P984-D48_Adatlap_V6.5 pfc

10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48
preliminary datasheet
flow PFC 0
600 V/ 2 x 20 A / 35 kHz
Features
flow 0 housing
● Vincotech clip-in housing
● Compact and low inductance design
● Suitable for Interleaved topology
● Suitable for curent sensing in collector or in emitter
● Ultrafast boost IGBT and FRED
Target Applications
Schematic
● PFC for welding
● PFC for SMPS
● PFC for motor drives
● PFC for UPS
● PFC for battery charger
Types
FZ062TA040FB
FZ062TA040FB01
FZ062TA040FB02
FZ062TA040FB03
● FZ062TA040FB; without SCR, current sense in collector
● FZ062TA040FB01; with SCR, current sense in collector
● FZ062TA040FB02; without SCR, current sense in emitter
● FZ062TA040FB03; with SCR, current sense in emitter
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
Input Rectifier Diode
Repetitive peak reverse voltage
DC forward current
Surge forward current
VRRM
IF
Tj=Tjmax
Power dissipation per Diode
Maximum Junction Temperature
A
250
A
310
A2s
Tj=25°C
2
It
Ptot
35
Tc=80°C
IFSM
tp=10ms
I2t-value
Th=80°C
Tj=Tjmax
Th=80°C
Tc=80°C
Tjmax
40
W
150
°C
800
V
Input Rectifier Thyristor
Repetitive peak reverse voltage
DC forward current
Surge forward current
VRRM
IF
I2t
Power dissipation per Thyristor
Ptot
Copyright by Vincotech
tp=10ms
Tj=25°C
IFSM
I2t-value
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
Tj=Tjmax
Tjmax
Th=80°C
Tc=80°C
34
250
A
310
A2s
44
150
1
A
W
°C
Revision: 2
10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
PFC IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
Maximum Junction Temperature
tSC
VCC
Th=80°C
Tj=Tjmax
27
Tc=80°C
150
tp limited by Tjmax
Th=80°C
Tc=80°C
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
71
A
A
W
+/- 20
V
10
600
μs
V
150
°C
600
V
C.T. Inverse diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation per Diode
Maximum Junction Temperature
VRRM
IF
IFRM
Ptot
Tj=25°C
Th=80°C
Tc=80°C
Tj=Tjmax
16
tp limited by Tjmax
Th=80°C
Tc=80°C
Tj=Tjmax
8
Tjmax
14
A
A
W
175
°C
600
V
PFC Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
25
50
Th=80°C
Tc=80°C
Tjmax
37
A
A
W
600
°C
PFC Shunt
DC forward current
Power dissipation per Shunt
IF
Tc=25°C
44.7
A
Ptot
Tc=25°C
10
W
VMAX
Tc=25°C
500
V
DC link Capacitor
Max.DC voltage
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 2
10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Unit
Typ
Max
1.16
1.11
0.9
0.77
9
12
1.4
Input Rectifier Diode
Forward voltage
VF
30
Threshold voltage (for power loss calc. only)
Vto
30
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
30
1500
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
V
mΩ
0.02
2
Thermal grease
thickness≤50um
λ =1 W/mK
V
1.72
mA
K/W
Input Rectifier Thyristor
Forward voltage
VF
30
Threshold voltage (for power loss calc. only)
Vto
30
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Gate controlled delay time
tGD
Gate controlled rise time
tGR
Critical rate of rise of off-state voltage
Critical rate of rise of on-state current
Circuit commutated turn-off time
Holding current
Latching current
30
800
Ig=0,5A
dig/dt=0,5A/us
Ig=0,2A
dig/dt=0,2A/us
VD=1/2Vdrm
(dv/dt)cr
VD=2/3Vdrm
Ig=0,2A
(di/dt)cr
f=50Hz
VD=2/3Vdrm
tq
tp=200us
VD=6V
IH
IL
VD=2/3Vdrm 40
100
tp=10us
Ig=0,2A
VD=6V
VGT
Gate trigger current
IGT
Gate non-trigger voltage
VGD
VD=1/2Vdrm
Gate non-trigger current
IGD
VD=1/2Vdrm
RthJH
1.25
1.22
0.93
0.82
0.011
0.014
Tj=25°C
<1
VD=6V
1.6
mΩ
500
Tj=125°C
150
150
Tj=25°C
90
Tj=25°C
Tj=-40°C
Tj=25°C
Tj=-40°C
Tj=125°C
1.3
1.6
28
50
0.2
Tj=125°C
1
Thermal grease
thickness≤50um
λ = 1 W/mK
μs
V/μs
A/μs
μs
50
11
mA
μs
Tj=125°C
Tj=125°C
V
V
0.05
2
2
Tj=25°C
Gate trigger voltage
Thermal resistance chip to heatsink per chip
26
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
1.57
mA
mA
V
mA
V
mA
K/W
PFC IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
VGE(th)
Vce
0.002
VCE(sat)
50
Collector-emitter cut-off
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
Copyright by Vincotech
RthJH
3
4
5
2.74
3.25
3.3
40
3.25
0.2
n.a.
