FZ06NPA070FP01 preliminary datasheet NPC Application flowNPC 0 600V/75A & 70A PS* General conditions BUCK = = = = VGEon VGEoff Rgon Rgoff 15 V -15 V 8Ω 8Ω Vout= 230 VAC Figure 1. Buck MOSFET BOOST = = = = VGEon VGEoff Rgon Rgoff 15 V 0V 8Ω 8Ω Figure 2. Typical average static loss as a function of of output current IoRMS Ploss=f(Iout) Buck FRED Typical average static loss as a function of output current IoRMS Ploss=f(Iout) 70 Ploss (W) Ploss (W) 60 φ=0º 60 50 φ=90º 50 40 40 30 30 φ=0º 20 20 φ=180º 10 10 φ=180º 0 0 0 10 Conditions: parameter: 20 30 40 Tj= φ 125 from °C 50 60 0° in 12 70 I out (A) to 0 80 10 Conditions: parameter: 180° 20 30 40 Tj= φ 125 from °C steps 50 0° in Figure 3. Buck MOSFET 60 12 70 I out (A) to 180° steps Figure 4. Typical average static loss as a function of phase displacement φ Ploss=f(φ) 80 Buck FRED Typical average static loss as a function of phase displacement φ Ploss=f(φ) 60 Ploss (W) Ploss (W) 70 50 IoutRMS=Imax IoutRMS=Imax 60 50 40 40 30 30 20 20 10 10 IoutRMS=6% Imax IoutRMS=6%Imin 0 0 0 Conditions: parameter: 20 40 Tj= IoRMS 60 80 100 125 from °C in steps of copyright by Vincotech 120 140 4,58 A 9 160 to 180 φ(º ) 200 0 Conditions: parameter: 68 A A 20 40 Tj= IoRMS 60 80 100 125 from °C in steps of 1 120 140 4,58 A 9 160 to 180 φ(º ) 200 68 A A Revision: 1 FZ06NPA070FP01 preliminary datasheet NPC Application flowNPC 0 Figure 5. Buck MOSFET 600V/75A & 70A PS* Figure 6. Buck FRED Typical average switching loss as a function of Typical average switching loss as a function of phase displacement φ Ploss=f(φ) phase displacement φ Ploss=f(φ) Ploss (W) 2,50 Ploss (W) 9,0 8,0 IoutRMS=Imax 2,00 7,0 IoutRMS=Imax 6,0 1,50 5,0 4,0 1,00 3,0 2,0 0,50 IoutRMS=6% Imax 1,0 IoutRMS=6% Imax 0,00 0 20 40 Conditions: parameter: 60 80 100 120 Tj= fsw= 125 20 °C kHz DC link= IoRMS 700 from V 140 φ(º ) 180 0 200 9 to 40 68 A parameter: 60 80 100 Tj= fsw= 125 20 °C kHz DC link= IoRMS 700 from V A Figure 7. Buck MOSFET 9 200 68 A 5-10 0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 64 60 55 55 50 50 15-20 46 46 41 41 25-30 37 37 32 32 35-40 28 40-45 45-50 50-55 55-60 28 23 23 45-50 18 18 14 14 50-55 to 69 60 40-45 180 φ(º ) Buck FRED P loss (W) 64 30-35 160 A Figure 8. IoutR 69 20-25 140 Typical total loss as a function of phase displacement φ and output current IoRMS Ploss=f(IoRMS;φ) P loss (W) 10-15 120 4,58 A in steps of Typical total loss as a function of phase displacement φ and output current IoRMS Ploss=f(IoRMS;φ) 0-5 20 Conditions: 4,58 A in steps of 160 IoutR 0,0 60-65 9 55-60 0 15 30 45 60 75 90 5 105 120 135 150 165 180 9 0 15 30 45 60 75 90 φ(º ) 5 105 120 135 150 165 180 φ(º ) Conditions: Tj= 125 °C DC link= fsw= 700 20 V kHz copyright by Vincotech Conditions: 2 Tj= 125 °C DC link= fsw= 700 20 V kHz Revision: 1 FZ06NPA070FP01 preliminary datasheet NPC Application flowNPC 0 Figure 9. for Buck MOSFET+FRED 600V/75A & 70A PS* Figure 10. for Buck MOSFET+FRED Typical available output current as a function of phase displacement φ Typical available output current as a function of switching frequency fsw Iout=f(φ) Iout=f(fsw) 120 Iout (A) Iout (A) 100 Th=50°C 90 100 80 80 70 Th=50°C 60 60 50 Th=100°C 40 40 Th=100°C 30 20 20 0 0 15 30 45 60 75 90 105 120 135 150 165 10 180 φ 0 1 Conditions: Tj= Tjmax-25 °C fsw= parameter: 700 V Heatsink temp. Th from 50 °C to in 10 °C 20 kHz Conditions: DC link= Figure 11. parameter: 100 steps °C 10 fsw (kHz) φ= 0 ° Tj= Tjmax-25 °C DC link= Heatsink temp. Th from in 700 50 10 100 V °C to °C 100 steps °C for Buck IGBT+FRED Typical available 50Hz output current as