voltage adjustment circuit (Thermal
gradient –0.05%/°C ) V 5 voltage regulator resistors
equipped internally, V1 to V4 voltage divider resistors
equipped internally, electronic volume function
equipped internally, voltage follower.
CR oscillator circuit equipped internally (external
clock can also be input)
Extremely low power consumption Operating power
when the built-in power supply is used (an example)
60uA (VDD – VSS = VDD – VSS2 =3.0 V, Quad voltage,
V5 – VDD = – 11.0 V).
Conditions: W hen displays pattern OFF and the
normal mode is selected.
Power supply operate on the low 1.8 voltage
Logic power supply
VDD – VSS = 1.8V to 3.3V
Boost reference voltage: VDD – VSS2 = 2.4V to 3.3V
Booster maximum voltage limited
VOUT= -13.5V
Liquid crystal drive power supply:
VDD – V5 = 4.0V to 12.0 V
Wide range of operating temperatures: –30 to 85°C
CMOS process
Shipping forms include bare chip and TCP.
These chips not designed for resistance to light or
resistance to radiation.
GENERAL DESCRIPTION
The ST7565V is a single-chip dot matrix LCD driver that can
be connected directly to a microprocessor bus. 8-bit parallel
or serial display data sent from the microprocessor is stored
in the internal display data RAM and the chip generates a
LCD drive signal independent of the microprocessor.
Because the chips in the ST7565V contain 65x132 bits of
display data RAM and there is a 1-to-1 correspondence
between the LCD panel pixels and the internal RAM bits,
these chips enable displays with a high degree of freedom.
The ST7565V chips contain 65 common output circuits and
132 segment output circuits, so that a single chip can drive a
65x132 dot display (capable of displaying 8 columnsx4 rows
PART NO.
ST7565V
Ver 1.5b
of a 16x16 dot kanji font).
Moreover, the capacity of the display can be extended
through the use of master/slave structures between chips.
The chips are able to minimize power consumption
because no external operating clock is necessary for the
display data RAM read/write operation. Furthermore,
because each chip is equipped internally with a low-power
LCD driver power supply, resistors for LCD driver power
voltage adjustment and a display clock CR oscillator circuit,
the ST7565V can be used to create the lowest power display
system with the fewest components for high-performance
portable devices.
VRS temperature gradient
-0.05%/°C
1/72
VRS range
-2.1V ±0.03V
2009/09/14
ST7565V
ST7565V Pad Arrangement(COG)
9,336μm x 1,000 μm
58μm(Min.)
PAD No. 001~012
PAD No. 013~102
PAD No. 103~114
PAD No. 115
PAD No. 116~128
PAD No. 129~276
PAD No. 277~289
PAD No. 290
Bump Height:
18μm
Chip Thickness: 635μm
Chip Size:
Bump Pitch:
Bump Size:
40μm x 90μm
56μm x 60μm
40μm x 90μm
90μm x 25.5μm
90μm x 40μm
40μm x 90μm
90μm x 40μm
90μm x 25.5μm
15µm
15µm
15µm
15µm
15µm
15µm
15µm
15µm
38µm
Add new booster ratio 5 times and 6 times
Use select pin to define display duty as following table
SEL 3 , 2 , 1
DUTY
Ver 1.5b
30µm
30µm
BIAS
0,0,0
1/65
1/9 or 1/7
0,0,1
1/49
1/8 or 1/6
0,1,0
1/33
1/6 or 1/5
0,1,1
1/55
1/8 or 1/6
1,0,0
1/53
1/8 or 1/6
1,X,X
-----
-----
2/72
24µm
2009/09/14
ST7565V
Pad Center Coordinates (1/65 Duty)
Units: μm
PAD
No.
PIN Name
X
Y
PAD
No.
PIN Name
X
Y
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
COM[53]
COM[54]
COM[55]
COM[56]
COM[57]
COM[58]
COM[59]
COM[60]
COM[61]
COM[62]
COM[63]
COMS1
TEST6
FR
CL
/DOF
VSS
/CS1
CS2
VDD
/RES
A0
VSS
/WR(R/W)
/RD(E)
VDD
D0
D1
D2
D3
D4
D5
D6
D7
VDD
VDD
VDD
VSS
VSS
VSS2
VSS2
VOUT
VOUT
CAP5CAP5CAP1+
CAP1+
4241
4183
4125
4067
4009
3951
3893
3835
3777
3719
3661
3603
3443
3369
3295
3221
3147
3073
2999
2925
2851
2777
2703
2629
2555
2481
2407
2333
2259
2185
2111
2037
1963
1889
1815
1741
1667
1593
1519
1445
1371
1297
1223
1149
1075
1001
927
374
374
374
374
374
374
374
374
374
374
374
374
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
CAP3CAP3CAP1+
CAP1+
CAP1CAP1CAP2CAP2CAP2+
CAP2+
CAP4CAP4VSS
VSS
VRS
VRS
VDD
VDD
V1
V1
V2
V2
V3
V3
V4
V4
V5
V5
VR
VR
VDD
VDD
TEST0
TEST1
TEST2
TEST3
TEST4
TEST5
VDD
M/S
CLS
VSS
C86
P/S
VDD
/HPM
VSS
853
779
705
631
557
483
409
335
261
187
113
39
-35
-109
-183
-257
-331
-405
-479
-553
-627
-701
-775
-849
-923
-997
-1071
-1145
-1219
-1293
-1367
-1441
-1515
-1589
-1663
-1737
-1811
-1885
-1959
-2033
-2107
-2181
-2255
-2329
-2403
-2477
-2551
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
Ver 1.5b
3/72
2009/09/14
ST7565V
PAD
No.
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
Ver 1.5b
PIN Name
X
Y
IRS
VDD
SEL1
VSS
SEL2
VDD
SEL3
VSS
COM[31]
COM[30]
COM[29]
COM[28]
COM[27]
COM[26]
COM[25]
COM[24]
COM[23]
COM[22]
COM[21]
COM[20]
(NC)
COM[19]
COM[18]
COM[17]
COM[16]
COM[15]
COM[14]
COM[13]
COM[12]
COM[11]
COM[10]
COM[9]
COM[8]
COM[7]
COM[6]
COM[5]
COM[4]
COM[3]
COM[2]
COM[1]
COM[0]
COMS2
SEG[0]
SEG[1]
SEG[2]
SEG[3]
SEG[4]
SEG[5]
SEG[6]
SEG[7]
SEG[8]
SEG[9]
-2625
-2699
-2773
-2847
-2921
-2995
-3069
-3143
-3606
-3664
-3722
-3780
-3838
-3896
-3954
-4012
-4070
-4128
-4186
-4244
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4267
-4209
-4151
-4093
-4035
-3977
-3919
-3861
-3803
-3745
-3687
-3629
-3571
-3513
-3455
-3397
-3339
-3281
389
389
389
389
389
389
389
389
374
374
374
374
374
374
374
374
374
374
374
374
404
351
293
235
177
119
61
3
-55
-113
-171
-229
-287
-345
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
PAD
No.
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
4/72
PIN Name
X
Y
SEG[10]
SEG[11]
SEG[12]
SEG[13]
SEG[14]
SEG[15]
SEG[16]
SEG[17]
SEG[18]
SEG[19]
SEG[20]
SEG[21]
SEG[22]
SEG[23]
SEG[24]
SEG[25]
SEG[26]
SEG[27]
SEG[28]
SEG[29]
SEG[30]
SEG[31]
SEG[32]
SEG[33]
SEG[34]
SEG[35]
SEG[36]
SEG[37]
SEG[38]
SEG[39]
SEG[40]
SEG[41]
SEG[42]
SEG[43]
SEG[44]
SEG[45]
SEG[46]
SEG[47]
SEG[48]
SEG[49]
SEG[50]
SEG[51]
SEG[52]
SEG[53]
SEG[54]
SEG[55]
SEG[56]
SEG[57]
SEG[58]
SEG[59]
SEG[60]
SEG[61]
-3223
-3165
-3107
-3049
-2991
-2933
-2875
-2817
-2759
-2701
-2643
-2585
-2527
-2469
-2411
-2353
-2295
-2237
-2179
-2121
-2063
-2005
-1947
-1889
-1831
-1773
-1715
-1657
-1599
-1541
-1483
-1425
-1367
-1309
-1251
-1193
-1135
-1077
-1019
-961
-903
-845
-787
-729
-671
-613
-555
-497
-439
-381
-323
-265
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
2009/09/14
ST7565V
PAD
No.
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
Ver 1.5b
PIN Name
X
Y
SEG[62]
SEG[63]
SEG[64]
SEG[65]
SEG[66]
SEG[67]
SEG[68]
SEG[69]
SEG[70]
SEG[71]
SEG[72]
SEG[73]
SEG[74]
SEG[75]
SEG[76]
SEG[77]
SEG[78]
SEG[79]
SEG[80]
SEG[81]
SEG[82]
SEG[83]
SEG[84]
SEG[85]
SEG[86]
SEG[87]
SEG[88]
SEG[89]
SEG[90]
SEG[91]
SEG[92]
SEG[93]
SEG[94]
SEG[95]
SEG[96]
SEG[97]
SEG[98]
SEG[99]
SEG[100]
SEG[101]
SEG[102]
SEG[103]
SEG[104]
SEG[105]
SEG[106]
SEG[107]
SEG[108]
-207
-149
-91
-33
25
83
141
199
257
315
373
431
489
547
605
663
721
779
837
895
953
1011
1069
1127
1185
1243
1301
1359
1417
1475
1533
1591
1649
1707
1765
1823
1881
1939
1997
2055
2113
2171
2229
2287
2345
2403
2461
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
PAD
No.
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
5/72
PIN Name
X
Y
SEG[109]
SEG[110]
SEG[111]
SEG[112]
SEG[113]
SEG[114]
SEG[115]
SEG[116]
SEG[117]
SEG[118]
SEG[119]
SEG[120]
SEG[121]
SEG[122]
SEG[123]
SEG[124]
SEG[125]
SEG[126]
SEG[127]
SEG[128]
SEG[129]
SEG[130]
SEG[131]
COM[32]
COM[33]
COM[34]
COM[35]
COM[36]
COM[37]
COM[38]
COM[39]
COM[40]
COM[41]
COM[42]
COM[43]
COM[44]
COM[45]
COM[46]
COM[47]
COM[48]
COM[49]
COM[50]
COM[51]
COM[52]
(NC)
2519
2577
2635
2693
2751
2809
2867
2925
2983
3041
3099
3157
3215
3273
3331
3389
3447
3505
3563
3621
3679
3737
3795
3853
3911
3969
4027
4085
4143
4201
4259
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-345
-287
-229
-171
-113
-55
3
61
119
177
235
293
351
404
2009/09/14
ST7565V
Pad Center Coordinates (1/49 Duty)
PAD
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Ver 1.5b
PIN Name
X
Y
COM[37]
COM[38]
COM[39]
COM[40]
COM[41]
COM[42]
COM[43]
COM[44]
COM[45]
COM[46]
COM[47]
COMS1
TEST6
FR
CL
/DOF
VSS
/CS1
CS2
VDD
/RES
A0
VSS
/WR(R/W)
/RD(E)
VDD
D0
D1
D2
D3
D4
D5
D6
D7
VDD
VDD
VDD
VSS
VSS
VSS2
VSS2
VOUT
VOUT
CAP5CAP5CAP1+
CAP1+
4241
4183
4125
4067
4009
3951
3893
3835
3777
3719
3661
3603
3443
3369
3295
3221
3147
3073
2999
2925
2851
2777
2703
2629
2555
2481
2407
2333
2259
2185
2111
2037
1963
1889
1815
1741
1667
1593
1519
1445
1371
1297
1223
1149
1075
1001
927
374
374
374
374
374
374
374
374
374
374
374
374
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
Units: μm
PAD
No.
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
6/72
PIN Name
X
Y
CAP3CAP3CAP1+
CAP1+
CAP1CAP1CAP2CAP2CAP2+
CAP2+
CAP4CAP4VSS
VSS
VRS
VRS
VDD
VDD
V1
V1
V2
V2
V3
V3
V4
V4
V5
V5
VR
VR
VDD
VDD
TEST0
TEST1
TEST2
TEST3
TEST4
TEST5
VDD
M/S
CLS
VSS
C86
P/S
VDD
/HPM
VSS
853
779
705
631
557
483
409
335
261
187
113
39
-35
-109
-183
-257
-331
-405
-479
-553
-627
-701
-775
-849
-923
-997
-1071
-1145
-1219
-1293
-1367
-1441
-1515
-1589
-1663
-1737
-1811
-1885
-1959
-2033
-2107
-2181
-2255
-2329
-2403
-2477
-2551
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
2009/09/14
ST7565V
PAD
No.
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
Ver 1.5b
PIN Name
X
Y
IRS
VDD
SEL1
VSS
SEL2
VDD
SEL3
VSS
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
COM[23]
COM[22]
COM[21]
COM[20]
(NC)
COM[19]
COM[18]
COM[17]
COM[16]
COM[15]
COM[14]
COM[13]
COM[12]
COM[11]
COM[10]
COM[9]
COM[8]
COM[7]
COM[6]
COM[5]
COM[4]
COM[3]
COM[2]
COM[1]
COM[0]
COMS2
SEG[0]
SEG[1]
SEG[2]
SEG[3]
SEG[4]
SEG[5]
SEG[6]
SEG[7]
SEG[8]
SEG[9]
-2625
-2699
-2773
-2847
-2921
-2995
-3069
-3143
-3606
-3664
-3722
-3780
-3838
-3896
-3954
-4012
-4070
-4128
-4186
-4244
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4267
-4209
-4151
-4093
-4035
-3977
-3919
-3861
-3803
-3745
-3687
-3629
-3571
-3513
-3455
-3397
-3339
-3281
389
389
389
389
389
389
389
389
374
374
374
374
374
374
374
374
374
374
374
374
404
351
293
235
177
119
61
3
-55
-113
-171
-229
-287
-345
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
PAD
No.
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
7/72
PIN Name
X
Y
SEG[10]
SEG[11]
SEG[12]
SEG[13]
SEG[14]
SEG[15]
SEG[16]
SEG[17]
SEG[18]
SEG[19]
SEG[20]
SEG[21]
SEG[22]
SEG[23]
SEG[24]
SEG[25]
SEG[26]
SEG[27]
SEG[28]
SEG[29]
SEG[30]
SEG[31]
SEG[32]
SEG[33]
SEG[34]
SEG[35]
SEG[36]
SEG[37]
SEG[38]
SEG[39]
SEG[40]
SEG[41]
SEG[42]
SEG[43]
SEG[44]
SEG[45]
SEG[46]
SEG[47]
SEG[48]
SEG[49]
SEG[50]
SEG[51]
SEG[52]
SEG[53]
SEG[54]
SEG[55]
SEG[56]
SEG[57]
SEG[58]
SEG[59]
SEG[60]
SEG[61]
-3223
-3165
-3107
-3049
-2991
-2933
-2875
-2817
-2759
-2701
-2643
-2585
-2527
-2469
-2411
-2353
-2295
-2237
-2179
-2121
-2063
-2005
-1947
-1889
-1831
-1773
-1715
-1657
-1599
-1541
-1483
-1425
-1367
-1309
-1251
-1193
-1135
-1077
-1019
-961
-903
-845
-787
-729
-671
-613
-555
-497
-439
-381
-323
-265
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
2009/09/14
ST7565V
PAD
No.
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
Ver 1.5b
PIN Name
X
Y
SEG[62]
SEG[63]
SEG[64]
SEG[65]
SEG[66]
SEG[67]
SEG[68]
SEG[69]
SEG[70]
SEG[71]
SEG[72]
SEG[73]
SEG[74]
SEG[75]
SEG[76]
SEG[77]
SEG[78]
SEG[79]
SEG[80]
SEG[81]
SEG[82]
SEG[83]
SEG[84]
SEG[85]
SEG[86]
SEG[87]
SEG[88]
SEG[89]
SEG[90]
SEG[91]
SEG[92]
SEG[93]
SEG[94]
SEG[95]
SEG[96]
SEG[97]
SEG[98]
SEG[99]
SEG[100]
SEG[101]
SEG[102]
SEG[103]
SEG[104]
SEG[105]
SEG[106]
SEG[107]
SEG[108]
-207
-149
-91
-33
25
83
141
199
257
315
373
431
489
547
605
663
721
779
837
895
953
1011
1069
1127
1185
1243
1301
1359
1417
1475
1533
1591
1649
1707
1765
1823
1881
1939
1997
2055
2113
2171
2229
2287
2345
2403
2461
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
PAD
No.
