10-FZ062TA099FH-P980D18/-FH01-P980D28 datasheet flow PFC 0 600 V/ 2 x 99mOhm / 200 kHz Features ● ● ● ● flow 0 housing Vincotech clip-in housing Compact and low inductance design Suitable for Interleaved topology Suitable for curent sensing in drain ● CP series CoolMOSTM and SiC boost FRED Target Applications ● ● ● ● ● PFC PFC PFC PFC PFC for for for for for Schematic welding SMPS motor drives UPS battery charger FZ062TA099FH FZ062TA099FH01 Types ● FZ062TA099FH; without SCR, current sense in drain ● FZ062TA099FH01; with SCR, current sense in drain CoolMOS is a trademark of Infineon Technologies AG Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 35 A 250 A 310 A 2s 40 W Input Rectifier Diode Repetitive peak reverse voltage DC forward current Surge forward current V RRM IF Tj=Tjmax Th=80°C tp=10ms Tj=25°C I FSM I2t-value I 2t Power dissipation P tot Maximum Junction Temperature T jmax 150 °C V RRM 800 V 34 A 250 A 310 A 2s 44 W Th=80°C Tj=Tjmax Input Rectifier Thyristor Repetitive peak reverse voltage DC forward current Surge forward current IF Tj=Tjmax Th=80°C tp=10ms Tj=25°C I FSM I2t-value I 2t Power dissipation P tot Maximum Junction Temperature T jmax 150 °C Drain to source voltage V DS 600 V DC drain current ID 16 A 93 A 800 mJ 1,2 mJ 11 A Tj=Tjmax Th=80°C PFC MOSFET Pulsed drain current I Dpulse Tj=Tjmax Th=80°C tp limited by Tjmax E AS ID=11 A VDD=50 V Avalanche energy, repetitive E AR ID=11A VDD=50V Avalanche current, repetitive I AR tp limited by Tjmax Avalanche energy, single pulse copyright Vincotech 1 tAR limited by Tjmax 10 Febr. 2015 / Revision 4 10-FZ062TA099FH-P980D18/-FH01-P980D28 datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol dv/dt ruggedness dv /dt Reverse diode dv/dt dv /dt VDS=0...480V Tj=Tjmax Th=80°C Value Unit 50 V/ns 15 V/ns 62 W Power dissipation P tot Gate-source peak voltage V GS +/- 20 V T jmax 150 °C 600 V 8 A 16 A 14 W 175 °C 600 V 19 A 64 A 37 W 175 °C Maximum Junction Temperature C.T. Inverse diode Peak Repetitive Reverse Voltage DC forward current V RRM Tj=25°C IF Tj=Tjmax Th=80°C Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T jmax Th=80°C PFC Diode Peak Repetitive Reverse Voltage DC forward current V RRM Tj=25°C IF Tj=Tjmax Th=80°C Repetitive peak forward current I FRM tp limited by Tjmax Power dissipation P tot Tj=Tjmax Maximum Junction Temperature T jmax Th=80°C PFC Shunt DC forward current Power dissipation IF Tc=25°C 31,6 A P tot Tc=25°C 10 W V MAX Tc=25°C 500 V DC link Capacitor Max.DC voltage Thermal Properties Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(Tjmax - 25) °C 4000 V min 12,7 mm 9,42 mm Insulation Properties Insulation voltage V is t=2s DC voltage Creepage distance Clearance copyright Vincotech 2 10 Febr. 2015 / Revision 4 10-FZ062TA099FH-P980D18/-FH01-P980D28 datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Tj Min Unit Typ Max 1,16 1,11 0,9 0,77 9 12 1,4 Input Rectifier Diode Forward voltage VF 30 Threshold voltage (for power loss calc. only) V to 30 Slope resistance (for power loss calc. only) rt 30 Reverse current Ir Thermal resistance chip to heatsink R th(j-s) 1500 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=150°C V mΩ 0,02 2 Thermal grease thickness≤50um λ =1 W/mK V 1,72 mA K/W Input Rectifier Thyristor Forward voltage VF 30 