10 FZ062TA030FBxx P983 Dxx P3 14

10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48)
10-F0062TA030(FB/FB03)-P983(D19/D49)
preliminary datasheet
flow PFC 0
600 V/ 2 x 15 A / 50 kHz
Features
flow 0 housing
● Vincotech clip-in housing
● Compact and low inductance design
● Suitable for Interleaved topology
● Suitable for curent sensing in collector or in emitter
● Ultrafast boost IGBT and FRED
12 mm housing
Target Applications
17 mm housing
Schematic
● PFC for welding
● PFC for SMPS
● PFC for motor drives
● PFC for UPS
● PFC for battery charger
(F0/FZ)062TA030FB
FZ062TA030FB01
FZ062TA030FB02
(F0/FZ)062TA030FB03
Types
● (F0/FZ)062TA030FB; without SCR, current sense in collector
● FZ062TA030FB01; with SCR, current sense in collector
● FZ062TA030FB02; without SCR, current sense in emitter
● (F0/FZ)062TA030FB03; with SCR, current sense in emitter
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
Input Rectifier Diode
Repetitive peak reverse voltage
DC forward current
Surge forward current
VRRM
IF
tp=10ms
Tj=25°C
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
Tj=Tjmax
Th=80°C
Tc=80°C
Tjmax
35
A
250
A
310
A2s
40
W
150
°C
800
V
Input Rectifier Thyristor
Repetitive peak reverse voltage
DC forward current
Surge forward current
VRRM
IF
tp=10ms
Tj=25°C
IFSM
I2t-value
I2t
Power dissipation per Thyristor
Ptot
Maximum Junction Temperature
Tjmax
Copyright by Vincotech
Tj=Tjmax
Th=80°C
Tc=80°C
Tj=Tjmax
Th=80°C
Tc=80°C
34
250
A
310
A2s
44
150
1
A
W
°C
Revision: 3
10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48)
10-F0062TA030(FB/FB03)-P983(D19/D49)
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
PFC IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Th=80°C
Tc=80°C
Tj=Tjmax
90
tp limited by Tjmax
Th=80°C
Tc=80°C
Tj=Tjmax
19
57
A
A
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
+/- 20
V
Tjmax
150
°C
600
V
Maximum Junction Temperature
W
C.T. Inverse diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation per Diode
Maximum Junction Temperature
VRRM
IF
IFRM
Ptot
Tj=25°C
Th=80°C
Tc=80°C
Tj=Tjmax
16
tp limited by Tjmax
Th=80°C
Tc=80°C
Tj=Tjmax
8
Tjmax
14
A
A
W
175
°C
600
V
PFC Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
20
40
Th=80°C
Tc=80°C
Tjmax
31
A
A
W
600
°C
PFC Shunt
DC forward current
Power dissipation per Shunt
IF
Tc=25°C
31,6
A
Ptot
Tc=25°C
10
W
VMAX
Tc=25°C
500
V
DC link Capacitor
Max.DC voltage
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
min 12,7
mm
min 12,7
min 8,89
mm
Insulation Properties
Insulation voltage
Vis
t=2s
DC voltage
Creepage distance
17 mm housing
12 mm housing
Clearance
Copyright by Vincotech
2
Revision: 3
10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48)
10-F0062TA030(FB/FB03)-P983(D19/D49)
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Unit
Typ
Max
1,16
1,11
0,9
0,77
9
12
1,4
Input Rectifier Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
30
Slope resistance (for power loss calc. only)
rt
30
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
30
1500
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
V
mΩ
0,02
2
Thermal grease
thickness≤50um
λ =1 W/mK
V
1,72
mA
K/W
Input Rectifier Thyristor
Forward voltage
VF
30
Threshold voltage (for power loss calc. only)
Vto
30
Slope resistance (for power loss calc. only)
rt
30
Reverse current
Ir
