V23990-P669-F02-PM flow PHASE 3 Maximum Ratings

V23990-P669-F02-PM
final datasheet
flow PHASE 3
1200V/300A
Features
flow SCREW3 housing
● High Power screw contacts
● Low loss Trench Fieldstop Technology IGBT
● High Current Density FRED
Target Applications
Schematic
● Motor Drives
● Power Generation
● Uninterruptable Power Supply
Types
● V23990-P660-F02
● V23990-P669-F02
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
Th=80°C
Tc=80°C
265
344
A
900
A
Th=80°C
Tc=80°C
580
879
W
±20
V
10
900
μs
V
Transistor Inverter
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpuls
Tj=Tjmax
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tjmax
150
°C
VRRM
1200
V
219
288
A
600
A
371
562
W
150
°C
Tj=Tjmax
Tj≤125°C
VGE=15V
Diode Inverter
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Tjmax
Copyright by Vincotech
1
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
V23990-P669-F02-PM
final datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature
Tjop
-40…+125
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 1
V23990-P669-F02-PM
final datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE(V) or
VGS(V)
Vr(V) or
VCE(V) or
VDS(V)
Value
IC(A) or IF(A)
T(°C)
or ID(A)
Unit
Min
Typ
Max
5
5,8
6,5
1,3
1,97
2,31
2,3
Transistor Inverter
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
30
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
Thermal resistance chip to case per chip
0,012
300
RthJH
RthJC
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
0,25
650
Rgoff=2 Ω
Rgon=2 Ω
f=1MHz
±15
600
0
300
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
ns
563,6
ns
165,6
mWs
22,0
mWs
35,4
Thermal grease
thickness≤50um
λ = 0,61 W/mK
nA
ns
42,6
Tj=25°C
±15
V
mA
ns
344
Tj=25°C
25
V
Ohm
2,5
tr
td(off)
tf
Fall time
VCE=VGE
21,6
nF
1,131
nF
0,981
nF
3700
nC
0,124
K/W
0,082
K/W
Diode Inverter
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
Thermal resistance chip to case per chip
300
Rgon=2 Ω
±15
600
300
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
ns
mC
57,37
A/ms
6228
mWs
24,766
Thermal grease
thickness≤50um
λ = 0,61 W/mK
V
A
335,6
Tj=25°C
Tj=125°C
Erec
RthJC
2,4
445,56
di(rec)max
/dt
RthJH
1,87
1,93
0,193
K/W
0,127
K/W
Thermistor
Rated resistance
Deviation of R100
Power dissipation given Epcos-Typ
R25
DR/R
Copyright by Vincotech
Tc=100°C
R100=435Ω
4,2
4,7
Tj=25°C
Tol. ±3%
3
5,8
2,6
Tj=25°C
P
B(25/100)
B-value
Tj=25°C
Tol. ±5%
%/K
210
3530
kOhm
mW
K
Revision: 1
V23990-P669-F02-PM
final datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
1000
IC (A)
IC (A)
900
750
800
600
600
450
400
300
200
150
0
0
0
1
2
3
4
VCE (V)
0
5
At
tp =
Tj =
1
2
3
4
VCE (V)
5
At
tp =
Tj =
250
μs
25
°C
VGE from 8 V to 17 V in steps of 1 V
250
μs
125
°C
VGE from 8 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
Ic = f(VGE)
Output inverter FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
300
IF (A)
IC (A)
1000
250
800
25 oC
125 oC
25 oC
200
600
125 oC
150
400
100
200
50
0
0
0
At
tp =
VCE =
3
250
10
6
9
V GE (V)
12
0
At
tp =
μs
V
Copyright by Vincotech
4
1
250
2
3
