10-FZ12NMA080SH-M269F Maximum Ratings

10-FZ12NMA080SH-M269F
datasheet
flowmMNPC0
1200V/80A & 600V/50A
Features
flow0 12mm housing
● mixed voltage component topology
● neutral point clamped inverter
● reactive power capability
● low inductance layout
Target Applications
Schematic
● solar inverter
● UPS
Types
● 10-FZ12NMA080SH-M269F
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
66
84
A
320
A
158
240
W
±20
V
6
360
µs
V
175
°C
600
V
26
36
A
300
A
370
A 2s
60
A
44
66
W
150
°C
Half Bridge IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
Neutral Point FWD
Peak Repetitive Reverse Voltage
DC forward current
Surge forward current
I2t-value
VRRM
IF
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
tp=8,3ms , sin 180°
Tc=25°C
IFSM
I2t
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright by Vincotech
Tjmax
1
Th=80°C
Tc=80°C
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
36
46
A
150
A
56
85
W
±20
V
6
360
µs
V
175
°C
1200
V
Neutral Point IGBT
Collector-emitter break down voltage
DC collector current
VCE
IC
Th=80°C
Tj=Tjmax
Tc=80°C
Repetitive peak collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
Maximum Junction Temperature
tSC
VCC
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
Half Bridge FWD
Peak Repetitive Reverse Voltage
DC forward current
Surge forward current
I2t-value
VRRM
IF
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
tp=8,3ms , sin 180°
T c=25°C
IFSM
I2t
Repetitive peak forward current
IFRM
20kHz Square Wave
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
25
35
A
325
A
440
A 2s
70
A
45
68
W
Tjmax
150
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Thermal Properties
Insulation Properties
Insulation voltage
copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,80
6,5
1
2,10
2,43
2,5
Half Bridge IGBT
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,002
100
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
500
1,2
Rgon=8 Ω
Rgoff=8 Ω
±15
350
40
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
uA
uA
Ω
none
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
125
126
20
23
219
282
43
73
0,47
0,70
0,98
1,65
ns
mWs
4660
f=1MHz
0
Tj=25°C
25
300
pF
130
15
960
40
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
370
nC
0,60
K/W
Neutral Point FWD
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
copyright by Vincotech
VF
30
IRRM
trr
Qrr
Rgon=8 Ω
±15
350
di(rec)max
/dt
Erec
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
40
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
2,46
1,86
31
43
18
38
0,30
0,95
7783
4120
0,02
0,12
1,61
3
2,8
V
A
ns
µC
A/µs
mWs
K/W
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Characteristic Values
Parameter
Value
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,1
1,54
1,75
2
Neutral Point IGBT
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,0008
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
50
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
100
650
Rgon=8 Ω
Rgoff=8 Ω
350
±15
41
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
uA
nA
Ω
none
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
99
102
10
13
183
206
80
99
0,49
0,72
1,16
1,50
ns
mWs
3140
f=1MHz
0
25
15
480
Tj=25°C
200
Tj=25°C
310
nC
1,30
K/W
pF
93
50
Thermal grease
thickness≤50um
λ = 1 W/mK
Half Bridge FWD
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
trr
Reverse recovered charge
Qrr
Reverse recovery energy
Thermal resistance chip to heatsink per chip
1200
IRRM
Reverse recovery time
Peak rate of fall of recovery current
30
Rgon=8 Ω
±15
350
di(rec)max
/dt
Erec
RthJH
41
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,5
2,23
1,91
3,4
100
64
79
29
172
2,7
6,1
8246
4626
0,74
1,79
Thermal grease
thickness≤50um
λ = 1 W/mK
V
µA
A
ns
µC
A/µs
mWs
1,55
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R100
∆R/R
Power dissipation
P
T=25°C
R100=1486 Ω
T=100°C
Power dissipation constant
-5
5
%
T=25°C
200
mW
T=25°C
2
mW/K
B-value
B(25/50) Tol. ±3%
T=25°C
3950
K
B-value
B(25/100) Tol. ±3%
T=25°C
3996
K
Vincotech NTC Reference
