F206NIA300SA-M106F preliminary datasheet flowNPC 2 600V/300A Features flow2 housing ● Neutral-point-Clamped inverter ● High power flow2 housing ● Low Inductance Layout Target Applications Schematic ● UPS ● Solar inverters Types ● F206NIA300SA Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 209 275 A 900 A 331 502 W ±20 V 6 360 μs V 175 °C 600 V Buck IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax Buck Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Th=80°C Tc=80°C 147 197 A Repetitive peak forward current IFRM tp limited by Tjmax Tc=100°C 900 A Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C 232 352 W 175 °C Maximum Junction Temperature Copyright by Vincotech Tjmax 1 Revision: 4 F206NIA300SA-M106F preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Boost IGBT Collector-emitter break down voltage DC collector current VCE IC Tj=Tjmax Repetitive peak collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Th=80°C 208 Tc=80°C 275 A 900 A 331 502 W ±20 V Tj≤150°C 6 μs VGE=15V 360 V 175 °C 600 V 166 219 A 900 A 232 352 W 175 °C 600 V 166 219 A 900 A 232 352 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Th=80°C Tc=80°C Tjmax Boost Inverse Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tc=25°C IF Tj=Tjmax Th=80°C Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Tjmax Boost Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 4 F206NIA300SA-M106F preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,05 1,66 1,87 1,85 Buck IGBT Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,0048 300 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 0,96 700 Rgoff=2 Ω Rgon=2 Ω ±15 350 300 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 1 tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 358 366 51 55 445 479 56 79 6,14 7,30 8,02 10,00 ns mWs 18480 f=1MHz 25 0 pF 1152 Tj=25°C 548 700 15 250 Tj=25°C nC 3200 Thermal grease thickness≤50um λ = 1 W/mK 0,29 K/W 0,19 Buck Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Rgoff=2 Ω ±15 350 di(rec)max /dt Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Copyright by Vincotech 300 Thermal grease thickness≤50um λ = 1 W/mK 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,5 2,04 2,20 143 192 132 280 10,6 21,6 2947 2759 2,10 4,59 3,3 V A ns μC A/μs mWs 0,40 K/W 0,30 3 Revision: 4 F206NIA300SA-M106F preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,05 1,66 1,87 1,85 Boost IGBT Gate emitter threshold voltage VGE(th) VCE=VGE 0,0048 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 300 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 0,96 700 Rgoff=2 Ω Rgon=2 Ω 350 ±15 300 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 1 tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 355 363 52 56 450 485 50 80 6,47 7,99 8,34 10,46 ns mWs 18480 f=1MHz 0 25 15 700 Tj=25°C 1152 Tj=25°C 3200 pF 548 250 Thermal grease thickness≤50um λ = 1 W/mK nC 0,29 K/W 0,19 Boost Inverse Diode Diode forward voltage VF Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 20 Tj=25°C Tj=125°C 1,5 Thermal grease thickness≤50um λ = 1 W/mK 1,82 1,86 3,3 V 0,41 K/W 0,27 Boost Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir 600 IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current 300 Rgoff=2 Ω ±15 350 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 300 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,5 1,82 1,86 3,3 960 150 199 144,5 283,9 10,9 22,6 3261 2229 2,38 5,40 Thermal grease thickness≤50um λ = 1 W/mK V μA A ns μC A/μs mWs 0,41 K/W 0,27 Thermistor T=25°C Rated resistance Deviation of R100 R100=1486 Ω T=100°C Ω 22000 -5 5 % Power dissipation T=25°C 