FZ06NPA070FP01 preliminary datasheet flowNPC 0 600V/75A & 70A PS* Features flow0 12mm housing ● *PS: 70A parallel switch (60A PT and 99mΩ) ● neutral point clamped inverter ● reactive power capability ● low inductance layout Target Applications Schematic ● solar inverter ● UPS Types ● FZ06NPA070FP01 Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 44 59 A 240 A 71 108 W ±20 V 5 390 μs V 150 °C 600 V Buck IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax Buck Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Th=80°C Tc=80°C 21 28 A Repetitive peak forward current IFRM tp limited by Tjmax Tc=100°C 120 A Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C 41 62 W 150 °C Maximum Junction Temperature Copyright by Vincotech Tjmax 1 Revision: 3 FZ06NPA070FP01 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Buck MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current VDS ID IDpulse Tj=Tjmax Th=80°C Tc=80°C 16 21 A tp limited by Tjmax Tc=25°C 93 A Th=80°C 54 97 W Power dissipation Ptot Gate-source peak voltage Vgs ±20 V Tjmax 150 °C VCE 600 V 57 75 A 225 A Maximum Junction Temperature Tj=Tjmax Tc=80°C Boost IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpuls Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax 85 129 W ±20 V 6 360 μs V 175 °C 600 V Boost Inverse Diode Peak Repetitive Reverse Voltage DC forward current Power dissipation per Diode Maximum Junction Temperature VRRM Tc=25°C IF Tj=Tjmax Ptot Tj=Tjmax Th=80°C Tc=80°C Th=80°C Tc=80°C Tjmax 2 21 A W 150 °C 1200 V 20 28 A 70 A 34 52 W 150 °C Boost Diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation per Diode Maximum Junction Temperature Copyright by Vincotech VRRM IF IFRM Ptot Tj=25°C Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Tjmax 2 Th=80°C Tc=80°C Revision: 3 FZ06NPA070FP01 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 3 Revision: 3 FZ06NPA070FP01 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 4.5 5.2 7 1.45 2.32 2.09 2.5 Buck IGBT * Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES ±20 0 Integrated Gate resistor Rgint none Ω Input capacitance ** Cies 4+4,7 nF Output capacitance Coss Reverse transfer capacitance Crss Gate charge ** QGate Thermal resistance chip to heatsink per chip RthJH 0.00025 VCE=VGE f=1MHz 70 25 0 250 300 Tj=25°C V V μA nA 400 pF 200 ±15 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 225+70 nC 0.99 K/W * see dinamic characteristic at Buck MosFET **additional value stands for built-in capacitor Buck Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 30 Rgon=8 Ω 350 40 di(rec)max /dt Erec RthJH Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 3.18 2.37 81 82 13 22 0.48 1.09 24887 13582 0.097 0.164 Thermal grease thickness≤50um λ = 1 W/mK 3.3 V A ns μC A/μs mWs 1.72 K/W Buck MOSFET Static drain to source ON resistance Gate threshold voltage Rds(on) 10 18 VDS=VGS V(GS)th Gate to Source Leakage Current Igss 20 0 Zero Gate Voltage Drain Current Idss 0 600 Turn On Delay Time Rise Time Turn off delay time Fall time 0.001 td(ON) tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge Qg Gate to source charge Qgs Gate to drain charge Qgd Input capacitance Ciss Output capacitance Coss Thermal resistance chip to heatsink per chip RthJH Rgon=8 Ω ** Rgoff=8 Ω ** ±15 350 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2.1 109 219 3 200 15 131 129 8 9 228 230 8 3 0.102 0.325 0.094 0.202 60 350 ±15 40 Tj=25°C mΩ 3.9 14 V nA nA ns mWs 80 nC 20 2800 f=1MHz 0 100 Tj=25°C pF 130 Thermal grease thickness≤50um λ = 1 W/mK 1.29 K/W ** see schematic of the Gate-complex at characteristic figures Copyright by Vincotech 4 Revision: 3 FZ06NPA070FP01 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5.8 6.5 1 1.49 1.60 2.1 Boost IGBT Gate emitter threshold voltage VGE(th) VCE=VGE 0.0012 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 70 