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
8/72
PIN Name
X
Y
SEG[109]
SEG[110]
SEG[111]
SEG[112]
SEG[113]
SEG[114]
SEG[115]
SEG[116]
SEG[117]
SEG[118]
SEG[119]
SEG[120]
SEG[121]
SEG[122]
SEG[123]
SEG[124]
SEG[125]
SEG[126]
SEG[127]
SEG[128]
SEG[129]
SEG[130]
SEG[131]
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
COM[24]
COM[25]
COM[26]
COM[27]
COM[28]
COM[29]
COM[30]
COM[31]
COM[32]
COM[33]
COM[34]
COM[35]
COM[36]
(NC)
2519
2577
2635
2693
2751
2809
2867
2925
2983
3041
3099
3157
3215
3273
3331
3389
3447
3505
3563
3621
3679
3737
3795
3853
3911
3969
4027
4085
4143
4201
4259
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-345
-287
-229
-171
-113
-55
3
61
119
177
235
293
351
404
2009/09/14
ST7565V
Pad Center Coordinates (1/33 Duty)
PAD
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Ver 1.5b
PIN Name
X
Y
COM[21]
COM[22]
COM[23]
COM[24]
COM[25]
COM[26]
COM[27]
COM[28]
COM[29]
COM[30]
COM[31]
COMS1
TEST6
FR
CL
/DOF
VSS
/CS1
CS2
VDD
/RES
A0
VSS
/WR(R/W)
/RD(E)
VDD
D0
D1
D2
D3
D4
D5
D6
D7
VDD
VDD
VDD
VSS
VSS
VSS2
VSS2
VOUT
VOUT
CAP5CAP5CAP1+
CAP1+
4241
4183
4125
4067
4009
3951
3893
3835
3777
3719
3661
3603
3443
3369
3295
3221
3147
3073
2999
2925
2851
2777
2703
2629
2555
2481
2407
2333
2259
2185
2111
2037
1963
1889
1815
1741
1667
1593
1519
1445
1371
1297
1223
1149
1075
1001
927
374
374
374
374
374
374
374
374
374
374
374
374
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
Units: μm
PAD
No.
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
9/72
PIN Name
X
Y
CAP3CAP3CAP1+
CAP1+
CAP1CAP1CAP2CAP2CAP2+
CAP2+
CAP4CAP4VSS
VSS
VRS
VRS
VDD
VDD
V1
V1
V2
V2
V3
V3
V4
V4
V5
V5
VR
VR
VDD
VDD
TEST0
TEST1
TEST2
TEST3
TEST4
TEST5
VDD
M/S
CLS
VSS
C86
P/S
VDD
/HPM
VSS
853
779
705
631
557
483
409
335
261
187
113
39
-35
-109
-183
-257
-331
-405
-479
-553
-627
-701
-775
-849
-923
-997
-1071
-1145
-1219
-1293
-1367
-1441
-1515
-1589
-1663
-1737
-1811
-1885
-1959
-2033
-2107
-2181
-2255
-2329
-2403
-2477
-2551
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
2009/09/14
ST7565V
PAD
No.
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
Ver 1.5b
PIN Name
X
Y
IRS
VDD
SEL1
VSS
SEL2
VDD
SEL3
VSS
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
(NC)
Reserve
Reserve
Reserve
Reserve
COM[15]
COM[14]
COM[13]
COM[12]
COM[11]
COM[10]
COM[9]
COM[8]
COM[7]
COM[6]
COM[5]
COM[4]
COM[3]
COM[2]
COM[1]
COM[0]
COMS2
SEG[0]
SEG[1]
SEG[2]
SEG[3]
SEG[4]
SEG[5]
SEG[6]
SEG[7]
SEG[8]
SEG[9]
-2625
-2699
-2773
-2847
-2921
-2995
-3069
-3143
-3606
-3664
-3722
-3780
-3838
-3896
-3954
-4012
-4070
-4128
-4186
-4244
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4267
-4209
-4151
-4093
-4035
-3977
-3919
-3861
-3803
-3745
-3687
-3629
-3571
-3513
-3455
-3397
-3339
-3281
389
389
389
389
389
389
389
389
374
374
374
374
374
374
374
374
374
374
374
374
404
351
293
235
177
119
61
3
-55
-113
-171
-229
-287
-345
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
PAD
No.
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
10/72
PIN Name
X
Y
SEG[10]
SEG[11]
SEG[12]
SEG[13]
SEG[14]
SEG[15]
SEG[16]
SEG[17]
SEG[18]
SEG[19]
SEG[20]
SEG[21]
SEG[22]
SEG[23]
SEG[24]
SEG[25]
SEG[26]
SEG[27]
SEG[28]
SEG[29]
SEG[30]
SEG[31]
SEG[32]
SEG[33]
SEG[34]
SEG[35]
SEG[36]
SEG[37]
SEG[38]
SEG[39]
SEG[40]
SEG[41]
SEG[42]
SEG[43]
SEG[44]
SEG[45]
SEG[46]
SEG[47]
SEG[48]
SEG[49]
SEG[50]
SEG[51]
SEG[52]
SEG[53]
SEG[54]
SEG[55]
SEG[56]
SEG[57]
SEG[58]
SEG[59]
SEG[60]
SEG[61]
-3223
-3165
-3107
-3049
-2991
-2933
-2875
-2817
-2759
-2701
-2643
-2585
-2527
-2469
-2411
-2353
-2295
-2237
-2179
-2121
-2063
-2005
-1947
-1889
-1831
-1773
-1715
-1657
-1599
-1541
-1483
-1425
-1367
-1309
-1251
-1193
-1135
-1077
-1019
-961
-903
-845
-787
-729
-671
-613
-555
-497
-439
-381
-323
-265
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
2009/09/14
ST7565V
PAD
No.
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
Ver 1.5b
PIN Name
X
Y
SEG[62]
SEG[63]
SEG[64]
SEG[65]
SEG[66]
SEG[67]
SEG[68]
SEG[69]
SEG[70]
SEG[71]
SEG[72]
SEG[73]
SEG[74]
SEG[75]
SEG[76]
SEG[77]
SEG[78]
SEG[79]
SEG[80]
SEG[81]
SEG[82]
SEG[83]
SEG[84]
SEG[85]
SEG[86]
SEG[87]
SEG[88]
SEG[89]
SEG[90]
SEG[91]
SEG[92]
SEG[93]
SEG[94]
SEG[95]
SEG[96]
SEG[97]
SEG[98]
SEG[99]
SEG[100]
SEG[101]
SEG[102]
SEG[103]
SEG[104]
SEG[105]
SEG[106]
SEG[107]
SEG[108]
-207
-149
-91
-33
25
83
141
199
257
315
373
431
489
547
605
663
721
779
837
895
953
1011
1069
1127
1185
1243
1301
1359
1417
1475
1533
1591
1649
1707
1765
1823
1881
1939
1997
2055
2113
2171
2229
2287
2345
2403
2461
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
PAD
No.
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
11/72
PIN Name
X
Y
SEG[109]
SEG[110]
SEG[111]
SEG[112]
SEG[113]
SEG[114]
SEG[115]
SEG[116]
SEG[117]
SEG[118]
SEG[119]
SEG[120]
SEG[121]
SEG[122]
SEG[123]
SEG[124]
SEG[125]
SEG[126]
SEG[127]
SEG[128]
SEG[129]
SEG[130]
SEG[131]
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
COM[16]
COM[17]
COM[18]
COM[19]
COM[20]
(NC)
2519
2577
2635
2693
2751
2809
2867
2925
2983
3041
3099
3157
3215
3273
3331
3389
3447
3505
3563
3621
3679
3737
3795
3853
3911
3969
4027
4085
4143
4201
4259
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-345
-287
-229
-171
-113
-55
3
61
119
177
235
293
351
404
2009/09/14
ST7565V
Pad Center Coordinates (1/55 Duty)
PAD
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Ver 1.5b
PIN Name
X
Y
COM[43]
COM[44]
COM[45]
COM[46]
COM[47]
COM[48]
COM[49]
COM[50]
COM[51]
COM[52]
COM[53]
COMS1
TEST6
FR
CL
/DOF
VSS
/CS1
CS2
VDD
/RES
A0
VSS
/WR(R/W)
/RD(E)
VDD
D0
D1
D2
D3
D4
D5
D6
D7
VDD
VDD
VDD
VSS
VSS
VSS2
VSS2
VOUT
VOUT
CAP5CAP5CAP1+
CAP1+
4241
4183
4125
4067
4009
3951
3893
3835
3777
3719
3661
3603
3443
3369
3295
3221
3147
3073
2999
2925
2851
2777
2703
2629
2555
2481
2407
2333
2259
2185
2111
2037
1963
1889
1815
1741
1667
1593
1519
1445
1371
1297
1223
1149
1075
1001
927
374
374
374
374
374
374
374
374
374
374
374
374
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
Units: μm
PAD
No.
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
12/72
PIN Name
X
Y
CAP3CAP3CAP1+
CAP1+
CAP1CAP1CAP2CAP2CAP2+
CAP2+
CAP4CAP4VSS
VSS
VRS
VRS
VDD
VDD
V1
V1
V2
V2
V3
V3
V4
V4
V5
V5
VR
VR
VDD
VDD
TEST0
TEST1
TEST2
TEST3
TEST4
TEST5
VDD
M/S
CLS
VSS
C86
P/S
VDD
/HPM
VSS
853
779
705
631
557
483
409
335
261
187
113
39
-35
-109
-183
-257
-331
-405
-479
-553
-627
-701
-775
-849
-923
-997
-1071
-1145
-1219
-1293
-1367
-1441
-1515
-1589
-1663
-1737
-1811
-1885
-1959
-2033
-2107
-2181
-2255
-2329
-2403
-2477
-2551
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
2009/09/14
ST7565V
PAD
No.
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
Ver 1.5b
PIN Name
X
Y
IRS
VDD
SEL1
VSS
SEL2
VDD
SEL3
VSS
Reserve
Reserve
Reserve
Reserve
Reserve
COM[26]
COM[25]
COM[24]
COM[23]
COM[22]
COM[21]
COM[20]
(NC)
COM[19]
COM[18]
COM[17]
COM[16]
COM[15]
COM[14]
COM[13]
COM[12]
COM[11]
COM[10]
COM[9]
COM[8]
COM[7]
COM[6]
COM[5]
COM[4]
COM[3]
COM[2]
COM[1]
COM[0]
COMS2
SEG[0]
SEG[1]
SEG[2]
SEG[3]
SEG[4]
SEG[5]
SEG[6]
SEG[7]
SEG[8]
SEG[9]
-2625
-2699
-2773
-2847
-2921
-2995
-3069
-3143
-3606
-3664
-3722
-3780
-3838
-3896
-3954
-4012
-4070
-4128
-4186
-4244
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4267
-4209
-4151
-4093
-4035
-3977
-3919
-3861
-3803
-3745
-3687
-3629
-3571
-3513
-3455
-3397
-3339
-3281
389
389
389
389
389
389
389
389
374
374
374
374
374
374
374
374
374
374
374
374
404
351
293
235
177
119
61
3
-55
-113
-171
-229
-287
-345
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
PAD
No.
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
13/72
PIN Name
X
Y
SEG[10]
SEG[11]
SEG[12]
SEG[13]
SEG[14]
SEG[15]
SEG[16]
SEG[17]
SEG[18]
SEG[19]
SEG[20]
SEG[21]
SEG[22]
SEG[23]
SEG[24]
SEG[25]
SEG[26]
SEG[27]
SEG[28]
SEG[29]
SEG[30]
SEG[31]
SEG[32]
SEG[33]
SEG[34]
SEG[35]
SEG[36]
SEG[37]
SEG[38]
SEG[39]
SEG[40]
SEG[41]
SEG[42]
SEG[43]
SEG[44]
SEG[45]
SEG[46]
SEG[47]
SEG[48]
SEG[49]
SEG[50]
SEG[51]
SEG[52]
SEG[53]
SEG[54]
SEG[55]
SEG[56]
SEG[57]
SEG[58]
SEG[59]
SEG[60]
SEG[61]
-3223
-3165
-3107
-3049
-2991
-2933
-2875
-2817
-2759
-2701
-2643
-2585
-2527
-2469
-2411
-2353
-2295
-2237
-2179
-2121
-2063
-2005
-1947
-1889
-1831
-1773
-1715
-1657
-1599
-1541
-1483
-1425
-1367
-1309
-1251
-1193
-1135
-1077
-1019
-961
-903
-845
-787
-729
-671
-613
-555
-497
-439
-381
-323
-265
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
2009/09/14
ST7565V
PAD
No.
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
Ver 1.5b
PIN Name
X
Y
SEG[62]
SEG[63]
SEG[64]
SEG[65]
SEG[66]
SEG[67]
SEG[68]
SEG[69]
SEG[70]
SEG[71]
SEG[72]
SEG[73]
SEG[74]
SEG[75]
SEG[76]
SEG[77]
SEG[78]
SEG[79]
SEG[80]
SEG[81]
SEG[82]
SEG[83]
SEG[84]
SEG[85]
SEG[86]
SEG[87]
SEG[88]
SEG[89]
SEG[90]
SEG[91]
SEG[92]
SEG[93]
SEG[94]
SEG[95]
SEG[96]
SEG[97]
SEG[98]
SEG[99]
SEG[100]
SEG[101]
SEG[102]
SEG[103]
SEG[104]
SEG[105]
SEG[106]
SEG[107]
SEG[108]
-207
-149
-91
-33
25
83
141
199
257
315
373
431
489
547
605
663
721
779
837
895
953
1011
1069
1127
1185
1243
1301
1359
1417
1475
1533
1591
1649
1707
1765
1823
1881
1939
1997
2055
2113
2171
2229
2287
2345
2403
2461
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
PAD
No.
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
14/72
PIN Name
X
Y
SEG[109]
SEG[110]
SEG[111]
SEG[112]
SEG[113]
SEG[114]
SEG[115]
SEG[116]
SEG[117]
SEG[118]
SEG[119]
SEG[120]
SEG[121]
SEG[122]
SEG[123]
SEG[124]
SEG[125]
SEG[126]
SEG[127]
SEG[128]
SEG[129]
SEG[130]
SEG[131]
Reserve
Reserve
Reserve
Reserve
Reserve
COM[27]
COM[28]
COM[29]
COM[30]
COM[31]
COM[32]
COM[33]
COM[34]
COM[35]
COM[36]
COM[37]
COM[38]
COM[39]
COM[40]
COM[41]
COM[42]
(NC)
2519
2577
2635
2693
2751
2809
2867
2925
2983
3041
3099
3157
3215
3273
3331
3389
3447
3505
3563
3621
3679
3737
3795
3853
3911
3969
4027
4085
4143
4201
4259
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-345
-287
-229
-171
-113
-55
3
61
119
177
235
293
351
404
2009/09/14
ST7565V
Pad Center Coordinates (1/53 Duty)
PAD
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
Ver 1.5b
PIN Name
X
Y
COM[41]
COM[42]
COM[43]
COM[44]
COM[45]
COM[46]
COM[47]
COM[48]
COM[49]
COM[50]
COM[51]
COMS1
TEST6
FR
CL
/DOF
VSS
/CS1
CS2
VDD
/RES
A0
VSS
/WR(R/W)
/RD(E)
VDD
D0
D1
D2
D3
D4
D5
D6
D7
VDD
VDD
VDD
VSS
VSS
VSS2
VSS2
VOUT
VOUT
CAP5CAP5CAP1+
CAP1+
4241
4183
4125
4067
4009
3951
3893
3835
3777
3719
3661
3603
3443
3369
3295
3221
3147
3073
2999
2925
2851
2777
2703
2629
2555
2481
2407
2333
2259
2185
2111
2037
1963
1889
1815
1741
1667
1593
1519
1445
1371
1297
1223
1149
1075
1001
927
374
374
374
374
374
374
374
374
374
374
374
374
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
Units: μm
PAD
No.