VF (V)
4
μs
Revision: 1
V23990-P669-F02-PM
final datasheet
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(Ic)
70
70
E (mWs)
E (mWs)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eoff
60
60
Eon
50
50
40
40
Erec
30
Eoff
30
Eon
Erec
20
20
10
10
0
0
0
100
200
300
400
500
I C (A)
0
600
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
2
Ω
Rgoff =
2
Ω
2
4
6
RG(Ω)
8
10
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
IC =
300
A
Output inverter IGBT
Figure 7
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 8
Typical switching times as a
function of gate resistor
t = f(RG)
1
1
tdoff
t ( μs)
t ( μs)
tdoff
tdon
tdon
tf
0,1
0,1
tf
tr
tr
0,01
0,01
0,001
0,001
0
100
200
300
400
500
IC (A)
0
600
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
Rgon =
2
Ω
Rgoff =
2
Ω
Copyright by Vincotech
2
4
6
8
RG (Ω )
10
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
±15
V
IC =
300
A
5
Revision: 1
V23990-P669-F02-PM
final datasheet
Output Inverter
Figure 9
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
Output inverter FRED diode
Figure 10
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
0,7
Output inverter FRED diode
IrrM (A)
t rr( μs)
600
0,6
500
0,5
400
0,4
300
0,3
200
0,2
100
0,1
0
0
0
At
Tj =
VR =
IF =
VGE =
2
125
600
300
±15
4
8
R Gon ( Ω )
10
0
2
At
Tj =
VR =
IF =
VGE =
°C
V
A
V
Figure 11
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Output inverter FRED diode
4
125
600
300
±15
6
R Gon ( Ω )
8
10
°C
V
A
V
Figure 12
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
Output inverter FRED diode
15000
70
direc / dt (A/ μs)
Qrr ( μC)
6
60
12500
50
10000
40
7500
dI0/dt
30
5000
20
dIrec/dt
2500
10
0
0
0
At
Tj =
VR =
IF =
VGE =
2
125
600
300
±15
4
6
8
R Gon ( Ω)
0
10
At
Tj =
VR =
IF =
VGE =
°C
V
A
V
Copyright by Vincotech
6
2
125
600
300
±15
4
6
8
R Gon ( Ω)
10
°C
V
A
V
Revision: 1
V23990-P669-F02-PM
final datasheet
Output Inverter
Figure 13
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
0
10
ZthJH (K/W)
ZthJH (K/W)
10
Figure 14
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
-1
-1
10
10-2
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-3
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-3
-4
-4
10
10-5
10-4
With
D=
RthJH =
tp / T
0,12
10-3
10-2
10-1
100
t p (s)
1011
10-5
With
D=
RthJH =
K/W
10-4
10-3
tp / T
0,19
K/W
IGBT thermal model values
FRED thermal model values
R (C/W)
0,02
0,02
0,03
0,03
0,01
R (C/W)
0,02
0,03
0,05
0,08
0,02
0,01
Tau (s)
4,9E+00
6,3E-01
1,2E-01
2,4E-02
1,2E-03
Copyright by Vincotech
7
10-2
10-1
100
t p (s)
1011
Tau (s)
9,9E+00
1,7E+00
2,0E-01
3,6E-02
7,8E-03
6,3E-04
Revision: 1
V23990-P669-F02-PM
final datasheet
Output Inverter
Output inverter IGBT
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 16
Collector current as a
function of heatsink temperature
IC = f(Th)
500
IC (A)
Ptot (W)
1400
1200
400
1000
300
800
600
200
400
100
200
0
0
0
At
Tj =
50
150
100
150
Th ( o C)
0
200
At
Tj =
°C
150
15
VGE =
Output inverter FRED
Figure 17
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
100
150