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 0.03 650 Rgon=8 Ω Rgoff=8 Ω 350 ±15 40 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω none tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 37 35 13 16 459 500 83 106 0.807 1.110 1.354 1.708 ns mWs 4620 f=1MHz 0 25 15 480 288 Tj=25°C pF 137 75 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 470 nC 1.11 K/W 9.07 9.43 V 4.36 K/W Boost Inverse Diode Diode forward voltage Thermal resistance chip to heatsink per chip VF RthJH 20 Tj=25°C Tj=125°C Thermal grease thickness≤50um λ = 1 W/mK Boost Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir trr Reverse recovered charge Qrr Reverse recovery energy Thermal resistance chip to heatsink per chip 1200 IRRM Reverse recovery time Peak rate of fall of recovery current 30 Rgon=8 Ω 350 di(rec)max /dt Erec RthJH Thermal grease thickness≤50um λ = 1 W/mK R25 R100 Tol. ±13% Tol. ±5% 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1.5 2.44 2.01 3.5 100 80 100 33 109 2.74 6.02 11226 8793 0.607 1.520 V μA A ns μC A/μs mWs 2.04 K/W Thermistor Rated resistance* Power dissipation P B(25/100) B-value Tj=25°C Tj=100°C Tol. ±3% 19.1 1411 22 1486 24.9 1560 kΩ Ω Tj=25°C 210 mW Tj=25°C 4000 K * see details on Thermistor charts on Figure 2. Copyright by Vincotech 5 Revision: 3 FZ06NPA070FP01 preliminary datasheet Buck MOSFET Figure 1 Typical output characteristics IC = f(VCE) MOSFET Figure 2 Typical output characteristics IC = f(VCE) 90 IC (A) IC (A) 90 75 75 60 60 45 45 30 30 15 15 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 μs 25 °C 3 V to 19 V in steps of 2 V MOSFET Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 V CE (V) 250 μs 125 °C 3 V to 19 V in steps of 2 V FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 50 IC (A) IF (A) 25 5 Tj = Tjmax-25°C Tj = Tjmax-25°C 20 40 15 30 Tj = 25°C 10 20 Tj = 25°C 5 10 0 0 0 1 2 At tp = VCE = 250 10 μs V Copyright by Vincotech 3 4 5 V GE (V) 6 0 At tp = 6 0.8 250 1.6 2.4 3.2 V F (V) 4 μs Revision: 3 FZ06NPA070FP01 preliminary datasheet Buck MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(IC) MOSFET Figure 6 Typical switching energy losses as a function of IGBT gate resistor E = f(RG) E (mWs) E (mWs) 1.0 1.0 0.8 0.8 Eon High T Eon High T Eoff High T 0.6 0.6 Eoff Low T 0.4 0.4 Eoff High T Eon Low T Eoff Low T 0.2 0.2 Eon Low T 0.0 0.0 0 20 40 60 I C (A) 0 80 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 8 Ω Rgoff= 8 Ω 8 16 24 32 R G (W) 40 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V IC = 40 A FRED Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FRED Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0.25 E (mWs) E (mWs) 0.25 Erec High T 0.20 0.20 0.15 0.15 Erec Low T Erec High T 0.10 0.10 0.05 0.05 Erec Low T 0.00 0.00 0 20 40 60 I C (A) 0 80 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 8 Ω Copyright by Vincotech 8 16 24 32 R G (W) 40 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 40 A 7 Revision: 3 FZ06NPA070FP01 preliminary datasheet Buck MOSFET Figure 9 Typical switching times as a function of collector current t = f(IC) MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1.00 t (ms) t (ms) 1.00 tdoff tdoff tdon 0.10 tdon 0.10 tr tr 0.01 0.01 0.00 0.00 0 20 40 60 I C (A) 80 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 R G (W) 40 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 40 A FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr(ms) 0.040 t rr(ms) 0.040 trr High T 0.032 0.032 0.024 0.024 0.016 0.016 trr High T trr Low T trr Low T 0.008 0.008 0.000 0.000 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 8 40 60 I C (A) 80 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 8 8 25/125 350 40 ±15 16 24 32 R gon (W) 40 °C V A V Revision: 3 FZ06NPA070FP01 preliminary datasheet Buck FRED Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 1.50 Qrr (mC) Qrr (mC) 1.5 Qrr High T 1.20 1.2 0.90 