10 FZ06NPA070FP01 P969F10 P3 14

FZ06NPA070FP01
preliminary datasheet
flowNPC 0
600V/75A & 70A PS*
Features
flow0 12mm housing
● *PS: 70A parallel switch (60A PT and 99mΩ)
● neutral point clamped inverter
● reactive power capability
● low inductance layout
Target Applications
Schematic
● solar inverter
● UPS
Types
● FZ06NPA070FP01
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
44
59
A
240
A
71
108
W
±20
V
5
390
μs
V
150
°C
600
V
Buck IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
Buck Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
21
28
A
Repetitive peak forward current
IFRM
tp limited by Tjmax
Tc=100°C
120
A
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
41
62
W
150
°C
Maximum Junction Temperature
Copyright by Vincotech
Tjmax
1
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
Buck MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
VDS
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
16
21
A
tp limited by Tjmax
Tc=25°C
93
A
Th=80°C
54
97
W
Power dissipation
Ptot
Gate-source peak voltage
Vgs
±20
V
Tjmax
150
°C
VCE
600
V
57
75
A
225
A
Maximum Junction Temperature
Tj=Tjmax
Tc=80°C
Boost IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpuls
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
85
129
W
±20
V
6
360
μs
V
175
°C
600
V
Boost Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
Power dissipation per Diode
Maximum Junction Temperature
VRRM
Tc=25°C
IF
Tj=Tjmax
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tjmax
2
21
A
W
150
°C
1200
V
20
28
A
70
A
34
52
W
150
°C
Boost Diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation per Diode
Maximum Junction Temperature
Copyright by Vincotech
VRRM
IF
IFRM
Ptot
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Tjmax
2
Th=80°C
Tc=80°C
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
3
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Unit
Tj
Min
Typ
Max
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
4.5
5.2
7
1.45
2.32
2.09
2.5
Buck IGBT *
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
±20
0
Integrated Gate resistor
Rgint
none
Ω
Input capacitance **
Cies
4+4,7
nF
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge **
QGate
Thermal resistance chip to heatsink per chip
RthJH
0.00025
VCE=VGE
f=1MHz
70
25
0
250
300
Tj=25°C
V
V
μA
nA
400
pF
200
±15
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
225+70
nC
0.99
K/W
* see dinamic characteristic at Buck MosFET
**additional value stands for built-in capacitor
Buck Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
30
Rgon=8 Ω
350
40
di(rec)max
/dt
Erec
RthJH
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
3.18
2.37
81
82
13
22
0.48
1.09
24887
13582
0.097
0.164
Thermal grease
thickness≤50um
λ = 1 W/mK
3.3
V
A
ns
μC
A/μs
mWs
1.72
K/W
Buck MOSFET
Static drain to source ON resistance
Gate threshold voltage
Rds(on)
10
18
VDS=VGS
V(GS)th
Gate to Source Leakage Current
Igss
20
0
Zero Gate Voltage Drain Current
Idss
0
600
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
0.001
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Gate to source charge
Qgs
Gate to drain charge
Qgd
Input capacitance
Ciss
Output capacitance
Coss
Thermal resistance chip to heatsink per chip
RthJH
Rgon=8 Ω **
Rgoff=8 Ω **
±15
350
40
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2.1
109
219
3
200
15
131
129
8
9
228
230
8
3
0.102
0.325
0.094
0.202
60
350
±15
40
Tj=25°C
mΩ
3.9
14
V
nA
nA
ns
mWs
80
nC
20
2800
f=1MHz
0
100
Tj=25°C
pF
130
Thermal grease
thickness≤50um
λ = 1 W/mK
1.29
K/W
** see schematic of the Gate-complex at characteristic figures
Copyright by Vincotech
4
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5.8
6.5
1
1.49
1.60
2.1
Boost IGBT
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0.0012
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
70
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
0.03
650
Rgon=8 Ω
Rgoff=8 Ω
350
±15
40
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
none
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
37
35
13
16
459
500
83
106
0.807
1.110
1.354
1.708
ns
mWs
4620
f=1MHz
0
25
15
480
288
Tj=25°C
pF
137
75
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
470
nC
1.11
K/W
9.07
9.43
V
4.36
K/W
Boost Inverse Diode
Diode forward voltage
Thermal resistance chip to heatsink per chip
VF
RthJH
20
Tj=25°C
Tj=125°C
Thermal grease
thickness≤50um
λ = 1 W/mK
Boost Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
trr
Reverse recovered charge
Qrr
Reverse recovery energy
Thermal resistance chip to heatsink per chip
1200
IRRM
Reverse recovery time
Peak rate of fall of recovery current
30
Rgon=8 Ω
350
di(rec)max
/dt
Erec
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
R25
R100
Tol. ±13%
Tol. ±5%
40
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1.5
2.44
2.01
3.5
100
80
100
33
109
2.74
6.02
11226
8793
0.607
1.520
V
μA
A
ns
μC
A/μs
mWs
2.04
K/W
Thermistor
Rated resistance*
Power dissipation
P
B(25/100)
B-value
Tj=25°C
Tj=100°C
Tol. ±3%
19.1
1411
22
1486
24.9
1560
kΩ
Ω
Tj=25°C
210
mW
Tj=25°C
4000
K
* see details on Thermistor charts on Figure 2.