copyright by Vincotech
B
4
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Buck
half bridge IGBT and neutral point FRED
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
120
IC (A)
120
100
100
80
80
60
60
40
40
20
20
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
6 V to 16 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
250
µs
125
°C
6 V to 16 V in steps of 1 V
FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
100
IC (A)
IF (A)
75
V CE (V)
Tj = Tjmax-25°C
60
80
45
60
Tj = 25°C
Tj = Tjmax-25°C
30
40
Tj = 25°C
15
20
0
0
0
At
tp =
VCE =
2
250
10
copyright by Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
5
0,8
250
1,6
2,4
3,2
V F (V)
4
µs
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Buck
half bridge IGBT and neutral point FRED
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
3
E (mWs)
E (mWs)
3
Eoff High T
2,5
2,5
2
2
Eoff Low T
Eoff High T
1,5
1,5
1
1
Eon Low T
Eoff Low T
Eon High T
Eon High T
0,5
0,5
Eon Low T
0
0
0
20
40
60
I C (A)
0
80
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
2
Ω
Rgoff =
2
Ω
8
16
24
32
R G (W)
40
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
IC =
40
A
FRED
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FRED
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,2
E (mWs)
E (mWs)
0,25
Erec High T
0,2
0,16
0,15
0,12
0,1
0,08
Erec High T
0,05
0,04
Erec Low T
Erec Low T
0
0
0
20
40
60
I C (A)
80
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
2
Ω
copyright by Vincotech
8
16
24
32
R G (W)
40
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
40
A
6
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Buck
half bridge IGBT and neutral point FRED
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
t (ms)
t (ms)
1,00
tdon
tdoff
0,10
tf
0,10
tdon
tr
tf
tr
0,01
0,01
0,00
0,00
0
20
40
60
I C (A)
80
0
With an inductive load at
Tj =
°C
125
VCE =
350
V
VGE =
±15
V
Rgon =
2
Ω
Rgoff =
2
Ω
8
16
24
32
R G (W)
40
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
40
A
FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,12
t rr(ms)
t rr(ms)
0,04
trr High T
0,1
trr High T
0,03
0,08
0,02
0,06
trr Low T
0,04
0,01
trr Low T
0,02
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
2
copyright by Vincotech
40
60
I C (A)
80
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
8
25/125
350
40
±15
16
24
32
R gon (W)
40
°C
V
A
V
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Buck
half bridge IGBT and neutral point FRED
FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
1,50
Qrr (mC)
Qrr (mC)
1,2
Qrr High T
1
1,20
Qrr High T
0,8
0,90
0,6
0,60
Qrr Low T
0,4
0,30
0,2
0,00
At 0
At
Tj =
VCE =
VGE =
Rgon =
Qrr Low T
0
20
40
60
I C (A)
80
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
25/125
350
±15
2
FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
8
25/125
350
40
±15
16
24
32
R g on ( Ω)
40
°C
V
A
V
FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
75
IrrM (A)
IrrM (A)
80
IRRM High T
70
60
60
IRRM Low T
50
45
40
30
30
IRRM High T
20
15
IRRM Low T
10
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
2
copyright by Vincotech
40
60
I C (A)
0
80
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
8
25/125
350
40
±15
16
24
32
R gon (W)
40
°C
V
A
V
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Buck
half bridge IGBT and neutral point FRED
FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
18000
direc / dt (A/ms)
10000
direc / dt (A/ms)
FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dtHigh T
dIrec/dtLow T
15000
8000
12000
6000
o/dtLow T
didI
0/dtHigh T
9000
dIrec/dtHigh T
4000
6000
dI0/dtLow T
2000
3000
dI0/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
2
40
I C (A)
60
0
80
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
40
°C
V
A
V
FRED
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
-2
At
D=
RthJH =
R gon (W)
32
ZthJH (K/W)
ZthJH (K/W)
0
10-5
24
101
10-1
10
25/125
350
40
±15
16
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
10
8
10-4
10-3
10-2
10-1
100
t p (s)
10110
10
tp / T
0,60
-5
At
D=
RthJH =
K/W
10
-4
10