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgoff=8Ω
Rgon=8Ω
15
400
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
22
22.6
14
14.6
327.6
354.2
9.4
11.1
0.5052
0.7837
0.7981
0.968
V
V
uA
uA
Ω
ns
mWs
2572
f=1MHz
0
Tj=25°C
25
245
pF
158
15
480
Thermal grease
thickness≤50um
λ = 1 W/mK
3
50
Tj=25°C
158
nC
0.99
K/W
Revision: 2
10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
C.T. Inverse diode
Diode forward voltage
Thermal resistance chip to heatsink per chip
Tj=25°C
Tj=125°C
VF
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
1.66
1.61
V
5.12
K/W
PFC Diode
Forward voltage
Reverse leakage current
VF
Irm
Peak recovery current
IRRM
Reverse recovery time
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Erec
Peak rate of fall of recovery current
Thermal resistance chip to heatsink per chip
30
600
Rgoff=8Ω
15
400
di(rec)max
/dt
RthJH
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2.52
1.81
2.8
100
37.632
59.961
12.6
23
0.2238
0.7628
0.0115
0.1151
16814
11387
Thermal grease
thickness≤50um
λ = 1 W/mK
V
μA
A
ns
μC
mWs
A/μs
1.88
K/W
PFC Shunt
R1 value
4.7
R
5
Temperature coeficient
tc
Internal heat resistance
Rthi
< 6.5
L
<3
Inductance
5.3
< 50
20°C to 60°C
mΩ
ppm/K
K/W
nH
DC link Capacitor
C value
C
480
540
600
nF
Thermistor
Rated resistance
R
Deviation of R100
ΔR/R
Power dissipation
P
Tj=25°C
R25=22 KΩ
Tj=100°C
-5
Tj=25°C
Power dissipation
constant
kΩ
22
5
%
210
mW
Tj=25°C
3.5
mW/K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3940
K
B-value
B(25/100)
Tol. ±3%
Tj=25°C
4000
K
Copyright by Vincotech
4
Revision: 2
10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48
preliminary datasheet
PFC Switch & C.T. Inverse Diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Inverse diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
20
Inverse diode
ZthJC (K/W)
IF (A)
101
16
10
0
12
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
8
10-1
Tj = Tjmax-25°C
4
Tj = 25°C
0
10
0
tp =
1
1
2
2
3
V F (V)
10-5
μs
250
-2
3
D=
RthJH =
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Inverse diode
10-4
10-3
tp / T
5.12
K/W
10-2
10-1
100
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
t p (s)
1011
Inverse diode
12
IF (A)
Ptot (W)
40
10
32
8
24
6
16
4
8
2
0
0
0
Tj =
50
150
100
150
T h ( o C)
0
200
Tj =
ºC
Copyright by Vincotech
5
50
150
100
150
T h ( o C)
200
ºC
Revision: 2
10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48
preliminary datasheet
PFC
Figure 1
Typical output characteristics
ID = f(VDS)
PFC SWITCH
Figure 2
Typical output characteristics
ID = f(VDS)
125
PFC SWITCH
ID (A)
ID (A)
125
100
100
75
75
50
50
25
25
0
0
0
1
tp =
Tj =
VGS from
1
2
2
3
3
4
V DS
5 (V)
4
5
0
250
μs
25
°C
5 V to 15 V in steps of 1 V
1
tp =
Tj =
VGS from
Figure 3
Typical transfer characteristics
PFC SWITCH
1
2
2
3
3
4
4
30
5
250
μs
125
°C
5 V to 15 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
ID = f(VDS)