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
15/72
PIN Name
X
Y
CAP3CAP3CAP1+
CAP1+
CAP1CAP1CAP2CAP2CAP2+
CAP2+
CAP4CAP4VSS
VSS
VRS
VRS
VDD
VDD
V1
V1
V2
V2
V3
V3
V4
V4
V5
V5
VR
VR
VDD
VDD
TEST0
TEST1
TEST2
TEST3
TEST4
TEST5
VDD
M/S
CLS
VSS
C86
P/S
VDD
/HPM
VSS
853
779
705
631
557
483
409
335
261
187
113
39
-35
-109
-183
-257
-331
-405
-479
-553
-627
-701
-775
-849
-923
-997
-1071
-1145
-1219
-1293
-1367
-1441
-1515
-1589
-1663
-1737
-1811
-1885
-1959
-2033
-2107
-2181
-2255
-2329
-2403
-2477
-2551
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
389
2009/09/14
ST7565V
PAD
No.
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
Ver 1.5b
PIN Name
X
Y
IRS
VDD
SEL1
VSS
SEL2
VDD
SEL3
VSS
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
COM[25]
COM[24]
COM[23]
COM[22]
COM[21]
COM[20]
(NC)
COM[19]
COM[18]
COM[17]
COM[16]
COM[15]
COM[14]
COM[13]
COM[12]
COM[11]
COM[10]
COM[9]
COM[8]
COM[7]
COM[6]
COM[5]
COM[4]
COM[3]
COM[2]
COM[1]
COM[0]
COMS2
SEG[0]
SEG[1]
SEG[2]
SEG[3]
SEG[4]
SEG[5]
SEG[6]
SEG[7]
SEG[8]
SEG[9]
-2625
-2699
-2773
-2847
-2921
-2995
-3069
-3143
-3606
-3664
-3722
-3780
-3838
-3896
-3954
-4012
-4070
-4128
-4186
-4244
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4542
-4267
-4209
-4151
-4093
-4035
-3977
-3919
-3861
-3803
-3745
-3687
-3629
-3571
-3513
-3455
-3397
-3339
-3281
389
389
389
389
389
389
389
389
374
374
374
374
374
374
374
374
374
374
374
374
404
351
293
235
177
119
61
3
-55
-113
-171
-229
-287
-345
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
PAD
No.
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
16/72
PIN Name
X
Y
SEG[10]
SEG[11]
SEG[12]
SEG[13]
SEG[14]
SEG[15]
SEG[16]
SEG[17]
SEG[18]
SEG[19]
SEG[20]
SEG[21]
SEG[22]
SEG[23]
SEG[24]
SEG[25]
SEG[26]
SEG[27]
SEG[28]
SEG[29]
SEG[30]
SEG[31]
SEG[32]
SEG[33]
SEG[34]
SEG[35]
SEG[36]
SEG[37]
SEG[38]
SEG[39]
SEG[40]
SEG[41]
SEG[42]
SEG[43]
SEG[44]
SEG[45]
SEG[46]
SEG[47]
SEG[48]
SEG[49]
SEG[50]
SEG[51]
SEG[52]
SEG[53]
SEG[54]
SEG[55]
SEG[56]
SEG[57]
SEG[58]
SEG[59]
SEG[60]
SEG[61]
-3223
-3165
-3107
-3049
-2991
-2933
-2875
-2817
-2759
-2701
-2643
-2585
-2527
-2469
-2411
-2353
-2295
-2237
-2179
-2121
-2063
-2005
-1947
-1889
-1831
-1773
-1715
-1657
-1599
-1541
-1483
-1425
-1367
-1309
-1251
-1193
-1135
-1077
-1019
-961
-903
-845
-787
-729
-671
-613
-555
-497
-439
-381
-323
-265
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
2009/09/14
ST7565V
PAD
No.
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
Ver 1.5b
PIN Name
X
Y
SEG[62]
SEG[63]
SEG[64]
SEG[65]
SEG[66]
SEG[67]
SEG[68]
SEG[69]
SEG[70]
SEG[71]
SEG[72]
SEG[73]
SEG[74]
SEG[75]
SEG[76]
SEG[77]
SEG[78]
SEG[79]
SEG[80]
SEG[81]
SEG[82]
SEG[83]
SEG[84]
SEG[85]
SEG[86]
SEG[87]
SEG[88]
SEG[89]
SEG[90]
SEG[91]
SEG[92]
SEG[93]
SEG[94]
SEG[95]
SEG[96]
SEG[97]
SEG[98]
SEG[99]
SEG[100]
SEG[101]
SEG[102]
SEG[103]
SEG[104]
SEG[105]
SEG[106]
SEG[107]
SEG[108]
-207
-149
-91
-33
25
83
141
199
257
315
373
431
489
547
605
663
721
779
837
895
953
1011
1069
1127
1185
1243
1301
1359
1417
1475
1533
1591
1649
1707
1765
1823
1881
1939
1997
2055
2113
2171
2229
2287
2345
2403
2461
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
PAD
No.
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
17/72
PIN Name
X
Y
SEG[109]
SEG[110]
SEG[111]
SEG[112]
SEG[113]
SEG[114]
SEG[115]
SEG[116]
SEG[117]
SEG[118]
SEG[119]
SEG[120]
SEG[121]
SEG[122]
SEG[123]
SEG[124]
SEG[125]
SEG[126]
SEG[127]
SEG[128]
SEG[129]
SEG[130]
SEG[131]
Reserve
Reserve
Reserve
Reserve
Reserve
Reserve
COM[26]
COM[27]
COM[28]
COM[29]
COM[30]
COM[31]
COM[32]
COM[33]
COM[34]
COM[35]
COM[36]
COM[37]
COM[38]
COM[39]
COM[40]
(NC)
2519
2577
2635
2693
2751
2809
2867
2925
2983
3041
3099
3157
3215
3273
3331
3389
3447
3505
3563
3621
3679
3737
3795
3853
3911
3969
4027
4085
4143
4201
4259
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
4542
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-374
-345
-287
-229
-171
-113
-55
3
61
119
177
235
293
351
404
2009/09/14
ST7565V
BLOCK DIAGRAM
COMS
132 SEGMENT
DRIVERS
COMS
COM63
COM0
SEG131
SEG0
VDD
V1
V2
V3
V4
V5
64 COMMON
DR
VERS
I
COM output control circuit
Display data latch
circuit
VR
VRS
IRS
Voltage
Regulato
r
circuit
DISPLAY DATA
RAM
65 X 132 = 8580
Bits
VOUT
VSS2
Power Supply
Circuit
Command
decoder
Status
VSS
M/S
CL
DOF
FR
Column address circuit
Voltage
booster
circuit
Oscillator
circuit
CAP1+
CAP1CAP2+
CAP2CAP3+
CAP4CAP5-
Line address circuit
V5
I/O
buffer
Page address circuit
Voltage
followe
r
circuit
Display timing generator circuit
HPM
CLS
Bus holder
MPU INTERFACE ( Parallel and Serial
)
D7(SI)
D6(SCL)
D5
D4
D3
D2
D1
18/72
D0
P/S
C86
/RES
CS2
CS1
A0
RW(/WR)
E(/RD)
SEL3
SEL2
SEL1
Ver 1.5b
2009/09/14
ST7565V
PIN DESCRIPTIONS
Power Supply Pins
Pin Name
I/O
Function
No. of Pins
VDD
Power
Supply
Shared with the MPU power supply terminal Vcc.
13
VSS
Power
Supply
This is a 0V terminal connected to the system GND.
10
VSS2
Power
Supply
This is the reference power supply for the step-up voltage circuit for the
liquid crystal drive.
2
VRS
Power
Supply
This is the internal-output VREG power supply for the LCD power supply
voltage regulator.
2
This is a multi-level power supply for the liquid crystal drive. The voltage Supply
applied is determined by the liquid crystal cell, and is changed through the use of a
resistive voltage divided or through changing the impedance using an op. amp.
Voltage levels are determined based on VDD, and must maintain the relative
magnitudes shown below.
VDD (= V0) ≧V1 ≧V2 ≧V3 ≧V4 ≧V5
V1, V2,
V3, V4,
V5
Power
Supply
When the power supply turns ON, the internal power supply circuits produce the V1 to
V4 voltages shown below. The voltage settings are selected using the LCD bias set
command.
V1
V2
V3
V4
1/65 DUTY
1/9*V5,1/7*V5
2/9*V5,2/7*V5
7/9*V5,5/7*V5
8/9*V5,6/7*V5
1/49 DUTY
1/8*V5,1/6*V5
2/8*V5,2/6*V5
6/8*V5,4/6*V5
7/8*V5,5/6*V5
1/33 DUTY
1/6*V5,1/5*V5
2/6*V5,2/5*V5
4/6*V5,3/5*V5
5/6*V5,4/5*V5
1/55 DUTY
1/8*V5,1/6*V5
2/8*V5,2/6*V5
6/8*V5,4/6*V5
7/8*V5,5/6*V5
10
1/53 DUTY
1/8*V5,1/6*V5
2/8*V5,2/6*V5
6/8*V5,4/6*V5
7/8*V5,5/6*V5
LCD Power Supply Pins
Pin Name
I/O
CAP1+
O
DC/DC voltage converter. Connect a capacitor between this terminal and
the CAP1- terminal.
4
CAP1–
O
DC/DC voltage converter. Connect a capacitor between this terminal and
the CAP1+ terminal.
2
CAP2+
O
DC/DC voltage converter. Connect a capacitor between this terminal and
the CAP2- terminal.
2
CAP2–
O
DC/DC voltage converter. Connect a capacitor between this terminal and
the CAP2+ terminal.
2
CAP3–
O
DC/DC voltage converter. Connect a capacitor between this terminal and
the CAP1+ terminal.
2
CAP4–
O
DC/DC voltage converter. Connect a capacitor between this terminal and
the CAP2+ terminal.
2
CAP5–
O
DC/DC voltage converter. Connect a capacitor between this terminal and
the CAP1+ terminal.
2
VOUT
O
VR
I
Ver 1.5b
Function
DC/DC voltage converter. Connect a capacitor between this terminal and
VSS.
Output voltage regulator terminal. Provides the voltage between VDD and
V5 through a resistive voltage divider.
IRS = “L” : the V5 voltage regulator internal resistors are not used .
IRS = “H” : the V5 voltage regulator internal resistors are used .
19/72
No. of Pins
2
2
2009/09/14
ST7565V
System Bus Connection Pins
Pin Name
D5 to D0
D6 (SCL)
D7 (SI)
I/O
I/O
Function
No. of Pins
This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit
standard MPU data bus.
When the serial interface is selected (P/S = “L”) :
D7 : serial data input (SI) ; D6 : the serial clock input (SCL).
D0 to D5 are set to high impedance.
When the chip select is not active, D0 to D7 are set to high impedance.
8
1
A0
I
This is connect to the least significant bit of the normal MPU address bus,
and it determines whether the data bits are data or a command.
A0 = “H”: Indicates that D0 to D7 are display data.
A0 = “L”: Indicates that D0 to D7 are control data.
/RES
I
When /RES is set to “L,” the settings are initialized.
The reset operation is performed by the /RES signal level.
1
/CS1
CS2
I
This is the chip select signal. When /CS1 = “L” and CS2 = “H,” then the
chip select becomes active, and data/command I/O is enabled.
2
/RD
(E)
I
/WR
(R/W)
I
C86
I
• When connected to an 8080 MPU, this is active LOW.
(E) This pin is connected to the /RD signal of the 8080 MPU, and the
ST7565V series data bus is in an output status when this signal is “L”.
• When connected to a 6800 Series MPU, this is active HIGH.
This is the 6800 Series MPU enable clock input terminal.
• When connected to an 8080 MPU, this is active LOW.
(R/W) This terminal connects to the 8080 MPU /WR signal. The signals on
the data bus are latched at the rising edge of the /WR signal.
• When connected to a 6800 Series MPU:
This is the read/write control signal input terminal.
When R/W = “H”: Read.
When R/W = “L”: Write.
This is the MPU interface switch terminal.
C86 = “H”: 6800 Series MPU interface.
C86 = “L”: 8080 MPU interface.
1
1
1
This is the parallel data input/serial data input switch terminal.
P/S = “H”: Parallel data input.
P/S = “L”: Serial data input.
The following applies depending on the P/S status:
P/S
I
P/S
Data/Command
Data
Read/Write
Serial Clock
“H”
A0
D0 to D7
/RD, /WR
X
“L”
A0
SI (D7)
Write only
SCL (D6)
1
When P/S = “L”, D0 to D5 fixed “H”.
/RD (E) and /WR (R/W) are fixed to either “H” or “L”.
With serial data input, It is impossible read data from RAM .
Ver 1.5b
20/72
2009/09/14
ST7565V
Pin Name
CLS
M/S
I/O
I
I
Function
No. of Pins
Terminal to select whether or enable or disable the display clock internal oscillator
circuit.
CLS = “H” : used Internal oscillator circuit .
CLS = “L” : used external clock input .(internal oscillator is disable)
When CLS = “L”, input the display clock through the CL terminal.
This terminal selects the master/slave operation for the ST7565V Series chips.
Master operation outputs the timing signals that are required for the LCD display, while slave
operation input the timing signals required for the liquid crystal display,
Synchronizing the liquid crystal display system.
M/S = “H” Master operation
M/S = “L” Slave operation
Power
Oscillator
Supply
CL
FR
DOF
M/S CLS Circuit
Circuit
“H”
“L”
“H”
“L”
“H”
“L”
Enabled
Disabled
Disabled
Disabled
Enabled
Enabled
Disabled
Disabled
Output
Input
Input
Input
Output
Output
Input
Input
1
1
Output
Output
Input
Input
This is the display clock input terminal
The following is true depending on the M/S and CLS status.
M/S
CL
I/O
“H”
“L”
CLS
CL
“H”
“L”
“H”
“L”
Output
Input
Input
Input
1
FR
O
This is the liquid crystal alternating current signal terminal.
1
/DOF
O
This is the LCD blanking control terminal.
1
IRS
I
This terminal selects the resistors for the V5 voltage level adjustment.
IRS = “H”: Use the internal resistors
IRS = “L”: Do not use the internal resistors. The V5 voltage level is
regulated by an external resistive voltage divider attached to the VR terminal
1
/HPM
I
This is the power control terminal for the power supply circuit for liquid crystal drive.
/HPM = “H”: Normal mode
/HPM = “L”: High power mode
1
These pins are DUTY selection.
SEL 3 , 2 , 1
DUTY
SEL3
SEL2
SEL1
TEST0 ~ 6
Ver 1.5b
I
I
BIAS
0,0,0
1/65
1/9 or 1/7
0,0,1
1/49
1/8 or 1/6
0,1,0
1/33
1/6 or 1/5
0,1,1
1/55
1/8 or 1/6
1,0,0
1/53
1/8 or 1/6
1, X , X
-----
-----
These are terminals for IC testing.
They are set to open.
3
6
21/72
2009/09/14
ST7565V
LCD Driver Pins
Pin Name
SEG0
to
SEG131
I/O
Function
No. of Pins
These are the LCD segment drive outputs. Through a combination of the contents of
the display RAM and with the FR signal, a single level is selected from VDD, V2, V3,
and V5.
Output Voltage
RAM DATA
FR
Normal Display
Reverse Display
O
H
H
VDD
V2
H
L
V5
V3
L
H
V2
VDD
L
L
V3
Sleep Mode
132
V5
VDD
Through a combination of the contents of the scan data and with the FR signal, a
single level is selected from VDD, V1, V4, and V5.
Scan Data
FR
Output Voltage
COM0
to
COMn
O
H
H
V5
H
L
VDD
L
H
V1
L
L
Sleep Mode
COMS
O
67
V4
VDD
These are the COM output terminals for the indicator. Both terminals output the same
signal.
Leave these open if they are not used.
2
I/O PIN ITO Resister Limitation
PIN Name
FR, /DOF, C86, P/S, M/S, /HPM,SEL1…SEL3, CLS, IRS
TEST0…6
VDD, VSS, VSS2, VOUT, VR, VRS
V1, V2, V3, V4, V5, CAP1+, CAP1–, CAP2+, CAP2–, CAP3–, CAP4–, CAP5–
/CS1, CS2, CL, E, R/W, A0, D0…D7,
/RES
Ver 1.5b
22/72
ITO Resister
No Limitation
Floating
<100Ω
<300Ω
<1KΩ
<10KΩ
2009/09/14
ST7565V
DESCRIPTION OF FUNCTIONS
The MPU Interface
Selecting the Interface Type
With the ST7565V chips, data transfers are done through an
8-bit parallel data bus (D7 to D0) or through a serial data
input (SI). Through selecting the P/ S terminal polarity to the
“H” or “L” it is possible to select either parallel
data input or serial data input as shown in Table 1.