200 mW Power dissipation constant T=25°C 2 mW/K K B-value Tol. ±3% T=25°C 3950 B-value Tol. ±3% T=25°C 3996 Vincotech NTC Reference Copyright by Vincotech K B 4 Revision: 4 F206NIA300SA-M106F preliminary datasheet Buck IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 600 IC (A) 600 500 500 400 400 300 300 200 200 100 100 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 350 μs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 V CE (V) 4 5 350 μs 150 °C 7 V to 17 V in steps of 1 V Diode Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 600 IF (A) IC (A) 300 250 Tj = 25°C Tj = Tjmax-25°C 400 200 Tj = Tjmax-25°C 150 Tj = 25°C 200 100 50 0 0 0 At tp = VCE = 2 350 10 4 6 8 10 V GE (V) 0 12 At tp = μs V Copyright by Vincotech 5 1 350 2 3 4 V F (V) 5 μs Revision: 4 F206NIA300SA-M106F preliminary datasheet Buck IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 20 E (mWs) E (mWs) 20 Eoff High T 16 16 Eoff Low T Eon High T 12 12 Eon Low T 8 Eoff Low T Eoff High T Eon High T 8 Eon Low T 4 4 0 0 0 100 200 300 400 I C (A) 500 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 6 8 R G (W) 10 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V IC = 249 A Diode Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) Diode Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 7 E (mWs) 7 E (mWs) 2 6 6 Erec High T 5 5 4 4 Erec High T 3 3 Erec Low T 2 2 Erec Low T 1 1 0 0 0 50 100 150 200 250 300 350 400 I C (A) 450 0 500 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Copyright by Vincotech 1 2 3 4 5 6 7 R8G (W) 9 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 249 A 6 Revision: 4 F206NIA300SA-M106F preliminary datasheet Buck IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 1,00 tdoff tdon t (ms) t (ms) tdoff tdon 0,10 tf 0,10 t trf tr 0,01 0,01 0,00 0,00 0 50 100 150 200 250 300 350 400 I450 C (A) 500 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 2 4 6 8 R G (W) 10 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 249 A Diode Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) Diode Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr(ms) 0,35 t rr(ms) 0,35 trr High T 0,30 trr High T 0,30 0,25 0,25 trr Low T trr Low T 0,20 0,20 0,15 0,15 0,10 0,10 0,05 0,05 0,00 0,00 0 50 At Tj = VCE = VGE = Rgon = 100 25/125 350 ±15 4 150 200 250 300 350 400 I C (A) 450 500 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 2 25/125 350 249 ±15 4 6 8 R gon (W) 10 °C V A V Revision: 4 F206NIA300SA-M106F preliminary datasheet Buck Diode Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Qrr (mC) 30 Diode Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 25 Qrr (mC) Qrr High T 25 Qrr High T 20 20 15 Qrr Low T 15 Qrr Low T 10 10 5 5 0 0 At 0 At Tj = VCE = VGE = Rgon = 50 100 25/125 350 ±15 4 150 200 250 300 350 400 (A) I C450 0 500 2 At Tj = VR = IF = VGE = °C V V Ω Diode Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 25/125 350 249 ±15 4 6 8 R g on ( Ω) °C V A V Diode Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 375 IrrM (A) 250 10 IRRM High T 200 300 IRRM Low T 150 225 100 150 50 75 IRRM High T IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 50 100 25/125 350 ±15 4 150 200 250 300 350 400 I C (A) 450 500 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 8 2 25/125 350 249 ±15 4 6 8 R gon (W) 10 °C V A V Revision: 4 F206NIA300SA-M106F preliminary datasheet Buck Diode Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) Diode Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 12000 direc / dt (A/ms) direc / dt (A/ms) 12000 10000 10000 8000 8000 di0/dtHigh T 6000 6000 dIo/dtLow T 4000 4000 dI0/dtLow