Gate controlled delay time
tGD
Gate controlled rise time
tGR
Critical rate of rise of off-state voltage
Critical rate of rise of on-state current
Circuit commutated turn-off time
Holding current
Latching current
Gate trigger voltage
800
Ig=0,5A
dig/dt=0,5A/us
Ig=0,2A
dig/dt=0,2A/us
VD=1/2Vdrm
(dv/dt)cr
VD=2/3Vdrm
Ig=0,2A
(di/dt)cr
f=50Hz
VD=2/3Vdrm
tq
tp=200us
VD=6V
IH
IL
VGT
VD=2/3Vdrm40
100
26
tp=10us
Ig=0,2A
VD=6V
VD=6V
Gate trigger current
IGT
Gate non-trigger voltage
VGD
VD=1/2Vdrm
Gate non-trigger current
IGD
VD=1/2Vdrm
Thermal resistance chip to heatsink per chip
RthJH
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
1,25
1,22
0,93
0,82
0,011
0,014
Tj=25°C
<1
1,6
V
mΩ
0,05
2
2
500
Tj=125°C
150
150
50
Tj=25°C
90
Tj=25°C
Tj=-40°C
Tj=25°C
Tj=-40°C
Tj=125°C
1,3
1,6
28
50
0,2
Tj=125°C
1
Thermal grease
thickness≤50um
λ = 1 W/mK
µs
V/µs
A/µs
µs
Tj=25°C
11
mA
µs
Tj=125°C
Tj=125°C
V
1,57
mA
mA
V
mA
V
mA
K/W
PFC IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
VGE(th)
0,0005
Vce
VCE(sat)
30
Collector-emitter cut-off
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
Copyright by Vincotech
RthJH
3
4
5
2,89
3,43
3,3
30
3,43
0,2
n.a.
td(on)
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=2Ω
Rgon=2Ω
15
400
18
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
15,8
15,4
6,4
7,4
107,6
120,4
4,2
6,6
0,2197
0,4012
0,1983
0,3086
V
V
mA
nA
Ω
ns
mWs
1500
f=1MHz
25
0
Tj=25°C
150
pF
92
480
15
Thermal grease
thickness≤50um
λ = 1 W/mK
3
30
Tj=25°C
92
nC
1,22
K/W
Revision: 3
10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48)
10-F0062TA030(FB/FB03)-P983(D19/D49)
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
C.T. Inverse diode
Diode forward voltage
Thermal resistance chip to heatsink per chip
Tj=25°C
Tj=125°C
VF
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
1,66
1,61
V
5,12
K/W
PFC Diode
Forward voltage
VF
Reverse recovery time
Irm
Peak recovery current
IRRM
Reverse recovery time
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Peak rate of fall of recovery current
Thermal resistance chip to heatsink per chip
15
Rgoff=2Ω
Rgoff=2Ω
15
400
15
400
Erec
di(rec)max
/dt
RthJH
18
18
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,03
1,5
12
19,4
40,539
61,079
12
19,4
0,2368
0,6337
0,0526
0,1334
13672
12699
Thermal grease
thickness≤50um
λ = 1 W/mK
2,7
V
µA
A
ns
µC
mWs
A/µs
2,29
K/W
PFC Shunt
R1 value
R
Temperature coeficient
tc
Internal heat resistance
Rthi
Inductance
9,4
10
10,6
< 50
20°C to 60°C
< 6.5
K/W
<3
L
mΩ
ppm/K
nH
DC link Capacitor
C value
C
480
540
600
nF
Thermistor
Rated resistance
R
Deviation of R100
ǑR/R
Power dissipation
P
Tj=25°C
Tj=100°C
R25=22 KΩ
-5
Tj=25°C
Power dissipation
constant
Tj=25°C
B-value
B(25/50)
Tol. ±3%
B-value
B(25/100)
Tol. ±3%
Copyright by Vincotech
22
4
kΩ
5
%
210
mW
3,5
mW/K
Tj=25°C
3940
K
Tj=25°C
4000
K
Revision: 3
10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48)
10-F0062TA030(FB/FB03)-P983(D19/D49)
preliminary datasheet
PFC Switch & C.T. Inverse Diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Inverse diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
20
Inverse diode
IF (A)
ZthJC (K/W)
101
16
100
12
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
8
10
-1
Tj = Tjmax-25°C
4
Tj = 25°C
0
10-2
0
tp =
1
1
2
2
3
V F (V)
3
10-5
µs
250
D=
RthJH =