Copyright by Vincotech
5
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Buck
MOSFET
Figure 1
Typical output characteristics
IC = f(VCE)
MOSFET
Figure 2
Typical output characteristics
IC = f(VCE)
90
IC (A)
IC (A)
90
75
75
60
60
45
45
30
30
15
15
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
3 V to 19 V in steps of 2 V
MOSFET
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
V CE (V)
250
μs
125
°C
3 V to 19 V in steps of 2 V
FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
50
IC (A)
IF (A)
25
5
Tj = Tjmax-25°C
Tj = Tjmax-25°C
20
40
15
30
Tj = 25°C
10
20
Tj = 25°C
5
10
0
0
0
1
2
At
tp =
VCE =
250
10
μs
V
Copyright by Vincotech
3
4
5
V GE (V)
6
0
At
tp =
6
0.8
250
1.6
2.4
3.2
V F (V)
4
μs
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Buck
MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
MOSFET
Figure 6
Typical switching energy losses
as a function of IGBT gate resistor
E = f(RG)
E (mWs)
E (mWs)
1.0
1.0
0.8
0.8
Eon High T
Eon High T
Eoff High T
0.6
0.6
Eoff Low T
0.4
0.4
Eoff High T
Eon Low T
Eoff Low T
0.2
0.2
Eon Low T
0.0
0.0
0
20
40
60
I C (A)
0
80
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff=
8
Ω
8
16
24
32
R G (W)
40
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
IC =
40
A
FRED
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FRED
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0.25
E (mWs)
E (mWs)
0.25
Erec High T
0.20
0.20
0.15
0.15
Erec Low T
Erec High T
0.10
0.10
0.05
0.05
Erec Low T
0.00
0.00
0
20
40
60
I C (A)
0
80
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
Copyright by Vincotech
8
16
24
32
R G (W)
40
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
40
A
7
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Buck
MOSFET
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1.00
t (ms)
t (ms)
1.00
tdoff
tdoff
tdon
0.10
tdon
0.10
tr
tr
0.01
0.01
0.00
0.00
0
20
40
60
I C (A)
80
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
R G (W)
40
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
40
A
FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr(ms)
0.040
t rr(ms)
0.040
trr High T
0.032
0.032
0.024
0.024
0.016
0.016
trr High T
trr Low T
trr Low T
0.008
0.008
0.000
0.000
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
8
40
60
I C (A)
80
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
8
8
25/125
350
40
±15
16
24
32
R gon (W)
40
°C
V
A
V
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Buck
FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
1.50
Qrr (mC)
Qrr (mC)
1.5
Qrr High T
1.20
1.2
0.90
0.9
Qrr High T
Qrr Low T
0.60
0.6
0.30
0.3
0.00
Qrr Low T
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
8
40
60
I C (A)
80
0
8
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
16
25/125
350
40
±15
24
R g on ( Ω)
32
°C
V
A
V
FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
150
IrrM (A)
100
40
IRRM Low T
80
120
IRRM High T
60
90
40
60
IRRM Low T
IRRM High T
20
30
0
0
0
20
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
8
40
60
I C (A)
80
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
9
8
25/125
350
40
±15
16
24
32
R gon (W)
40
°C
V
A
V
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Buck
FRED
Figure 17
Typical rate of fall of forward and reverse recovery current
as a function of collector current
Figure 18
Typical rate of fall of forward and reverse recovery current
as a function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Ic)
dI0/dt,dIrec/dt = f(Rgon)
30000
30000
dIrec/dtLow T
direc / dt (A/ms)
direc / dt (A/ms)
FRED
25000
20000
25000
20000
dIrec/dtLow T