V DS5 (V)
PFC FRED
IF (A)
ID (A)
100
Tj = Tjmax-25°C
25
80
20
Tj = 25°C
60
Tj = 25°C
15
Tj = Tjmax-25°C
40
10
20
5
0
0
0
tp =
VDS =
2
250
10
3
5
6
8
V GS (V)
9
0
μs
V
Copyright by Vincotech
tp =
6
1
250
2
2
3
V F (V)
4
μs
Revision: 2
10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48
preliminary datasheet
PFC
Figure 5
Typical switching energy losses
as a function of collector current
E = f(ID)
PFC SWITCH
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
2.5
PFC SWITCH
E (mWs)
E (mWs)
2.5
2.0
2.0
Eoff
Eon
1.5
Tj = Tjmax -25°C
1.5
Eoff
Eoff
Eoff
Eon
1.0
Eon
1.0
Eon
0.5
0.5
Tj =25°C
0.0
0.0
0
20
inductive load
Tj =
25/125
VDS =
400
VGS =
15
Rgon =
8
Rgoff =
8
40
60
80
I C (A)
100
0
16
inductive load
Tj =
25/125
VDS =
400
VGS =
15
ID =
30
°C
V
V
Ω
Ω
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
PFC SWITCH
24
32
RG (Ω)
40
°C
V
V
A
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
PFC SWITCH
0.180
E (mWs)
0.350
E (mWs)
8
0.160
Erec
0.300
0.140
0.250
0.120
Tj = Tjmax - 25°C
Tj = Tjmax -25°C
0.200
0.100
0.150
0.080
Erec
0.060
0.100
0.040
Tj = 25°C
0.050
Erec
Tj = 25°C
0.020
Erec
0.000
0.000
0
inductive load
Tj =
25/125
VDS =
400
VGS =
15
Rgon =
8
Rgoff =
8
20
40
60
80
I C (A)
0
100
inductive load
Tj =
25/125
VDS =
400
VGS =
15
ID =
30
°C
V
V
Ω
Ω
Copyright by Vincotech
7
8
16
24
32
RG (Ω)
40
°C
V
V
A
Revision: 2
10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48
preliminary datasheet
PFC
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
10.000
10.000
t ( μs)
PFC SWITCH
t ( μs)
Figure 9
Typical switching times as a
function of collector current
t = f(ID)
1.000
PFC SWITCH
tdoff
1.000
tdoff
0.100
0.100
tdon
tdon
tr
0.010
tf
0.010
tr
tf
0.001
0.001
0
10
20
inductive load
Tj =
125
VDS =
400
VGS =
15
Rgon =
8
Rgoff =
8
30
40
50
60
70
80
I D90
(A)
100
0
8
inductive load
Tj =
125
VDS =
400
VGS =
15
IC =
30
°C
V
V
Ω
Ω
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
PFC FRED
16
24
32
RG (Ω)
40
°C
V
V
A
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
PFC FRED
0.06
t rr( μs)
t rr( μs)
0.04
0.05
trr
0.03
trr
0.04
0.02
0.03
Tj = Tjmax-25°C
0.02
trr
0.02
trr
0.01
0.01
0.00
Tj = 25°C
0.00
0
Tj =
VCE =
VGE =
Rgon =
10
20
25/125
400
15
8
30
40
50
60
70
80
I 90
C (A)
100
°C
V
V
Ω
Copyright by Vincotech
8
0
8
Tj =
VR =
IF =
VGS =
25/125
400
30
15
16
24
32
R gon ( Ω )
40
°C
V
A
V
Revision: 2
10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48
preliminary datasheet
PFC
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
PFC FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
2.0
PFC FRED
Qrr ( μC)
Qrr ( μC)
1.4
1.2
Qrr
1.5
1.0
Tj = Tjmax -25°C
0.8
Qrr
1.0
Tj = Tjmax - 25°C
0.6
0.5
0.4
Qrr
Tj = 25°C
Tj = 25°C
0.2
Qrr
0.0
At
0.0
0
10
Tj =
VCE =
VGE =
Rgon =
20
30
25/125
400
15
8
40
50
60
70
80
I C90(A)
100
0
8
VR =
IF =
VGS =
25/125
400
30
15
Tj =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