a function of fsw and phase displacement φ Iout=f(fsw,φ) 180 I out (A) φ 165 150 60-70 135 50-60 120 40-50 105 30-40 90 75 20-30 60 10-20 45 0-10 30 15 fsw (kHz) Conditions: 2 4 8 16 32 64 0 128 Tj= Tjmax-25 °C DC link= Th= copyright by Vincotech 700 80 V °C 3 Revision: 1 FZ06NPA070FP01 preliminary datasheet flowNPC 0 NPC Application Figure 12. Boost IGBT 600V/75A & 70A PS* Figure 13. Typical average static loss as a function of output current Ploss=f(Iout) Boost FRED Typical average static loss as a function of output current Ploss=f(Iout) 90 Ploss (W) Ploss (W) 60 φ=0º φ=180º 80 50 70 60 40 50 30 40 30 20 20 10 10 φ=180º φ=0º 0 0 0 10 20 Conditions: parameter: 30 40 Tj= 125 °C φ from in 50 60 70 Iout (A) 0 80 10 20 Conditions: 0° 12 to steps Figure 14. 180º parameter: Boost IGBT 30 40 Tj= 125 °C φ from in 60 0° 12 70 Iout (A) to steps 80 180º Figure 15. Typical average static loss as a function of phase displacement Ploss=f(φ) Boost FRED Typical average static loss as a function of phase displacement Ploss=f(φ) FRED D1 90 Ploss (W) 60 Ploss (W) 50 IoutRMS=Imax IoutRMS=Imax 80 50 70 60 40 50 30 40 20 30 20 10 10 IoutRMS=6% Imax IoutRMS=6% Imax 0 0 0 Conditions: parameter: 20 40 Tj= IoRMS 60 80 100 125 from °C in steps of copyright by Vincotech 120 5 A 140 160 to 180 φ(º ) 0 200 Conditions: parameter: 68 A 9 A 20 40 Tj= IoRMS 60 80 100 125 from °C in steps of 4 120 5 A 140 160 to 180 φ(º ) 200 68 A 9 A Revision: 1 FZ06NPA070FP01 preliminary datasheet flowNPC 0 NPC Application Figure 16. Boost IGBT Figure 17. Boost FRED Typical average switching loss as a function of phase displacement Ploss=f(φ) 25 Ploss (W) Typical average switching loss as a function of phase displacement Ploss=f(φ) Ploss (W) 600V/75A & 70A PS* 45 IoutRMS=Imax IoutRMS=Imax 40 20 35 15 30 25 10 20 15 5 IoutRMS=6% Imax 10 0 5 0 IoutRMS=6% Imax 0 20 40 80 100 Tj= 125 °C DC link= IoRMS 700 from V Conditions: parameter: 60 120 140 160 fsw= in steps of 5 A to 9 A A Figure 18. φ(º ) 180 100 150 φ(º ) 200 200 20 kHz Conditions: 68 A parameter: Tj= 125 °C DC link= IoRMS 700 from V in steps of Boost IGBT fsw= 20 kHz 5 A to 68 A 9 A A Figure 19. Typical total loss as a function of phase displacement and IoutRMS Boost FRED Typical total loss as a function of phase displacement and IoutRMS Ploss=f(IoRMS;φ) Ploss=f(IoRMS;φ) 69 IoutR 64 IoutR 69 64 P loss70-80 (W) 60 55 P loss (W) 60 55 60-70 50 50 60-70 50-60 46 50-60 MS 0 50 46 41 41 40-50 37 37 40-50 30-40 32 30-40 32 20-30 28 23 28 23 10-20 20-30 18 18 0-10 10-20 14 14 9 9 0-10 0 Conditions: 15 30 45 60 75 90 Tj= 125 °C DC link= fsw= 700 20 V kHz copyright by Vincotech 5 105 120 135 150 165 180 φ(º ) 0 15 Conditions: 5 30 45 60 75 90 φ(º ) 5 105 120 135 150 165 180 Tj= 125 °C DC link= fsw= 700 20 V kHz Revision: 1 FZ06NPA070FP01 preliminary datasheet NPC Application flowNPC 0 Figure 20. Boost IGBT+FRED Figure 21. Typical available output current as a function of of phase displacement Iout=f(φ) Boost IGBT+FRED Typical available output current as a function of switching frequency Iout=f(fsw) 90 90 Iout (A) Iout (A) 600V/75A & 70A PS* 80 80 Th=50°C 70 70 60 60 50 50 Th=50°C 40 40 30 30 Th=100°C 20 Th=100°C 20 10 10 0 0 15 30 45 60 75 90 105 120 135 150 165 180 0 φ(º ) Conditions: Tj= Tjmax-25 °C DC link= 700 V parameter: Th from in fsw= Heatsink temp. 50 °C to 10 °C 1 20 kHz Conditions: 10 Figure 22. °C Th from in Heatsink temp. 50 °C to 10 °C f sw (kHz) 1000 φ= 90° Tj= Tjmax-25 °C DC link= 700 V parameter: 100 steps 100 100 steps °C Boost IGBT+FRED Typical available 50Hz output current as a function of fsw