10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48 preliminary datasheet flow PFC 0 600 V/ 2 x 20 A / 35 kHz Features flow 0 housing ● Vincotech clip-in housing ● Compact and low inductance design ● Suitable for Interleaved topology ● Suitable for curent sensing in collector or in emitter ● Ultrafast boost IGBT and FRED Target Applications Schematic ● PFC for welding ● PFC for SMPS ● PFC for motor drives ● PFC for UPS ● PFC for battery charger Types FZ062TA040FB FZ062TA040FB01 FZ062TA040FB02 FZ062TA040FB03 ● FZ062TA040FB; without SCR, current sense in collector ● FZ062TA040FB01; with SCR, current sense in collector ● FZ062TA040FB02; without SCR, current sense in emitter ● FZ062TA040FB03; with SCR, current sense in emitter Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V Input Rectifier Diode Repetitive peak reverse voltage DC forward current Surge forward current VRRM IF Tj=Tjmax Power dissipation per Diode Maximum Junction Temperature A 250 A 310 A2s Tj=25°C 2 It Ptot 35 Tc=80°C IFSM tp=10ms I2t-value Th=80°C Tj=Tjmax Th=80°C Tc=80°C Tjmax 40 W 150 °C 800 V Input Rectifier Thyristor Repetitive peak reverse voltage DC forward current Surge forward current VRRM IF I2t Power dissipation per Thyristor Ptot Copyright by Vincotech tp=10ms Tj=25°C IFSM I2t-value Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C Tj=Tjmax Tjmax Th=80°C Tc=80°C 34 250 A 310 A2s 44 150 1 A W °C Revision: 2 10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48 preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V PFC IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings Maximum Junction Temperature tSC VCC Th=80°C Tj=Tjmax 27 Tc=80°C 150 tp limited by Tjmax Th=80°C Tc=80°C Tj=Tjmax Tj≤150°C VGE=15V Tjmax 71 A A W +/- 20 V 10 600 μs V 150 °C 600 V C.T. Inverse diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation per Diode Maximum Junction Temperature VRRM IF IFRM Ptot Tj=25°C Th=80°C Tc=80°C Tj=Tjmax 16 tp limited by Tjmax Th=80°C Tc=80°C Tj=Tjmax 8 Tjmax 14 A A W 175 °C 600 V PFC Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature 25 50 Th=80°C Tc=80°C Tjmax 37 A A W 600 °C PFC Shunt DC forward current Power dissipation per Shunt IF Tc=25°C 44.7 A Ptot Tc=25°C 10 W VMAX Tc=25°C 500 V DC link Capacitor Max.DC voltage Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 2 10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Unit Typ Max 1.16 1.11 0.9 0.77 9 12 1.4 Input Rectifier Diode Forward voltage VF 30 Threshold voltage (for power loss calc. only) Vto 30 Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink per chip RthJH 30 1500 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=150°C V mΩ 0.02 2 Thermal grease thickness≤50um λ =1 W/mK V 1.72 mA K/W Input Rectifier Thyristor Forward voltage VF 30 Threshold voltage (for power loss calc. only) Vto 30 Slope resistance (for power loss calc. only) rt Reverse current Ir Gate controlled delay time tGD Gate controlled rise time tGR Critical rate of rise of off-state voltage Critical rate of rise of on-state current Circuit commutated turn-off time Holding current Latching