10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48) 10-F0062TA030(FB/FB03)-P983(D19/D49) preliminary datasheet flow PFC 0 600 V/ 2 x 15 A / 50 kHz Features flow 0 housing ● Vincotech clip-in housing ● Compact and low inductance design ● Suitable for Interleaved topology ● Suitable for curent sensing in collector or in emitter ● Ultrafast boost IGBT and FRED 12 mm housing Target Applications 17 mm housing Schematic ● PFC for welding ● PFC for SMPS ● PFC for motor drives ● PFC for UPS ● PFC for battery charger (F0/FZ)062TA030FB FZ062TA030FB01 FZ062TA030FB02 (F0/FZ)062TA030FB03 Types ● (F0/FZ)062TA030FB; without SCR, current sense in collector ● FZ062TA030FB01; with SCR, current sense in collector ● FZ062TA030FB02; without SCR, current sense in emitter ● (F0/FZ)062TA030FB03; with SCR, current sense in emitter Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V Input Rectifier Diode Repetitive peak reverse voltage DC forward current Surge forward current VRRM IF tp=10ms Tj=25°C IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C Tj=Tjmax Th=80°C Tc=80°C Tjmax 35 A 250 A 310 A2s 40 W 150 °C 800 V Input Rectifier Thyristor Repetitive peak reverse voltage DC forward current Surge forward current VRRM IF tp=10ms Tj=25°C IFSM I2t-value I2t Power dissipation per Thyristor Ptot Maximum Junction Temperature Tjmax Copyright by Vincotech Tj=Tjmax Th=80°C Tc=80°C Tj=Tjmax Th=80°C Tc=80°C 34 250 A 310 A2s 44 150 1 A W °C Revision: 3 10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48) 10-F0062TA030(FB/FB03)-P983(D19/D49) preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V PFC IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Th=80°C Tc=80°C Tj=Tjmax 90 tp limited by Tjmax Th=80°C Tc=80°C Tj=Tjmax 19 57 A A Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE +/- 20 V Tjmax 150 °C 600 V Maximum Junction Temperature W C.T. Inverse diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation per Diode Maximum Junction Temperature VRRM IF IFRM Ptot Tj=25°C Th=80°C Tc=80°C Tj=Tjmax 16 tp limited by Tjmax Th=80°C Tc=80°C Tj=Tjmax 8 Tjmax 14 A A W 175 °C 600 V PFC Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature 20 40 Th=80°C Tc=80°C Tjmax 31 A A W 600 °C PFC Shunt DC forward current Power dissipation per Shunt IF Tc=25°C 31,6 A Ptot Tc=25°C 10 W VMAX Tc=25°C 500 V DC link Capacitor Max.DC voltage Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V min 12,7 mm min 12,7 min 8,89 mm Insulation Properties Insulation voltage Vis t=2s DC voltage Creepage distance 17 mm housing 12 mm housing Clearance Copyright by Vincotech 2 Revision: 3 10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48) 10-F0062TA030(FB/FB03)-P983(D19/D49) preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Unit Typ Max 1,16 1,11 0,9 0,77 9 12 1,4 Input Rectifier Diode Forward voltage VF Threshold voltage (for power loss calc. only) Vto 30 Slope resistance (for power loss calc. only) rt 30 Reverse current Ir Thermal resistance chip to heatsink per chip RthJH 30 1500 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=150°C V mΩ 0,02 2 Thermal grease thickness≤50um λ =1 W/mK V 1,72 mA K/W Input Rectifier Thyristor Forward voltage VF 30 Threshold voltage (for power loss calc. only) Vto 30 Slope resistance (for power loss calc. only) rt 