0.9 Qrr High T Qrr Low T 0.60 0.6 0.30 0.3 0.00 Qrr Low T 0 At 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 8 40 60 I C (A) 80 0 8 At Tj = VR = IF = VGE = °C V V Ω FRED Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 16 25/125 350 40 ±15 24 R g on ( Ω) 32 °C V A V FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 150 IrrM (A) 100 40 IRRM Low T 80 120 IRRM High T 60 90 40 60 IRRM Low T IRRM High T 20 30 0 0 0 20 At Tj = VCE = VGE = Rgon = 25/125 350 ±15 8 40 60 I C (A) 80 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 9 8 25/125 350 40 ±15 16 24 32 R gon (W) 40 °C V A V Revision: 3 FZ06NPA070FP01 preliminary datasheet Buck FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Ic) dI0/dt,dIrec/dt = f(Rgon) 30000 30000 dIrec/dtLow T direc / dt (A/ms) direc / dt (A/ms) FRED 25000 20000 25000 20000 dIrec/dtLow T dIrec/dtHigh T 15000 15000 dIo/dtLow T 10000 10000 di0/dtHigh T 5000 5000 0 20 25/125 350 ±15 8 40 I C (A) 60 80 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 8 25/125 350 40 ±15 16 24 R gon (W) 32 40 °C V A V FRED Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 100 100 10 dI0/dtHigh T 0 0 At Tj = VCE = VGE = Rgon = dIrec/dtHigh T dI0/dtLow T D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10 -5 -4 10 At D= RthJH = -3 10 -2 10 10 -1 0 10 t p (s) 10-5 1 10 1 At D= RthJH = tp / T 0.99 K/W 10-4 10-3 1.72 R (C/W) 0.06 0.18 0.56 0.14 0.05 R (C/W) 0.04 0.21 0.82 0.39 0.17 0.09 10 100 t p (s) 1011 K/W FRED thermal model values Copyright by Vincotech 10-1 tp / T IGBT thermal model values Tau (s) 9.7E+00 9.9E-01 1.6E-01 2.4E-02 1.6E-03 10-2 Tau (s) 7.9E+00 8.8E-01 1.3E-01 3.0E-02 4.1E-03 6.3E-04 Revision: 3 FZ06NPA070FP01 preliminary datasheet Buck IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 Ptot (W) IC (A) 200 80 150 60 100 40 50 20 0 0 0 50 At Tj = 150 100 150 T h ( o C) 200 0 At Tj = VGE = °C FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 15 100 150 T h ( o C) 200 °C V FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 120 100 40 80 30 60 20 40 10 20 0 0 0 At Tj = 50 150 100 150 T h ( o C) 0 200 At Tj = °C Copyright by Vincotech 11 50 150 100 150 T h ( o C) 200 °C Revision: 3 FZ06NPA070FP01 preliminary datasheet Buck IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 16 15 VGE (V) IC (A) VGE (V) 3 10 14 2 10 100uS 12 120V 200V 10 DC 480V 10 1mS 10mS 100m 400V 101 8 6 100 5 4 2 10-1 0 0 10 20 30 40 50 60 70 80 0 10 At D= 101 102 V CE (V) 103 0 Tj = 100 50 100 150 250 Q g (nC) 200 300 At IG(REF)=1mA, RL=15Ω single pulse 80 ºC ±15 V Tjmax ºC Th = VGE = 90 Q g (nC) 0 MOSFET Figure 27 MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) MOSFET Figure 28 Gate voltage vs Gate charge VGE = f(Qg) 101 ZthJH (K/W) VGE (V) 10 9 8 120V 0 10 7 480V 6 5 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 4 3 2 1 10-2 -5 -4 10 10 At D= RthJH = tp / T -3 10 -2 10 10 -1 10 0 t p (s) 1 10 1 0 1.29 0 K/W At IC = 10 18 20 30 40 50 Q g (nC) 60 A MOSFET thermal model values R (C/W) 0.09 0.27 0.53 0.27 0.08 0.05 Tau (s) 9.2E+00 1.3E+00 2.1E-01 4.0E-02 4.8E-03 4.7E-04 Copyright by Vincotech 12 Revision: 3 FZ06NPA070FP01 preliminary datasheet Boost IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 90 IC (A) IC (A) 90 75 75 60 60 45 45 30 30 15 15 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 5 0 1 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 2 3 4 5 250 μs 125 °C 6 V to 16 V in steps of 1 V FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 30 V CE (V) IF (A) IC (A) 100 Tj = Tjmax-25°C Tj = Tjmax-25°C 25 80 20 60 Tj = 25°C 15 40 10 Tj = 25°C 20 5 0 0 0 At tp = VCE = 2 250 10 4 6 8 V GE (V) 10 0 At tp = μs V Copyright by Vincotech 13 0.8 250 1.6 2.4 3.2 V F (V) 4 μs Revision: 3 FZ06NPA070FP01 preliminary datasheet Boost IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 3 E (mWs) 3 E (mWs) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eoff