current 30 800 Ig=0,5A dig/dt=0,5A/us Ig=0,2A dig/dt=0,2A/us VD=1/2Vdrm (dv/dt)cr VD=2/3Vdrm Ig=0,2A (di/dt)cr f=50Hz VD=2/3Vdrm tq tp=200us VD=6V IH IL VD=2/3Vdrm 40 100 tp=10us Ig=0,2A VD=6V VGT Gate trigger current IGT Gate non-trigger voltage VGD VD=1/2Vdrm Gate non-trigger current IGD VD=1/2Vdrm RthJH 1.25 1.22 0.93 0.82 0.011 0.014 Tj=25°C <1 VD=6V 1.6 mΩ 500 Tj=125°C 150 150 Tj=25°C 90 Tj=25°C Tj=-40°C Tj=25°C Tj=-40°C Tj=125°C 1.3 1.6 28 50 0.2 Tj=125°C 1 Thermal grease thickness≤50um λ = 1 W/mK μs V/μs A/μs μs 50 11 mA μs Tj=125°C Tj=125°C V V 0.05 2 2 Tj=25°C Gate trigger voltage Thermal resistance chip to heatsink per chip 26 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C 1.57 mA mA V mA V mA K/W PFC IGBT Gate emitter threshold voltage Collector-emitter saturation voltage VGE(th) Vce 0.002 VCE(sat) 50 Collector-emitter cut-off ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip Copyright by Vincotech RthJH 3 4 5 2.74 3.25 3.3 40 3.25 0.2 n.a. tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Rgoff=8Ω Rgon=8Ω 15 400 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 22 22.6 14 14.6 327.6 354.2 9.4 11.1 0.5052 0.7837 0.7981 0.968 V V uA uA Ω ns mWs 2572 f=1MHz 0 Tj=25°C 25 245 pF 158 15 480 Thermal grease thickness≤50um λ = 1 W/mK 3 50 Tj=25°C 158 nC 0.99 K/W Revision: 2 10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max C.T. Inverse diode Diode forward voltage Thermal resistance chip to heatsink per chip Tj=25°C Tj=125°C VF RthJH Thermal grease thickness≤50um λ = 1 W/mK 1.66 1.61 V 5.12 K/W PFC Diode Forward voltage Reverse leakage current VF Irm Peak recovery current IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Erec Peak rate of fall of recovery current Thermal resistance chip to heatsink per chip 30 600 Rgoff=8Ω 15 400 di(rec)max /dt RthJH 30 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2.52 1.81 2.8 100 37.632 59.961 12.6 23 0.2238 0.7628 0.0115 0.1151 16814 11387 Thermal grease thickness≤50um λ = 1 W/mK V μA A ns μC mWs A/μs 1.88 K/W PFC Shunt R1 value 4.7 R 5 Temperature coeficient tc Internal heat resistance Rthi < 6.5 L <3 Inductance 5.3 < 50 20°C to 60°C mΩ ppm/K K/W nH DC link Capacitor C value C 480 540 600 nF Thermistor Rated resistance R Deviation of R100 ΔR/R Power dissipation P Tj=25°C R25=22 KΩ Tj=100°C -5 Tj=25°C Power dissipation constant kΩ 22 5 % 210 mW Tj=25°C 3.5 mW/K B-value B(25/50) Tol. ±3% Tj=25°C 3940 K B-value B(25/100) Tol. ±3% Tj=25°C 4000 K Copyright by Vincotech 4 Revision: 2 10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48 preliminary datasheet PFC Switch & C.T. Inverse Diode Figure 1 Typical diode forward current as a function of forward voltage IF = f(VF) Inverse diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 20 Inverse diode ZthJC (K/W) IF (A) 101 16 10 0 12 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 8 10-1 Tj = Tjmax-25°C 4 Tj = 25°C 0 10 0 tp = 1 1 2 2 3 V F (V) 10-5 μs 250 -2 3 D= RthJH = Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) Inverse diode 10-4 10-3 tp / T 5.12 K/W 10-2 10-1 100 Figure 4 Forward current