Th ( o C)
200
°C
V
Output inverter FRED
Figure 18
Forward current as a
function of heatsink temperature
IF = f(Th)
500
IF (A)
Ptot (W)
1000
800
400
600
300
400
200
200
100
0
0
0
At
Tj =
50
150
100
150
Th ( o C)
200
0
At
Tj =
°C
Copyright by Vincotech
8
50
150
100
150
Th ( o C)
200
°C
Revision: 1
V23990-P669-F02-PM
final datasheet
Thermistor
Thermistor
Figure 19
Typical NTC characteristic
as a function of temperature
RT = f (T)
NTC-typical temperature characteristic
R/Ω
5000
4000
3000
2000
1000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
9
Revision: 1
V23990-P669-F02-PM
final datasheet
Switching Definitions Output Inverter
General conditions
= 125 °C
Tj
= 2Ω
Rgon
Rgoff
= 2Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
250
140
Ic
tdoff
120
200
100
Uce 90%
Uge 90%
80
150
Ic
60
%
%
Uce
100
tEoff
40
Uge
tdon
Ic 1%
20
50
0
Uge10%
Uge
Uce
Uce3%
Ic10%
0
-20
tEon
-40
-0,4
-50
-0,2
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
0,4
time (us)
-15
15
600
297
0,55
0,82
0,6
0,8
1
1,2
2,6
2,8
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
Output inverter IGBT
Figure 3
3,2
-15
15
600
297
0,35
0,7
3,4
time(us)
3,6
4
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,8
Turn-on Switching Waveforms & definition of tr
260
140
Ic
fitted
120
220
Uce
Ic
100
180
Ic 90%
80
140
Ic 60%
% 60
%
Uce
100
40
Ic90%
Ic 40%
tr
60
20
Ic10%
tf
0
20
Ic10%
-20
-20
0,4
VC (100%) =
IC (100%) =
tf =
0,5
0,6
0,7
time (us)
600
297
0,156
V
A
μs
Copyright by Vincotech
0,8
0,9
1
3
VC (100%) =
IC (100%) =
tr =
10
3,1
3,2
3,3
600
297
0,039
3,4
time(us)
3,5
3,6
3,7
3,8
V
A
μs
Revision: 1
V23990-P669-F02-PM
final datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
140
Eoff
Poff
120
100
Pon
Eon
100
80
80
60
60
%
%
40
40
20
20
0
Uge10%
Uce3%
0
Uge90%
-20
-0,4
tEoff
tEon
Ic 1%
-20
-0,2
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
178,38
34,48
0,82
0,4
time (us)
0,6
0,8
1
2,8
1,2
3
3,2
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Output inverter IGBT
Figure 7
3,4
time(us)
178,3788
22,24
0,7
3,6
4
kW
mJ
μs
Output inverter FRED
Figure 8
Gate voltage vs Gate charge
3,8
Turn-off Switching Waveforms & definition of trr
20
120
15
80
10
40
5
0
0
% -40
-5
-80
-10
-120
-15
-160
Id
trr
Uge (V)
fitted
Ud
-20
-500
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
IRRM10%
IRRM90%
IRRM100%
-200
0
500
1000
-15
15
600
297
3165,9
Copyright by Vincotech
1500
Qg (nC)
2000
2500
3000
3500
3
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
11
3,2
3,4
600
297
-453
0,332
time(us)
3,6
3,8
4
V
A
A
μs
Revision: 1
V23990-P669-F02-PM
final datasheet
Switching Definitions Output Inverter
Output inverter FRED
Figure 9
Output inverter FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
150
Id
Erec
Prec
Qrr
100
100
80
50
tQint
0
tErec
60
%
%
-50
40
-100
20
-150
0
-200
-20
3
Id (100%) =
Qrr (100%) =
tQint =
3,2
3,4
297
57,495
0,70
Copyright by Vincotech
3,6
time(us)
3,8
4
4,2
4,4
3
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
12
3,2
3,4
3,6
178,3788
24,808
0,70
time(us)
3,8
4
4,2
4,4
kW
mJ