Table 1
P/S
/CS1
CS2
A0
/RD
/WR
C86
D7
D6
D5~D0
H: Parallel Input
/CS1
CS2
A0
/RD
/WR
C86
D7
D6
D5~D0
—
—
—
SI
SCL
(HZ)
L: Serial Input
/CS1
CS2
A0
“—” indicates fixed to either “H” or to “L”
The Parallel Interface
When the parallel interface has been selected (P/S =“H”),
then it is possible to connect directly to either an
8080-system MPU or a 6800 Series MPU (shown in Table 2)
by selecting the C86 terminal to either “H” or to “L”.
Table 2
C86
(P/S=H)
/CS1
CS2
A0
H: 6800 Series
/CS1
CS2
A0
E
R/W
D7~D0
L: 8080 Series
/CS1
CS2
A0
/RD
/WR
D7~D0
E(/RD) R/W(/WR) D7~D0
Moreover, data bus signals are recognized by a combination
of A0, /RD (E), /WR (R/W) signals, as shown in Table 3.
Table 3
Shared
6800 Series
8080 Series
A0
R/W
/RD
/WR
1
1
0
1
Reads the display data
1
0
1
0
Writes the display data
0
1
0
1
Status read
0
0
1
0
Write control data (command)
Function
Ver 1.5b
23/72
2009/09/14
ST7565V
The Serial Interface
When the serial interface has been selected (P/S = “L”) then
when the chip is in active state (/CS1 = “L” and CS2 = “H”)
the serial data input (SI) and the serial clock input (SCL) can
be received. The serial data is read from the serial data input
pin in the rising edge of the serial clocks D7, D6 through D0,
in this order. This data is converted to 8 bits parallel data in
the rising edge of the eighth serial clock for the processing.
The A0 input is used to determine whether or the serial data
input is display data or command data; when A0 = “H”, the
data is display data, and when A0 = “L” then the data is
command data. The A0 input is read and used for detection
every 8th rising edge of the serial clock after the chip
becomes active. Figure 1 is a serial interface signal chart.
CS1
CS2
SI
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
SCL
1
2
3
4
5
6
7
8
9
10
11
12
13
14
A0
Figure 1
* When the chip is not active, the shift registers and the counter are reset to their initial states.
* Reading is not possible while in serial interface mode.
* Caution is required on the SCL signal when it comes to line-end reflections and external noise. We recommend that operation
be rechecked on the actual equipment.
The Chip Select
The ST7565V have two chip select terminals: /CS1 and
CS2. The MPU interface or the serial interface is
enabled only when /CS1 = “L” and CS2 = “H”.
When the chip select is inactive, D0 to D7 enter a high
impedance state, and the A0, /RD, and /WR inputs are
inactive. When the serial interface is selected, the shift
register and the counter are reset.
The Accessing the Display Data RAM and the Internal Registers
Data transfer at a higher speed is ensured since the MPU is
required to satisfy the cycle time (tCYC) requirement alone in
accessing the ST7565V. Wait time may not be considered.
And, in the ST7565V, each time data is sent from the MPU, a
type of pipeline process between LSIs is performed through
the bus holder attached to the internal data bus. Internal
data bus.
For example, when the MPU writes data to the display data
RAM, once the data is stored in the bus holder, then it is
written to the display data RAM before the next data write
cycle. Moreover, when the MPU reads the display data RAM,
Ver 1.5b
the first data read cycle (dummy) stores the read data in the
bus holder, and then the data is read from the bus holder to
the system bus at the next data read cycle.
There is a certain restriction in the read sequence of the
display data RAM. Please be advised that data of the
specified address is not generated by the read instruction
issued immediately after the address setup. This data is
generated in data read of the second time. Thus, a dummy
read is required whenever the address setup
or write cycle operation is conducted.
This relationship is shown in Figure 2.
24/72
2009/09/14
ST7565V
The Busy Flag
When the busy flag is “1” it indicates that the ST7565V is
running internal processes, and at this time no command
aside from a status read will be received. The busy flag is
outputted to D7 pin with the read instruction. If the cycle time
(tCYC) is maintained, it is not necessary to check for this flag
before each command. This makes vast improvements in
MPU processing capabilities possible.
MPU
Writing
WR
Internal Timing
DATA
N
N+1
N+2
N
BUS Holder
N+1
N+3
N+2
N+3
Write Signal
Reading
MPU
WR
RD
DATA
N
N
n
n+1
Internal Timing
Address Preset
Read Signal
Column Address
Preset N
Bus Holder
N
Address Set
#n
Increment N+1
n
Dummy
Read
N+2
n+1
Data Read #n
n+2
Data Read
#n+1
Figure 2
Ver 1.5b
25/72
2009/09/14
ST7565V
Display Data RAM
The display data RAM stores the dot data for the LCD. It has
a 65 (8 page x 8 bit +1) x 132 bit structure.
As is shown in Figure 3, the D7 to D0 display data from the
MPU corresponds to the LCD display common direction;
there are few constraints at the time of display data transfer
when multiple ST7565V are used, thus and display
structures can be created easily and with a high degree of
freedom.
Moreover, reading from and writing to the display RAM from
the MPU side is performed through the I/O buffer, which is
an independent operation from signal reading for the liquid
crystal driver. Consequently, even if the display data RAM is
accessed asynchronously during liquid crystal display, it will
not cause adverse effects on the display (such as flickering).
D0
0
1
1
1
0
COM0
D1
1
0
0
0
0
COM1
D2
0
0
0
0
0
COM2
D3
0
1
1
1
0
COM3
D4
1
0
0
0
0
COM4
-
-
Display data RAM
Liquid crystal display
Figure 3
The Page Address Circuit
Page address of the display data RAM is specified through
the Page Address Set Command. The page address must
be specified again when changing pages to perform access.
Page address 8 (D3, D2, D1, D0 = 1, 0, 0, 0) is a special
RAM for icons, and only display data D0 is used.
(see Figure 4)
The Column Addresses
The display data RAM column address is specified by the
Column Address Set command. The specified column
address is incremented (+1) with each display data
read/write command. This allows the MPU display data to be
accessed continuously. Moreover, the incrementing of
column addresses stops with 83H. Because the column
address is independent of the page address, when moving,
for example, from page 0 column 83H to page 1 column 00H,
it is necessary to respective both the page address and the
column address.
Furthermore, as is shown in Table 4, the ADC command
(segment driver direction select command) can be used to
reverse the relationship between the display data RAM
column address and the segment output. Because of this,
the constraints on the IC layout when the LCD module is
assembled can be minimized. As is shown in Figure 4,
Table 4
SEG Output
ADC
(D0) “0”
(D0) “1”
SEG0
0 (H)
83 (H)
→ Column Address →
← Column Address ←
SEG 131
83 (H)
0 (H)
The Line Address Circuit
The line address circuit, as shown in Table 4, specifies the
line address relating to the COM output when the contents of
the display data RAM are displayed. Using the display start
line address set command, what is normally the top line of
the display can be specified (this is the COM0 output when
the common output mode is normal, and the COM63 output
Ver 1.5a
for ST7565V , the detail is shown page.11 The display area
is a 65 line area for the ST7565V.
If the line addresses are changed dynamically using the
display start line address set command, screen scrolling,
page swapping, etc. can be performed.
26/72
2009/02/23
ST7565V
ADC
0
1
Column
address
83
D0 D0
LCD
Out
82
00
S131
81
01
S130
80
02
S129
7F
03
S128
7E
04
S127
7D
COM
Output
COM0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM10
COM11
COM12
COM13
COM14
COM15
COM16
COM17
COM18
COM19
COM20
COM21
COM22
COM23
COM24
COM25
COM26
COM27
COM28
COM29
COM30
COM31
COM32
COM33
COM34
COM35
COM36
COM37
COM38
COM39
COM40
COM41
COM42
COM43
COM44
COM45
COM46
COM47
COM48
COM49
COM50
COM51
COM52
COM53
COM54
COM55
COM56
COM57
COM58
COM59
COM60
COM61
COM62
COM63
COMS
Page 8
05
0
06
0
S126
0
S125
1
Page 7
7B
1
7C
1
07
1
08
0
Page 6
S124
0
S123
1
08
1
07
0
Page 5
7B
1
S8
0
06
1
7C
0
Page 4
S7
0
05
0
7D
1
S6
0
Page 3
04
1
7E
1
S5
0
03
0
Page 2
7F
0
S4
1
02
0
80
0
Page 1
S3
1
01
0
81
0
S2
0
When the common
output is normal
00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH
1EH
1FH
20H
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
Page 0
00
0
82
0
83
0
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
D0
S0
0
Line
Address
Data
S1
Page Address
D3 D2 D1 D0
Regardless of the display
start line address,
1/65duty => 64th line,
1/49duty =>48th line.
1/33duty =>32th line,
1/55duty =>54th line,
1/53duty =>52th line.
Figure 4
Ver 1.5b
27/72
2009/09/14
ST7565V
The Display Data Latch Circuit
The display data latch circuit is a latch that temporarily
stores the display data that is output to the liquid crystal
driver circuit from the display data RAM.
Because the display normal/reverse status, display ON/OFF
status, and display all points ON/OFF commands control
only the data within the latch, they do not change
the data within the display data RAM itself.
The Oscillator Circuit
This is a CR-type oscillator that produces the display clock.
The oscillator circuit is only enabled when M/S= “H” and
CLS = “H”.
When CLS = “L” the oscillation stops, and the external
clock is input through the CL terminal.
Display Timing Generator Circuit
The display timing generator circuit generates the timing
signal to the line address circuit and the display data latch
circuit using the display clock. The display data is latched
into the display data latch circuit synchronized with the
display clock, and is output to the data driver output terminal.
Reading to the display data liquid crystal driver circuits is
completely independent of accesses to the display data
RAM by the MPU. Consequently, even if the display data
RAM is accessed asynchronously during liquid crystal
display, there is absolutely no adverse effect (such as
flickering) on the display.
Moreover, the display timing generator circuit generates the
common timing and the liquid crystal alternating current
signal (FR) from the display clock. It generates a drive wave
form using a 2 frame alternating current drive method, as is
shown in Figure 5, for the liquid crystal drive circuit.
Two-frame alternating current drive waveform
64
65
1
2
3
4
5
6
60
61
62
63
64
65
1
2
3
4
5
6
CL
FR
VDD
V1
COM0
V4
V5
VDD
V1
COM1
V4
V5
RAM
Data
VDD
V2
SEGn
V3
V5
Figure 5
Ver 1.5b
28/72
2009/09/14
ST7565V
The Common Output Status Select Circuit
In the ST7565V chips, the COM output scan direction can be
selected by the common output status select command.
(See Table 6.) Consequently, the constraints in IC layout at
the time of LCD module assembly can be minimized.
Table 6
COM Scan Direction
Status
1/65 DUTY
Normal
Reverse
Duty
Com
dir
1/65
1/49
1/33
1/55
1/53
Ver 1.5b
1/49 DUTY
1/33 DUTY
1/55 DUTY
1/53 DUTY
COM0 → COM63 COM0 → COM47 COM0 → COM31 COM0 → COM53 COM0 → COM51
COM63 → COM0 COM47 → COM0 COM31 → COM0 COM53 → COM0 COM51 → COM0
Common output pins
com[0:15]
com[16:23]
com[24:26]
com[27:36]
com[37:39]
com[40:47]
com[48:63]
coms
0
com[0:63]
coms
1
com[63:0]
coms
0
com[0:23]
reserve
com[24:47]
coms
1
com[47:24]
reserve
com[23:0]
coms
0
com[0:15]
reserve
com[16:31]
coms
1
com[31:16]
reserve
com[15:0]
coms
0
com[0:26]
reserve
com[27:53]
coms
1
com[53:27]
reserve
com[26:0]
coms
0
com[0:25]
reserve
com[26:51]
coms
1
com[51:26]
reserve
com[25:0]
coms
29/72
2009/09/14
ST7565V
The LCD Driver Circuits
These are a 187-channel that generates four voltage levels
for driving the LCD . The combination of the display data, the
COM scan signal, and the FR signal produces the liquid
COM0
crystal drive voltage output.
Figure 6 shows examples of the SEG and COM output
wave form.
M
VDD
VSS
COM0
V0
V1
V2
V3
V4
VSS
COM1
V0
V1
V2
V3
V4
VSS
COM2
V0
V1
V2
V3
V4
VSS
SEG0
V0
V1
V2
V3
V4
VSS
SEG1
V0
V1
V2
V3
V4
VSS
COM0
to
SEG0
V0
V1
V2
V3
V4
VSS
-V4
-V3
-V2
-V1
-V0
COM0
to
SEG1
V0
V1
V2
V3
V4
VSS
-V4
-V3
-V2
-V1
-V0
COM1
COM2
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM10
COM11
COM12
COM13
COM14
COM15
SEG 0
1
2
3
4
Figure 6
Ver 1.5b
30/72
2009/09/14
ST7565V
The Power Supply Circuits
The power supply circuits are low-power consumption power
supply circuits that generate the voltage levels required for
the LCD drivers. They are Booster circuits, voltage regulator
circuits, and voltage follower circuits. They are only enabled
in master operation. The power supply circuits can turn the
Booster circuits, the voltage regulator circuits, and the
voltage follower circuits ON or OFF independently through
the use of the Power Control Set command. Consequently,
it is possible to make an external power supply and the
internal power supply function somewhat in parallel. Table 7
shows the Power Control Set Command 3-bit data control
function, and Table 8 shows reference combinations.
Table 7
bit
Status
“1”
“0”
function
D2
D1
D0
Booster circuit control bit
Voltage regulator circuit control bit (V/R circuit)
Voltage follower circuit control bit (V/F circuit)
ON
ON
ON
OFF
OFF
OFF
The Control Details of Each Bit of the Power Control Set Command
Table 8
Use Settings
D2
D1 D0
Voltage Voltage Voltage
booster regulator follower
External
voltage
input
Step-up
voltage
VSS2
Used
Only the internal power supply is used
1
1
1
ON
ON
ON
Only the voltage regulator circuit and the
voltage follower circuit are used
0
1
1
OFF
ON
ON
VOUT, VSS2
Open
Only the V/F circuit is used
0
0
1
OFF
OFF
ON
V5, VSS2
Open
Only the external power supply is used
0
0
0
OFF
OFF
OFF
V1 to V5
Open
Reference Combinations
* The “step-up system terminals” refer CAP1+, CAP1–, CAP2+, CAP2–, and CAP3–.
* While other combinations, not shown above, are also possible, these combinations are not recommended
because they have no practical use.
The Step-up Voltage Circuits
Using the step-up voltage circuits equipped within the
ST7565V chips it is possible to product a 2X,3X,4X,5X or 6X
step-up of the VDD – VSS2 voltage levels.
6X step-up: Connect capacitor C1 between CAP1+ and
CAP1–, between CAP2+ and CAP2–, between
CAP1+ and CAP3–, between CAP2+ and
CAP4–,between CAP1+ and CAP5–, and
between VSS2 and VOUT, to produce a voltage
level in the negative direction at the VOUT
terminal that is 6 times the voltage level
between VDD and VSS2.
5X step-up: Connect capacitor C1 between CAP1+ and
CAP1–, between CAP2+ and CAP2–, between
CAP1+ and CAP3–, between CAP2+ and
CAP4–,and between VSS2 and VOUT, to
produce a voltage level in the negative direction
at the VOUT terminal that is 5 times the voltage
level between VDD and VSS2.
4X step-up: Connect capacitor C1 between CAP1+ and
CAP1–, between CAP2+ and CAP2–, between
Ver 1.5b
CAP1+ and CAP3–, and between VSS2 and
VOUT, to produce a voltage level in the negative
direction at the VOUT terminal that is 4 times the
voltage level between VDD and VSS2.
3X step-up: Connect capacitor C1 between CAP1+ and
CAP1–, between CAP2+ and CAP2– and
between VSS2 and VOUT, and short between
CAP3– and VOUT to produce voltages
level in the negative direction at the VOUT
terminal that is 3 times the voltage difference
between VDD and VSS2.
2X step-up: Connect capacitor C1 between CAP1+ and
CAP1–, and between VSS2 and VOUT, leave
CAP2+ open, and short between CAP2–,
CAP3– and VOUT to produce a voltage in the
negative direction at the VOUT terminal that Is
twice the voltage between VDD and VSS2.