PFC FRED
16
24
32
R gon ( Ω)
40
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
PFC FRED
100
IrrM (A)
IrrM (A)
100
IRRM
80
80
IRRM
Tj = Tjmax - 25°C
60
60
IRRM
IRRM
40
40
Tj = 25°C
20
Tj = Tjmax -25°C
20
Tj = 25°C
0
0
0
Tj =
VCE =
VGE =
Rgon =
10
20
25/125
400
15
8
30
40
50
60
70
80
I 90
C (A)
0
100
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
9
8
25/125
400
30
15
16
24
32
R go n ( Ω ) 40
°C
V
A
V
Revision: 2
10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48
preliminary datasheet
PFC
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
PFC FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
PFC FRED
24000
direc / dt (A/ μs)
direc / dt (A/ μs)
24000
Tj = Tjmax - 25°C
dIr/dt25
20000
20000
Tj = 25°C
dIrec/dt25
TjT= =Tjmax
- 25°C
25°C
j
dIrec/dt125
16000
16000
dIr/dt125
12000
12000
8000
8000
dI0/dt25
dI0/dt25
4000
4000
dI0/dt125
dI0/dt125
0
0
0
Tj =
VCE =
VGE =
Rgon =
10
20
25/125
400
15
8
30
40
50
60
70
I C (A) 100
90
80
0
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Figure 19
IGBT/MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
PFC SWITCH
8
25/125
400
30
15
16
24
R g on ( Ω)
32
°C
V
A
V
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
PFC FRED
101
ZthJH (K/W)
ZthJH (K/W)
101
40
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
10-2
10-5
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-2
1011
10-5
tp / T
0.99
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D=
RthJH =
K/W
10-4
10-3
1.87
R (C/W)
0.049
0.198
0.559
0.129
0.030
0.022
R (C/W)
0.04
0.21
0.76
0.57
0.18
0.11
10
100
t p (s)
1011
K/W
FRED thermal model values
Copyright by Vincotech
10-1
tp / T
IGBT thermal model values
Tau (s)
4.52E+00
6.47E-01
1.37E-01
2.16E-02
2.42E-03
2.71E-04
10-2
Tau (s)
1.03E+01
9.26E-01
1.43E-01
3.47E-02
4.85E-03
6.60E-04
Revision: 2
10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48
preliminary datasheet
PFC
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
PFC SWITCH
Figure 22
Collector/Drain current as a
function of heatsink temperature
IC = f(Th)
180
PFC SWITCH
IC (A)
Ptot (W)
60
150
50
120
40
90
30
60
20
30
10
0
0
0
Tj =
50
150
100
150
T h ( o C)
200
0
Tj =
VGS =
ºC
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
PFC FRED
50
150
15
100
150
200
ºC
V
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
100
T h ( o C)
PFC FRED
IF (A)
Ptot (W)
35
30
80
25
60
20
15
40
10
20
5
0
0
0
Tj =
50
150
100
150
T h ( o C)
200
0
Tj =
ºC
Copyright by Vincotech
11
50
150
100
150
T h ( o C)
200
ºC
Revision: 2
10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48
preliminary datasheet
PFC
Figure 25
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
PFC SWITCH
Figure 26
PFC SWITCH
Gate voltage vs Gate charge
VGS = f(Qg)
3
18
ID (A)
VGS (V)
10
16
14
2
10
120V
10
100uS
1mS
10mS
480V
12
10uS
1
10
8
DC
100mS
6
100
4
2
0
0
-1
10
100
D=
Th =
VGS =
Tj =
10
2
V DS (V)
103
100
150
200
250