T dIrec/dtLow T dIrec/dtLow T dI0/dtHigh T 2000 2000 dIrec/dtHigh T dIrec/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 50 100 25/125 350 ±15 4 150 200 250 300 350 400 I450 C (A) 500 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125 350 249 ±15 4 6 8 R gon (W) 10 °C V A V Diode Figure 20 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 100 ZthJH (K/W) ZthJH (K/W) 10 2 10-1 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-2 10-5 10-4 At D= RthJH = 10-3 10-2 10-1 100 t p (s) 10-5 1011 At D= RthJH = tp / T 0,29 K/W 10-4 10-3 0,41 R (C/W) 0,02 0,07 0,07 0,09 0,02 0,02 R (C/W) 0,02 0,06 0,10 0,16 0,04 0,03 9 100 t p (s) 1011 K/W Diode thermal model values Copyright by Vincotech 10-1 tp / T IGBT thermal model values Tau (s) 9,6E+00 1,7E+00 2,9E-01 4,4E-02 7,6E-03 3,6E-04 10-2 Tau (s) 8,8E+00 1,6E+00 2,4E-01 5,4E-02 1,1E-02 4,5E-04 Revision: 4 F206NIA300SA-M106F preliminary datasheet Buck IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 700 IC (A) Ptot (W) 250 600 200 500 150 400 300 100 200 50 100 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C Diode Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 150 T h ( o C) 200 °C V Diode Figure 24 Forward current as a function of heatsink temperature IF = f(Th) IF (A) 250 Ptot (W) 500 400 200 300 150 200 100 100 50 0 0 0 At Tj = 50 50 175 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 10 50 175 100 150 T h ( o C) 200 °C Revision: 4 F206NIA300SA-M106F preliminary datasheet Buck IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 103 IC (A) VGE (V) 20 100uS 102 15 1mS 100mS 10mS 10 DC 1 120V 480V 10 10 0 5 Q g (nC) 100 At D= Th = VGE = Tj = 101 0 102 V CE (V) 103 0 At IC = single pulse 80 ºC ±15 V Tjmax ºC Copyright by Vincotech 11 250 249 500 750 1000 1250 1500 1750 2000 2250 A Revision: 4 F206NIA300SA-M106F preliminary datasheet Boost IGBT Figure 1 Typical output characteristics IC = f(VCE) 600 600 550 IC (A) IC (A) IGBT Figure 2 Typical output characteristics IC = f(VCE) 500 500 450 400 400 350 300 300 250 200 200 150 100 100 50 0 0 0,0 At tp = Tj = VGE from 1,0 2,0 3,0 V CE (V) 4,0 5,0 0,0 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1,0 2,0 3,0 V CE (V) 4,0 250 μs 125 °C 7 V to 17 V in steps of 1 V Diode Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 350 5,0 IF (A) IC (A) 600 300 500 250 400 200 Tj = Tjmax-25°C 300 150 Tj = 25°C 200 100 Tj = Tjmax-25°C 100 50 Tj = 25°C 0 0 0 At tp = VCE = 2 250 0 4 6 8 10 12 V GE (V) 14 0 At tp = μs V Copyright by Vincotech 12 0,5 250 1 1,5 2 2,5 V F (V) 3 μs Revision: 4 F206NIA300SA-M106F preliminary datasheet Boost IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 18 E (mWs) E (mWs) 25 16 Eoff High T 20 14 Eoff Low T Eon Low T 12 15 Eoff High T 10 Eoff Low T Eon High T 8 10 Eon Low T 6 4 5 Eon High T 2 0 0 0 50 100 150 200 250 300 350 400 I C (A) 450 0 500 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 6 8 R G ( Ω ) 10 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 251 A IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) 8 Erec High T 7 8 7 6 6 5 5 4 4 Erec Low T 3 IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) E (mWs) 2 Erec High T 3 Erec Low T 2 2 1 1 0 0 0 50 100 150 200 250 300 350 400 450 I C (A) 500 0 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Copyright by Vincotech 2 4 6 8 RG (Ω ) 10 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 251 A 13 Revision: 4 F206NIA300SA-M106F preliminary datasheet Boost IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 tdoff t ( μs) t ( μs) 10 1 tdoff tdon tdon 0,1 tr tf tf 0,1 tr 0,01 0,01 0,001 0,001 0 50 100 150 200 250 