The step-up voltage relationships are shown in Figure 7
.
31/72
2009/09/14
ST7565V
+
C1
VDD / VSS2
+
VDD / VSS2
C1
VOUT
VOUT
CAP3-
CAP3-
+
C1
VDD / VSS2
VOUT
CAP3-
C1
+
CAP1+
C1
+
CAP1+
C1
CAP1-
CAP1-
CAP2-
CAP1+
CAP1-
CAP2C1
OPEN CAP2+
+
C1
CAP2C1
+
CAP2+
+
CAP2+
OPEN CAP4-
OPEN CAP4-
OPEN CAP4-
OPEN CAP5-
OPEN CAP5-
OPEN CAP5-
2x voltage booster circuit
3x voltage booster circuit
4x voltage booster circuit
VDD=0V
VSS2
Do NOT over voltage
limitation
VOUT<=2x(VSS2-VDD)
2x boost voltage relationship
VDD=0V
VSS2
Do NOT over voltage
limitation
VOUT<=3x(VSS2-VDD)
3x boost voltage relationship
VDD=0V
VSS2
Do NOT over voltage
limitation
VOUT<=4x(VSS2-VDD)
4x boost voltage relationship
+
C1
VDD / VSS2
+
VDD / VSS2
C1
VOUT
VOUT
CAP3C1
+
CAP3C1
+
CAP1+
C1
CAP1-
CAP1-
CAP2C1
+
CAP1+
C1
CAP2C1
+
CAP2+
C1
CAP2+
C1
CAP4OPEN CAP5-
CAP4C1
+
CAP5-
5x voltage booster circuit
6x voltage booster circuit
VDD=0V
VSS2
Do NOT over voltage
limitation
VOUT<=5x(VSS2-VDD)
5x boost voltage relationship
VDD=0V
VSS2
Do NOT over voltage
limitation
VOUT<=6x(VSS2-VDD)
6x boost voltage relationship
Figure 7
* The VSS2 voltage range must be set so that the VOUT voltage does not exceed the absolute maximum rated value.
* For compatibility with ST7565P, VOUT can connect a capacitor to VSS2 or VDD. If don’t have to consider the compatibility issue,
“Connect VOUT to VSS2”.
Ver 1.5b
32/72
2009/09/14
ST7565V
The Voltage Regulator Circuit
The step-up voltage generated at VOUT outputs the LCD
driver voltage V5 through the voltage regulator circuit.
Because the ST7565V chips have an internal high-accuracy
fixed voltage power supply with a 64-level electronic volume
function and internal resistors for the V5 voltage regulator,
systems can be constructed without having to include
high-accuracy voltage regulator circuit components.
(VREG thermal gradients approximate -0.05%/°C)
(A) When the V5 Voltage Regulator Internal Resistors Are Used
Through the use of the V5 voltage regulator internal resistors
and the electronic volume function the liquid crystal power
supply voltage V5 can be controlled by commands alone
(without adding any external resistors), making it possible to
adjust the liquid crystal display brightness. The V5 voltage
can be calculated using equation A-1 over the range where
| V5 | < | VOUT |.
V
( Rb
Ra )
α
Rb
1V
=(1 +
)
(
162 )
Ra
α
[∵ V = ( 1 - 162
) V ]
V5 = 1 +
EV
REG
EV
REG
VDD
VEV(constant voltage supply+electronic volume)
Internal Ra
V5
Internal Rb
Figure 8
Ver 1.5b
33/72
2009/09/14
ST7565V
VREG is the IC-internal fixed voltage supply, and its voltage at Ta = 25°C is as shown in Table 9.
Table 9
Part no.
ST7565V
Equipment Type
Thermal Gradient
VREG
–0.05 %/°C
–2.1V
Internal Power Supply
α is set to 1 level of 64 possible levels by the electronic volume function depending on the data set in the 6-bit electronic
volume registers. Table 10 shows the value for α depending on the electronic volume register settings.
Rb/Ra is the V5 voltage regulator internal resistor ratio, and can be set to 8 different levels through the V5 voltage regulator
internal resistor ratio set command. The (1 + Rb/Ra) ratio assumes the values shown in Table 11 depending on the 3-bit data
settings in the V5 voltage regulator internal resistor ratio register.
Table 10
D5
D4
D3
D2
D1
D0
α
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
1
1
0
1
1
1
0
1
63
62
61
:
:
2
1
0
0
0
0
:
:
1
1
1
1
1
1
1
1
1
V5 voltage regulator internal resistance ratio register value and (1 + Rb/Ra) ratio (Reference value)
Table 11
Register
ST7565V
D2 D1 D0
(1) –0.05 %/°C
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
Figures 9, 10 show V5 voltage measured by values of the internal resistance ratio resistor for V5 voltage adjustment and
electric volume resister for each temperature grade model.
Ver 1.5b
34/72
2009/09/14
ST7565V
V5
UNIT:V
Ta = 25 °C and booster off ,regulator,follower on VSS=-3V
-15
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
00H
111
110
101
100
011
010
001
000
V5 voltage regulator
internal resistor ratio set
D2,D1,D0
Electronic volume registered
D5 ~ D0
1FH
3FH
Figure 9 : (1) For ST7565V the Thermal Gradient = -0.05%/°C
The V5 voltage as a function of the V5 voltage regulator internal resistor ratio register and the electronic volume register.
Setup example: When selecting Ta = 25°C and V 5 = –7V for an ST7565V on which Temperature gradient = –0.05%/°C.
Using Figure 9 and the equation A-1, the following setup is enabled.
At this time, the variable range and the notch width of the V5 voltage is, as shown Table 13, as dependent on the electronic
volume.
Table 12
Register
D5 D4 D3 D2 D1 D0
— — — 0 1 0
Contents
For V5 voltage regulator
Electronic Volume
1
0
0
1
0
1
Table 13
Ver 1.5b
V5
Min
Typ
Max
Units
Variable Range
Notch width
–8.4 (63 levels)
–7.0 (central value)
51
–5.1 (0 level)
[V]
[mV]
35/72
2009/09/14
ST7565V
(B) When an External Resistance is Used (The V5 Voltage Regulator Internal Resistors Are Not Used) (1)
The liquid crystal power supply voltage V5 can also be set
without using the V5 voltage regulator internal resistors (IRS
terminal = “L”) by adding resistors Ra’ and Rb’ between VDD
and VR, and between VR and V5, respectively. When this is
done, the use of the electronic volume function makes it
possible to adjust the brightness of the liquid crystal display
by controlling the liquid crystal power supply voltage V5
through commands.
In the range where | V5 | < | VOUT |, the V5 voltage can be
calculated using equation B-1 based on the external
resistances Ra’ and Rb’.
V
( Rb'
Ra' )
Rb'
α
1V
=(1 +
)
(
Ra'
162 )
α
[∵ V = ( 1 - 162
) V ]
V5 = 1 +
EV
REG
EV
REG
VDD
VEV(fixed voltage power supply+electronic volume)
External
resistor Ra'
V5
External
resistor Rb'
Figure 11
Setup example: When selecting Ta = 25°C and V 5 = –7 V for
ST7565V the temperature gradient = –0.05%/°C.
When the central value of the electron volume register is
(D5, D4, D3, D2, D1, D0) = (1, 0, 0, 0, 0, 0), then α = 31 and
VREG = –2.1V so, according to equation B-1,
Rb'
V5 = 1 +
Ra'
Rb'
-7V = 1 +
Ra'
(
(
) (
) (
α
1162
31
1162
)
)
Rb'
= 3.12
Ra'
Ra' = 340kΩ
VREG
Rb' = 1060kΩ
(-2.1)
At this time, the V5 voltage variable range and notch
width, based on the electron volume function, is as
given in Table 14.
Moreover, when the value of the current running through
Ra’ and Rb’ is set to 5 uA,
Ra’ + Rb’ = 1.4MΩ
(Equation B-3)
Consequently, by equations B-2 and B-3,
Table 14
Ver 1.5b
V5
Min
Typ
Max
Units
Variable Range
Notch width
–8.6 (63 levels)
–7.0 (central value)
52
–5.3 (0 level)
[V]
[mV]
36/72
2009/09/14
ST7565V
(C) When External Resistors are Used (The V5 Voltage Regulator Internal Resistors Are Not Used) (2)
When the external resistor described above are used,
adding a variable resistor as well makes it possible to
perform fine adjustments on Ra’ and Rb’, to set the liquid
crystal drive voltage V5. In this case, the use of the electronic
volume function makes it possible to control the liquid crystal
power supply voltage V5 by commands to adjust the liquid
crystal display brightness.
In the range where | V5 | < | VOUT | the V5 voltage can be
calculated by equation C-1 below based on the R1 and R2
(vari a bl e re s is tor) and R 3 settings, where R 2 can
be subjected to fine adjustments (Δ R2).
V
( R3+R2-ΔR2
R1+ΔR2 )
R3+R2-ΔR2
α
1=(1 +
R1+ΔR2 ) (
162 )
α
[∵ V = ( 1 - 162
) V ]
V5 = 1 +
EV
EV
VREG
REG
VDD
VEV(fixed voltage power supply+electronic volume)
External
resistor R1
Ra'
ΔR2
External
resistor R2
V5
VR
External
resistor R3
Rb'
Figure 12
Setup example: When selecting Ta = 25°C and V 5 = –5 to –9
V (using R2) for an ST7565V the temperature gradient
= –0.05%/°C.
When the central value for the electronic volume register is
set at (D5, D4, D3, D2, D1, D0) = (1, 0, 0, 0, 0, 0), then α =
31 and VREG = –2.1 V so, according to equation C-1, when
ΔR2 = 0 Ω, in order to make V5 = –9 V,
(
-9V= 1 +
R3+R2
R1
31
) ( 1 - 162
)
R1 + R2 + R3 = 1.4MΩ
R1 = 264kΩ
R2 = 211kΩ
R3 = 925kΩ
(-2.1)
The V5 voltage variable range and notch width based on the
electron volume function is as shown in Table 15.
When ΔR2 = R2, in order to make V = –5 V,
(
-5V= 1 +
R3
R1+R2
31
) ( 1 - 162
)
(Equation C-4)
With this, according to equation C-2, C-3 and C-4,
(-2.1)
When the current flowing VDD and V5 is set to 5 uA,
Table 15
Ver 1.5b
V5
Min
Typ
Max
Units
Variable Range
Notch width
–8.7 (63 levels)
–7.0 (central value)
53
–5.3 (0 level)
[V]
[mV]
37/72
2009/09/14
ST7565V
* When the V5 voltage regulator internal resistors or the electronic volume function is used, it is necessary to at least set the
voltage regulator circuit and the voltage follower circuit to an operating mode using the power control set commands.
Moreover, it is necessary to provide a voltage from VOUT when the Booster circuit is OFF.
* The VR terminal is enabled only when the V5 voltage regulator internal resistors are not used (i.e. the IRS terminal = “L”).
When the V5 voltage regulator internal resistors are used (i.e. when the IRS terminal = “H”), then the VR terminal
is left open.
* Because the input impedance of the VR terminal is high, it is necessary to take into consideration short leads, shield
cables, etc. to handle noise.
The LCD Voltage Generator Circuit
The V5 voltage is produced by a resistive voltage divider
within the IC, and can be produced at the V1, V2, V3, and V4
voltage levels required for liquid crystal driving. Moreover,
when the voltage follower changes the impedance, it
provides V1, V2, V3 and V4 to the liquid crystal drive circuit.
High Power Mode
The power supply circuit equipped in the ST7565V chips has
very low power consumption (normal mode: HPM = “H”).
However, for LCD panels with large loads (size), this
low-power power supply may cause display quality to
degrade. When this occurs, set the HPM terminal to “L”
(high power mode) can improve the display quality.
SITRONIX recommends that the display be checked on
actual equipment to determine whether or not to use this
mode. Moreover, if the improvement to the display is
inadequate even after high power mode has been set, then it
is necessary to add a liquid crystal drive power supply
externally.
The Internal Power Supply Shutdown Command Sequence
The sequence shown in Figure 13 is recommended for
shutting down the internal power supply, first placing the
Sequence
Step1
Step2
End
power supply in power saver mode and then turning
the power supply OFF.
Details
(Command, status)
Display OFF
Display all points ON
Command address
D7 D6 D5 D4 D3 D2 D1 D0
1 0 1 0 1 1 1 0
Power saver
1
commands
0 1
0 0
1 0
Internal power supply OFF
1
(compound)
Figure 13
The temperature grade of the Internal Power Supply for ST7565V (-0.05%/°C) :
Ta=-40°C , V5=8.735V
8.735V
Ta=25°C , V5=8.460V
8.460V
Ta=85°C , V5=8.206V
8.206V
V5
0V
-40°C
-20°C
0°C
25°C
50°C
85°C
Ta
Figure 14
Ver 1.5b
38/72
2009/09/14
ST7565V
Reference Circuit Examples
1. When used all of the step-up circuit, voltage regulating circuit and V/F circuit
(1) When the voltage regulator internal resistor
(2) When the voltage regulator internal resistor
is used.
is not used.
(Example where VSS2 = VSS, with 4x step-up)
(Example where VSS2 = VSS, with 4x step-up)
VDD
VDD
IRS
M/S
IRS
VSS2
VSS
M/S
VSS2
C1
VSS
C1
VOUT
VOUT
CAP3-
CAP4-
CAP1+
CAP5-
C1
CAP3-
CAP4-
CAP1+
CAP5-
C1
C1
C1
CAP1-
CAP1-
CAP2+
CAP2+
C1
C1
CAP2-
CAP2-
V5
VR
V5
R2
VDD
VDD
VR
R1
VDD
C2
VDD
C2
V1
C2
C2
V2
C2
C2
V3
C2
C2
V4
C2
ST7565V
ST7565V
R3
C2
V5
V1
V2
V3
V4
V5
2. When the voltage regulator circuit and V/F circuit alone are used
(1) W hen the V 5 voltage regulator internal resistor
(2) W hen the V 5 voltage regulator internal resistor
is not used.
is used.
VDD
IRS
VDD
M/S
IRS
VSS2
VSS2
VSS
VSS
VOUT
External
power
supply
CAP4-
CAP1+
CAP5-
External
power
supply
CAP4-
CAP1+
CAP5-
CAP1-
CAP2+
CAP2+
CAP2-
CAP2V5
VR
ST7565V
R1
ST7565V
VR
VDD
VDD
C2
C2
C2
C2
C2
Ver 1.5b
CAP3-
CAP1-
V5
R2
VOUT
CAP3-
R3
VDD
M/S
VDD
C2
V1
C2
V2
C2
V3
C2
V4
C2
V5
39/72
V1
V2
V3
V4
V5
2009/09/14
ST7565V
(3) When the V/F circuit alone is used
(4) When the built-in power is not used
VDD
VDD
VSS
IRS
M/S
IRS
VSS2
M/S
VSS2
VSS
VOUT
CAP4-
CAP3-
CAP4-
CAP1+
CAP5-
CAP1+
CAP5-
CAP1-
CAP1-
CAP2+
CAP2+
CAP2-
CAP2-
VR
V5
VR
ST7565V
V5
ST7565V
External
power
supply
VOUT
CAP3-
VDD
VDD
C2
C2
VDD
VDD
V1
V1
V2
C2
V2
V3
C2
C2
Item
Set value
units
C1
C2
1.0 to 4.7
0.1 to 4.7
uF
uF
External power supply
V3
V4
V4
V5
V5
C1 and C2 are determined by the size of
the LCD being driven
* 1. Because the VR terminal input impedance is high, use short leads and shielded lines.
* 2. C1 and C2 are determined by the size of the LCD being driven. Select a value that will stabilize the liquid crystal drive
voltage.
Example of the Process by which to Determine the Settings:
• Turn the voltage regulator circuit and voltage follower circuit ON and supply a voltage to VOUT from the outside.
• Determine C2 by displaying an LCD pattern with a heavy load (such as horizontal stripes) and selecting a C2 that stabilizes
the liquid crystal drive voltages (V1 to V5). Note that all C2 capacitors must have the same capacitance value.
• Next turn all the power supplies ON and determine C1.