High T 2.5 Eoff Low T 2.5 Eon Low T Eoff Low T 2 2 Eon High T Eoff High T Eon Low T 1.5 1.5 1 1 0.5 0.5 0 Eon High T 0 0 20 40 60 80 I C (A) 0 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG(Ω ) 40 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V IC = 40 A IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 2.5 E (mWs) E (mWs) 2.5 Erec High T 2 2 1.5 1.5 Erec High T 1 1 Erec Low T 0.5 Erec Low T 0.5 0 0 0 20 40 60 I C (A) 80 0 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V Rgon = 8 Ω Copyright by Vincotech 8 16 24 32 R G ( Ω ) 40 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = 15 V IC = 40 A 14 Revision: 3 FZ06NPA070FP01 preliminary datasheet Boost IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( μs) 10 t ( μs) 10 tdoff 1 1 tdoff tf 0.1 tdon 0.1 tdon tf tr 0.01 0.01 tr 0.001 0.001 0 20 40 60 I C (A) 80 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = 15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG(Ω ) 40 With an inductive load at Tj = 125 °C VCE = 350 V VGE = 15 V IC = 40 A FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0.20 t rr(ms) t rr(ms) 0.15 0.12 trr High T 0.16 trr High T 0.09 0.12 0.06 0.08 trr Low T trr Low T 0.03 0.04 0.00 0.00 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 15 8 40 60 I C (A) 80 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 15 8 25/125 350 40 15 16 24 32 R gon (W) 40 °C V A V Revision: 3 FZ06NPA070FP01 preliminary datasheet Boost FRED Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 10 Qrr (mC) Qrr (mC) 10 Qrr High T 8 8 Qrr High T 6 6 Qrr Low T 4 4 2 2 Qrr Low T 0 0 At 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 15 8 40 60 I C (A) 80 0 At Tj = VR = IF = VGE = °C V V Ω FRED Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 8 25/125 350 40 15 16 24 32 R g on ( Ω) 40 °C V A V FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 180 IrrM (A) IrrM (A) 150 IRRM High T 150 120 120 IRRM Low T 90 90 IRRM High T 60 60 IRRM Low T 30 30 0 0 0 20 At Tj = VCE = VGE = Rgon = 25/125 350 15 8 40 60 I C (A) 0 80 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 16 8 25/125 350 40 15 16 24 32 R gon (W) 40 °C V A V Revision: 3 FZ06NPA070FP01 preliminary datasheet Boost FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) dI0/dt,dIrec/dt = f(Rgon) 15000 direc / dt (A/ms) 15000 direc / dt (A/ms) FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dIrec/dtLow T 12000 12000 dIrec/dtHigh T 9000 9000 dIrec/dtLow T 6000 6000 dIrec/dtHigh T dIo/dtLow T 3000 3000 di0/dtHigh T dI0/dtLow T dI0/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 15 8 40 I C (A) 60 80 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125 350 40 15 16 24 R gon (W) 32 40 °C V A V FRED Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 100 10 8 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 10-2 10-2 10-5 10-4 At D= RthJH = tp / T 1.11 10-3 10-2 10-1 100 t p (s) 101 1 10-5 At D= RthJH = K/W 10-4 tp / T 2.04 10-3 FRED thermal model values R (C/W) 0.06 0.22 0.59 0.17 0.03 0.04 R (C/W) 0.04 0.21 1.12 0.42 0.17 0.08 Copyright by Vincotech 17 10-1 100 t p (s) 101 1 K/W IGBT thermal model values Tau (s) 9.9E+00 1.2E+00 1.4E-01 2.2E-02 2.7E-03 2.7E-04 10-2 Tau (s) 9.8E+00 1.0E+00 1.5E-01 3.7E-02 4.4E-03 6.1E-04 Revision: 3 FZ06NPA070FP01 preliminary datasheet Boost IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 IC (A) Ptot (W) 200 160 80 120 60 80 40 40 20 0 0 0 50 At Tj = 175 100 150 T h ( o C) 200 0 At Tj = VGE = ºC FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 150 T h ( o C) 200 ºC V FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 100 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 50 150 100 150 Th ( o C) 200 0 At Tj = ºC Copyright by Vincotech 18 50 150 100 150 Th ( o C) 200 ºC Revision: 3 FZ06NPA070FP01 preliminary datasheet Boost Boost Inverse Diode Figure 