dIrec/dtHigh T
15000
15000
dIo/dtLow T
10000
10000
di0/dtHigh T
5000
5000
0
20
25/125
350
±15
8
40
I C (A)
60
80
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
8
25/125
350
40
±15
16
24
R gon (W)
32
40
°C
V
A
V
FRED
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
100
100
10
dI0/dtHigh T
0
0
At
Tj =
VCE =
VGE =
Rgon =
dIrec/dtHigh T
dI0/dtLow T
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10
-5
-4
10
At
D=
RthJH =
-3
10
-2
10
10
-1
0
10
t p (s)
10-5
1
10 1
At
D=
RthJH =
tp / T
0.99
K/W
10-4
10-3
1.72
R (C/W)
0.06
0.18
0.56
0.14
0.05
R (C/W)
0.04
0.21
0.82
0.39
0.17
0.09
10
100
t p (s)
1011
K/W
FRED thermal model values
Copyright by Vincotech
10-1
tp / T
IGBT thermal model values
Tau (s)
9.7E+00
9.9E-01
1.6E-01
2.4E-02
1.6E-03
10-2
Tau (s)
7.9E+00
8.8E-01
1.3E-01
3.0E-02
4.1E-03
6.3E-04
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Buck
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
100
Ptot (W)
IC (A)
200
80
150
60
100
40
50
20
0
0
0
50
At
Tj =
150
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
15
100
150
T h ( o C)
200
°C
V
FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
120
100
40
80
30
60
20
40
10
20
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
0
200
At
Tj =
°C
Copyright by Vincotech
11
50
150
100
150
T h ( o C)
200
°C
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Buck
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
16
15
VGE (V)
IC (A)
VGE (V)
3
10
14
2
10
100uS
12
120V 200V
10
DC
480V
10
1mS
10mS
100m
400V
101
8
6
100
5
4
2
10-1
0
0
10
20
30
40
50
60
70
80
0
10
At
D=
101
102
V CE (V)
103
0
Tj =
100
50
100
150
250 Q g (nC)
200
300
At
IG(REF)=1mA, RL=15Ω
single pulse
80
ºC
±15
V
Tjmax
ºC
Th =
VGE =
90
Q g (nC)
0
MOSFET
Figure 27
MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
MOSFET
Figure 28
Gate voltage vs Gate charge
VGE = f(Qg)
101
ZthJH (K/W)
VGE (V)
10
9
8
120V
0
10
7
480V
6
5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
4
3
2
1
10-2
-5
-4
10
10
At
D=
RthJH =
tp / T
-3
10
-2
10
10
-1
10
0
t p (s)
1
10 1
0
1.29
0
K/W
At
IC =
10
18
20
30
40
50 Q g (nC)
60
A
MOSFET thermal model values
R (C/W)
0.09
0.27
0.53
0.27
0.08
0.05
Tau (s)
9.2E+00
1.3E+00
2.1E-01
4.0E-02
4.8E-03
4.7E-04
Copyright by Vincotech
12
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Boost
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
90
IC (A)
IC (A)
90
75
75
60
60
45
45
30
30
15
15
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
5
0
1
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
3
4
5
250
μs
125
°C
6 V to 16 V in steps of 1 V
FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
30
V CE (V)
IF (A)
IC (A)
100
Tj = Tjmax-25°C
Tj = Tjmax-25°C
25
80
20
60
Tj = 25°C
15
40
10
Tj = 25°C
20
5
0
0
0
At
tp =
VCE =
2
250
10
4
6
8
V GE (V)
10
0
At
tp =
μs
V
Copyright by Vincotech
13
0.8
250
1.6
2.4
3.2
V F (V)
4
μs
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Boost
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
3
E (mWs)
3
E (mWs)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eoff High T
2.5
Eoff Low T
2.5
Eon Low T
Eoff Low T
2
2
Eon High T
Eoff High T
Eon Low T
1.5
1.5
1
1
0.5
0.5
0
Eon High T
0
0
20
40
60
80
I C (A)
0
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG(Ω )
40
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
15
V
IC =
40
A
IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
2.5
E (mWs)
E (mWs)
2.5
Erec High T
2
2
1.5
1.5
Erec High T
1
1
Erec Low T
0.5
Erec Low T
0.5
0
0
0
20
40
60
I C (A)
80
0
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
15
V
Rgon =
8
Ω
Copyright by Vincotech