as a function of heatsink temperature IF = f(Th) t p (s) 1011 Inverse diode 12 IF (A) Ptot (W) 40 10 32 8 24 6 16 4 8 2 0 0 0 Tj = 50 150 100 150 T h ( o C) 0 200 Tj = ºC Copyright by Vincotech 5 50 150 100 150 T h ( o C) 200 ºC Revision: 2 10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48 preliminary datasheet PFC Figure 1 Typical output characteristics ID = f(VDS) PFC SWITCH Figure 2 Typical output characteristics ID = f(VDS) 125 PFC SWITCH ID (A) ID (A) 125 100 100 75 75 50 50 25 25 0 0 0 1 tp = Tj = VGS from 1 2 2 3 3 4 V DS 5 (V) 4 5 0 250 μs 25 °C 5 V to 15 V in steps of 1 V 1 tp = Tj = VGS from Figure 3 Typical transfer characteristics PFC SWITCH 1 2 2 3 3 4 4 30 5 250 μs 125 °C 5 V to 15 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) ID = f(VDS) V DS5 (V) PFC FRED IF (A) ID (A) 100 Tj = Tjmax-25°C 25 80 20 Tj = 25°C 60 Tj = 25°C 15 Tj = Tjmax-25°C 40 10 20 5 0 0 0 tp = VDS = 2 250 10 3 5 6 8 V GS (V) 9 0 μs V Copyright by Vincotech tp = 6 1 250 2 2 3 V F (V) 4 μs Revision: 2 10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48 preliminary datasheet PFC Figure 5 Typical switching energy losses as a function of collector current E = f(ID) PFC SWITCH Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 2.5 PFC SWITCH E (mWs) E (mWs) 2.5 2.0 2.0 Eoff Eon 1.5 Tj = Tjmax -25°C 1.5 Eoff Eoff Eoff Eon 1.0 Eon 1.0 Eon 0.5 0.5 Tj =25°C 0.0 0.0 0 20 inductive load Tj = 25/125 VDS = 400 VGS = 15 Rgon = 8 Rgoff = 8 40 60 80 I C (A) 100 0 16 inductive load Tj = 25/125 VDS = 400 VGS = 15 ID = 30 °C V V Ω Ω Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) PFC SWITCH 24 32 RG (Ω) 40 °C V V A Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) PFC SWITCH 0.180 E (mWs) 0.350 E (mWs) 8 0.160 Erec 0.300 0.140 0.250 0.120 Tj = Tjmax - 25°C Tj = Tjmax -25°C 0.200 0.100 0.150 0.080 Erec 0.060 0.100 0.040 Tj = 25°C 0.050 Erec Tj = 25°C 0.020 Erec 0.000 0.000 0 inductive load Tj = 25/125 VDS = 400 VGS = 15 Rgon = 8 Rgoff = 8 20 40 60 80 I C (A) 0 100 inductive load Tj = 25/125 VDS = 400 VGS = 15 ID = 30 °C V V Ω Ω Copyright by Vincotech 7 8 16 24 32 RG (Ω) 40 °C V V A Revision: 2 10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48 preliminary datasheet PFC Figure 10 Typical switching times as a function of gate resistor t = f(RG) 10.000 10.000 t ( μs) PFC SWITCH t ( μs) Figure 9 Typical switching times as a function of collector current t = f(ID) 1.000 PFC SWITCH tdoff 1.000 tdoff 0.100 0.100 tdon tdon tr 0.010 tf 0.010 tr tf 0.001 0.001 0 10 20 inductive load Tj = 125 VDS = 400 VGS = 15 Rgon = 8 Rgoff = 8 30 40 50 60 70 80 I D90 (A) 100 0 8 inductive load Tj = 125 VDS = 400 VGS = 15 IC = 30 °C V V Ω Ω Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) PFC FRED 16 24 32 RG (Ω) 40 °C V V A Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) PFC FRED 0.06 t rr( μs) t rr( μs) 0.04 0.05 trr 0.03 trr 0.04 0.02 0.03 Tj = Tjmax-25°C 0.02 trr 0.02 trr 0.01 0.01 0.00 Tj = 25°C 0.00 0 Tj = VCE = VGE = Rgon = 10 20 25/125 400 15 8 30 40 50 60 70 80 I 90 C (A) 100 °C V V Ω Copyright by Vincotech 8 0 8 Tj = VR = IF = VGS = 25/125 