30 Reverse current Ir Gate controlled delay time tGD Gate controlled rise time tGR Critical rate of rise of off-state voltage Critical rate of rise of on-state current Circuit commutated turn-off time Holding current Latching current Gate trigger voltage 800 Ig=0,5A dig/dt=0,5A/us Ig=0,2A dig/dt=0,2A/us VD=1/2Vdrm (dv/dt)cr VD=2/3Vdrm Ig=0,2A (di/dt)cr f=50Hz VD=2/3Vdrm tq tp=200us VD=6V IH IL VGT VD=2/3Vdrm40 100 26 tp=10us Ig=0,2A VD=6V VD=6V Gate trigger current IGT Gate non-trigger voltage VGD VD=1/2Vdrm Gate non-trigger current IGD VD=1/2Vdrm Thermal resistance chip to heatsink per chip RthJH Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C 1,25 1,22 0,93 0,82 0,011 0,014 Tj=25°C <1 1,6 V mΩ 0,05 2 2 500 Tj=125°C 150 150 50 Tj=25°C 90 Tj=25°C Tj=-40°C Tj=25°C Tj=-40°C Tj=125°C 1,3 1,6 28 50 0,2 Tj=125°C 1 Thermal grease thickness≤50um λ = 1 W/mK µs V/µs A/µs µs Tj=25°C 11 mA µs Tj=125°C Tj=125°C V 1,57 mA mA V mA V mA K/W PFC IGBT Gate emitter threshold voltage Collector-emitter saturation voltage VGE(th) 0,0005 Vce VCE(sat) 30 Collector-emitter cut-off ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip Copyright by Vincotech RthJH 3 4 5 2,89 3,43 3,3 30 3,43 0,2 n.a. td(on) td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=2Ω Rgon=2Ω 15 400 18 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 15,8 15,4 6,4 7,4 107,6 120,4 4,2 6,6 0,2197 0,4012 0,1983 0,3086 V V mA nA Ω ns mWs 1500 f=1MHz 25 0 Tj=25°C 150 pF 92 480 15 Thermal grease thickness≤50um λ = 1 W/mK 3 30 Tj=25°C 92 nC 1,22 K/W Revision: 3 10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48) 10-F0062TA030(FB/FB03)-P983(D19/D49) preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max C.T. Inverse diode Diode forward voltage Thermal resistance chip to heatsink per chip Tj=25°C Tj=125°C VF RthJH Thermal grease thickness≤50um λ = 1 W/mK 1,66 1,61 V 5,12 K/W PFC Diode Forward voltage VF Reverse recovery time Irm Peak recovery current IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Peak rate of fall of recovery current Thermal resistance chip to heatsink per chip 15 Rgoff=2Ω Rgoff=2Ω 15 400 15 400 Erec di(rec)max /dt RthJH 18 18 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,03 1,5 12 19,4 40,539 61,079 12 19,4 0,2368 0,6337 0,0526 0,1334 13672 12699 Thermal grease thickness≤50um λ = 1 W/mK 2,7 V µA A ns µC mWs A/µs 2,29 K/W PFC Shunt R1 value R Temperature coeficient tc Internal heat resistance Rthi Inductance 9,4 10 10,6 < 50 20°C to 60°C < 6.5 K/W <3 L mΩ ppm/K nH DC link Capacitor C value C 480 540 600 nF Thermistor Rated resistance R Deviation of R100 ǑR/R Power dissipation P Tj=25°C Tj=100°C R25=22 KΩ -5 Tj=25°C Power dissipation constant Tj=25°C B-value B(25/50) Tol. ±3% B-value B(25/100) Tol. ±3% Copyright by Vincotech 22 4 kΩ 5 % 210 mW 3,5 mW/K Tj=25°C 3940 K Tj=25°C 4000 K Revision: 3 10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48) 10-F0062TA030(FB/FB03)-P983(D19/D49) preliminary datasheet PFC Switch & C.T. Inverse Diode Figure 1 Typical diode forward current as a function of forward voltage IF = f(VF) Inverse diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 20 Inverse diode IF (A) ZthJC (K/W) 101 16 100 12 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 8 10 -1 Tj = Tjmax-25°C 4 Tj = 