25 Typical diode forward current as a function of forward voltage IF = f(VF) Figure 26 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) Boost Inverse Diode IF (A) 30 ZthJC (K/W) Tj = 25°C 25 20 15 Tj = Tjmax-25°C D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 5 0 0 At tp = 3 6 9 12 VF (V) t p (s) 15 At D= RthJH = μs 250 Boost Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) K/W Boost Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 10 IF (A) Ptot (W) 100 80 8 60 6 40 4 20 2 0 0 0 At Tj = tp / T 4.36 50 150 100 150 Th ( o C) 200 0 At Tj = ºC Copyright by Vincotech 19 50 150 100 150 Th ( o C) 200 ºC Revision: 3 FZ06NPA070FP01 preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) Thermistor Figure 2 Typical NTC resistance values B25/100⋅ 1 − 1 T T 25 NTC-typical temperature characteristic R(T ) = R25 ⋅ e R/Ω 25000 [Ω] 20000 15000 10000 5000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 20 Revision: 3 FZ06NPA070FP01 preliminary datasheet Switching Definitions BUCK MOSFET General conditions = 125 °C Tj Rgon IGBT Rgoff IGBT 8Ω 8Ω = = Rgon MOSFET Rgoff MOSFET Output inverter IGBT Figure 1 0Ω 47 Ω = = Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 350 170 300 IC 250 140 VCE tdoff 200 % 110 VCE 90% VGE 90% %80 150 VCE VGE 50 100 tEoff tdon 20 VGE 50 -10 IC IC 1% IC10% VGE10% 0 VCE3% tEon -40 -0.1 -50 -0.02 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0.06 0.14 0.22 time (us) -15 15 350 40 0.23 0.24 0.3 0.38 0.46 3.9 3.95 4 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Output inverter IGBT Figure 3 4.05 -15 15 350 40 0.13 0.16 4.1 time(us) 4.15 4.25 4.3 V V V A μs μs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 4.2 Turn-on Switching Waveforms & definition of tr 200 330 Ic 160 280 fitted VCE 230 120 IC IC 90% 180 %80 % IC 60% 130 VCE IC 40% 40 IC90% 80 tr IC10% 0 tf 30 IC10% -40 0.2 VC (100%) = IC (100%) = tf = 0.22 0.24 0.26 time (us) 350 40 0.00 V A μs Copyright by Vincotech 0.28 0.3 -20 4.08 0.32 VC (100%) = IC (100%) = tr = 21 4.1 4.12 350 40 0.01 4.14 time(us) 4.16 4.18 4.2 V A μs Revision: 3 FZ06NPA070FP01 preliminary datasheet Switching Definitions BUCK MOSFET Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 130 180 % Pon % 110 Eoff 150 90 120 Eon 70 90 50 60 tEoff 30 30 10 Poff VGE90% -10 VCE3% VGE10% 0 IC 1% tEon -30 -0.1 -0.02 Poff (100%) = Eoff (100%) = tEoff = 0.06 0.14 time (us) 13.94 0.20 0.24 0.22 0.3 -30 3.95 0.38 Pon (100%) = Eon (100%) = tEon = kW mJ μs Output inverter IGBT Figure 7 4.07 4.11 time(us) 13.94 0.33 0.16 4.15 4.19 4.23 kW mJ μs Output inverter FRED Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) 120 fitted Id 4.03 Figure 8 Turn-off Switching Waveforms & definition of trr 80 3.99 150 Qrr trr 100 40 Id tQrr 50 0 Vd 0 IRRM10% -40 % %-50 -80 -100 -120 -150 -160 IRRM90% -200 -200 IRRM100% -240 4.1 4.12 4.14 4.16 4.18 -250 4.05 4.2 4.08 4.11 4.14 time(us) 40 1.09 0.04 A μC μs time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = 350 40 -82 0.02 Copyright by Vincotech Id (100%) = Qrr (100%) = tQrr = V A A μs 22 4.17 4.2 4.23 Revision: 3 FZ06NPA070FP01 preliminary datasheet Switching Definitions BUCK MOSFET Output inverter FRED Figure 9 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 140 Prec 120 Erec 100 80 tErec % 60 40 20 0 -20 4.1 Prec (100%) = Erec (100%) = tErec = 4.12 4.14 4.16 13.94 0.16 0.04 kW mJ μs 4.18 time(us) 4.2 4.22 Measurement circuits Figure 11 BUCK stage switching measurement circuit Figure 12 BOOST stage switching measurement circuit Cg is included in the module Copyright by Vincotech 23 Revision: 3 FZ06NPA070FP01 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code 10-FZ06NPA070FP01-P969F10 in DataMatrix as P969F10 in packaging barcode as P969F10 Outline Pinout Copyright by Vincotech 24 Revision: 3 FZ06NPA070FP01 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 25 Revision: 3