-3
R (C/W)
0,10
0,28
0,16
0,04
0,02
R (C/W)
0,06
0,30
0,80
0,28
0,11
0,07
9
10
-1
10
0
t p (s)
1
10 10
K/W
FRED thermal model values
copyright by Vincotech
-2
tp / T
1,61
IGBT thermal model values
Tau (s)
1,7E+00
2,4E-01
6,7E-02
8,5E-03
5,6E-04
10
Tau (s)
9,8E+00
1,1E+00
1,8E-01
3,3E-02
5,6E-03
3,8E-04
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Buck
half bridge IGBT and neutral point FRED
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
100
IC (A)
Ptot (W)
300
90
250
80
70
200
60
150
50
40
100
30
20
50
10
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
200
°C
V
FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
120
T h ( o C)
100
40
80
30
60
20
40
10
20
0
0
0
At
Tj =
50
150
copyright by Vincotech
100
150
T h ( o C)
200
0
At
Tj =
°C
10
50
150
100
150
T h ( o C)
200
°C
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Buck
half bridge IGBT and neutral point FRED
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
VGE = f(Qg)
3
16
IC (A)
VGE (V)
10
IGBT
Figure 26
Gate voltage vs Gate charge
14
10
100uS
2
240V
12
10
960V
1mS
100m
10
10m
1
DC
8
6
100
4
2
10-1
0
0
50
100
150
200
250
300
350
400
Q g (nC)
10
At
D=
Th =
VGE =
Tj =
0
10
1
10
2
10
3
V CE (V)
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
copyright by Vincotech
11
40
A
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Boost
neutral point IGBT and half bridge FRED
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
120
IC (A)
120
100
100
80
80
60
60
40
40
20
20
0
0
0
At
tp =
Tj =
VGE from
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
4
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
40
V CE (V)
IF (A)
IC (A)
100
35
Tj = Tjmax-25°C
80
Tj = Tjmax-25°C
30
Tj = 25°C
25
60
20
Tj = 25°C
40
15
10
20
5
0
0
0
At
tp =
VCE =
2
250
10
copyright by Vincotech
4
6
8
10
V GE (V) 12
0
At
tp =
µs
V
12
0,8
250
1,6
2,4
3,2
V F (V)
4
µs
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Boost
neutral point IGBT and half bridge FRED
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
2,5
2,5
E (mWs)
E (mWs)
Eoff High T
2
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
Eon High T
2
Eoff Low T
Eon Low T
Eoff High T
1,5
1,5
Eon High T
Eoff Low T
1
1
Eon Low T
0,5
0,5
0
0
0
20
40
60
I C (A)
80
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG(Ω )
40
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
41
A
IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
2,5
E (mWs)
E (mWs)
2,5
Erec High T
2
2
1,5
1,5
Erec High T
1
1
Erec Low T
0,5
Erec Low T
0,5
0
0
0
20
40
60
I C (A)
80
0
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
copyright by Vincotech
8
16
24
32
RG (Ω )
40
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
41
A
13
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Boost
neutral point IGBT and half bridge FRED
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
1
t ( µs)
1
tdoff
tdon
tdoff
tdon
0,1
tf
0,1
tf
tr
tr
0,01
0,01
0,001
0,001
0
20
40
60
I C (A)
80
0
With an inductive load at
Tj =
°C
125
VCE =
350
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
RG(Ω )
40
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
41
A
FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr(ms)
0,6
t rr(ms)
0,2
trr High T
trr High T
0,5
0,16
0,4
0,12
0,3
0,08
trr Low T
0,2
trr Low T
0,04
0,1
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
8
copyright by Vincotech
40
60
I C (A)
80
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
14
8
25/125
350
41
±15
16
24
32
R gon (W)
40
°C
V
A
V
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Boost
neutral point IGBT and half bridge FRED
FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
8
Qrr (mC)
Qrr (mC)
10
Qrr High T
Qrr High T
8
6
6
4
Qrr Low T
4
Qrr Low T
2
2
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
20
40
60
I C (A)
80
0
°C
V
V
Ω
25/125
350
±15
8
8
At
Tj =
VR =
IF =
VGE =
FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
16
25/125
350
41
±15
24
32
R g on ( Ω)
40
°C
V
A
V
FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
150
100
IrrM (A)
IrrM (A)