μs
Revision: 1
V23990-P669-F02-PM
final datasheet
Package Outline and Pinout
Outline
Pinout
Copyright by Vincotech
13
Revision: 1
V23990-P669-F02-PM
final datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
14
Revision: 1
V23990-P669-F02-PM
final datasheet
Output Inverter Application
flowPHASE 3
1200V/300A
General conditions
3phase SPWM
VGEon = 15 V
VGEoff = -15 V
Rgon = 2 Ω
Rgoff = 2 Ω
IGBT
Figure 1
FRED
Figure 2
Typical average static loss as a function of output current
Ploss = f(Iout)
Typical average static loss as a function of output current
Ploss = f(Iout)
450
Ploss (W)
Ploss (W)
600
Mi*cosfi=1
500
400
Mi*cosfi=-1
350
300
400
250
300
200
150
200
100
100
50
Mi*cosfi=1
Mi*cosfi=-1
0
0
0
50
100
150
200
250
300
350
400
Iout (A)
0
450
At
Tj=125°C
Mi*cosfi from -1 to 1 in steps of 0,2
100
150
200
250
300
350
400
Iout (A)
450
At
Tj=125°C
Mi*cosfi from -1 to 1 in steps of -0,2
IGBT
Figure 3
Typical average switching loss
as a function of output current
FRED
Figure 4
Typical average switching loss
as a function of output current
Ploss = f(Iout)
Ploss (W)
Ploss (W)
50
600,0
Ploss = f(Iout)
250,0
fsw=16kHz
fsw=16kHz
500,0
200,0
400,0
150,0
300,0
100,0
200,0
50,0
100,0
fsw=2kHz
fsw=2kHz
0,0
0,0
0
At
Tj =
50
125
100
150
200
250
300
350
0
400
Iout (A) 450
At
Tj =
°C
DC link = 600
V
fsw from 2 kHz to 16 kHz in 2 steps
Copyright by Vincotech
50
125
100
150
200
250
300
350
400
450
Iout (A)
°C
DC link = 600
V
fsw from 2 kHz to 16 kHz in 2 steps
15
Revision: 1
V23990-P669-F02-PM
final datasheet
Output Inverter Application
flowPHASE 3
Phase
Figure 5
Typical available 50Hz output current
as a function Mi*cosfi
Typical available 50Hz output current
as a function of switching frequency
Iout = f(Mi*cosfi)
Iout (A)
Iout (A)
Th=60°C
Th=60°C
400
350
300
300
250
250
Th=100°C
Iout = f(fsw)
450
350
200
Phase
Figure 6
450
400
1200V/300A
200
150
150
100
100
50
50
Th=100°C
0
0
-1,0
-0,8
At
Tj =
125
-0,6
-0,4
-0,2
0,0
0,2
0,4
0,6
0,8
1,0
Mi*cosfi
1
At
Tj =
°C
DC link = 600
V
fsw =
4
kHz
Th from 60 °C to 100 °C in steps of 5 °C
10
125
fsw (kHz)
100
°C
DC link = 600
V
Mi*cosfi = 0,8
Th from 60 °C to 100 °C in steps of 5 °C
Phase
Figure 7
Phase
Figure 8
Typical available 50Hz output current as a function of
Iout = f(fsw, Mi*cosfi)
Mi*cosfi and switching frequency
Typical available 0Hz output current as a function
Ioutpeak = f(fsw)
of switching frequency
Iout (Apeak)
-1,00
-0,80
Iout (A)
350
300
Th=60°C
-0,60
410,0-440,0
380,0-410,0
250
-0,40
350,0-380,0
320,0-350,0
-0,20
260,0-290,0
0,00
230,0-260,0
200,0-230,0
200
Mi*cosfi
290,0-320,0
150
0,20
170,0-200,0
140,0-170,0
0,40
Th=100°C
100
110,0-140,0
80,0-110,0
0,60
50
0,80
1
2
4
8
16
0
1,00
32
1
fsw
10
At
Tj =
125
°C
At
Tj =
DC link =
Th =
600
80
V
°C
DC link = 600
V
Th from 60 °C to 100 °C in steps of 5 °C
Copyright by Vincotech
16
125
fsw (kHz)
100
°C
Revision: 1
V23990-P669-F02-PM
final datasheet
Output Inverter Application
flowPHASE 3
Inverter
Figure 9
Inverter
Figure 10
Typical efficiency as a function of output power
efficiency=f(Pout)
efficiency (%)