300 350 400 I C (A) 500 450 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω R G( Ω ) 5 10 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 251 A Diode Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) Diode Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,350 t rr(ms) t rr(ms) 0,350 0,300 trr High T 0,300 trr High T 0,250 0,250 0,200 0,200 trr Low T trr Low T 0,150 0,150 0,100 0,100 0,050 0,050 0,000 0,000 0 At Tj = VCE = VGE = Rgon = 50 25/125 350 ±15 4 100 150 200 250 300 350 400 I C (A) 450 500 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 14 4 25/125 350 251 ±15 8 R gon (W) 12 °C V A V Revision: 4 F206NIA300SA-M106F preliminary datasheet Boost Diode Diode Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 25 35,00 Qrr (mC) Qrr (mC) Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Qrr High T 30,00 Qrr High T 20 25,00 15 20,00 Qrr Low T 15,00 Qrr Low T 10 10,00 5 5,00 0 0,00 0 0 At At Tj = VCE = VGE = Rgon = 50 100 25/125 350 ±15 4 150 200 250 300 350 1 2 3 4 5 6 7 8 I C (A) 500 450 400 At Tj = VR = IF = VGE = °C V V Ω Diode Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 25/125 350 251 ±15 9 R g on ( Ω) 10 °C V A V Diode Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 300 IrrM (A) IrrM (A) 300 IRRM High T IRRM High T 250 250 IRRM Low T 200 200 150 150 100 100 IRRM Low T 50 50 0 0 At Tj = VCE = VGE = Rgon = 50 100 25/125 350 ±15 4 150 200 250 300 350 400 450 I C (A) 0 500 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 15 1 25/125 350 251 ±15 2 3 4 5 6 7 R 8gon (W) 9 °C V A V Revision: 4 F206NIA300SA-M106F preliminary datasheet Boost Diode Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 8000 12000 direc / dt (A/ms) direc / dt (A/ms) Diode Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 7000 dIo/dtLow T 10000 6000 8000 dIrec/dtHigh T 5000 4000 6000 dIrec/dtLow T dIrec/dtHigh T dIrec/dtLow T 3000 4000 di0/dtHigh T dI0/dtLow T 2000 dI0/dtHigh T 2000 1000 0 0 0 At Tj = VCE = VGE = Rgon = 50 100 25/125 350 ±15 4 150 200 250 300 350 400 450 I C (A) 500 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125 350 251 ±15 4 6 8 R gon (W) 10 °C V A V Diode Figure 20 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 100 10 2 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 10-2 10-2 10-5 At D= RthJH = 10-4 tp / T 0,29 10-3 10-2 10-1 100 t p (s) 10110 10-5 At D= RthJH = K/W 10-4 tp / T 0,41 10-3 Diode thermal model values R (C/W) 0,02 0,07 0,07 0,09 0,02 0,02 R (C/W) 0,02 0,06 0,10 0,16 0,04 0,03 Copyright by Vincotech 16 10-1 100 t p (s) 10110 K/W IGBT thermal model values Tau (s) 9,6E+00 1,7E+00 2,9E-01 4,4E-02 7,6E-03 3,6E-04 10-2 Tau (s) 8,8E+00 1,6E+00 2,4E-01 5,4E-02 1,1E-02 4,5E-04 Revision: 4 F206NIA300SA-M106F preliminary datasheet Boost IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 700 IC (A) Ptot (W) 240 600 200 500 160 400 120 300 80 200 40 100 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = ºC Diode Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 150 T h ( o C) 200 ºC V Diode Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 250 IF (A) Ptot (W) 500 400 200 300 150 200 100 100 50 0 0 0 At Tj = 50 50 175 100 150 Th ( o C) 200 0 At Tj = ºC Copyright by Vincotech 17 50 175 100 150 Th ( o C) 200 ºC Revision: 4 F206NIA300SA-M106F preliminary datasheet Boost Boost Inverse Diode Figure 25 Typical diode forward current as a function of forward voltage IF = f(VF) Boost Inverse Diode Figure 26 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 900 1 700 ZthJC (K/W) IF (A) 10 600 100 800 500 Tj = 25°C Tj = Tjmax-25°C 400 300 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 