Threshold voltage (for power loss calc. only) V to 30 Slope resistance (for power loss calc. only) rt Reverse current Ir Gate controlled delay time t GD Gate controlled rise time t GR 30 800 Ig=0,5A dig/dt=0,5A/us Ig=0,2A dig/dt=0,2A/us VD=1/2Vdrm (dv /dt )cr VD=2/3Vdrm Critical rate of rise of on-state current (di /dt )cr Ig=0,2A VD=2/3Vdrm 40 tq Holding current IH Latching current IL Gate trigger voltage V GT Gate trigger current I GT Gate non-trigger voltage V GD Gate non-trigger current I GD Thermal resistance chip to heatsink R th(j-s) 1,25 1,22 0,93 0,82 0,011 0,014 f=50Hz VD=2/3Vdrm tp=200us VD=6V 100 26 VD=6V VD=1/2Vdrm VD=1/2Vdrm mΩ 500 Tj=125°C 150 150 90 Tj=25°C Tj=-40°C Tj=25°C Tj=-40°C Tj=125°C 1,3 1,6 28 50 0,2 A/µs mA 1 Thermal grease thickness≤50um λ = 1 W/mK V/µs mA Tj=25°C Tj=125°C µs µs 50 11 mA µs Tj=125°C Tj=125°C V V <1 Tj=25°C tp=10us Ig=0,2A VD=6V 1,6 0,05 2 2 Tj=25°C Critical rate of rise of off-state voltage Circuit commutated turn-off time Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C V mA V mA K/W 1,57 PFC MOSFET Avalanche breakdown voltage V (BR)DS 0 0,0003 Static drain to source ON resistance r DS(on) 10 18 Gate threshold voltage V (GS)th Vds 0,0012 Gate to Source Leakage Current I GSS 20 0 Zero Gate Voltage Drain Current I DSS 0 600 Turn On Delay Time t d(on) Rise Time Turn off delay time Fall time tr t d(off) tf Turn-on energy loss E on Turn-off energy loss E off Total gate charge Q GE Gate to source charge Q GS Gate to drain charge Q GD Input capacitance C iss Output capacitance C oss Reverse transfer capacitance C rss Thermal resistance chip to heatsink copyright Vincotech R th(j-s) Rgoff=4 Ω Rgon=4 Ω 10 400 0 400 15 18 Tj=25°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 600 2,5 V 111 223 3,0 mΩ 3,9 200 10 21 21 4 4 71 73 3 3 0,055 0,059 0,008 0,013 V nA uA ns mWs 60 14 nC 20 2800 f=1MHz 100 0 Tj=25°C 130 pF 2,5 Thermal grease thickness≤50um λ = 1 W/mK 1,13 3 K/W 10 Febr. 2015 / Revision 4 10-FZ062TA099FH-P980D18/-FH01-P980D28 datasheet Characteristic Values Parameter Conditions Symbol Value V r [V] or I C [A] or V GE [V] or V CE [V] or I F [A] or V GS [V] V DS [V] I D [A] Tj Min Unit Typ Max 1,66 1,61 2 C.T. Inverse diode Diode forward voltage Thermal resistance chip to heatsink VF R th(j-s) 6 Tj=25°C Tj=125°C Thermal grease thickness≤50um λ = 1 W/mK V 5,12 K/W PFC Diode Forward voltage VF Reverse leakage current I rm Peak recovery current I RRM Reverse recovery time t rr Reverse recovery charge Q rr Reverse recovered energy Peak rate of fall of recovery current Thermal resistance chip to heatsink 16 600 Rgon=4 Ω 10 400 E rec ( di rf/dt )max R th(j-s) 15 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,53 1,68 1,8 400 24,4 21,9 8 8 0,11 0,09 0,02 0,02 9935 7532 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC mWs A/µs 2,56 K/W PFC Shunt R1 value Temperature coeficient tc Internal heat resistance R thi Inductance 9,4 R 10 10,6 < 50 20°C to 60°C < 6.5 K/W <3 L mΩ ppm/K nH DC link Capacitor C value C 480 540 600 nF Thermistor Rated resistance 25 R 21,5 Deviation of R100 ΔR/R Power dissipation P 25 B-value B(25/50) B-value B(25/100) 25 3964 100 R100=1486 Ω Power dissipation constant Vincotech NTC Reference copyright Vincotech -4,5 kΩ +4,5 % 210 mW 25 3,5 mW/K 25 3884 K K F 4 10 