Typical available peak output power as a function of
Pout=f(Th)
heatsink temperature
Pout (kW)
1200V/300A
250,0
100,0
2kHz
99,0
200,0
98,0
150,0
2kHz
97,0
100,0
16kHz
96,0
50,0
16kHz
95,0
0,0
94,0
60
65
At
Tj =
125
70
75
80
85
90
95
100
Th ( o C)
0,0
At
Tj =
°C
DC link = 600
V
Mi =
1
cosfi =
0,80
fsw from 2 kHz to 16 kHz in 2 steps
50,0
125
100,0
150,0
200,0
Pout (kW)
250,0
°C
DC link = 600
V
Mi =
1
cosfi =
0,80
fsw from 2 kHz to 16 kHz in 2 steps
Inverter
Figure 11
Overload (%)
Typical available overload factor as a function of
Ppeak / Pnom=f(Pnom,fsw)
motor power and switching frequency
400
350
300
250
200
Motor nominal power (HP/kW)
Switching frequency (kHz)
150
100
40,00 / 29,42
50,00 / 36,78
60,00 / 44,13
75,00 / 55,16
1
453
363
302
242
181
145
2
432
345
288
230
173
138
4
392
313
261
209
157
125
8
324
260
216
173
130
0
16
230
184
153
123
0
0
At
Tj =
125
°C
DC link =
Mi =
600
1
V
100,00 / 73,55 125,00 / 91,94
cosfi =
0,8
fsw from 1 kHz to 16 kHz in 2 steps
Th =
80
°C
Motor eff = 0,85
Copyright by Vincotech
17
Revision: 1
V23990-P669-F02-PM
final application datasheet
ZVS Application
flow PHASE 3
1200V/300A
General conditions
Phase shifted ZVS
VGEon = 15 V
VGEoff = -15 V
Rgon = 2 Ω
Rgoff = 2 Ω
IGBT
Figure 1
FRED
Figure 2
Typical static loss of shifted switch
as a function of output current
Ploss = f(Iout)
40
Ploss = f(Iout)
40
Ploss(W)
Ploss(W)
Typical static loss of shifted switch
as a function of output current
35
35
Phaseshift=0
30
30
Phaseshift=1
25
25
20
20
15
15
10
10
5
5
Phaseshift=0,1
Phaseshift=0,9
0
0
0
10
20
30
40
50
60
0
Iout(A) 70
At
Tj=125°C
Phaseshift from 0,1 to 1 in steps of 0,1
20
30
40
50
60
Iout(A) 70
At
Tj=125°C
Phaseshift from 0,1 to 1 in steps of 0,1
IGBT
Figure 3
Phase
Figure 4
Typical switching loss as a function of output current
Ploss = f(Iout)
Typical available output current
as a function of switching frequency
800,0
Iout (A)
Ploss (W)
10
Iout = f(fsw)
250
700,0
Th=60°C
200
600,0
500,0
150
400,0
80kHz
100
300,0
200,0
50
100,0
Th=100°C
10kHz
0
0,0
0
10
20
At
Tj =
125
°C
DC link =
Ioutpk/Iout =
600
1,3
V
30
40
50
60
Iout (A)
10
70
1
fsw from 10 kHz to 80 kHz in 2 steps
At
Tj =
125
°C
DC link =
Ioutpk/Iout =
600
1,3
V
fsw (kHz)
1000
1
Th from 60 °C to 100 °C in steps of 5 °C
Phaseshift =
Copyright by Vincotech
100
Phaseshift =
18
Revision: 1
V23990-P669-F02-PM
final application datasheet
ZVS Application
flow PHASE 3
Inverter
Figure 5
Inverter
Figure 6
Typical efficiency as a function of output power
efficiency=f(Pout)
Pout = f(Th)
efficiency (%)
Pout (kW)
Typical available electric peak output power
as a function of heatsink temperature
1200V/300A
150,0
10kHz
100,0
98,0
120,0
96,0
90,0
94,0
10kHz
60,0
92,0
30,0
90,0
80kHz
80kHz
0,0
88,0
60
65
70
75
At
Tj =
125
°C
DC link =
Ioutpk/Iout =
600
1,3
V
80
85
90
95
100
Th ( o C)
0
1
fsw from 10 kHz to 80 kHz in 2 steps
10
At
Tj =
125
°C
DC link =
Ioutpk/Iout =
600
1,3
V
15
20
25
30
35
Pout (kW)
1
fsw from 10 kHz to 80 kHz in 2 steps
Phaseshift =
Copyright by Vincotech
5
Phaseshift =
19
Revision: 1