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Inverse diode
10-4
10-3
tp / T
5,12
K/W
10-2
10-1
100
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
10110
Inverse diode
12
IF (A)
Ptot (W)
40
t p (s)
10
32
8
24
6
16
4
8
2
0
0
0
Tj =
50
150
100
150
T h ( o C)
200
0
Tj =
ºC
Copyright by Vincotech
5
50
150
100
150
T h ( o C)
200
ºC
Revision: 3
10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48)
10-F0062TA030(FB/FB03)-P983(D19/D49)
preliminary datasheet
PFC
Figure 1
Typical output characteristics
ID = f(VDS)
PFC SWITCH
Figure 2
Typical output characteristics
ID = f(VDS)
60
45
45
30
30
15
15
ID (A)
ID (A)
60
PFC SWITCH
0
0
0
tp =
Tj =
VGS from
1
1
2
2
3
3
4
V DS
5 (V)
4
5
0
1
tp =
Tj =
VGS from
250
µs
25
°C
5 V to 15 V in steps of 1 V
Figure 3
Typical transfer characteristics
PFC SWITCH
1
2
2
3
3
4
PFC FRED
50
IF (A)
ID (A)
30
5
250
µs
125
°C
5 V to 15 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
ID = f(VDS)
V DS5 (V)
4
25
40
Tj = Tjmax-25°C
Tj = 25°C
20
30
15
Tj = Tjmax-25°C
20
10
Tj = 25°C
10
5
0
0
0
tp =
VDS =
2
250
10
3
5
6
8
V GS (V)
9
0
tp =
µs
V
Copyright by Vincotech
6
1
250
2
2
3
V F (V)
4
µs
Revision: 3
10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48)
10-F0062TA030(FB/FB03)-P983(D19/D49)
preliminary datasheet
PFC
Figure 5
Typical switching energy losses
as a function of collector current
E = f(ID)
PFC SWITCH
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,8
PFC SWITCH
E (mWs)
E (mWs)
0,8
Eon
Eoff
0,6
0,6
Eon
0,4
0,4
Tj = Tjmax -25°C
Eoff
Eon
Eoff
0,2
0,2
Eon
Tj =25°C
Eoff
0,0
0,0
0
10
inductive load
Tj =
25/125
VDS =
400
VGS =
15
Rgon =
4
Rgoff =
4
20
30
40
50
I C (A)
60
0
2
4
inductive load
Tj =
25/125
VDS =
400
VGS =
15
ID =
18
°C
V
V
Ω
Ω
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
PFC SWITCH
6
°C
V
V
A
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
PFC SWITCH
E (mWs)
0,160
E (mWs)
0,300
R G ( Ω ) 10
8
Erec
0,140
Tj = Tjmax - 25°C
0,250
Tj = Tjmax -25°C
0,120
Erec
0,200
0,100
0,150
0,080
Erec
0,060
0,100
Tj = 25°C
0,040
Tj = 25°C
Erec
0,050
0,020
0,000
0,000
0
10
inductive load
Tj =
25/125
VDS =
400
VGS =
15
Rgon =
4
Rgoff =
4
20
30
40
50
I C (A)
60
0
inductive load
Tj =
25/125
VDS =
400
VGS =
15
ID =
18
°C
V
V
Ω
Ω
Copyright by Vincotech
7
2
4
6
8
RG (Ω )
10
°C
V
V
A
Revision: 3
10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48)
10-F0062TA030(FB/FB03)-P983(D19/D49)
preliminary datasheet
PFC
Figure 9
Typical switching times as a
function of collector current
t = f(ID)
PFC SWITCH
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,000
PFC SWITCH
t ( µs)
t ( µs)
1,000
tdoff
tdoff
0,100
0,100
tdon
tdon
0,010
0,010
tr
tf
tf
tr
0,001
0,001
0
10
inductive load
Tj =
125
VDS =
400
VGS =
15
Rgon =
4
Rgoff =
4
20
30
40
50
I D (A)
60
0
2
inductive load
Tj =
125
VDS =
400
VGS =
15
IC =
18
°C
V
V
Ω
Ω
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
PFC FRED
4
6
°C
V
V
A
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
PFC FRED
t rr( µs)
0,03
t rr( µs)
0,03
R G ( Ω ) 10
8
trr
0,03
0,03
0,02
0,02
Tj = Tjmax-25°C
0,02
trr
0,02
trr
trr
0,01
0,01
0,01
0,01
0,00
Tj = 25°C
0,00
0
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
15
4
20
30
40
50
I C (A)
60
°C
V
V
Ω
Copyright by Vincotech
8
0
2
Tj =
VR =
IF =
VGS =
25/125
400
18
15
4
6
8
R gon ( Ω )
10
°C
V
A
V
Revision: 3