300
Qg (nC)
ID =
single pulse
80
ºC
V
15
Tjmax
ºC
Copyright by Vincotech
50
12
50
A
Revision: 2
10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48
preliminary datasheet
Input Rectifier Bridge
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
90
Rectifier diode
IF (A)
ZthJC (K/W)
101
75
60
0
10
45
30
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
Tj = Tjmax-25°C
15
Tj = 25°C
0
0.0
0.5
tp =
1.0
1.5
V F (V)
10-2
2.0
-5
μs
250
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Rectifier diode
-4
10
10
D=
RthJH =
1.728
-3
10
-2
10
-1
0
10
10
t p (s)
1
10 1
tp / T
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
Rectifier diode
60
IF (A)
Ptot (W)
100
50
80
40
60
30
40
20
20
10
0
0
0
Tj =
50
150
100
150
T h ( o C)
0
200
Tj =
ºC
Copyright by Vincotech
13
50
150
100
150
T h ( o C)
200
ºC
Revision: 2
10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48
preliminary datasheet
Thyristor
Figure 1
Typical thyristor forward current as
a function of forward voltage
IF= f(VF)
Thyristor
Figure 2
Thyristor transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
50
1
ZthJC (K/W)
IF (A)
10
Thyristor
40
100
30
Tj = Tjmax-25°C
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
20
10
-1
Tj = 25°C
10
0
10-2
0.0
0.3
tp =
0.6
0.9
1.2
1.5
-5
μs
250
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Thyristor
-4
10
10
D=
RthJH =
1.57
-3
10
-2
10
-1
0
10
10
1
10 1
tp / T
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
100
t p (s)
Thyristor
50
IF (A)
Ptot (W)
V F (V ) 1.8
80
40
60
30
40
20
20
10
0
0
0
Tj =
50
150
100
150
T h ( o C)
200
0
Tj =
ºC
Copyright by Vincotech
14
50
150
100
150
T h ( o C)
200
ºC
Revision: 2
10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48
preliminary datasheet
Thyristor
Figure 5
Gate trigger characteristics
Thyristor
VG(V)
102
20V;20 Ohm
75W
(0,1ms)
10
1
PG(tp)
VGT
10
25W
(8ms)
50W
(0,5ms)
0
TJ=25oC
TJ=125oC
TJ=-40oC
VGD
IGT
IGD
10-1
10-3
10-2
10-1
100
101
IG(A)
102
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
Thermistor
NTC-typical temperature characteristic
R/Ω
25000
20000
15000
10000
5000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
15
Revision: 2
10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48
preliminary datasheet
Switching Definitions PFC
General conditions
= 125 °C
Tj
= 8Ω
Rgon
Rgoff
= 8Ω
Figure 1
PFC SWITCH
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Figure 2
PFC SWITCH
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
300
130
%
%
tdoff
IC
110
90
250
VCE 90%
VGE 90%
200
70
IC
50
150
tEoff
VCE
30
100
IC 1%
tdon
10
50
-10
VCE
VGE
VGE10%
IC10%
0
-30
VGE
-50
-0.2
-0.1
0
0.1
0.2
0.3
VCE3%
tEon
0.4
-50
2.95
0.5
2.99
3.03
3.07
3.11
3.15
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
15
400
50
0.35
0.43
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Figure 3
Turn-off Switching Waveforms & definition of tf
3.19
time(us)
time (us)