200 100 0 -2 0 At tp = 0,5 1 1,5 2 3 VF (V) 10 3,5 10-5 At D= RthJH = μs 250 Boost Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 tp / T 0,41 K/W 10-2 100 t p (s) 1011 Boost Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 500 10-1 250 IF (A) Ptot (W) 2,5 400 200 300 150 200 100 100 50 0 0 0 At Tj = 50 175 100 150 Th ( o C) 200 0 At Tj = ºC Copyright by Vincotech 18 50 175 100 150 Th ( o C) 200 ºC Revision: 4 F206NIA300SA-M106F preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 24000 20000 16000 12000 8000 4000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 19 Revision: 4 F206NIA300SA-M106F preliminary datasheet Switching Definitions BUCK IGBT General conditions = 125 °C Tj = 2Ω Rgon Rgoff = 2Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 240 140 120 IC 200 tdoff VCE 100 160 VCE 90% VGE 90% 80 120 % IC %60 VCE 80 VGE tdon 40 IC10% tEoff 40 IC 1% 20 VCE3% VGE10% 0 0 VGE tEon -20 -0,2 -40 -0,1 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,1 0,2 0,3 time (us) -15 15 700 249 0,34 0,57 V V V A μs μs 0,4 0,5 0,6 0,7 2,8 2,9 3 3,1 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = Output inverter IGBT Figure 3 3,2 3,3 time(us) -15 15 700 249 0,25 0,36 3,4 3,6 3,7 V V V A μs μs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,5 Turn-on Switching Waveforms & definition of tr 140 220 fitted 120 Ic VCE IC 180 100 IC 90% 140 80 IC 60% %60 VCE %100 IC90% 40 IC 40% tr 60 20 IC10% 20 0 IC10% tf -20 0,15 VC (100%) = IC (100%) = tf = 0,2 0,25 0,3 700 249 0,09 Copyright by Vincotech 0,35 time (us) 0,4 0,45 0,5 -20 0,55 3,1 VC (100%) = IC (100%) = tr = V A μs 20 3,15 3,2 time(us) 3,25 700 249 0,04 3,3 3,35 3,4 3,45 3,5 V A μs Revision: 4 F206NIA300SA-M106F preliminary datasheet Switching Definitions BUCK MOSFET Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 140 % Eoff Poff % 120 100 Eon 100 80 80 60 60 Pon 40 40 20 20 0 -20 -0,2 VCE3% 0 tEoff VGE90% VGE10% tEon IC 1% -20 -0,1 0 0,1 Poff (100%) = Eoff (100%) = tEoff = 174,13 9,37 0,57 0,2 0,3 time (us) 0,4 0,5 0,6 2,9 0,7 3 Pon (100%) = Eon (100%) = tEon = kW mJ μs Output inverter FRED Figure 7 Gate voltage vs Gate charge (measured) 3,1 174,13 3,62 0,36 3,2 time(us) 3,3 3,4 3,5 kW mJ μs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 20 120 15 80 Id trr 10 40 fitted VGE (V) 5 Vd % 0 0 IRRM10% -5 -40 -10 -80 -15 IRRM100% -20 -500 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 500 1000 -15 15 700 249 3318,23 Copyright by Vincotech 1500 Qg (nC) 2000 2500 3000 -120 3,15 3500 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 21 3,23 3,31 700 249 -250 0,14 IRRM90% 3,39 3,47 time(us) 3,55 3,63 3,71 V A A μs Revision: 4 F206NIA300SA-M106F preliminary datasheet Switching Definitions BUCK MOSFET Output inverter FRED Figure 9 Output inverter FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 150 Erec Qrr Id 100 100 tQrr 80 tErec 50 60 % 0 % 40 -50 20 Prec -100 0 -150 2,9 Id (100%) = Qrr (100%) = tQrr = 3,1 3,3 3,5 249 21,68 0,54 A μC μs 3,7 3,9 time(us) -20 3,15 4,1 3,3 Prec (100%) = Erec (100%) = tErec = 3,45 174,13 5,22 0,54 3,6 3,75 time(us) 3,9 4,05 kW mJ μs Measurement circuits Figure 11 BUCK stage switching measurement circuit Copyright by Vincotech Figure 12 BOOST stage switching measurement circuit 22 Revision: 4 F206NIA300SA-M106F preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Standard in flow2 housing Ordering Code in DataMatrix as 30-F206NIA300SA-M106F M106F in packaging barcode as M106F Outline Pinout Copyright by Vincotech 23 Revision: 4 F206NIA300SA-M106F preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 24 Revision: 4