10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48)
10-F0062TA030(FB/FB03)-P983(D19/D49)
preliminary datasheet
PFC
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
PFC FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
1,5
PFC FRED
Qrr ( µC)
Qrr ( µC)
1,0
Qrr
1,2
0,8
Tj = Tjmax -25°C
0,9
Qrr
0,6
Tj = Tjmax - 25°C
0,6
0,4
Qrr
Tj = 25°C
Tj = 25°C
0,3
0,2
0,0
0,0
0
At
Qrr
10
Tj =
VCE =
VGE =
Rgon =
20
25/125
400
15
4
30
40
50
I C (A)
60
0
2
Tj =
°C
V
V
Ω
25/125
400
18
15
VR =
IF =
VGS =
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
PFC FRED
4
6
8
10
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
PFC FRED
IrrM (A)
100
IrrM (A)
100
R gon ( Ω)
IRRM
80
80
IRRM
Tj = Tjmax - 25°C
IRRM
60
60
Tj = Tjmax -25°C
40
40
Tj = 25°C
Tj = 25°C
20
IRRM
20
0
0
0
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
15
4
20
30
40
50
0
I C (A) 60
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
9
2
25/125
400
18
15
4
6
8
R go n ( Ω ) 10
°C
V
A
V
Revision: 3
10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48)
10-F0062TA030(FB/FB03)-P983(D19/D49)
preliminary datasheet
PFC
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
PFC FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
PFC FRED
20000
Tj = Tjmax - 25°C
Tj = 25°C
16000
direc / dt (A/ µs)
direc / dt (A/ µs)
20000
dIr/dt25
Tj = Tjmax - 25°C
Tj = 25°C
16000
dIrec/dt25
dIr/dt125
12000
12000
8000
8000
dIrec/dt125
dI0/dt25
dI0/dt25
4000
4000
dI0/dt125
dI0/dt125
0
0
0
Tj =
VCE =
VGE =
Rgon =
10
25/125
400
15
4
20
30
40
50
I C (A)
0
60
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Figure 19
IGBT/MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
PFC SWITCH
2
25/125
400
18
15
4
6
8
10
°C
V
A
V
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
R g on ( Ω)
PFC FRED
ZthJH (K/W)
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-5
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-2
10110
10-5
tp / T
1,22
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D=
RthJH =
K/W
10-4
10-3
R (C/W)
0,047
0,176
0,676
0,214
0,062
0,046
R (C/W)
0,05
0,24
0,85
0,69
0,30
0,17
10
100
t p (s)
10110
K/W
FRED thermal model values
Copyright by Vincotech
10-1
tp / T
2,29
IGBT thermal model values
Tau (s)
4,30E+00
7,15E-01
1,39E-01
2,03E-02
2,91E-03
3,33E-04
10-2
Tau (s)
7,26E+00
8,03E-01
1,32E-01
3,21E-02
4,97E-03
7,13E-04
Revision: 3
10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48)
10-F0062TA030(FB/FB03)-P983(D19/D49)
preliminary datasheet
PFC
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
PFC SWITCH
Figure 22
Collector/Drain current as a
function of heatsink temperature
IC = f(Th)
150
PFC SWITCH
IC (A)
Ptot (W)
35
30
120
25
90
20
15
60
10
30
5
0
0
0
Tj =
50
150
100
150
T h ( o C)
200
0
Tj =
VGS =
ºC
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
PFC FRED
150
15
100
150
o
T h ( C)
200
ºC
V
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
70
PFC FRED
25
IF (A)
Ptot (W)
50
60
20
50
15
40
30
10
20
5
10
0
0
0
Tj =
50
150
100
150
T h ( o C)
200
0
Tj =
ºC
Copyright by Vincotech
11
50
150
100
150
T h ( o C)
200
ºC
Revision: 3
10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48)
10-F0062TA030(FB/FB03)-P983(D19/D49)
preliminary datasheet
PFC
Figure 25
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
PFC SWITCH
Figure 26
PFC SWITCH