25°C 0 10-2 0 tp = 1 1 2 2 3 V F (V) 3 10-5 µs 250 D= RthJH = Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) Inverse diode 10-4 10-3 tp / T 5,12 K/W 10-2 10-1 100 Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 10110 Inverse diode 12 IF (A) Ptot (W) 40 t p (s) 10 32 8 24 6 16 4 8 2 0 0 0 Tj = 50 150 100 150 T h ( o C) 200 0 Tj = ºC Copyright by Vincotech 5 50 150 100 150 T h ( o C) 200 ºC Revision: 3 10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48) 10-F0062TA030(FB/FB03)-P983(D19/D49) preliminary datasheet PFC Figure 1 Typical output characteristics ID = f(VDS) PFC SWITCH Figure 2 Typical output characteristics ID = f(VDS) 60 45 45 30 30 15 15 ID (A) ID (A) 60 PFC SWITCH 0 0 0 tp = Tj = VGS from 1 1 2 2 3 3 4 V DS 5 (V) 4 5 0 1 tp = Tj = VGS from 250 µs 25 °C 5 V to 15 V in steps of 1 V Figure 3 Typical transfer characteristics PFC SWITCH 1 2 2 3 3 4 PFC FRED 50 IF (A) ID (A) 30 5 250 µs 125 °C 5 V to 15 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) ID = f(VDS) V DS5 (V) 4 25 40 Tj = Tjmax-25°C Tj = 25°C 20 30 15 Tj = Tjmax-25°C 20 10 Tj = 25°C 10 5 0 0 0 tp = VDS = 2 250 10 3 5 6 8 V GS (V) 9 0 tp = µs V Copyright by Vincotech 6 1 250 2 2 3 V F (V) 4 µs Revision: 3 10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48) 10-F0062TA030(FB/FB03)-P983(D19/D49) preliminary datasheet PFC Figure 5 Typical switching energy losses as a function of collector current E = f(ID) PFC SWITCH Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,8 PFC SWITCH E (mWs) E (mWs) 0,8 Eon Eoff 0,6 0,6 Eon 0,4 0,4 Tj = Tjmax -25°C Eoff Eon Eoff 0,2 0,2 Eon Tj =25°C Eoff 0,0 0,0 0 10 inductive load Tj = 25/125 VDS = 400 VGS = 15 Rgon = 4 Rgoff = 4 20 30 40 50 I C (A) 60 0 2 4 inductive load Tj = 25/125 VDS = 400 VGS = 15 ID = 18 °C V V Ω Ω Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) PFC SWITCH 6 °C V V A Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) PFC SWITCH E (mWs) 0,160 E (mWs) 0,300 R G ( Ω ) 10 8 Erec 0,140 Tj = Tjmax - 25°C 0,250 Tj = Tjmax -25°C 0,120 Erec 0,200 0,100 0,150 0,080 Erec 0,060 0,100 Tj = 25°C 0,040 Tj = 25°C Erec 0,050 0,020 0,000 0,000 0 10 inductive load Tj = 25/125 VDS = 400 VGS = 15 Rgon = 4 Rgoff = 4 20 30 40 50 I C (A) 60 0 inductive load Tj = 25/125 VDS = 400 VGS = 15 ID = 18 °C V V Ω Ω Copyright by Vincotech 7 2 4 6 8 RG (Ω ) 10 °C V V A Revision: 3 10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48) 10-F0062TA030(FB/FB03)-P983(D19/D49) preliminary datasheet PFC Figure 9 Typical switching times as a function of collector current t = f(ID) PFC SWITCH Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,000 PFC SWITCH t ( µs) t ( µs) 1,000 tdoff tdoff 0,100 0,100 tdon tdon 0,010 0,010 tr tf tf tr 0,001 0,001 0 10 inductive load Tj = 125 VDS = 400 VGS = 15 Rgon = 4 Rgoff = 4 20 30 40 50 I D (A) 60 0 2 inductive load Tj = 125 VDS = 400 VGS = 15 IC = 18 °C V V Ω Ω Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) PFC FRED 4 6 °C V V A Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) PFC FRED t rr( µs) 0,03 t rr( µs) 0,03 R G ( Ω ) 10 8 trr 0,03 0,03 0,02 0,02 Tj = Tjmax-25°C 0,02 trr 0,02 trr trr 0,01 0,01 0,01 0,01 0,00 Tj = 25°C 0,00 0 Tj = VCE = VGE = Rgon = 10 25/125 400 15 4 20 30 40 50 I C (A) 60 °C V V Ω Copyright by Vincotech 8 0 2 Tj = VR = IF = VGS = 25/125 400 18 15 4 6 8 R gon ( Ω ) 10 °C V A V Revision: 3 10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48) 10-F0062TA030(FB/FB03)-P983(D19/D49) preliminary datasheet PFC Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) PFC FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 1,5 PFC FRED Qrr ( µC) Qrr ( µC) 1,0 Qrr 1,2 0,8 Tj = Tjmax -25°C 0,9 Qrr 0,6 Tj = Tjmax - 25°C 0,6 0,4 Qrr Tj = 25°C Tj = 25°C 0,3 0,2 0,0 0,0 0 At Qrr 10 Tj = VCE = VGE = Rgon = 20 25/125 400 15 4 30 40 50 I C (A) 60 0 2 Tj = °C V V Ω 25/125 400 18 15 VR = IF = VGS = Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) PFC FRED 4 6 8 10 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) PFC FRED IrrM (A) 100 IrrM (A) 100 R gon ( Ω) IRRM 80 80 IRRM Tj = Tjmax - 25°C IRRM 60 60 Tj = Tjmax -25°C 40 40 Tj = 25°C Tj = 25°C 20 IRRM 20 0 0 0 Tj = VCE = VGE = Rgon = 10 25/125 400 15 4 20 30 40 50 0 I C (A) 60 Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 9 2 25/125 400 18 15 4 6 8 R go n ( Ω ) 10 °C V A V Revision: 3 10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48) 10-F0062TA030(FB/FB03)-P983(D19/D49) preliminary datasheet PFC Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) PFC FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) PFC FRED 20000 Tj = Tjmax - 25°C Tj = 25°C 16000 direc / dt (A/ µs) direc / dt (A/ µs) 20000 dIr/dt25 Tj = Tjmax - 25°C Tj = 25°C 16000 dIrec/dt25 dIr/dt125 12000 12000 8000 8000 dIrec/dt125 dI0/dt25 dI0/dt25 4000 4000 dI0/dt125 dI0/dt125 0 0 0 Tj = VCE = VGE = Rgon = 10 25/125 400 15 4 20 30 40 50 I C (A) 0 60 Tj = VR = IF = VGS = °C V V Ω Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) PFC SWITCH 2 25/125 400 18 15 4 6 8 10 °C V A V Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 R g on ( Ω) PFC FRED ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-2 10110 10-5 tp / T 1,22 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D= RthJH = K/W 10-4 10-3 R (C/W) 0,047 0,176 0,676 0,214 0,062 0,046 R (C/W) 0,05 0,24 0,85 0,69 0,30 0,17 10 100 t p (s) 10110 K/W FRED thermal model values Copyright by Vincotech 10-1 tp / T 2,29 IGBT thermal model values Tau (s) 4,30E+00 7,15E-01 1,39E-01 2,03E-02 2,91E-03 3,33E-04 10-2 Tau (s) 7,26E+00 8,03E-01 1,32E-01 3,21E-02 4,97E-03 7,13E-04 Revision: 3 10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48) 10-F0062TA030(FB/FB03)-P983(D19/D49) preliminary datasheet PFC Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) PFC SWITCH Figure 22 Collector/Drain current as a function of heatsink temperature IC = f(Th) 150 PFC SWITCH IC (A) Ptot (W) 35 30 120 25 90 20 15 60 10 30 5 0 0 0 Tj = 50 150 100 150 T h ( o C) 200 0 Tj = VGS = ºC Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) PFC FRED 150 15 100 150 o T h ( C) 200 ºC V Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 70 PFC FRED 25 IF (A) Ptot (W) 50 60 20 50 15 40 30 10 20 5 10 0 0 0 Tj = 50 150 100 150 T h ( o C) 200 0 Tj = ºC Copyright by Vincotech 11 50 150 100 150 T h ( o C) 200 ºC Revision: 3 10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48) 10-F0062TA030(FB/FB03)-P983(D19/D49) preliminary datasheet PFC Figure 25 Safe operating area as a function of drain-source voltage ID = f(VDS) PFC SWITCH Figure 26 PFC SWITCH Gate voltage vs Gate charge VGS = f(Qg) 