PFC SWITCH
0
15
400
50
0.02
0.13
V
V
V
A
μs
μs
Figure 4
Turn-on Switching Waveforms & definition of tr
140
PFC SWITCH
260
%
%
fitted
Ic
120
VCE
IC
100
190
Ic 90%
80
Ic 60%
60
40
120
VCE
IC90%
Ic 40%
tr
20
50
Ic10%
0
-20
0.29
IC10%
tf
0.30
0.31
0.32
0.33
0.34
-20
3.01
0.35
3.02
3.03
3.04
time (us)
VC (100%) =
IC (100%) =
tf =
400
50
0.011
Copyright by Vincotech
3.05
3.06
3.07
time(us)
VC (100%) =
IC (100%) =
tr =
V
A
μs
16
400
50
0.015
V
A
μs
Revision: 2
10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48
preliminary datasheet
Switching Definitions PFC
Figure 5
Turn-off Switching Waveforms & definition of tEoff
PFC SWITCH
Figure 6
Turn-on Switching Waveforms & definition of tEon
PFC SWITCH
160
120
Eoff
100
Pon
Poff
130
Eon
80
100
60
%
70
%
40
40
20
Uge90%
-20
-0.2
tEoff
-0.1
0
Poff (100%) =
Eoff (100%) =
tEoff =
0.1
20.08
0.97
0.43
0.2
time (us)
Uce3%
Uge10%
10
0
tEon
Ic 1%
0.3
0.4
0.5
-20
2.95
0.6
3
3.1
3.15
3.2
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Figure 7
Gate voltage vs Gate charge (measured)
3.05
PFC SWITCH
20.08
0.78
0.126
kW
mJ
μs
Figure 8
Turn-off Switching Waveforms & definition of trr
20
PFC FRED
150
100
15
Id
fitted
trr
50
Uge (V)
10
0
5
Ud
IRRM10%
%
-50
0
-100
IRRM90%
-5
IRRM100%
-150
-10
-50
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
50
0
15
400
50
207.14
Copyright by Vincotech
100
Qg (nC)
150
200
-200
3.03
250
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
17
3.04
3.05
400
50
-73
0.03
3.06
3.07
time(us)
3.08
3.09
3.1
V
A
A
μs
Revision: 2
10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48
preliminary datasheet
Switching Definitions PFC
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
PFC FRED
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
PFC FRED
120
200
Id
100
Qrr
Prec
100
Erec
80
tQint
tErec
% 60
% 0
40
-100
20
-200
3.01
Id (100%) =
Qrr (100%) =
tQint =
3.03
3.05
3.07
time(us)
50
1.08
0.05
A
μC
μs
Copyright by Vincotech
3.09
3.11
0
3.01
3.13
Prec (100%) =
Erec (100%) =
tErec =
18
3.03
3.05
3.07
time(us)
20.08
0.19
0.05
kW
mJ
μs
3.09
3.11
3.13
Revision: 2
10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without SCR, current sense in collector
with SCR, current sense in collector
without SCR, current sense in emitter
with SCR, current sense in emitter
Ordering Code
in DataMatrix as
in packaging barcode as
10-FZ062TA040FB-P984D18
10-FZ062TA040FB01-P984D28
10-FZ062TA040FB02-P984D38
10-FZ062TA040FB03-P984D48
P984D18
P984D28
P984D38
P984D48
P984D18
P984D28
P984D38
P984D48
Outline
Pinout
Rectifier(FZ062TA040FB & FB02)
Boost stage(FZ062TA040FB & FB01)
Pin nr. 21 & 24 without electrical connection
Pin nr. 7 & 12 without electrical connection
Rectifier(FZ062TA040FB01 & FB03)
Boost stage(FZ062TA040FB02 & FB03)
Pin nr. 7 & 12 without electrical connection
Copyright by Vincotech
19
Revision: 2
10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
20
Revision: 2