Febr. 2015 / Revision 4 10-FZ062TA099FH-P980D18/-FH01-P980D28 datasheet PFC Switch & C.T. Inverse Diode Figure 1 Typical diode forward current as a function of forward voltage I F = f(V F) Inverse diode Figure 2 Diode transient thermal impedance as a function of pulse width Z thJH = f(t p) 20 Inverse diode ZthJC (K/W) IF (A) 101 16 100 12 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 8 10 -1 Tj = Tjmax-25°C 4 Tj = 25°C 0 10-2 0 tp = 1 1 250 2 2 3 V F (V) 3 10 µs -5 D= R thJH = Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T h) Inverse diode 10 -4 10 -3 10 -2 10 -1 10 t p (s) 1 10 10 tp/T 5,12 K/W Figure 4 Forward current as a function of heatsink temperature I F = f(T h) Inverse diode 12 IF (A) Ptot (W) 40 0 10 32 8 24 6 16 4 8 2 0 0 0 Tj = copyright Vincotech 50 150 100 150 T h ( o C) 200 0 Tj = ºC 5 50 150 100 150 T h ( o C) 200 ºC 10 Febr. 2015 / Revision 4 10-FZ062TA099FH-P980D18/-FH01-P980D28 datasheet PFC Figure 1 Typical output characteristics I D = f(V DS) PFC MOSFET Figure 2 Typical output characteristics I D = f(V DS) 40 PFC MOSFET ID (A) ID (A) 40 32 32 24 24 16 16 8 8 0 0 0 1 tp = Tj = V GS from 1 2 2 3 3 4 V DS 5 (V) 4 5 0 1 tp = Tj = V GS from 250 µs 25 °C 3 V to 13 V in steps of 1 V Figure 3 Typical transfer characteristics PFC MOSFET 1 2 2 3 3 4 4 PFC MOSFET 50 IF (A) ID (A) 20 5 250 µs 125 °C 3 V to 13 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) I D = f(V DS) V DS 5 (V) Tj = 25°C 16 40 12 30 Tj = Tjmax-25°C 8 20 Tj = Tjmax-25°C 4 10 Tj = 25°C 0 0 0 1 tp = V DS = 250 10 copyright Vincotech 2 3 4 5 V GS (V) 6 0 tp = µs V 6 1 250 2 3 V F (V) 4 µs 10 Febr. 2015 / Revision 4 10-FZ062TA099FH-P980D18/-FH01-P980D28 datasheet PFC Figure 5 Typical switching energy losses as a function of collector current E = f(I D) PFC MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(R G) 0,120 PFC MOSFET E (mWs) E (mWs) 0,12 Eon Eon Tj = Tjmax -25°C 0,100 Eon 0,10 Tj =25°C Eon 0,080 0,08 0,060 0,06 0,040 0,04 Eoff Eoff Eoff 0,020 0,02 Eoff 0,000 0,00 0 inductive Tj = V DS = V GS = R gon = R goff = 5 load 25/125 400 10 4 4 10 15 20 25 I C (A) 30 0 inductive Tj = V DS = V GS = ID = °C V V Ω Ω Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current E rec = f(I c) PFC MOSFET 3 load 25/125 400 10 15 6 9 12 R G ( Ω ) 18 °C V V A Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) PFC MOSFET 0,035 E (mWs) E (mWs) 0,030 15 0,030 0,025 Tj = 25°C Erec 0,025 0,020 Tj = 25°C Erec Erec 0,015 0,020 Tj = Tjmax -25°C 0,015 Tj = Tjmax - 25°C Erec 0,010 0,010 0,005 0,005 0,000 0,000 0 inductive Tj = V DS = V GS = R gon = R goff = copyright Vincotech 5 load 25/125 400 10 4 4 10 15 20 25 I C (A) 30 0 inductive Tj = V DS = V GS = ID = °C V V Ω Ω 7 3 load 25/125 400 10 15 6 9 12 15 RG (Ω ) 18 °C V V A 10 Febr. 2015 / Revision 4 10-FZ062TA099FH-P980D18/-FH01-P980D28 datasheet PFC Figure 9 Typical switching times as a function of collector current t = f(I D) PFC MOSFET Figure 10 Typical switching times as a function of gate resistor t = f(R G) t ( µs) 1,000 t ( µs) 1,000 PFC MOSFET 0,100 0,100 tdoff tdoff tdon tdon 0,010 0,010 tr tf ttfr tf 0,001 0,001 0 inductive Tj = V DS = V GS = R gon = R goff = 5 load 125 400 10 4 4 10 15 20 25 I D (A) 30 0 inductive Tj = V DS = V GS = IC = °C V V Ω Ω Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I