8
16
24
32
R G ( Ω ) 40
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
15
V
IC =
40
A
14
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Boost
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( μs)
10
t ( μs)
10
tdoff
1
1
tdoff
tf
0.1
tdon
0.1
tdon
tf
tr
0.01
0.01
tr
0.001
0.001
0
20
40
60
I C (A)
80
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG(Ω )
40
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
15
V
IC =
40
A
FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0.20
t rr(ms)
t rr(ms)
0.15
0.12
trr High T
0.16
trr High T
0.09
0.12
0.06
0.08
trr Low T
trr Low T
0.03
0.04
0.00
0.00
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
15
8
40
60
I C (A)
80
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
15
8
25/125
350
40
15
16
24
32
R gon (W)
40
°C
V
A
V
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Boost
FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
10
Qrr (mC)
Qrr (mC)
10
Qrr High T
8
8
Qrr High T
6
6
Qrr Low T
4
4
2
2
Qrr Low T
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
15
8
40
60
I C (A)
80
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
8
25/125
350
40
15
16
24
32
R g on ( Ω)
40
°C
V
A
V
FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
180
IrrM (A)
IrrM (A)
150
IRRM High T
150
120
120
IRRM Low T
90
90
IRRM High T
60
60
IRRM Low T
30
30
0
0
0
20
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
15
8
40
60
I C (A)
0
80
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
16
8
25/125
350
40
15
16
24
32
R gon (W)
40
°C
V
A
V
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Boost
FRED
Figure 17
Typical rate of fall of forward and reverse recovery current
as a function of collector current
dI0/dt,dIrec/dt = f(Ic)
dI0/dt,dIrec/dt = f(Rgon)
15000
direc / dt (A/ms)
15000
direc / dt (A/ms)
FRED
Figure 18
Typical rate of fall of forward and reverse recovery current
as a function of IGBT turn on gate resistor
dIrec/dtLow T
12000
12000
dIrec/dtHigh T
9000
9000
dIrec/dtLow T
6000
6000
dIrec/dtHigh T
dIo/dtLow T
3000
3000
di0/dtHigh T
dI0/dtLow T
dI0/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
15
8
40
I C (A)
60
80
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125
350
40
15
16
24
R gon (W)
32
40
°C
V
A
V
FRED
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
100
10
8
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
10-2
10-2
10-5
10-4
At
D=
RthJH =
tp / T
1.11
10-3
10-2
10-1
100
t p (s)
101 1
10-5
At
D=
RthJH =
K/W
10-4
tp / T
2.04
10-3
FRED thermal model values
R (C/W)
0.06
0.22
0.59
0.17
0.03
0.04
R (C/W)
0.04
0.21
1.12
0.42
0.17
0.08
Copyright by Vincotech
17
10-1
100
t p (s)
101 1
K/W
IGBT thermal model values
Tau (s)
9.9E+00
1.2E+00
1.4E-01
2.2E-02
2.7E-03
2.7E-04
10-2
Tau (s)
9.8E+00
1.0E+00
1.5E-01
3.7E-02
4.4E-03
6.1E-04
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Boost
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
100
IC (A)
Ptot (W)
200
160
80
120
60
80
40
40
20
0
0
0
50
At
Tj =
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
100
150
T h ( o C)
200
ºC
V
FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
100
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
50
150
100
150
Th ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
18
50
150
100
150
Th ( o C)
200
ºC
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Boost
Boost Inverse Diode
Figure 25
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Figure 26
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Boost Inverse Diode
IF (A)
30
ZthJC (K/W)
Tj = 25°C
25
20
15
Tj = Tjmax-25°C