Ver 1.5b
40/72
2009/09/14
ST7565V
The Reset Circuit
When the /RES input comes to the “L” level, these LSIs
return to the default state. Their default states are as follows:
1. Display OFF
2. Normal display
3. ADC select: Normal (ADC command D0 = “L”)
4. Power control register: (D2, D1, D0) = (0, 0, 0)
5. Serial interface internal register data clear
6. LCD power supply bias rate:
1/65 DUTY = 1/9 bias
1/49,1/55,1/53 DUTY = 1/8 bias
1/33 DUTY = 1/6 bias
7. All-indicator lamps-on OFF (All-indicator lamps ON/OFF
command D0 = “L”)
8. Power saving clear
9. V 5 voltage regulator internal resistors Ra and Rb
separation
10. Output conditions of SEG and COM terminals
SEG=VDD , COM=VDD
11. Read modify write OFF
12. Display start line set to first line
13. Column address set to Address 0
14. Page address set to Page 0
15. Common output status normal
16. V5 voltage regulator internal resistor ratio set mode clear
17. Electronic volume register set mode clear Electronic
volume register :
(D5, D4, D3, D2, D1, D0) = (1, 0. 0, 0, 0,0)
Ver 1.5b
18. Test mode clear
On the other hand, when the reset command is used, the
above default settings from 11 to 18 are only executed.
When the power is turned on, the IC internal state becomes
unstable, and it is necessary to initialize it using the /RES
terminal. After the initialization, each input terminal should
be controlled normally.
Moreover, when the control signal from the MPU is in the
high impedance, an over current may flow to the IC. After
applying a current, it is necessary to take proper measures
to prevent the input terminal from getting into the high
impedance state.
If the internal liquid crystal power supply circuit is not used
on ST7565V,it is necessary that /RES is “H” when the
external liquid crystal power supply is turned on. This IC has
the function to discharge V5 when /RES is “L,” and the
external power supply short-circuits to VDD when /RES is “L.”
This means that an internal resistor is connected between
VDD and V5.
While /RES is “L,” the oscillator works but the display timing
generator stops, and the CL, FR and /DOF terminals are
fixed to “H.” The terminals D0 to D7 are not affected. The
VDD level is output from the SEG and COM output terminals
after a successful hardware reset.
41/72
2009/09/14
ST7565V
COMMANDS
The ST7565V identify the data bus signals by a combination of A0, /RD (E), /WR(R/W) signals. Command interpretation and
execution does not depend on the external clock, but rather is performed through internal timing only, and
thus the processing is fast enough that normally a busy check is not required.
In the 8080 MPU interface, commands are launched by inputting a low pulse to the RD terminal for reading, and inputting a low
pulse to the /WR terminal for writing. In the 6800 Series MPU interface, the interface is placed in a read mode when an “H”
signal is input to the R/W terminal and placed in a write mode when a “L” signal is input to the R/W terminal and then the
command is launched by inputting a high pulse to the E terminal. Consequently, the 6800 Series MPU interface is different than
the 80x86 Series MPU interface in that in the explanation of commands and the display commands the status read and display
data read /RD (E) becomes “1(H)”. In the explanations below the commands are explained using the 8080 Series MPU
interface as the example.
When the serial interface is selected, the data is input in sequence starting with D7.
<Explanation of Commands>
Display ON/OFF
This command turns the display ON and OFF.
E
R/W
A0
0
/RD
1
/WR
0
D7
1
D6
0
D5
1
D4
0
D3
1
D2
1
D1
1
D0
Setting
1
Display ON
0
Display OFF
When the display OFF command is executed when in the display all points ON mode, power saver mode is entered. See the
section on the power saver for details.
Display Start Line Set
This command is used to specify the display start line address of the display data RAM shown in Figure 4. For further details
see the explanation of this function in “The Line Address Circuit”.
E
R/W
A0
0
/RD
1
/WR
0
D7
D6
D5
D4
D3
D2
D1
D0
Line address
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
1
1
1
1
1
1
1
1
1
0
1
0
1
2
↓
62
63
↓
Page Address Set
This command specifies the page address corresponding to the low address when the MPU accesses the display data RAM
(see Figure 4). Specifying the page address and column address enables to access a desired bit of the display data RAM.
Changing the page address does not accompany a change in the status display.
A0
0
E
R/W
/RD
1
/WR
0
D7
D6
D5
D4
D3
D2
D1
D0
Page address
1
0
1
1
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
0
1
2
↓
7
8
0
1
Ver 1.5b
↓
42/72
2009/09/14
ST7565V
Column Address Set
This command specifies the column address of the display data RAM shown in Figure 4. The column address is split into two
sections (the higher 4 bits and the lower 4 bits) when it is set (fundamentally, set continuously). Each time the display data RAM
is accessed, the column address automatically increments (+1), making it possible for the MPU to continuously read from/write
to the display data. The column address increment is topped at 83H. This does not change the page address continuously. See
the function explanation in “The Column Address Circuit,” for details.
E
A0
0
High bits →
Low bits →
R/W
/RD /WR
1
0
D7 D6 D5 D4 D3 D2 D1 D0 A7 A6 A5 A4 A3 A2 A1 A0
0
0
0
1 A7 A6
0 A3 A2
A5 A4
A1 A0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
↓
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
1
1
0
1
Column
address
0
1
2
↓
130
131
Status Read
E
R/W
A0
/RD
/WR
0
0
1
BUSY
D7
D6
BUSY
ADC
D5
D4
ON/OFF RESET
D3 D2 D1 D0
0
0
0
0
BUSY = 1: it indicates that either processing is occurring internally or a reset condition is in process.
BUSY = 0: A new command can be accepted . if the cycle time can be satisfied, there is no need to check
for BUSY conditions.
This shows the relationship between the column address and the segment driver.
0: Reverse (column address 131-n ↔ SEG n)
1: Normal (column address n ↔ SEG n)
(The ADC command switches the polarity.)
ADC
ON/OFF
RESET
ON/OFF: indicates the display ON/OFF state.
0: Display ON
1: Display OFF
(This display ON/OFF command switches the polarity.)
This indicates that the chip is in the process of initialization either because of a /RES signal or because of a
reset command.
0: Operating state
1: Reset in progress
Display Data Write
This command writes 8-bit data to the specified display data RAM address. Since the column address is automatically
incremented by “1” after the write, the MPU can write the display data.
A0
E
R/W
/RD
/WR
1
0
1
Ver 1.5b
D7 D6 D5 D4 D3 D2 D1 D0
Write data
43/72
2008/09/14
ST7565V
Display Data Read
This command reads 8-bit data from the specified display data RAM address. Since the column address is automatically
incremented by “1” after the read, the CPU can continuously read multiple-word data. One dummy read is required immediately
after the column address has been set. See the function explanation in “Display Data RAM” for the explanation of accessing the
internal registers. When the serial interface is used, reading of the display data becomes unavailable.
E
A0
R/W
/RD /WR
1
0
D7 D6 D5 D4 D3 D2 D1 D0
1
Read data
ADC Select (Segment Driver Direction Select)
This command can reverse the correspondence between the display RAM data column address and the segment driver output.
Thus, sequence of the segment driver output pins may be reversed by the command. See the column address circuit (page
1–20) for the detail. Increment of the column address (by “1”) accompanying the reading or writing the display data is done
according to the column address indicated in Figure 4.
A0
0
E
R/W
/RD
1
/WR
0
D7
1
D6
0
D5
1
D4
0
D3
0
D2
0
D1
0
D0
0
1
Setting
Normal
Reverse
Display Normal/Reverse
This command can reverse the lit and unlit display without overwriting the contents of the display data RAM. When this is done
the display data RAM contents are maintained.
A0
0
E
R/W
/RD
1
/WR
0
D7
1
D6
0
D5
1
D4
0
D3
0
D2
1
D1
1
D0
0
1
Setting
RAM Data “H”
LCD ON voltage (normal)
RAM Data “L”
LCD ON voltage (reverse)
Display All Points ON/OFF
This command makes it possible to force all display points ON regardless of the content of the display data RAM. The contents
of the display data RAM are maintained when this is done. This command takes priority over the display normal/reverse
command.
A0
0
E
R/W
/RD
1
/WR
0
D7
1
D6
0
D5
1
D4
0
D3
0
D2
1
D1
0
D0
0
1
Setting
Normal display mode
Display all points ON
When the display is in an OFF mode, executing the display all points ON command will place the display in power save mode.
For details, see the Sleep Mode Set section.
Ver 1.5b
44/72
2008/09/14
ST7565V
LCD Bias Set
This command selects the voltage bias ratio required for the liquid crystal display.
A0
E
R/W
/RD
/WR
1
0
0
Select Status
D7
D6
D5
D4
D3
D2
D1
D0 1/65duty
1/49duty
1/33duty
1/55duty
1/53duty
1
0
1
0
0
0
1
0
1/9 bias
1/8 bias
1/6 bias
1/8 bias
1/8 bias
1
1/7 bias
1/6 bias
1/5 bias
1/6 bias
1/6 bias
Read/Modify/Write
This command is used paired with the “END” command. Once this command has been input, the display data read command
does not change the column address, but only the display data write command increments (+1) the column address. This
mode is maintained until the END command is input. When the END command is input, the column address returns to the
address it was at when the read/modify/write command was entered. This function makes it possible to reduce the load on the
MPU when there are repeating data changes in a specified display region, such as when there is a blanking cursor.
A0
E
R/W
/RD
/WR
1
0
0
D7 D6 D5 D4 D3 D2 D1 D0
1
1
1
0
0
0
0
0
* Even in read/modify/write mode, other commands aside from display data read/write commands can also be used.
Read-Modify-Write
Page Address Set
Column Address Set
Read-Modify-Write Cycle
Dummy Read
Data Read
No
Modify Data
Data Write (at same Address)
Finished?
Yes
Done
Figure 24 Command Sequence For read modify write
Ver 1.5b
45/72
2009/09/14
ST7565V
Return
Column address
N
N+2
N+1
N+3
N+m
N
Read-modify-write mode set
End
Figure 25
End
This command releases the read/modify/write mode, and returns the column address to the address it was at when the mode
was entered.
A0
E
R/W
/RD
/WR
1
0
0
D7 D6 D5 D4 D3 D2 D1 D0
1
1
1
0
1
1
1
0
Reset
This command initializes the display start line, the column address, the page address, the common output mode, the V5 voltage
regulator internal resistor ratio, the electronic volume, and the read/modify/write mode and test mode are released. There is no
impact on the display data RAM. See the function explanation in “Reset” for details.
The reset operation is performed after the reset command is entered.
E
A0
R/W
/RD /WR
0
1
D7 D6 D5 D4 D3 D2 D1 D0
0
1
1
1
0
0
0
1
0
The initialization when the power supply is applied must be done through applying a reset signal to the /RES terminal. The reset
command must not be used instead.
Common Output Mode Select
This command can select the scan direction of the COM output terminal. For details, see the function explanation in
“Common Output Mode Select Circuit.”
E R/W
Selected Mode
A0 /RD /WR D7 D6 D5 D4 D3 D2 D1 D0
0
1
0
1
1
0
0
0
1
*
*
*
1/65duty
1/49duty
1/33duty
1/55duty
1/53duty
Normal COM0→COM63 COM0→COM47 COM0→COM31 COM0→COM53 COM0→COM51
Reverse COM63→COM0 COM47→COM0 COM31→COM0 COM53→COM0 COM51→COM0
* Disabled bit
Ver 1.5b
46/72
2009/09/14
ST7565V
Power Controller Set
This command sets the power supply circuit functions. See the function explanation in “The Power Supply Circuit,” for details
E
A0
R/W
/RD /WR
0
1
0
D7 D6 D5 D4 D3 D2 D1 D0
Selected Mode
0 0 1 0 1 0
Booster circuit: OFF
1
Booster circuit: ON
0
Voltage regulator circuit: OFF
1
Voltage regulator circuit: ON
0 Voltage follower circuit: OFF
1 Voltage follower circuit: ON
V5 Voltage Regulator Internal Resistor Ratio Set
This command sets the V5 voltage regulator internal resistor ratio. For details, see the function explanation is “The Voltage
Regulator circuit " and table 11 .
E
A0
R/W
/RD /WR
0
1
0
D7 D6 D5 D4 D3 D2 D1 D0
0 0 1 0 0 0 0 0
0 0 1
0 1 0
↓
1 1 1
1 1 1
Rb/Ra Ratio
Small
↓
Large
The Electronic Volume (Double Byte Command)
This command makes it possible to adjust the brightness of the liquid crystal display by controlling the LCD drive voltage V5
through the output from the voltage regulator circuits of the internal liquid crystal power supply. This command is a two byte
command used as a pair with the electronic volume mode set command and the electronic volume register set
command, and both commands must be issued one after the other.
The Electronic Volume Mode Set
When this command is input, the electronic volume register set command becomes enabled. Once the electronic volume
mode has been set, no other command except for the electronic volume register command can be used. Once the electronic
volume register set command has been used to set data into the register, then the electronic volume mode is released.
E
A0
R/W
/RD /WR
0
Ver 1.5b
1
0
D7 D6 D5 D4 D3 D2 D1 D0
1
0
0
0
0
0
0
1
47/72
2009/09/14
ST7565V
Electronic Volume Register Set
By using this command to set six bits of data to the electronic volume register, the liquid crystal drive voltage V5 assumes one
of the 64 voltage levels.
When this command is input, the electronic volume mode is released after the electronic volume register has been set.
E
A0
R/W
/RD /WR
0
1
0
D7 D6 D5
*
* 0
*
* 0
*
* 0
*
*
*
*
1
1
D4
0
0
0
D3 D2
0 0
0 0
0 0
↓
1 1 1
1 1 1
D1
0
1
1
D0
1
0
1
1
1
0
1
| V5 |
Small
↓
Large
* Inactive bit (set “0”)
When the electronic volume function is not used, set this to (1, 0, 0, 0, 0, 0)
The Electronic Volume Register Set Sequence
Figure 26
Ver 1.5b
48/72
2009/09/14
ST7565V
Sleep Mode (Double Byte Command)
This command is two byte command use as a pair with preceding command and following command, and both commands
must issued one after the other.
This stops all operations in the LCD display system, and as long as there are no accesses from the MPU, the consumption
current is reduced to a value near the static current. The internal modes during sleep mode are as follows:
1. The oscillator circuit and the LCD power supply circuit are halted.
2. All liquid crystal drive circuits are halted, and the segment in common drive outputs output a VDD level.
A0
Preceding Command
0
E R/W
/RD /WR
1
D7
D6
D5
D4
D3
D2
D1
D0
Status
1
0
1
0
1
1
0
Sleep Mode
Normal Mode
*
*
*
*
*
*
0
0
1
0
0
Following Command
*Disable bit (Set “0”)
Sleep Mode Set
Preceding Command Set
Following Command Set
No
Set Complete?
Done
Figure 27
In the sleep mode, the MPU is still able to access the display data RAM.
Refer to figure 28 for sleep mode sequence.
Normal Mode
Enter Sleep Mode
Sleep Mode Setting (Sleep Mode)
Display OFF
Display all points ON
Sleep Mode
Exit Sleep
Mode
Display all points OFF
Sleep Mode Setting (Normal Mode)
Normal Mode
(Exit Sleep Mode)
Figure 28
Ver 1.5b
49/72
2009/09/14
ST7565V
The Booster Ratio (Double Byte Command)
This command makes it possible to select step-up ratio. It is used when the power control set have turn on the internal booster
circuit. This command is a two byte command used as a pair with the booster ratio select mode set command and the booster
ratio register set command, and both commands must be issued one after the other.
Booster Ratio Select Mode Set
When this command is input, the Booster ratio register set command becomes enabled. Once the booster ratio select mode
has been set, no other command except for the booster ratio register command can be used. Once the booster ratio register
set command has been used to set data into the register, then the booster ratio select mode is released.
E
A0
R/W
/RD /WR
0
1
0
D7 D6 D5 D4 D3 D2 D1 D0
1
1
1
1
1
0
0
0
Booset Ratio Register Set
By using this command to set two bits of data to the booster ratio register,it can be select what kind of the booster ratio can be
used.
When this command is input, the booster ratio select mode is released after the booster ratio register has been set.
E
R/W
D7 D6 D5 D4 D3 D2 D1 D0
A0
/RD /WR
0
1
0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
0
0
1
0
1
1
Booster
ratio
select
2x,3x,4x
5x
6x
* Inactive bit (set “0”)
When the booster ratio select function is not used, set this to (0, 0) 2x,3x,4x step-up mode
The booster ratio Register Set Sequence
Booster Ratio Set
Booster Ratio Select Mode
Set
Booster Ratio Register Set
Set Complete?