Gate voltage vs Gate charge
VGS = f(Qg)
103
ID (A)
VGS (V)
18
16
14
102
120V
12
10uS
480V
10
1mS
10mS
101
100uS
8
6
100mS
DC
4
100
2
0
0
10-1
100
D=
Th =
VGS =
Tj =
102
V DS (V)
40
60
80
100
120
140
160
180
Qg (nC)
ID =
single pulse
80
ºC
V
15
Tjmax
ºC
Copyright by Vincotech
20
103
12
30
A
Revision: 3
10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48)
10-F0062TA030(FB/FB03)-P983(D19/D49)
preliminary datasheet
Input Rectifier Bridge
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
90
Rectifier diode
IF (A)
ZthJC (K/W)
101
75
60
100
45
30
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
Tj = Tjmax-25°C
15
Tj = 25°C
0
0,0
0,5
tp =
1,0
1,5
10-2
2,0
10-5
µs
250
10-4
D=
RthJH =
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Rectifier diode
10-3
10-2
10-1
100
10110
tp / T
1,728
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
100
t p (s)
Rectifier diode
60
IF (A)
Ptot (W)
V F (V)
50
80
40
60
30
40
20
20
10
0
0
0
Tj =
50
150
100
150
o
T h ( C)
200
0
Tj =
ºC
Copyright by Vincotech
13
50
150
100
150
o
T h ( C)
200
ºC
Revision: 3
10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48)
10-F0062TA030(FB/FB03)-P983(D19/D49)
preliminary datasheet
Thyristor
Figure 1
Typical thyristor forward current as
a function of forward voltage
IF= f(VF)
Thyristor
Figure 2
Thyristor transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Thyristor
101
ZthJC (K/W)
IF (A)
50
40
100
30
Tj = Tjmax-25°C
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
20
10
-1
Tj = 25°C
10
0
10-2
0,0
0,3
tp =
0,6
0,9
1,2
1,5
10-5
µs
250
10-4
D=
RthJH =
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Thyristor
10-3
10-2
10-1
100
1
1010
tp / T
1,57
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
100
t p (s)
Thyristor
50
IF (A)
Ptot (W)
V F (V ) 1,8
80
40
60
30
40
20
20
10
0
0
0
Tj =
50
150
100
150
o
T h ( C)
200
0
Tj =
ºC
Copyright by Vincotech
14
50
150
100
150
o
T h ( C)
200
ºC
Revision: 3
10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48)
10-F0062TA030(FB/FB03)-P983(D19/D49)
preliminary datasheet
Thyristor
Figure 5
Gate trigger characteristics
2
VG(V)
10
Thyristor
20V;20 Ohm
75W
(0,1ms)
10
1
PG(tp)
VGT
25W
(8ms)
50W
(0,5ms)
100
TJ=25oC
o
TJ=125 C
TJ=-40oC
VGD
IGT
IGD
-1
10 -3
10
10
-2
10
-1
0
10
10
1
IG(A)
10
2
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
Thermistor
NTC-typical temperature characteristic
R/Ω
25000
20000
15000
10000
5000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
15
Revision: 3
10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48)
10-F0062TA030(FB/FB03)-P983(D19/D49)
preliminary datasheet
Switching Definitions PFC
General conditions
Tj
Rgon
Rgoff
=
=
=
Figure 1
PFC SWITCH
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
125 °C
2Ω
2Ω
Figure 2
PFC SWITCH
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
375
130
%
%
tdoff
IC
110
300
90
VCE 90%
VGE 90%
225
70
IC
50
tEoff
150
30
VCE
IC 1%
tdon
75
10
VGE
-10
VCE
VGE10%
IC10%
0
-30
-50
-0,2
-0,1
VCE3%
tEon
VGE
0
0,1
0,2
-75
2,95
0,3
2,97
2,99
3,01
3,03
3,05
3,07
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
15
400
30
0,12
0,20
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Figure 3
Turn-off Switching Waveforms & definition of tf
3,09
time(us)
time (us)
PFC SWITCH
0
15
400
30
0,02
0,06
V
V
V
A
µs
µs
Figure 4