IRRM High T
120
80
IRRM Low T
60
90
40
60
20
30
IRRM High T
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
8
copyright by Vincotech
40
60
I C (A)
80
°C
V
V
Ω
15
0
8
At
Tj =
VR =
IF =
VGE =
25/125
350
41
±15
16
24
32
R gon (W)
40
°C
V
A
V
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Boost
neutral point IGBT and half bridge FRED
FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
20000
direc / dt (A/ms)
10000
direc / dt (A/ms)
FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dtLow T
8000
dIrec/dtLow T
16000
dIrec/dtHigh T
6000
12000
dIrec/dtHigh T
4000
8000
dIo/dtLow T
2000
4000
dI0/dtHigh T
di0/dtHigh T
dI0/dtLow T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/125
350
±15
8
40
I C (A)
60
80
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125
350
41
±15
16
24
R gon (W)
32
40
°C
V
A
V
FRED
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
100
10
8
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
10-2
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10
-5
At
D=
RthJH =
10
-4
tp / T
1,30
10
-3
10
-2
10
-1
10
0
t p (s)
1
10 10
10
-5
At
D=
RthJH =
K/W
10
-4
tp / T
1,55
10
-3
FRED thermal model values
R (C/W)
0,04
0,17
0,62
0,31
0,12
0,06
R (C/W)
0,06
0,30
0,77
0,28
0,14
copyright by Vincotech
16
-2
10
-1
10
0
t p (s)
1
10 10
K/W
IGBT thermal model values
Tau (s)
9,0E+00
1,1E+00
1,7E-01
3,9E-02
6,7E-03
4,1E-04
10
Tau (s)
3,9E+00
3,8E-01
7,8E-02
1,2E-02
1,2E-03
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Boost
neutral point IGBT and half bridge FRED
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
70
IC (A)
Ptot (W)
150
60
125
50
100
40
75
30
50
20
25
10
0
0
0
50
At
Tj =
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
175
FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
ºC
V
FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
120
200
100
40
80
30
60
20
40
10
20
0
0
0
At
Tj =
50
150
copyright by Vincotech
100
150
Th ( o C)
0
200
At
Tj =
ºC
17
50
150
100
150
Th ( o C)
200
ºC
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
Thermistor
Figure 2
Typical NTC resistance values
NTC-typical temperature characteristic
R(T ) = R25 ⋅ e
R/Ω
25000



 B25/100⋅ 1 − 1  
T

T25  


[Ω]
20000
15000
10000
5000
0
25
50
copyright by Vincotech
75
100
T (°C)
125
18
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Switching Definitions BUCK IGBT
General conditions
= 125 °C
Tj
= 8Ω
Rgon
Rgoff
= 8Ω
half bridge IGBT
Figure 1
half bridge IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
250
150
IC
tdoff
200
VCE
100
VGE 90%
150
IC
%
VCE
VCE 90%
%50
100
tEoff
tdon
IC 1%
VGE
50
0
VGE10%
VCE3%
IC10%
0
VGE
-50
-0,2
tEon
-50
-0,05
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,1
0,25
time (us)
0,4
0,55
0,7
2,3
2,5
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
-15
15
700
40
0,28
0,63
2,4
half bridge IGBT
Figure 3
2,6
-15
15
700
40
0,13
0,23
2,7
time(us)
2,9
3
V
V
V
A
µs
µs
half bridge IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
2,8
Turn-on Switching Waveforms & definition of tr
150
250
Ic
fitted
200
100
VCE
IC IC 90%
150
IC 60%
VCE
%50
%100
IC 40%
IC90%
tr
50
IC10%
0
IC10%
0
tf
-50
0,15
0,2
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,25
700
40
0,07
time (us)
0,3
0,35
-50
0,4
2,4
VC (100%) =
IC (100%) =
tr =
V
A
µs
19
2,5
time(us)
2,6
700
40
0,02
2,7
2,8
2,9
V
A
µs
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Switching Definitions BUCK IGBT
half bridge IGBT
Figure 5
half bridge IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
160
%
Eoff
Poff
%
100
Pon
130
Eon
80
100
60
70
40
40
20
VGE90%
VGE10%
VCE3%
10
0
tEoff
tEon
IC 1%
-20
-0,1
0
0,1
Poff (100%) =
Eoff (100%) =
tEoff =
0,2
28,05
1,65
0,63
0,3
time (us)
0,4
0,5
0,6
-20
2,45
0,7
2,5
2,55
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
half bridge IGBT
Figure 7
Gate voltage vs Gate charge (measured)
2,6
2,65
time(us)
28,05
0,70
0,23
2,7
2,75
2,8
2,85
kW
mJ
µs
half bridge IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
150
Id
15
100
10
trr
50
VGE (V)
5
fitted
Vd
%
0
0
IRRM10%
-5
-50
-10