c) PFC FWD 3 6 load 125 400 10 15 °C V V A 9 12 15 Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) PFC FWD 0,018 t rr( µs) t rr( µs) 0,010 R G ( Ω ) 18 trr trr 0,015 0,008 trr trr 0,012 Tj = Tjmax-25°C 0,006 Tj = 25°C 0,009 0,004 0,006 0,002 0,003 0,000 0,000 0 Tj = V CE = V GE = R gon = copyright Vincotech 5 25/125 400 10 4 10 15 20 25 I C (A) 30 0 Tj = VR = IF = V GS = °C V V Ω 8 3 25/125 400 15 10 6 9 12 15 R gon ( Ω ) 18 °C V A V 10 Febr. 2015 / Revision 4 10-FZ062TA099FH-P980D18/-FH01-P980D28 datasheet PFC Figure 13 Typical reverse recovery charge as a function of collector current Q rr = f(I C) PFC FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Q rr = f(R gon) 0,200 PFC FWD Qrr ( µC) Qrr ( µC) 0,150 0,160 0,120 Qrr Qrr 0,120 Tj = 25°C Qrr Qrr Tj = 25°C 0,090 Tj = Tjmax - 25°C 0,080 0,060 Tj = Tjmax -25°C 0,040 0,030 0,000 0,000 0 At Tj = V CE = V GE = R gon = 5 25/125 400 10 4 10 15 20 25 I C (A) 30 0 Tj = °C V V Ω VR = IF= V GS = Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) PFC FWD 3 25/125 400 15 10 6 9 12 15 18 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) PFC FWD Tj = 25°C IrrM (A) 35 IrrM (A) 30 R gon ( Ω) IRRM 30 25 IRRM 25 Tj = Tjmax - 25°C 20 IRRM IRRM 20 15 Tj = 25°C 15 Tj = Tjmax -25°C 10 10 5 5 0 0 0 Tj = V CE = V GE = R gon = copyright Vincotech 5 25/125 400 10 4 10 15 20 25 0 I C (A) 30 Tj = VR = IF = V GS = °C V V Ω 9 3 25/125 400 15 10 6 9 12 15 R go n ( Ω ) 18 °C V A V 10 Febr. 2015 / Revision 4 10-FZ062TA099FH-P980D18/-FH01-P980D28 datasheet PFC Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I c) PFC FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) PFC FWD 16000 direc / dt (A/ µs) direc / dt (A/ µs) 12000 dIrec/dt25 14000 10000 dIr/dt25 12000 dIr/dt125 dIrec/dt125 Tj = Tjmax - 25°C 8000 10000 Tj = 25°C dI0/dt25 8000 6000 dI0/dt125 6000 dI0/dt25 dI0/dt125 4000 Tj = Tjmax - 25°C 4000 2000 2000 Tj = 25°C 0 0 0 Tj = V CE = V GE = R gon = 5 25/125 400 10 4 10 15 20 I C (A) 25 0 30 Tj = VR = IF = V GS = °C V V Ω Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width Z thJH = f(t p) PFC MOSFET 25/125 400 15 10 6 12 15 R g on ( Ω) 18 °C V A V PFC FWD ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 10 -5 D = R thJH = 10 -4 10 -3 10 -2 10 -1 10 0 t p (s) 1 10 10 tp/T 1,13 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 -2 K/W -2 10-5 10-4 D = R thJH = tp/T 2,56 10-3 FWD thermal model values R (K/W) Tau (s) R (K/W) Tau (s) 0,026 0,127 0,544 0,266 0,107 0,062 8,47E+00 0,12 0,49 1,11 0,49 0,30 0,05 2,23E+00 1,17E+00 1,77E-01 4,73E-02 7,23E-03 5,51E-04 10 10-2 10-1 100 t p (s) 10110 K/W IGBT thermal model values copyright Vincotech 9 Figure 20 FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) 101 10 3 2,82E-01 6,57E-02 1,17E-02 2,09E-03 2,12E-04 10 Febr. 2015 / Revision 4 10-FZ062TA099FH-P980D18/-FH01-P980D28 datasheet PFC Figure 21 Power dissipation as a function of heatsink temperature P tot = f(T h) PFC MOSFET Figure 22 Collector/Drain current as a function of heatsink temperature I C = f(T h) 150 IC (A) Ptot (W) 25 120 20 90 15 60 10 30 5 0 0 0 Tj = 50 150 100 150 T h ( o C) 200 0 50 Tj = V GS = ºC Figure 23 Power dissipation as a function of heatsink temperature P tot = f(T h) PFC FWD 150 10 100 150 T h ( o C) 200 ºC V Figure 24 Forward current