Turn-on Switching Waveforms & definition of tr
PFC SWITCH
400
140
%
%
fitted
120
VCE
IC
Ic
330
100
Ic 90%
260
80
Ic 60%
60
40
190
Ic 40%
VCE
120
IC90%
20
tr
Ic10%
0
-20
0,04
50
tf
IC10%
-20
0,05
0,06
0,07
0,08
0,09
0,10
3
3,01
3,02
3,03
time (us)
VC (100%) =
IC (100%) =
tf =
400
30
0,007
Copyright by Vincotech
3,04
3,05
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
16
400
30
0,007
V
A
µs
Revision: 3
10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48)
10-F0062TA030(FB/FB03)-P983(D19/D49)
preliminary datasheet
Switching Definitions PFC
Figure 5
Turn-off Switching Waveforms & definition of tEoff
PFC SWITCH
Figure 6
Turn-on Switching Waveforms & definition of tEon
120
PFC SWITCH
220
Pon
Eoff
190
Poff
100
160
80
130
60
Eon
%
100
%
40
70
20
40
0
-20
-0,2
tEoff
-0,1
Poff (100%) =
Eoff (100%) =
tEoff =
0
time (us)
12,06
0,31
0,20
Uce3%
Uge10%
10
Uge90%
tEon
Ic 1%
0,1
0,2
-20
2,95
0,3
2,98
3,04
3,07
3,1
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Figure 7
Gate voltage vs Gate charge (measured)
3,01
PFC SWITCH
12,06
0,40
0,062
kW
mJ
µs
Figure 8
Turn-off Switching Waveforms & definition of trr
20
PFC FRED
150
100
Id
15
trr
50
10
0
Uge (V)
Ud
IRRM10%
-50
5
%
-100
0
-150
-200
IRRM90%
-5
-250
IRRM100%
fitted
-10
-60
-30
0
30
60
90
120
-300
3,01
150
Qg (nC)
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
15
400
30
113,90
Copyright by Vincotech
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
17
3,02
3,03
400
30
-75
0,02
3,04
time(us)
3,05
3,06
3,07
V
A
A
µs
Revision: 3
10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48)
10-F0062TA030(FB/FB03)-P983(D19/D49)
preliminary datasheet
Switching Definitions PFC
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
PFC FRED
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
PFC FRED
190
200
Prec
Id
Qrr
100
Erec
130
tQint
0
tErec
% 70
%
-100
10
-200
-300
2,95
Id (100%) =
Qrr (100%) =
tQint =
2,98
3,01
3,04
time(us)
30
0,89
0,04
A
µC
µs
Copyright by Vincotech
3,07
3,1
-50
2,95
3,13
Prec (100%) =
Erec (100%) =
tErec =
18
2,98
3,01
3,04
time(us)
12,06
0,19
0,04
kW
mJ
µs
3,07
3,1
3,13
Revision: 3
10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48)
10-F0062TA030(FB/FB03)-P983(D19/D49)
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
in DataMatrix as
in packaging barcode as
without SCR, current sense in collector
with SCR, current sense in collector
without SCR, current sense in emitter
with SCR, current sense in emitter
without SCR, current sense in collector
with SCR, current sense in emitter
10-FZ062TA030FB-P983D18
10-FZ062TA030FB01-P983D28
10-FZ062TA030FB02-P983D38
10-FZ062TA030FB03-P983D48
10-F0062TA030FB-P983D19
10-F0062TA030FB03-P983D49
P983D18
P983D28
P983D38
P983D48
P983D19
P983D49
P983D18
P983D28
P983D38
P983D48
P983D19
P983D49
Outline
Pinout
Rectifier(FZ062TA030(FB/FB02))
(F0062TA030FB
)
Boost stage(FZ062TA030(FB/FB01))
(F0062TA030FB
)
Pin nr. 21 & 24 without electrical connection
Pin nr. 7 & 12 without electrical connection
Rectifier(FZ062TA030(FB01/FB03))
(F0062TA030FB03
Boost stage(FZ062TA030(FB02/FB03))
)
(F0062TA030FB03
)
Pin nr. 7 & 12 without electrical connection
Copyright by Vincotech
19
Revision: 3
10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48)
10-F0062TA030(FB/FB03)-P983(D19/D49)
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
20
Revision: 3