IRRM90%
-100
IRRM100%
-15
-20
-100
0
100
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright by Vincotech
200
-15
15
700
40
1556,37
300
Qg (nC)
400
500
600
-150
2,62
700
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
20
2,64
2,66
700
40
-43
0,04
2,68
time(us)
2,7
2,72
2,74
V
A
A
µs
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Switching Definitions BUCK IGBT
neutral point FRED
Figure 9
neutral point FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
120
Erec
Id
Qrr
100
100
tQrr
80
tErec
50
60
% 0
%
40
-50
20
-100
-150
2,62
Prec
0
2,64
Id (100%) =
Qrr (100%) =
tQrr =
2,66
40
0,95
0,08
2,68
2,7
time(us)
2,72
2,74
-20
2,62
2,76
2,64
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
2,66
28,05
0,12
0,08
2,68
2,7
time(us)
2,72
2,74
2,76
kW
mJ
µs
Measurement circuit
Figure 11
BUCK stage switching measurement circuit
copyright by Vincotech
21
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Switching Definitions BOOST IGBT
General conditions
= 125 °C
Tj
= 8Ω
Rgon
Rgoff
= 8Ω
neutral point IGBT
Figure 1
neutral point IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
140
300
%
%
tdoff
IC
120
250
100
200
VCE 90%
VGE 90%
80
150
tEoff
60
IC
VCE
100
40
20
tdon
IC 1%
50
VCE
VGE
VGE10%
IC10%
0
0
VGE
-20
-0,2
-0,1
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,1
-15
15
350
40
0,21
0,40
0,2
0,3
0,4
0,5
time (us)
2,99
3,03
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
neutral point IGBT
Figure 3
VCE3%
tEon
-50
2,95
3,07
3,11
-15
15
350
40
0,10
0,20
3,15
3,19
3,27
time(us)
V
V
V
A
µs
µs
neutral point IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
3,23
Turn-on Switching Waveforms & definition of tr
140
350
%
%
fitted
120
300
VCE
IC
100
250
Ic 90%
80
200
Ic 60%
60
150
Ic
VCE
Ic 40%
40
100
20
IC90%
tr
50
Ic10%
0
-20
-0,10
0,00
VC (100%) =
IC (100%) =
tf =
copyright by Vincotech
0,10
350
40
0,099
IC10%
0
tf
0,20
0,30
0,40
-50
3,01
0,50
time (us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
22
3,06
3,11
350
40
0,013
3,16
3,21
3,26
time(us)
V
A
µs
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Switching Definitions BOOST IGBT
neutral point IGBT
Figure 5
neutral point IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
160
Eoff
100
Pon
140
Poff
120
Eon
80
100
60
%80
%
60
40
40
20
20
Uce3%
Uge10%
0
0
Uge90%
-20
-0,2
tEoff
-0,1
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,1
0,2
time
(us)
13,96
1,50
0,40
tEon
Ic 1%
0,3
0,4
0,5
-20
2,95
0,6
3
3,05
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
neutral point IGBT
Figure 7
3,1
3,15
3,2
3,25
time(us)
13,9552
0,72
0,2025
3,35
3,4
kW
mJ
µs
half bridge FRED
Figure 8
Gate voltage vs Gate charge (measured)
3,3
Turn-off Switching Waveforms & definition of trr
20
150
15
100
Id
trr
10
50
5
Uge (V)
0
fitted
Ud
%
0
IRRM10%
-50
-5
-100
-10
-150
-15
IRRM90%
-20
-50
0
50
100
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright by Vincotech
150
-15
15
350
40
464,74
200
250
Qg (nC)
300
350
400
450
-200
3,03
500
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
23
IRRM100%
3,08
3,13
350
40
-79
0,17
3,18
time(us)
3,23
3,28
3,33
V
A
A
µs
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Switching Definitions BOOST IGBT
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
half bridge FRED
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
200
half bridge FRED
120
Id
100
Qrr
Prec
100
Erec
80
tQint
%
tErec
% 60
0
40
-100
20
0
-200
3
Id (100%) =
Qrr (100%) =
tQint =
3,5
40
6,14
1,00
time(us)
4
3
4,5
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
3,5
13,96
1,79
1,00
time(us)
4
4,5
kW
mJ
µs
Measurement circuit
Figure 11
BOOST stage switching measurement circuit
copyright by Vincotech
24
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
w/o thermal paste 12mm housing solder pin
Ordering Code
10-FZ06NMA080SH-M269F
in DataMatrix as
M269F
in packaging barcode as
M269F
Outline
Pinout
copyright by Vincotech
25
Revision: 4
10-FZ12NMA080SH-M269F
datasheet
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright by Vincotech
26
Revision: 4