as a function of heatsink temperature I F = f(T h) PFC FWD 25 IF (A) 80 Ptot (W) PFC MOSFET 70 20 60 50 15 40 10 30 20 5 10 0 0 0 Tj = copyright Vincotech 50 175 100 150 T h ( o C) 200 0 Tj = ºC 11 50 175 100 150 T h ( o C) 200 ºC 10 Febr. 2015 / Revision 4 10-FZ062TA099FH-P980D18/-FH01-P980D28 datasheet PFC Figure 25 Safe operating area as a function of drain-source voltage I D = f(V DS) PFC MOSFET Figure 26 PFC MOSFET Gate voltage vs Gate charge V GS = f(Q g) 103 ID (A) VGS (V) 10 8 102 120V 6 480V 10uS 10mS 101 1mS 100uS 4 100mS DC 10 0 10 -1 2 0 0 100 D = Th = V GS = Tj = copyright Vincotech 102 V DS (V) 10 10 20 30 40 50 60 Qg (nC) 3 ID = single pulse 80 ºC V 10 T jmax ºC 12 15 A 10 Febr. 2015 / Revision 4 10-FZ062TA099FH-P980D18/-FH01-P980D28 datasheet Input Rectifier Bridge Figure 1 Typical diode forward current as a function of forward voltage I F= f(V F) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width Z thJH = f(t p) Rectifier diode 101 60 100 IF (A) 75 ZthJC (K/W) 90 45 30 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 Tj = Tjmax-25°C 15 Tj = 25°C 0 10-2 0,0 0,5 tp = 250 1,0 1,5 2,0 10 -5 10 D = R thJH = µs Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T h) Rectifier diode -4 10 -3 10 -2 10 -1 10 t p (s) 1 10 10 tp/T 1,728 K/W Figure 4 Forward current as a function of heatsink temperature I F = f(T h) 100 0 Rectifier diode 60 IF (A) Ptot (W) V F (V) 50 80 40 60 30 40 20 20 10 0 0 0 Tj = copyright Vincotech 50 150 100 150 T h ( o C) 200 0 Tj = ºC 13 50 150 100 150 T h ( o C) 200 ºC 10 Febr. 2015 / Revision 4 10-FZ062TA099FH-P980D18/-FH01-P980D28 datasheet Thyristor Figure 1 Typical thyristor forward current as a function of forward voltage I F= f(V F) Thyristor Figure 2 Thyristor transient thermal impedance as a function of pulse width Z thJH = f(t p) Thyristor 101 ZthJC (K/W) IF (A) 50 40 100 30 Tj = Tjmax-25°C D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 20 10-1 Tj = 25°C 10 0 10-2 0,0 tp = 0,3 0,6 250 µs 0,9 1,2 Figure 3 Power dissipation as a function of heatsink temperature P tot = f(T h) Thyristor 10-5 10-4 D = R thJH = tp/T 10-3 1,57 10-2 10-1 10110 K/W Figure 4 Forward current as a function of heatsink temperature I F = f(T h) 100 t p (s) 100 Thyristor 50 IF (A) Ptot (W) V F (V ) 1,8 1,5 80 40 60 30 40 20 20 10 0 0 0 Tj = copyright Vincotech 50 150 100 150 o T h ( C) 200 0 Tj = ºC 14 50 150 100 150 o T h ( C) 200 ºC 10 Febr. 2015 / Revision 4 10-FZ062TA099FH-P980D18/-FH01-P980D28 datasheet Thyristor Figure 5 Gate trigger characteristics Thyristor VG(V) 102 20V;20 Ohm 75W (0,1ms) 10 1 PG(tp) VGT 25W (8ms) 50W (0,5ms) 100 TJ=25oC TJ=125oC TJ=-40oC VGD IGT IGD 10-1 -3 10 10 -2 10 -1 100 10 1 IG(A) 10 2 Thermistor Figure 1 Typical NTC characteristic as a function of temperature R T = f(T ) Thermistor NTC-typical temperature characteristic R/Ω 25000 20000 15000 10000 5000 0 25 copyright Vincotech 50 75 100 T (°C) 125 15 10 Febr. 2015 / Revision 4 10-FZ062TA099FH-P980D18/-FH01-P980D28 datasheet Switching Definitions PFC General Tj R gon R goff conditions = 125 °C = 4Ω = 4Ω Figure 1 PFC MOSFET Turn-off Switching Waveforms & definition of t doff, t Eoff (t E off = integrating time for E off) Figure 2 PFC MOSFET Turn-on Switching Waveforms & definition of t don, t Eon (t E on = integrating