No
Yes
Done
Figure 29
Ver 1.5b
50/72
2009/09/14
ST7565V
NOP
Non-OPeration Command
E
A0
R/W
/RD /WR
0
1
0
D7 D6 D5 D4 D3 D2 D1 D0
1
1
1
0
0
0
1
1
Test
This is a command for IC chip testing. Please do not use it. If the test command is used by accident, it can be cleared by
applying a “L” signal to the /RES input by the reset command or by using an NOP.
E
A0
R/W
/RD /WR
0
1
0
D7 D6 D5 D4 D3 D2 D1 D0
1
1
1
1
1
1
*
*
* Inactive bit
Note: The ST7565V maintain their operating modes until something happens to change them. Consequently, excessive
external noise, etc., can change the internal modes of the ST7565V . Thus in the packaging and system design it is
necessary to suppress the noise or take measure to prevent the noise from influencing the chip. Moreover, it is
recommended that the operating modes be refreshed periodically to prevent the effects of unanticipated
noise.
Ver 1.5b
51/72
2009/09/14
ST7565V
Table 16: Table of ST7565V Commands
Command Code
Command
A0 /RD /WR
(Note) *: disabled data
Function
D7 D6 D5 D4 D3 D2 D1 D0
1 0 1 0 1 1 1 0
1
LCD display ON/OFF
0: OFF, 1: ON
Sets the display RAM display start
Display start address
line address
Sets the display RAM page
1 1 Page address
address
0 1 Most significant Sets the most significant 4 bits of
column address the display RAM column address.
0 0 Least significant Sets the least significant 4 bits of
column address the display RAM column address.
(1) Display ON/OFF
0
1
0
(2) Display start line set
0
1
0
0
1
(3) Page address set
0
1
0
1
0
(4) Column address set
upper bit
Column address set
lower bit
0
1
0
0
0
0
1
0
0
0
(5) Status read
0
0
1
(6) Display data write
1
1
0
Write data
Writes to the display RAM
(7) Display data read
1
0
1
Read data
Reads from the display RAM
(8) ADC select
0
1
0
(9) Display normal/
reverse
0
1
0
(10) Display all points
ON/OFF
0
1
0
(11) LCD bias set
0
1
0
(12) Read/modify/write
0
1
(13) End
0
(14) Reset
0
0
0
0
0
1
1
0
1
0
0
1
1
0
1
1
0
1
0
0
1
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
1
0
0
0
0
0
1
0
1
1
1
0
1
1
1
0
1
0
1
1
1
0
0
0
1
0
(16) Power control set
0
1
0
1
0
1
0
1
0
Internal reset
0
0
0
1
*
0
0
1
0
1
Operating
mode
0
0
1
0
0
Resistor
ratio
Select internal resistor
ratio(Rb/Ra) mode
1
0
0 0 0 0 0 0 1
0 Electronic volume value
1
0
1
0
1
1
0
*
*
*
*
*
*
0
1
0
1
0
1
0
1
0
0 0 0
0 step-up
value
1
1
0
0
0
1
0
(21) NOP
0
1
0
1
Ver 1.5b
Clear read/modify/write
1
0
0
Sets the display RAM address
SEG output correspondence
0: normal, 1: reverse
Sets the LCD display normal/
reverse
0: normal, 1: reverse
Display all points
0: normal display
1: all points ON
Sets the LCD drive voltage bias
ratio
0: 1/9 bias, 1: 1/7 bias (ST7565V)
Column address increment
At write: +1
At read: 0
1
(20) Booster ratio set
1
Reads the status data
Select COM output scan direction
0: normal direction
1: reverse direction
Select internal power supply
operating mode
1
0
0
0
0
0
(22) Test
0
1
1
0
0
0
0
(19) Sleep Mode Set
0
1
(15) Common output
mode select
(17) V5 voltage regulator
internal resistor ratio 0
set
(18) Electronic volume
mode set
0
Electronic volume
register set
Status
1
1
1
1
52/72
*
*
*
1
*
*
0
1
0
Set the V5 output voltage
electronic volume register
0: Display Mode
1: Normal Mode
select booster ratio
00: 2x,3x,4x
01: 5x
11: 6x
1
Command for non-operation
*
Command for IC test. Do not
use this command
2009/09/14
ST7565V
COMMAND DESCRIPTION
Instruction Setup: Reference
(1) Initialization
Note: With this IC, when the power is applied, LCD driving non-selective potentials V2 and V3 (SEG pin) and V1 and V4 (COM
pin) are output through the LCD driving output pins SEG and COM. When electric charge is remaining in the smoothing
capacitor connecting between the LCD driving voltage output pins (V1 ~ V5) and the VDD pin, the picture on the display may
become totally dark instantaneously when the power is turned on. To avoid occurrence of such a failure, we recommend the
following flow when turning on the power.
1. When the built-in power is being used immediately after turning on the power:
* The target time of 5ms will result to vary depending on the panel characteristics and the capacitance of the smoothing
capacitor. Therefore, we suggest you to conduct an operation check using the actual equipment.
Notes: Refer to respective sections or paragraphs listed below.
*1: Description of functions; Resetting circuit
*2: Command description; LCD bias setting
*3: Command description; ADC selection
*4: Command description; Common output state selection
*5: Description of functions; Power circuit & Command description; Setting the built-in resistance radio for regulation of
the V5 voltage
*6: Description of functions; Power circuit & Command description; Electronic volume control
*7: Description of functions; Power circuit & Command description; Power control setting
Ver 1.5b
53/72
2009/09/14
ST7565V
2. When the built-in power is not being used immediately after turning on the power:
* The target time of 5ms will result to vary depending on the panel characteristics and the capacitance of the smoothing
capacitor. Therefore, we suggest you to conduct an operation check using the actual equipment.
Notes: Refer to respective sections or paragraphs listed below.
*1: Description of functions; Resetting circuit
*2: Command description; LCD bias setting
*3: Command description; ADC selection
*4: Command description; Common output state selection
*5: Description of functions; Power circuit & Command description; Setting the built-in resistance radio for regulation of the V5
voltage
*6: Description of functions; Power circuit & Command description; Electronic volume control
*7: Description of functions; Power circuit & Command description; Power control setting
*8: Command description; Sleep mode (multiple commands)
Ver 1.5b
54/72
2009/09/14
ST7565V
(2) Data Display
Write Display Data (After Initialized)
Function setup by command
(user setting)
(2) Display Start Line Set ...* 9
(3) Page Address Set ...* 10
(4) Column Address Set ...* 11
Data setup by Data Write
(6) Display Data Write ...* 12
Function setup by command
(user setting)
(1) Display ON/ OFF ...* 13
End of Write Display Data
Notes: Reference items
*9: Command Description; Display start line set
*10: Command Description; Page address set
*11: Command Description; Column address set
*12: Command Description; Display data write
*13: Command Description; Display ON/OFF
Avoid displaying all the data at the data display start (when the display is ON) in white.
(3) Power OFF *14
Notes: Reference items
*14: The logic circuit of this IC’s power supply VDD - VSS controls the driver of the LCD power supply VDD - V5. So, if the
power supply VDD - VSS is cut off when the LCD power supply VDD - V5 has still any residual voltage, the driver
(COM. SEG) may output any uncontrolled voltage. When turning off the power, observe the following basic
procedures:
• After turning off the internal power supply, make sure that the potential V5 ~ V1 has become below the threshold
voltage of the LCD panel, and then turn off this IC’s power supply (VDD - VSS). 6. Description of Function, 6.7
Power Circuit
*15: After inputting the power save command, be sure to reset the function using the /RES terminal until the power
supply VDD - VSS is turned off. 7. Command Description (19) Sleep Mode Set
*16: After inputting the power save command, do not reset the function using the /RES terminal until the power supply
VDD - VSS is turned off. 7. Command Description (19) Sleep Mode Set
Ver 1.5b
55/72
2009/09/14
ST7565V
Refresh
It is recommended to turn on the refresh sequence regularly at a specified interval.
Precautions on Turning off the power
<Turning the power (VDD - VSS) off>
1) Power Save (The LCD powers (VDD - V5) are off.) → Reset input → Power (VDD - VSS) OFF
• Observe tL > tH.
• When tL < tH, an irregular display may occur.
Set tL on the MPU according to the software. tH is determined according to the external capacity C2 (smoothing capacity of
V1 ~ V5) and the driver’s discharging capacity.
Power
save
Reset
Power Off
tL
VDD
1.8V
RES
Since the power (VDD-VSS) is cut off,
the output comes not to be fixed.
SEG
VSS
COM
VSS
VOUT
V0
V1
V2
V3
V4
Above Vth of the LCD Panel.
Under Vth of the LCD Panel.
Depends on the LCD Module
characteristic (around 0.2~1V).
tH
Ver 1.5b
56/72
2009/09/14
ST7565V
<Turning the power (VDD - VSS) off : When command control is not possible.>
2) Reset (The LCD powers (VDD - VSS) are off.) → Power (VDD - VSS) OFF
• Observe tL > tH.
• When tL < tH, an irregular display may occur.
For tL, make the power (VDD - VSS) falling characteristics longer or consider any other method.
tH is determined according to the external capacity C2 (smoothing capacity of V1 to V5) and the driver’s discharging capacity.
Power Off
Reset
tL
1.8V
VDD
RES
Since the power (VDD-VSS) is cut
off,the output comes not be fixed.
SEG
VSS
COM
VSS
VOUT
V0
V1
V2
V3
V4
Above Vth of the LCD Panel.
Under Vth of the LCD Panel.
Depends on the LCD Module
characteristic (around 0.2~1V).
tH
<Reference Data>
V5 voltage falling (discharge) time (tH) after the process of operation → power save → reset.
V5 voltage falling (discharge) time (tH) after the process of operation → reset.
100
V5 voltage falling time (mSec)
VDD-VSS(V)
1.8
2.4
50
3.0
4.0
5.0
0
0.5
1.0
C2 : V1 to V5 capacity (uF)
Figure 31
Ver 1.5b
57/72
2009/09/14
ST7565V
ABSOLUTE MAXIMUM RATINGS
Unless otherwise noted, VDD = 0V
Table 17
Parameter
Symbol
Conditions
Unit
Power Supply Voltage
VSS
–3.6 ~ +0.3
V
Power supply voltage (VDD standard)
VSS2
–3.6 ~ +0.3
V
Power supply voltage (VDD standard)
V5, VOUT
–13.5 ~ +0.3
V
Power supply voltage (VDD standard)
V1, V2, V3, V4
V5 to +0.3
V
Input voltage
VIN
–0.3 to VDD + 0.3
V
Output voltage
VO
–0.3 to VDD + 0.3
V
TOPR
–30 to +85
°C
TSTR
–55 to +100
–65 to +150
°C
Operating temperature
Storage temperature
TCP
Bare chip
VCC
VDD
GND
VSS
VDD
VSS2,V1 to V4
V5.,VOUT
System (MPU) side
ST7565S chip side
Figure 30
Notes and Cautions
1. The VSS2, V1 to V5 and VOUT are relative to the VDD = 0V reference.
2. Insure that the voltage levels of V1, V2, V3, and V4 are always such that VDD ≧ V1 ≧ V2 ≧ V3 ≧ V4 ≧ V5.
3. Permanent damage to the LSI may result if the LSI is used outside of the absolute maximum ratings. Moreover, it is
recommended that in normal operation the chip be used at the electrical characteristic conditions, and use of the LSI
outside of these conditions may not only result in malfunctions of the LSI, but may have a negative impact on the LSI
reliability as well.
Ver 1.5b
58/72
2009/09/14
ST7565V
DC CHARACTERISTICS
Unless otherwise specified, VSS = –3.0V, VDD = 0V, Ta = –30 to 85°C
Table 18
Item
Symbol
Operating Voltage (1)
Vss
Operating Voltage (2)
VSS2
Operating Voltage (3)
VSS2
Condition
(Relative to VDD)
(Relative to VDD)
Min.
Rating
Typ.
Max.
-3.3
—
–3.3
Units
Applicable
Pin
-1.8
V
Vss*1
—
–2.4
V
VSS2
–12.0
—
–4.0
0.4 x V5
—
VDD
V5
—
0.6 x V5
V5 *2
V
V1, V2
V3, V4
High-level Input Voltage
VIHC
0.8 x VDD
—
VDD
V
*3
Low-level Input Voltage
VILC
VSS
—
0.2 x VDD
V
*3
High-level Output Voltage
VOHC
IOH = –0.5 mA
0.8 x VDD
—
VDD
V
*4
Low-level Output Voltage
VOLC
IOL = 0.5 mA
VSS
—
0.2 x VDD
V
*4
Input leakage current
ILI
VIN = VDD or VSS
–1.0
—
1.0
μA
*5
Output leakage current
ILO
VIN = VDD or VSS
–3.0
—
3.0
μA
*6
Liquid Crystal Driver ON
Resistance
RON
Ta = 25°C V5 = –13.0 V
(Relative
V5 = –8.0 V
To VDD)
—
2.0
3.5
KΩ
—
3.2
5.4
SEGn
COMn *7
Static Consumption Current
ISSQ
—
0.01
2
μA
VSS, VSS2
Output Leakage Current
I5Q
—
0.01
10
μA
V5
Input Terminal Capacitance
CIN
—
5.0
8.0
pF
17
20
24
kHz
*8
17
20
24
kHz
CL
25
30
35
kHz
*8
25
30
35
kHz
CL
Oscillator
Frequency
Ver 1.5b
Internal
Oscillator
External
Input
Internal
Oscillator
External
Input
fOSC
fCL
fOSC
fCL
V5 = –13.0V (Relative to
VDD)
Ta = 25°C , f = 1 MHz
1/65 duty
1/33 duty
Ta = 25°C
1/49 duty
1/53 duty
1/55 duty
Ta = 25°C
59/72
2009/09/14
ST7565V
Table 19
Item
Symbol
Internal Power
Input voltage
Supply Step-up output
voltage Circuit
Voltage regulator Circuit
Operating Voltage
Voltage Follower Circuit
Operating Voltage
Base Voltage
Condition
Min.
Rating
Typ.
Max.
Units
Applicable
Pin
VSS2
(Relative To VDD)
–3.3
—
–2.4
V
VSS2
VOUT
(Relative To VDD)
–13.5
—
—
V
VOUT
VOUT
(Relative To VDD)
–13.5
—
–6.0
V
VOUT
V5
(Relative To VDD)
–12.0
—
–4.0
V
V5 * 9
VRS
Ta = 25°C ,
(Relative To VDD)
–0.05%/°C
–2.07
–2.10
–2.13
V
*10
• Dynamic Consumption Current : During Display, with the Internal Power Supply OFF Current consumed by total ICs
when an external power supply is used .
Table 20
Rating
Test pattern
Symbol
Condition
Units
Notes
Min.
Typ.
Max.
Display Pattern OFF
IDD
VDD = 3.0 V,
V5 – VDD = –11.0 V
—
16
27
μA
*11
Display Pattern Checker
IDD
VDD = 3.0 V,
V5 – VDD = –11.0 V
—
19
32
μA
*11
Units
Notes
μA
*12
μA
*12
Units
Notes
• Dynamic Consumption Current : During Display, with the Internal Power Supply ON
Table 21
Rating
Test pattern Symbol
Condition
Min.
Typ.
Display
Pattern OFF
IDD
Display
Pattern
Checker
IDD
VDD = 3.0 V,
Quad step-up voltage.
V5 – VDD = –11.0 V
VDD = 3.0 V,
Quad step-up voltage.
V5 – VDD = –11.0 V
Max.
Normal Mode
—
60
100
High-Power Mode
—
98
163
Normal Mode
—
70
117
High-Power Mode
—
105
175
Min.
—
Rating
Typ.
0.1
Max.
4
• Consumption Current at Time of Power Saver Mode : VSS = -3.0 V
Table 22
Item
Symbol
Condition
Sleep mode
IDD
Ta = 25°C
Ver 1.5b
60/72
μA
2009/09/14
ST7565V
• The Relationship Between Oscillator Frequency fOSC, Display Clock Frequency fCL and the Liquid Crystal Frame
Rate Frequency fFR
Table 23
Item
fCL
fFR
Used internal oscillator circuit
fOSC / 4
fOSC / (4*65)
Used external display clock
External input (fCL)
fCL / 260
Used internal oscillator circuit
fOSC / 4
fOSC / (4*49)
Used external display clock
External input (fCL)
fCL / 196
Used internal oscillator circuit
fOSC / 8
fOSC / (8*33)
Used external display clock
External input (fCL)
fCL / 264
Used internal oscillator circuit
fOSC / 4
fOSC / (4*55)
Used external display clock
External input (fCL)
fCL / 220
Used internal oscillator circuit
fOSC / 4
fOSC / (4*53)
Used external display clock
External input (fCL)
fCL / 212
1/65 DUTY
1/49 DUTY
1/33 DUTY
1/55 DUTY
1/53 DUTY
(fFR is the liquid crystal alternating current period, and not the FR signal period.)