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
5
0
0
At
tp =
3
6
9
12
VF (V)
t p (s)
15
At
D=
RthJH =
μs
250
Boost Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
K/W
Boost Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
10
IF (A)
Ptot (W)
100
80
8
60
6
40
4
20
2
0
0
0
At
Tj =
tp / T
4.36
50
150
100
150
Th ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
19
50
150
100
150
Th ( o C)
200
ºC
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
Thermistor
Figure 2
Typical NTC resistance values



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
R(T ) = R25 ⋅ e
R/Ω
25000
[Ω]
20000
15000
10000
5000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
20
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Switching Definitions BUCK MOSFET
General conditions
= 125 °C
Tj
Rgon IGBT
Rgoff IGBT
8Ω
8Ω
=
=
Rgon MOSFET
Rgoff MOSFET
Output inverter IGBT
Figure 1
0Ω
47 Ω
=
=
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
350
170
300
IC
250
140
VCE
tdoff
200
%
110
VCE 90%
VGE 90%
%80
150
VCE
VGE
50
100
tEoff
tdon
20
VGE
50
-10
IC
IC 1%
IC10%
VGE10%
0
VCE3%
tEon
-40
-0.1
-50
-0.02
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0.06
0.14
0.22
time (us)
-15
15
350
40
0.23
0.24
0.3
0.38
0.46
3.9
3.95
4
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
4.05
-15
15
350
40
0.13
0.16
4.1
time(us)
4.15
4.25
4.3
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
4.2
Turn-on Switching Waveforms & definition of tr
200
330
Ic
160
280
fitted
VCE
230
120
IC
IC 90%
180
%80
%
IC 60%
130
VCE
IC 40%
40
IC90%
80
tr
IC10%
0
tf
30
IC10%
-40
0.2
VC (100%) =
IC (100%) =
tf =
0.22
0.24
0.26
time (us)
350
40
0.00
V
A
μs
Copyright by Vincotech
0.28
0.3
-20
4.08
0.32
VC (100%) =
IC (100%) =
tr =
21
4.1
4.12
350
40
0.01
4.14
time(us)
4.16
4.18
4.2
V
A
μs
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Switching Definitions BUCK MOSFET
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
130
180
%
Pon
%
110
Eoff
150
90
120
Eon
70
90
50
60
tEoff
30
30
10
Poff
VGE90%
-10
VCE3%
VGE10%
0
IC 1%
tEon
-30
-0.1
-0.02
Poff (100%) =
Eoff (100%) =
tEoff =
0.06
0.14
time (us)
13.94
0.20
0.24
0.22
0.3
-30
3.95
0.38
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Output inverter IGBT
Figure 7
4.07
4.11
time(us)
13.94
0.33
0.16
4.15
4.19
4.23
kW
mJ
μs
Output inverter FRED
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
120
fitted
Id
4.03
Figure 8
Turn-off Switching Waveforms & definition of trr
80
3.99
150
Qrr
trr
100
40
Id
tQrr
50
0
Vd
0
IRRM10%
-40
%
%-50
-80
-100
-120
-150
-160
IRRM90%
-200
-200
IRRM100%
-240
4.1
4.12
4.14
4.16
4.18
-250
4.05
4.2
4.08
4.11
4.14
time(us)
40
1.09
0.04
A
μC
μs
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
350
40
-82
0.02
Copyright by Vincotech
Id (100%) =
Qrr (100%) =
tQrr =
V
A
A
μs
22
4.17
4.2
4.23
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Switching Definitions BUCK MOSFET
Output inverter FRED
Figure 9
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
140
Prec
120
Erec
100
80
tErec
% 60
40
20
0
-20
4.1
Prec (100%) =
Erec (100%) =
tErec =
4.12
4.14
4.16
13.94
0.16
0.04
kW
mJ
μs
4.18
time(us)
4.2
4.22
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
Figure 12
BOOST stage switching measurement circuit
Cg is included in the module
Copyright by Vincotech
23
Revision: 3
FZ06NPA070FP01
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
10-FZ06NPA070FP01-P969F10
in DataMatrix as
P969F10
in packaging barcode as
P969F10
Outline
Pinout
Copyright by Vincotech
24
Revision: 3
FZ06NPA070FP01
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
25
Revision: 3