400 30 15 16 24 32 R gon ( Ω ) 40 °C V A V Revision: 2 10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48 preliminary datasheet PFC Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) PFC FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 2.0 PFC FRED Qrr ( μC) Qrr ( μC) 1.4 1.2 Qrr 1.5 1.0 Tj = Tjmax -25°C 0.8 Qrr 1.0 Tj = Tjmax - 25°C 0.6 0.5 0.4 Qrr Tj = 25°C Tj = 25°C 0.2 Qrr 0.0 At 0.0 0 10 Tj = VCE = VGE = Rgon = 20 30 25/125 400 15 8 40 50 60 70 80 I C90(A) 100 0 8 VR = IF = VGS = 25/125 400 30 15 Tj = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) PFC FRED 16 24 32 R gon ( Ω) 40 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) PFC FRED 100 IrrM (A) IrrM (A) 100 IRRM 80 80 IRRM Tj = Tjmax - 25°C 60 60 IRRM IRRM 40 40 Tj = 25°C 20 Tj = Tjmax -25°C 20 Tj = 25°C 0 0 0 Tj = VCE = VGE = Rgon = 10 20 25/125 400 15 8 30 40 50 60 70 80 I 90 C (A) 0 100 Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 9 8 25/125 400 30 15 16 24 32 R go n ( Ω ) 40 °C V A V Revision: 2 10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48 preliminary datasheet PFC Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) PFC FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) PFC FRED 24000 direc / dt (A/ μs) direc / dt (A/ μs) 24000 Tj = Tjmax - 25°C dIr/dt25 20000 20000 Tj = 25°C dIrec/dt25 TjT= =Tjmax - 25°C 25°C j dIrec/dt125 16000 16000 dIr/dt125 12000 12000 8000 8000 dI0/dt25 dI0/dt25 4000 4000 dI0/dt125 dI0/dt125 0 0 0 Tj = VCE = VGE = Rgon = 10 20 25/125 400 15 8 30 40 50 60 70 I C (A) 100 90 80 0 Tj = VR = IF = VGS = °C V V Ω Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) PFC SWITCH 8 25/125 400 30 15 16 24 R g on ( Ω) 32 °C V A V Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) PFC FRED 101 ZthJH (K/W) ZthJH (K/W) 101 40 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 10-2 10-5 D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-2 1011 10-5 tp / T 0.99 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D= RthJH = K/W 10-4 10-3 1.87 R (C/W) 0.049 0.198 0.559 0.129 0.030 0.022 R (C/W) 0.04 0.21 0.76 0.57 0.18 0.11 10 100 t p (s) 1011 K/W FRED thermal model values Copyright by Vincotech 10-1 tp / T IGBT thermal model values Tau (s) 4.52E+00 6.47E-01 1.37E-01 2.16E-02 2.42E-03 2.71E-04 10-2 Tau (s) 1.03E+01 9.26E-01 1.43E-01 3.47E-02 4.85E-03 6.60E-04 Revision: 2 10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48 preliminary datasheet PFC Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) PFC SWITCH Figure 22 Collector/Drain current as a function of heatsink temperature IC = f(Th) 180 PFC SWITCH IC (A) Ptot (W) 60 150 50 120 40 90 30 60 20 30 10 0 0 0 Tj = 50 150 100 150 T h ( o C) 200 0 Tj = VGS = ºC Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) PFC FRED 50 150 15 100 150 200 ºC V Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 100 T h ( o C) PFC FRED IF (A) Ptot (W) 35 30 80 25 60 20 15 40 10 20 5 0 0 0 Tj = 50 150 100 150 T h ( o C) 200 0 Tj = ºC Copyright by Vincotech 11 50 150 100 150 T h ( o C) 200 ºC Revision: 2 10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48 