103 ID (A) VGS (V) 18 16 14 102 120V 12 10uS 480V 10 1mS 10mS 101 100uS 8 6 100mS DC 4 100 2 0 0 10-1 100 D= Th = VGS = Tj = 102 V DS (V) 40 60 80 100 120 140 160 180 Qg (nC) ID = single pulse 80 ºC V 15 Tjmax ºC Copyright by Vincotech 20 103 12 30 A Revision: 3 10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48) 10-F0062TA030(FB/FB03)-P983(D19/D49) preliminary datasheet Input Rectifier Bridge Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 90 Rectifier diode IF (A) ZthJC (K/W) 101 75 60 100 45 30 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 Tj = Tjmax-25°C 15 Tj = 25°C 0 0,0 0,5 tp = 1,0 1,5 10-2 2,0 10-5 µs 250 10-4 D= RthJH = Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) Rectifier diode 10-3 10-2 10-1 100 10110 tp / T 1,728 K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 100 t p (s) Rectifier diode 60 IF (A) Ptot (W) V F (V) 50 80 40 60 30 40 20 20 10 0 0 0 Tj = 50 150 100 150 o T h ( C) 200 0 Tj = ºC Copyright by Vincotech 13 50 150 100 150 o T h ( C) 200 ºC Revision: 3 10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48) 10-F0062TA030(FB/FB03)-P983(D19/D49) preliminary datasheet Thyristor Figure 1 Typical thyristor forward current as a function of forward voltage IF= f(VF) Thyristor Figure 2 Thyristor transient thermal impedance as a function of pulse width ZthJH = f(tp) Thyristor 101 ZthJC (K/W) IF (A) 50 40 100 30 Tj = Tjmax-25°C D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 20 10 -1 Tj = 25°C 10 0 10-2 0,0 0,3 tp = 0,6 0,9 1,2 1,5 10-5 µs 250 10-4 D= RthJH = Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) Thyristor 10-3 10-2 10-1 100 1 1010 tp / T 1,57 K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 100 t p (s) Thyristor 50 IF (A) Ptot (W) V F (V ) 1,8 80 40 60 30 40 20 20 10 0 0 0 Tj = 50 150 100 150 o T h ( C) 200 0 Tj = ºC Copyright by Vincotech 14 50 150 100 150 o T h ( C) 200 ºC Revision: 3 10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48) 10-F0062TA030(FB/FB03)-P983(D19/D49) preliminary datasheet Thyristor Figure 5 Gate trigger characteristics 2 VG(V) 10 Thyristor 20V;20 Ohm 75W (0,1ms) 10 1 PG(tp) VGT 25W (8ms) 50W (0,5ms) 100 TJ=25oC o TJ=125 C TJ=-40oC VGD IGT IGD -1 10 -3 10 10 -2 10 -1 0 10 10 1 IG(A) 10 2 Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) Thermistor NTC-typical temperature characteristic R/Ω 25000 20000 15000 10000 5000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 15 Revision: 3 10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48) 10-F0062TA030(FB/FB03)-P983(D19/D49) preliminary datasheet Switching Definitions PFC General conditions Tj Rgon Rgoff = = = Figure 1 PFC SWITCH Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) 125 °C 2Ω 2Ω Figure 2 PFC SWITCH Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 375 130 % % tdoff IC 110 300 90 VCE 90% VGE 90% 225 70 IC 50 tEoff 150 30 VCE IC 1% tdon 75 10 VGE -10 VCE VGE10% IC10% 0 -30 -50 -0,2 -0,1 VCE3% tEon VGE 0 0,1 0,2 -75 2,95 0,3 2,97 2,99 3,01 3,03 3,05 3,07 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 15 400 30 0,12 0,20 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Figure 3 Turn-off Switching Waveforms & definition of tf 3,09 time(us) time (us) PFC SWITCH 0 15 400 30 0,02 0,06 V V V A µs µs Figure 4 Turn-on Switching Waveforms & definition of tr PFC SWITCH 400 140 % % fitted 120 VCE IC Ic 330 100 Ic 90% 260 80 Ic 60% 60 40 190 Ic 40% VCE 120 IC90% 20 tr Ic10% 0 -20 0,04 50 tf IC10% -20 0,05 0,06 0,07 0,08 0,09 0,10 3 3,01 3,02 3,03 time (us) VC (100%) = IC (100%) = tf = 400 30 0,007 Copyright by Vincotech 3,04 3,05 time(us) VC (100%) = IC (100%) = tr = V A µs 16 400 30 0,007 V A µs Revision: 3 10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48) 10-F0062TA030(FB/FB03)-P983(D19/D49) preliminary datasheet Switching Definitions PFC Figure 5 Turn-off Switching Waveforms & definition of tEoff PFC SWITCH Figure 6 Turn-on Switching Waveforms & definition of tEon 120 PFC SWITCH 220 Pon Eoff 190 Poff 100 160 80 130 60 Eon % 100 % 40 70 20 40 0 -20 -0,2 tEoff -0,1 Poff (100%) = Eoff (100%) = tEoff = 0 time (us) 12,06 0,31 0,20 Uce3% Uge10% 10 Uge90% tEon Ic 1% 0,1 0,2 -20 2,95 0,3 2,98 3,04 3,07 3,1 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ µs Figure 7 Gate voltage vs Gate charge (measured) 3,01 PFC SWITCH 12,06 0,40 0,062 kW mJ µs Figure 8 Turn-off Switching Waveforms & definition of trr 20 PFC FRED 150 100 Id 15 trr 50 10 0 Uge (V) Ud IRRM10% -50 5 % -100 0 -150 -200 IRRM90% -5 -250 IRRM100% fitted -10 -60 -30 0 30 60 90 120 -300 3,01 150 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 15 400 30 113,90 Copyright by Vincotech Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 17 3,02 3,03 400 30 -75 0,02 3,04 time(us) 3,05 3,06 3,07 V A A µs Revision: 3 10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48) 10-F0062TA030(FB/FB03)-P983(D19/D49) preliminary datasheet Switching Definitions PFC Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) PFC FRED Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) PFC FRED 190 200 Prec Id Qrr 100 Erec 130 tQint 0 tErec % 70 % -100 10 -200 -300 2,95 Id (100%) = Qrr (100%) = tQint = 2,98 3,01 3,04 time(us) 30 0,89 0,04 A µC µs Copyright by Vincotech 3,07 3,1 -50 2,95 3,13 Prec (100%) = Erec (100%) = tErec = 18 2,98 3,01 3,04 time(us) 12,06 0,19 0,04 kW mJ µs 3,07 3,1 3,13 Revision: 3 10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48) 10-F0062TA030(FB/FB03)-P983(D19/D49) preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code in DataMatrix as in packaging barcode as without SCR, current sense in collector with SCR, current sense in collector without SCR, current sense in emitter with SCR, current sense in emitter without SCR, current sense in collector with SCR, current sense in emitter 10-FZ062TA030FB-P983D18 10-FZ062TA030FB01-P983D28 10-FZ062TA030FB02-P983D38 10-FZ062TA030FB03-P983D48 10-F0062TA030FB-P983D19 10-F0062TA030FB03-P983D49 P983D18 P983D28 P983D38 P983D48 P983D19 P983D49 P983D18 P983D28 P983D38 P983D48 P983D19 P983D49 Outline Pinout Rectifier(FZ062TA030(FB/FB02)) (F0062TA030FB ) Boost stage(FZ062TA030(FB/FB01)) (F0062TA030FB ) Pin nr. 21 & 24 without electrical connection Pin nr. 7 & 12 without electrical connection Rectifier(FZ062TA030(FB01/FB03)) (F0062TA030FB03 Boost stage(FZ062TA030(FB02/FB03)) ) (F0062TA030FB03 ) Pin nr. 7 & 12 without electrical connection Copyright by Vincotech 19 Revision: 3 10-FZ062TA030(FB/FB01/FB02/FB03)-P983(D18/D28/D38/D48) 10-F0062TA030(FB/FB03)-P983(D19/D49) preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 20 Revision: 3