and phase displacement Iout=f(fsw,φ) 180 I out (A) φ 165 150 -10-0 0-10 10-20 20-30 30-40 40-50 135 120 105 90 75 60 50-60 60-70 45 70-80 30 80-90 15 2 Conditions: 4 8 16 32 64 0 128 fsw (kHz) Tj= Tjmax-25 °C DC link= Th= copyright by Vincotech 700 80 V °C 6 Revision: 1 FZ06NPA070FP01 preliminary datasheet NPC Application flowNPC 0 Figure 23. per MODULE 600V/75A & 70A PS* Figure 24. Typical available output current as a function of heat sink temperature Iout=f(Th) per MODULE Typical available output current as a function of phase displacement Iout=f(φ) 90 Iout (A) Iout (A) 90 80 70 80 70 60 60 Th=50°C 2kHz 50 50 40 40 30 30 128kHz 20 20 Th=100°C 10 10 φ 0 0 60 65 Conditions: 70 75 80 85 90 0 o 95T h ( C)100 Tj= Tjmax-25 °C DC link= φ= parameter: Conditions: 700 V 0° Switching freq. fsw from 2 in steps of factor 2 30 parameter: kHz to 128 kHz 60 75 90 105 120 135 150 50 10 °C to °C 180 100 steps Figure 26. Typical available output current as a function of switching frequency Iout=f(fsw) 165 700 V 20 kHz Heatsink temp. Th from in per MODULE 45 Tj= Tjmax-25 °C DC link= fsw= Figure 25. Iout (A) 15 per MODULE Typical available 50Hz output current as a function of fsw and phase displacement Iout=f(fsw,φ) 180 90 Th=50°C I out (A) 80 φ 165 150 70 60-70 135 60 50-60 120 50 40-50 105 40 30-40 30 20 10 90 20-30 75 10-20 60 0-10 45 0 30 1 10 f sw (kHz) 100 15 f sw (kHz) Conditions: Tj= Tjmax-25 °C DC link= parameter: Th from in 50 10 copyright by Vincotech φ= 0° Conditions: 700 V Heatsink temp. °C to °C 2 4 8 16 32 64 0 128 Tj= Tjmax-25 °C DC link= Th= 700 80 V °C 100 steps 7 Revision: 1 FZ06NPA070FP01 preliminary datasheet NPC Application flowNPC 0 Figure 27. per MODULE Figure 28. per MODULE Typical efficiency as a function of output power η=f(Pout) efficiency (%) Typical efficiency as a function of output power η=f(Pout) efficiency (%) 600V/75A & 70A PS* 100,0 100,0 2kHz 99,0 98,0 128kHz 97,0 96,0 99,0 95,0 94,0 φ=0º 93,0 92,0 98,0 91,0 φ=180º 90,0 89,0 Pout (kVA) Pout (kVA) 88,0 97,0 0,0 Conditions: 2,0 Tj= fsw= 4,0 125 20 6,0 8,0 10,0 12,0 14,0 16,0 0,0 18,0 °C kHz Conditions: DC link= parameter: 2,0 700 V phase displacement φ from 0° in steps of 30 ° Figure 29. 8,0 125 700 10,0 14,0 128 18,0 kHz Figure 30. per MODULE Typical loss distribution as a function of heat sink temperature Pout=f(Th) output current Pout=f(Th) 20 16,0 φ= 0 ° °C V Typical available output power as a function of Pout (kW) 12,0 Switching freq. fsw from 2 kHz to in steps of factor 2 180 ° per MODULE 6,0 Tj= DC link= parameter: to 4,0 160,0 Loss distribution 18 140,0 16 120,0 T1 Stat. 14 D3-5 Sw. 12 2kHz 100,0 10 D3-5 Stat. 80,0 8 T3 Sw. 60,0 T3 Stat. 40,0 6 128kHz 4 20,0 2 0,0 0 60 65 70 75 80 85 90 95 o 5 100 9 14 18 23 28 32 T h ( C) Conditions: parameter: Tj= Tjmax-25 °C DC link= 700 φ= 0 Switching freq. fsw from 2 kHz to in steps of factor 2 copyright by Vincotech 41 46 50 55 60 64 69 Iout (A) Conditions: V ° 128 37 Tj= fsw= 125 20 °C kHz DC link= φ= 700 0° V kHz 8 Revision: 1 FZ06NPA070FP01 preliminary datasheet NPC Application flowNPC 0 Figure 31. Typical relativ loss distribution as a function of output current Pout=f(Th) per MODULE Figure 32. 600V/75A & 70A PS* per MODULE 1,0 Loss distribution 0,9 0,8 T1 Stat. 0,7 D3-5 Sw. 0,6 D3-5 Stat. T3 Sw. T3 Stat. 0,5 0,4 0,3 0,2 0,1 0,0 5 9 14 18 23 28 32 37 41 46 50 55 60 64 69 Iout (A) Conditions: Tj= fsw= DC link= φ= 125 20 700 0° °C kHz V Cg is included in the module copyright by Vincotech 9 Revision: 1 FZ06NPA070FP01 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by Vincotech 10 Revision: 1