preliminary datasheet PFC Figure 25 Safe operating area as a function of drain-source voltage ID = f(VDS) PFC SWITCH Figure 26 PFC SWITCH Gate voltage vs Gate charge VGS = f(Qg) 3 18 ID (A) VGS (V) 10 16 14 2 10 120V 10 100uS 1mS 10mS 480V 12 10uS 1 10 8 DC 100mS 6 100 4 2 0 0 -1 10 100 D= Th = VGS = Tj = 10 2 V DS (V) 103 100 150 200 250 300 Qg (nC) ID = single pulse 80 ºC V 15 Tjmax ºC Copyright by Vincotech 50 12 50 A Revision: 2 10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48 preliminary datasheet Input Rectifier Bridge Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 90 Rectifier diode IF (A) ZthJC (K/W) 101 75 60 0 10 45 30 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 Tj = Tjmax-25°C 15 Tj = 25°C 0 0.0 0.5 tp = 1.0 1.5 V F (V) 10-2 2.0 -5 μs 250 Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) Rectifier diode -4 10 10 D= RthJH = 1.728 -3 10 -2 10 -1 0 10 10 t p (s) 1 10 1 tp / T K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) Rectifier diode 60 IF (A) Ptot (W) 100 50 80 40 60 30 40 20 20 10 0 0 0 Tj = 50 150 100 150 T h ( o C) 0 200 Tj = ºC Copyright by Vincotech 13 50 150 100 150 T h ( o C) 200 ºC Revision: 2 10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48 preliminary datasheet Thyristor Figure 1 Typical thyristor forward current as a function of forward voltage IF= f(VF) Thyristor Figure 2 Thyristor transient thermal impedance as a function of pulse width ZthJH = f(tp) 50 1 ZthJC (K/W) IF (A) 10 Thyristor 40 100 30 Tj = Tjmax-25°C D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 20 10 -1 Tj = 25°C 10 0 10-2 0.0 0.3 tp = 0.6 0.9 1.2 1.5 -5 μs 250 Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) Thyristor -4 10 10 D= RthJH = 1.57 -3 10 -2 10 -1 0 10 10 1 10 1 tp / T K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 100 t p (s) Thyristor 50 IF (A) Ptot (W) V F (V ) 1.8 80 40 60 30 40 20 20 10 0 0 0 Tj = 50 150 100 150 T h ( o C) 200 0 Tj = ºC Copyright by Vincotech 14 50 150 100 150 T h ( o C) 200 ºC Revision: 2 10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48 preliminary datasheet Thyristor Figure 5 Gate trigger characteristics Thyristor VG(V) 102 20V;20 Ohm 75W (0,1ms) 10 1 PG(tp) VGT 10 25W (8ms) 50W (0,5ms) 0 TJ=25oC TJ=125oC TJ=-40oC VGD IGT IGD 10-1 10-3 10-2 10-1 100 101 IG(A) 102 Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) Thermistor NTC-typical temperature characteristic R/Ω 25000 20000 15000 10000 5000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 15 Revision: 2 10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48 preliminary datasheet Switching Definitions PFC General conditions = 125 °C Tj = 8Ω Rgon Rgoff = 8Ω Figure 1 PFC SWITCH Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Figure 2 PFC SWITCH Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 300 130 % % tdoff IC 110 90 250 VCE 90% VGE 90% 200 70 IC 50 150 tEoff VCE 30 100 IC 1% tdon 10 50 -10 VCE VGE VGE10% IC10% 0 -30 VGE -50 -0.2 -0.1 0 0.1 0.2 0.3 VCE3% tEon 0.4 -50 2.95 0.5 2.99 3.03 3.07 3.11 3.15 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 15 400 50 