References for items market with *
*1 While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are sudden
fluctuations to the voltage while the MPU is being accessed.
*2 The operating voltage range for the VDD system and the V5 system is. This applies when the external power supply is
being used.
*3 The A0, D0 to D5, D6 (SCL), D7 (SI), /RD (E), /WR (R/W), /CS1, CS2, CLS, CL, FR, M/S, C86, P/S, /DOF, /RES, IRS, and
/HPM terminals.
*4 The D0 to D7, FR, /DOF, and CL terminals.
*5 The A0, /RD (E), /WR (R/W), /CS1, CS2, CLS, M/S, C86, P/S, /RES, IRS, and /HPM terminals.
*6 Applies when the D0 to D5, D6 (SCL), D7 (SI), CL, FR, and /DOF terminals are in a high impedance state.
*7 These are the resistance values for when a 0.1 V voltage is applied between the output terminal SEGn or COMn and the
various power supply terminals (V1, V 2, V 3, and V4). These are specified for the operating voltage (3) range.
RON = 0.1 V /ΔI (Where ΔI is the current that flows when 0.1 V is applied while the power supply is ON.)
*8 See Table 23 for the relationship between the oscillator frequency and the frame rate frequency.
*9 The V5 voltage regulator circuit regulates within the operating voltage range of the voltage follower.
*10 This is the internal voltage reference supply for the V5 voltage regulator circuit. In the ST7565V , the temperature range
approximately –0.05%/°C.
*11, 12 It indicates the current consumed on ICs alone when the internal oscillator circuit and display are turned on.
The ST7565V is 1/9 biased. Does not include the current due to the LCD panel capacity and wiring capacity.
Applicable only when there is no access from the MPU.
*12 It is the value on a ST7565V having the VREG temperature gradient is –0.05%/°C when the V 5 voltage regulator
internal resistor is used.
Ver 1.5b
61/72
2009/09/14
ST7565V
TIMING CHARACTERISTICS
System Bus Read/Write Characteristics 1 (For the 8080 Series MPU)
A0
tAW8
tAH8
CS1
(CS2="1")
tCYC8
tCCLR,tCCLW
WR,RD
tCCHR,tCCHW
tDS8
tDH8
D0 to D7
(Write)
tACC8
tOH8
D0 to D7
(Read)
Figure 37
Table 24
Item
Signal
Symbol
Condition
(VDD = 3.3V, Ta = –30 to 85°C)
Rating
Units
Min.
Max.
tAH8
0
—
tAW8
0
—
tCYC8
240
—
tCCLW
100
—
tCCHW
100
—
tCCLR
140
—
Enable H pulse width (READ)
tCCHR
100
WRITE Data setup time
tDS8
40
—
tDH8
20
—
Address hold time
Address setup time
A0
System cycle time
Enable L pulse width (WRITE)
WR
Enable H pulse width (WRITE)
Enable L pulse width (READ)
RD
WRITE Address hold time
D0 to D7
READ access time
tACC8
CL = 100 pF
—
70
READ Output disable time
tOH8
CL = 100 pF
5
135
Ver 1.5b
62/72
ns
2009/09/14
ST7565V
Table 25
Item
Signal
Symbol
Condition
(VDD = 2.7V, Ta = –30 to 85°C)
Rating
Units
Min.
Max.
tAH8
0
—
tAW8
0
—
tCYC8
400
—
tCCLW
220
—
tCCHW
180
—
tCCLR
220
—
Enable H pulse width (READ)
tCCHR
180
—
WRITE Data setup time
tDS8
40
—
tDH8
20
—
Address hold time
Address setup time
A0
System cycle time
Enable L pulse width (WRITE)
WR
Enable H pulse width (WRITE)
Enable L pulse width (READ)
WRITE Address hold time
RD
D0 to D7
READ access time
tACC8
CL = 100 pF
—
140
READ Output disable time
tOH8
CL = 100 pF
10
160
ns
Table 26
Item
Signal
Symbol
Condition
(VDD = 1.8V, Ta = –30 to 85°C)
Rating
Units
Min.
Max.
tAH8
0
—
tAW8
0
—
tCYC8
640
—
tCCLW
360
—
tCCHW
280
—
tCCLR
360
—
Enable H pulse width (READ)
tCCHR
280
WRITE Data setup time
tDS8
80
—
tDH8
30
—
Address hold time
Address setup time
A0
System cycle time
Enable L pulse width (WRITE)
WR
Enable H pulse width (WRITE)
Enable L pulse width (READ)
WRITE Address hold time
RD
D0 to D7
READ access time
tACC8
CL = 100 pF
—
240
READ Output disable time
tOH8
CL = 100 pF
10
520
ns
*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast,
(tr +tf) ≦ (tCYC8 – tCCLW – tCCHW ) for (tr + tf) ≦ (tCYC8 – tCCLR – tCCHR) are specified.
*2 All timing is specified using 20% and 80% of VDD as the reference.
*3 tCCLW and tCCLR are specified as the overlap between /CS1 being “L” (CS2 = “H”) and /WR and /RD being at the “L” level.
Ver 1.5b
63/72
2009/09/14
ST7565V
System Bus Read/Write Characteristics 2 (For the 6800 Series MPU)
A0
R/W
tAW6
tAH6
CS1
(CS2="1")
tCYC6
tCCLR,tCCLW
E
tCCHR,tCCHW
tDS6
tDH6
D0 to D7
(Write)
tACC6
tOH6
D0 to D7
(Read)
Figure 38
Table 27
Item
Signal
Symbol
Condition
(VDD = 3.3V, Ta = –30 to 85°C)
Rating
Units
Min.
Max.
tAH6
0
—
tAW6
0
—
tCYC6
275
—
tEWLW
140
—
tEWHW
140
—
tEWLR
130
—
Enable H pulse width (READ)
tEWHR
130
WRITE Data setup time
tDS6
40
—
tDH6
25
—
Address hold time
Address setup time
A0
System cycle time
Enable L pulse width (WRITE)
WR
Enable H pulse width (WRITE)
Enable L pulse width (READ)
WRITE Address hold time
RD
D0 to D7
READ access time
tACC6
CL = 100 pF
—
70
READ Output disable time
tOH6
CL = 100 pF
5
225
Ver 1.5b
64/72
ns
2009/09/14
ST7565V
Table 28
Item
Signal
Symbol
Condition
(VDD = 2.7V, Ta = –30 to 85°C)
Rating
Units
Min.
Max.
tAH6
0
—
tAW6
0
—
tCYC6
400
—
tEWLW
220
—
tEWHW
180
—
tEWLR
220
—
Enable H pulse width (READ)
tEWHR
180
—
WRITE Data setup time
tDS6
40
—
tDH6
25
—
Address hold time
Address setup time
A0
System cycle time
Enable L pulse width (WRITE)
WR
Enable H pulse width (WRITE)
Enable L pulse width (READ)
WRITE Address hold time
RD
D0 to D7
READ access time
tACC6
CL = 100 pF
—
140
READ Output disable time
tOH6
CL = 100 pF
10
250
ns
Table 29
Item
Signal
Symbol
Condition
(VDD = 1.8V, Ta = –30 to 85°C)
Rating
Units
Min.
Max.
tAH6
0
—
tAW6
0
—
tCYC6
640
—
tEWLW
360
—
tEWHW
280
—
tEWLR
360
—
Enable H pulse width (READ)
tEWHR
280
—
WRITE Data setup time
tDS6
80
—
tDH6
30
—
Address hold time
Address setup time
A0
System cycle time
Enable L pulse width (WRITE)
WR
Enable H pulse width (WRITE)
Enable L pulse width (READ)
WRITE Address hold time
RD
D0 to D7
READ access time
tACC6
CL = 100 pF
—
240
READ Output disable time
tOH6
CL = 100 pF
10
430
ns
*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast,
(tr +tf) ≦ (tCYC6 – tEWLW – tEWHW ) for (tr + tf) ≦ (tCYC6 – tEWLR – tEWHR) are specified.
*2 All timing is specified using 20% and 80% of VDD as the reference.
*3 tEWLW and tEWLR are specified as the overlap between CS1 being “L” (CS2 = “H”) and E.
Ver 1.5b
65/72
2009/09/14
ST7565V
The Serial Interface
tCCSS
tCSH
CS1
(CS2="1")
tSAS
tSAH
A0
tSCYC
tSLW
SCL
tSHW
tf
tr
tSDS
tSDH
SI
Figure 39
Table 30
Item
Signal
Serial Clock Period
SCL “H” pulse width
SCL
SCL “L” pulse width
Address setup time
Address hold time
Data setup time
A0
SI
Data hold time
CS-SCL time
CS
CS-SCL time
Symbol
Condition
Tscyc
Tshw
TSLW
TSAS
Tsah
Tsds
TSDH
Tcss
Tcsh
(VDD = 3.3V, Ta = –30 to 85°C)
Rating
Units
Min.
Max.
100
—
50
—
50
—
20
—
20
—
20
—
20
—
20
—
40
—
ns
Table 31
Item
Signal
Serial Clock Period
SCL “H” pulse width
SCL
SCL “L” pulse width
Address setup time
Address hold time
Data setup time
Data hold time
CS-SCL time
CS-SCL time
Ver 1.5b
A0
SI
CS
Symbol
Tscyc
TSHW
TSLW
TSAS
TSAH
TSDS
TSDH
TCSS
TCSH
66/72
Condition
(VDD = 2.7V, Ta = –30 to 85°C)
Rating
Units
Min.
Max.
120
—
60
—
60
—
30
—
25
—
30
—
25
—
30
—
60
—
ns
2009/09/14
ST7565V
Table 32
Item
Signal
Serial Clock Period
SCL “H” pulse width
SCL
SCL “L” pulse width
Address setup time
Address hold time
Data setup time
Data hold time
CS-SCL time
CS-SCL time
A0
SI
CS
Symbol
TSCYC
TSHW
TSLW
TSAS
TSAH
TSDS
TSDH
TCSS
TCSH
Condition
(VDD = 1.8V, Ta = –30 to 85°C)
Rating
Units
Min.
Max.
200
—
80
—
80
—
60
—
30
—
60
—
30
—
40
—
100
—
ns
*1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
*2 All timing is specified using 20% and 80% of VDD as the standard.
Ver 1.5b
67/72
2009/09/14
ST7565V
Reset Timing
tRW
RES
tR
Internal
status
During reset
Reset complete
Figure 41
Table 36
Item
Reset time
Reset “L” pulse width
Signal
/RES
Symbol
Condition
tR
tRW
(VDD = 3.3V, Ta = –30 to 85°C)
Rating
Units
Min.
Typ.
Max.
—
—
1.5
us
1.5
—
—
us
Table 37
Item
Reset time
Reset “L” pulse width
Signal
/RES
Symbol
Condition
tR
tRW
(VDD = 2.7V, Ta = –30 to 85°C)
Rating
Units
Min.
Typ.
Max.
—
—
2.0
us
2.0
—
—
us
Table 38
Item
Reset time
Reset “L” pulse width
Signal
/RES
Symbol
Condition
tR
tRW
(VDD = 1.8V, Ta = –30 to 85°C)
Rating
Units
Min.
Typ.
Max.
—
—
3.0
us
3.0
—
—
us
*1 All timing is specified with 20% and 80% of VDD as the standard.
Ver 1.5b
68/72
2009/09/14
ST7565V
THE MPU INTERFACE (REFERENCE EXAMPLES)
The ST7565V Series can be connected to either 80X86 Series MPUs or to 68000 Series MPUs. Moreover, using the serial
interface it is possible to operate the ST7565V series chips with fewer signal lines.
The display area can be enlarged by using multiple ST7565V Series chips. When this is done, the chip select signal can be
used to select the individual ICs to access.
(1) 8080 Series MPUs
VDD
VCC
A1 to A7
IORQ
CS1
CS2
Decoder
DO to D7
RD
WR
RES
GND
VDD
C86
A0
ST7565V
MPU
A0
DO to D7
RD
WR
RES
P/S
VSS
RESET
VSS
Figure 42-1
(2) 6800 Series MPUs
VDD
VCC
A1 to A15
VMA
CS1
CS2
Decoder
DO to D7
E
R/W
RES
GND
VDD
C86
A0
ST7565V
MPU
A0
DO to D7
E
R/W
RES
P/S
VSS
RESET
VSS
Figure 42-2
(3) Using the Serial Interface
VDD or VSS
VCC
A0
Port 1
Port 2
RES
GND
VDD
C86
ST7565V
CS1
CS2
Decoder
MPU
A1 to A7
A0
SI
SCL
RES
P/S
VSS
RESET
VSS
Figure 42-3
Ver 1.5b
69/72
2009/09/14
ST7565V
CONNECTIONS BETWEEN LCD DRIVERS (REFERENCE
EXAMPLE)
The liquid crystal display area can be enlarged with ease through the use of multiple ST7565V Series chips. Use a same
equipment type.
(1) ST7565V (master) ↔ ST7565V (slave)
VDD
CLS
CLS
FR
FR
CL
DOF
DOF
Output
SLAVE
SLAVE
CL
ST7565S
ST7565V
ST7565V
MASTER
ST7565S
Master
M/S
ST7565S
Slave
M/S
Input
VSS
Figure 43-1
VDD
CL
DOF
DOF
Output
Ver 1.5b
Input
70/72
ST7565S
Slave
ST7565S
Master
CL
SLAVE
FR
FR
M/S
ST7565V
MASTER
CLS
CLS
ST7565V
M/S
VSS
2009/09/14
ST7565V
(2) Single-chip Structure
132
X
6 5 D o ts
ST7565V
M a s te r
Figure 43-2
(3) Double-chip Structure
2 6 4 x 6 5 D o ts
COM
SEG
SEG
ST7565V
M a s te r
COM
ST 7565V
S la v e
Figure 43-3
Ver 1.5b
71/72
2009/09/14
ST7565V
Revisions
Version 0.1
- Preliminary.
Version 0.2
- update Pad Center Coordinates page 2,3,4,5
Version 0.2a
- update ABSOLUTE MAXIMUM RATINGS and DC CHARACTERISTICS
Version 0.2b
- update DC CHARACTERISTICS , Pad Arrangement
Version 0.2c
- update AC CHARACTERISTICS (serial)
Version 0.2d
- update PIN DESCRIPTIONS M/S
Version 0.2e
- update ABSOLUTE MAXIMUM RATINGS and DC CHARACTERISTICS
Version 0.2f
- update Master and Slave reference example.
Version 0.3
- update Pad Center Coordinates (1/65 , 1/49 , 1/33 , 1/55 , 1/53 Duty) page 3..17
Version 0.3a
- update Pad Diagram page2 and v5 regulator voltage diagram(figure 9) page35
Version 0.3b
- Logic power supply VDD – VSS = 1.8V to 3.3 V (+10% Range) , VOUT= -13V (+10% Range)
Version 0.3c
- Modify page-38 The temperature grade of the Internal Power Supply for ST7565V (-0.05%/°C) Figure 14
Version 0.4
- Delete recommended to connect an external resistor to stabilize potentials of V1, V2, V3 and V4
Version 1.0
- Transition to ST7565V
Version 1.1
- Modify Tdh (data hold time) and page53,54 initial flow
Version 1.2
- Modify Voltage range and Temperature range.
Version 1.3
- Add ITO resistance limitation
- Modify the description of DC characteristics.
- Modify function description.
- Redraw figures.
- Redraw the PAD DIAGRAM.
- Highlight the HPM (High Power Mode) description.
- Put emphasis on the power OFF procedure (Page 56-57).
Version 1.4
- Fix Ver. 1.3: Booster Circuit mistake (Booster X6, Page 32).
Version 1.5
- Remove static indicator function.
- Modify timing characteristics..
Version 1.5a - Modify mistake of Status Read.
Version 1.5b - Modify the mistake of The Reset Circuit.
Ver 1.5b
72/72
2009/09/14