time for E on) 140 280 tdoff % % 120 IC 240 100 200 VCE 90% VGE 90% 80 IC 160 60 120 VCE 40 IC 1% tEoff 20 80 tdon VGE 40 0 VGE10% VCE IC10% 0 VGE -20 VCE5% tEon -40 -0,1 -0,05 0 0,05 -40 2,95 0,1 2,97 2,99 3,01 3,03 3,05 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t doff = V R RM t E off = 0 10 400 15 0,07 0,09 V V V A µs µs V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = t don = t E on = Figure 3 PFC MOSFET Turn-off Switching Waveforms & definition of t f 3,09 0 10 400 15 0,02 0,03 V V V A µs µs Figure 4 PFC MOSFET Turn-on Switching Waveforms & definition of t r 140 260 % % VCE 120 3,07 time(us) time (us) IC Ic 220 fitted 100 180 Ic 90% 80 140 Ic 60% 60 VCE 100 40 IC90% Ic 40% tr 60 20 Ic10% 20 0 IC10% tf -20 -0,005 0,005 0,015 0,025 -20 2,99 0,035 3,01 3,03 time (us) V C (100%) = I C (100%) = tf = copyright Vincotech 400 15 0,003 3,05 3,07 time(us) V A µs V C (100%) = I C (100%) = tr = 16 400 15 0,004 V A µs 10 Febr. 2015 / Revision 4 10-FZ062TA099FH-P980D18/-FH01-P980D28 datasheet Switching Definitions PFC Figure 5 PFC MOSFET Turn-off Switching Waveforms & definition of t Eoff Figure 6 PFC MOSFET Turn-on Switching Waveforms & definition of t Eon 140 180 Pon 120 Eoff 140 100 Poff Eon 80 100 % %60 60 40 20 20 Uce3% Uge10% 0 tEon tEoff Uge90% -20 -0,2 -0,1 P off (100%) = E off (100%) = t E off = 0 time (us) Ic 1% 6,00 0,01 0,09 0,1 -20 2,95 0,2 2,98 3,04 3,07 3,1 time(us) kW mJ µs P on (100%) = E on (100%) = t E on = Figure 7 Gate voltage vs Gate charge (measured) 3,01 PFC MOSFET 6,002 0,06 0,0325 kW mJ µs Figure 8 PFC FRED Turn-off Switching Waveforms & definition of t rr 15 120 Id 80 trr 10 40 Uge (V) Ud 0 5 IRRM10% % -40 -80 0 IRRM90% -120 fitted IRRM100% -5 -160 -40 V GE off = V GE on = V C (100%) = I C (100%) = Qg = copyright Vincotech -20 0 0 10 400 15 59,01 20 Qg (nC) 40 60 80 3 V V V A nC 3,01 V d (100%) = I d (100%) = I RRM (100%) = t rr = 17 3,02 3,03 400 15 -22 0,01 3,04 3,05 3,06 time(us) 3,07 3,08 3,09 3,1 V A A µs 10 Febr. 2015 / Revision 4 10-FZ062TA099FH-P980D18/-FH01-P980D28 datasheet Switching Definitions PFC Figure 9 PFC FRED Turn-on Switching Waveforms & definition of t Qrr (t Q rr= integrating time for Q rr) Figure 10 PFC FRED Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 200 310 Erec 150 270 Id Qrr 100 230 190 50 tQint 150 % % 0 110 tErec -50 70 -100 -150 -200 2,95 I d (100%) = Q rr (100%) = tQint = copyright Vincotech Prec 30 -10 3 3,05 15 0,09 0,07 time(us) 3,1 3,15 -50 2,95 3,2 A µC µs 2,98 P rec (100%) = E rec (100%) = t E rec = 18 3,01 3,04 time(us) 6,00 0,02 0,07 kW mJ µs 3,07 3,1 3,13 10 Febr. 2015 / Revision 4 10-FZ062TA099FH-P980D18/-FH01-P980D28 datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without SCR, current sense in collector with SCR, current sense in collector Ordering Code in DataMatrix as 10-FZ062TA099FH-P980D18 10-FZ062TA099FH01-P980D28 P980D18 P980D28 in packaging barcode as P980D18 P980D28 Outline # V R RM Pinout Rectifier(FZ062TA099FH) Pin nr. 21 & 24 without electrical connection Rectifier(FZ062TA099FH01) Boost stage(FZ062TA099FH & FH01) Pin nr. 7 & 12 without electrical connection copyright Vincotech 19 10 Febr. 2015 / Revision 4 10-FZ062TA099FH-P980D18/-FH01-P980D28 datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 20 10 Febr. 2015 / Revision 4