0.35 0.43 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A μs μs Figure 3 Turn-off Switching Waveforms & definition of tf 3.19 time(us) time (us) PFC SWITCH 0 15 400 50 0.02 0.13 V V V A μs μs Figure 4 Turn-on Switching Waveforms & definition of tr 140 PFC SWITCH 260 % % fitted Ic 120 VCE IC 100 190 Ic 90% 80 Ic 60% 60 40 120 VCE IC90% Ic 40% tr 20 50 Ic10% 0 -20 0.29 IC10% tf 0.30 0.31 0.32 0.33 0.34 -20 3.01 0.35 3.02 3.03 3.04 time (us) VC (100%) = IC (100%) = tf = 400 50 0.011 Copyright by Vincotech 3.05 3.06 3.07 time(us) VC (100%) = IC (100%) = tr = V A μs 16 400 50 0.015 V A μs Revision: 2 10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48 preliminary datasheet Switching Definitions PFC Figure 5 Turn-off Switching Waveforms & definition of tEoff PFC SWITCH Figure 6 Turn-on Switching Waveforms & definition of tEon PFC SWITCH 160 120 Eoff 100 Pon Poff 130 Eon 80 100 60 % 70 % 40 40 20 Uge90% -20 -0.2 tEoff -0.1 0 Poff (100%) = Eoff (100%) = tEoff = 0.1 20.08 0.97 0.43 0.2 time (us) Uce3% Uge10% 10 0 tEon Ic 1% 0.3 0.4 0.5 -20 2.95 0.6 3 3.1 3.15 3.2 time(us) Pon (100%) = Eon (100%) = tEon = kW mJ μs Figure 7 Gate voltage vs Gate charge (measured) 3.05 PFC SWITCH 20.08 0.78 0.126 kW mJ μs Figure 8 Turn-off Switching Waveforms & definition of trr 20 PFC FRED 150 100 15 Id fitted trr 50 Uge (V) 10 0 5 Ud IRRM10% % -50 0 -100 IRRM90% -5 IRRM100% -150 -10 -50 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 50 0 15 400 50 207.14 Copyright by Vincotech 100 Qg (nC) 150 200 -200 3.03 250 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 17 3.04 3.05 400 50 -73 0.03 3.06 3.07 time(us) 3.08 3.09 3.1 V A A μs Revision: 2 10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48 preliminary datasheet Switching Definitions PFC Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) PFC FRED Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) PFC FRED 120 200 Id 100 Qrr Prec 100 Erec 80 tQint tErec % 60 % 0 40 -100 20 -200 3.01 Id (100%) = Qrr (100%) = tQint = 3.03 3.05 3.07 time(us) 50 1.08 0.05 A μC μs Copyright by Vincotech 3.09 3.11 0 3.01 3.13 Prec (100%) = Erec (100%) = tErec = 18 3.03 3.05 3.07 time(us) 20.08 0.19 0.05 kW mJ μs 3.09 3.11 3.13 Revision: 2 10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without SCR, current sense in collector with SCR, current sense in collector without SCR, current sense in emitter with SCR, current sense in emitter Ordering Code in DataMatrix as in packaging barcode as 10-FZ062TA040FB-P984D18 10-FZ062TA040FB01-P984D28 10-FZ062TA040FB02-P984D38 10-FZ062TA040FB03-P984D48 P984D18 P984D28 P984D38 P984D48 P984D18 P984D28 P984D38 P984D48 Outline Pinout Rectifier(FZ062TA040FB & FB02) Boost stage(FZ062TA040FB & FB01) Pin nr. 21 & 24 without electrical connection Pin nr. 7 & 12 without electrical connection Rectifier(FZ062TA040FB01 & FB03) Boost stage(FZ062TA040FB02 & FB03) Pin nr. 7 & 12 without electrical connection Copyright by Vincotech 19 Revision: 2 10-FZ062TA040FB-P984D18/-FB01-P984D28/-FB02-P984D38/-FB03-P984D48 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 20 Revision: 2