10-FZ12NMA080SH-M269F datasheet flowmMNPC0 1200V/80A & 600V/50A Features flow0 12mm housing ● mixed voltage component topology ● neutral point clamped inverter ● reactive power capability ● low inductance layout Target Applications Schematic ● solar inverter ● UPS Types ● 10-FZ12NMA080SH-M269F Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 66 84 A 320 A 158 240 W ±20 V 6 360 µs V 175 °C 600 V 26 36 A 300 A 370 A 2s 60 A 44 66 W 150 °C Half Bridge IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax Neutral Point FWD Peak Repetitive Reverse Voltage DC forward current Surge forward current I2t-value VRRM IF Tj=25°C Tj=Tjmax Th=80°C Tc=80°C tp=8,3ms , sin 180° Tc=25°C IFSM I2t Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright by Vincotech Tjmax 1 Th=80°C Tc=80°C Revision: 4 10-FZ12NMA080SH-M269F datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 36 46 A 150 A 56 85 W ±20 V 6 360 µs V 175 °C 1200 V Neutral Point IGBT Collector-emitter break down voltage DC collector current VCE IC Th=80°C Tj=Tjmax Tc=80°C Repetitive peak collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings Maximum Junction Temperature tSC VCC Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax Half Bridge FWD Peak Repetitive Reverse Voltage DC forward current Surge forward current I2t-value VRRM IF Tj=25°C Tj=Tjmax Th=80°C Tc=80°C tp=8,3ms , sin 180° T c=25°C IFSM I2t Repetitive peak forward current IFRM 20kHz Square Wave Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C 25 35 A 325 A 440 A 2s 70 A 45 68 W Tjmax 150 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage copyright by Vincotech Vis t=2s DC voltage 2 Revision: 4 10-FZ12NMA080SH-M269F datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,80 6,5 1 2,10 2,43 2,5 Half Bridge IGBT Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,002 100 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 500 1,2 Rgon=8 Ω Rgoff=8 Ω ±15 350 40 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V uA uA Ω none tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 125 126 20 23 219 282 43 73 0,47 0,70 0,98 1,65 ns mWs 4660 f=1MHz 0 Tj=25°C 25 300 pF 130 15 960 40 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 370 nC 0,60 K/W Neutral Point FWD Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip copyright by Vincotech VF 30 IRRM trr Qrr Rgon=8 Ω ±15 350 di(rec)max /dt Erec RthJH Thermal grease thickness≤50um λ = 1 W/mK 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 2,46 1,86 31 43 18 38 0,30 0,95 7783 4120 0,02 0,12 1,61 3 2,8 V A ns µC A/µs mWs K/W Revision: 4 10-FZ12NMA080SH-M269F datasheet Characteristic Values Parameter Value Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,1 1,54 1,75 2 Neutral Point IGBT Gate emitter threshold voltage VGE(th) VCE=VGE 0,0008 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 50 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 100 650 Rgon=8 Ω Rgoff=8 Ω 350 ±15 41 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V uA nA Ω none tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 99 102 10 13 183 206 80 99 0,49 0,72 1,16 1,50 ns mWs 3140 f=1MHz 0 25 15 480 Tj=25°C 200 Tj=25°C 310 nC 1,30 K/W pF 93 50 Thermal grease thickness≤50um λ = 1 W/mK Half Bridge FWD Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir trr Reverse recovered charge Qrr Reverse recovery energy Thermal resistance chip to heatsink per chip 1200 IRRM Reverse recovery time Peak rate of fall of recovery current 30 Rgon=8 Ω ±15 350 di(rec)max /dt Erec RthJH 41 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,5 2,23 1,91 3,4 100 64 79 29 172 2,7 6,1 8246 4626 0,74 1,79 Thermal grease thickness≤50um λ = 1 W/mK V µA A ns µC A/µs mWs 1,55 K/W 22000 Ω Thermistor Rated resistance R Deviation of R100 ∆R/R Power dissipation P T=25°C R100=1486 Ω T=100°C Power dissipation constant -5 5 % T=25°C 200 mW T=25°C 2 mW/K B-value B(25/50) Tol. ±3% T=25°C 3950 K B-value B(25/100) Tol. ±3% T=25°C 3996 K Vincotech NTC Reference copyright by Vincotech B 4 Revision: 4 10-FZ12NMA080SH-M269F datasheet Buck half bridge IGBT and neutral point FRED IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 120 IC (A) 120 100 100 80 80 60 60 40 40 20 20 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 µs 25 °C 6 V to 16 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 250 µs 125 °C 6 V to 16 V in steps of 1 V FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 100 IC (A) IF (A) 75 V CE (V) Tj = Tjmax-25°C 60 80 45 60 Tj = 25°C Tj = Tjmax-25°C 30 40 Tj = 25°C 15 20 0 0 0 At tp = VCE = 2 250 10 copyright by Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 5 0,8 250 1,6 2,4 3,2 V F (V) 4 µs Revision: 4 10-FZ12NMA080SH-M269F datasheet Buck half bridge IGBT and neutral point FRED IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 3 E (mWs) E (mWs) 3 Eoff High T 2,5 2,5 2 2 Eoff Low T Eoff High T 1,5 1,5 1 1 Eon Low T Eoff Low T Eon High T Eon High T 0,5 0,5 Eon Low T 0 0 0 20 40 60 I C (A) 0 80 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 2 Ω Rgoff = 2 Ω 8 16 24 32 R G (W) 40 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V IC = 40 A FRED Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) FRED Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,2 E (mWs) E (mWs) 0,25 Erec High T 0,2 0,16 0,15 0,12 0,1 0,08 Erec High T 0,05 0,04 Erec Low T Erec Low T 0 0 0 20 40 60 I C (A) 80 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 2 Ω copyright by Vincotech 8 16 24 32 R G (W) 40 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 40 A 6 Revision: 4 10-FZ12NMA080SH-M269F datasheet Buck half bridge IGBT and neutral point FRED IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff t (ms) t (ms) 1,00 tdon tdoff 0,10 tf 0,10 tdon tr tf tr 0,01 0,01 0,00 0,00 0 20 40 60 I C (A) 80 0 With an inductive load at Tj = °C 125 VCE = 350 V VGE = ±15 V Rgon = 2 Ω Rgoff = 2 Ω 8 16 24 32 R G (W) 40 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 40 A FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,12 t rr(ms) t rr(ms) 0,04 trr High T 0,1 trr High T 0,03 0,08 0,02 0,06 trr Low T 0,04 0,01 trr Low T 0,02 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 2 copyright by Vincotech 40 60 I C (A) 80 0 At Tj = VR = IF = VGE = °C V V Ω 7 8 25/125 350 40 ±15 16 24 32 R gon (W) 40 °C V A V Revision: 4 10-FZ12NMA080SH-M269F datasheet Buck half bridge IGBT and neutral point FRED FRED Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 1,50 Qrr (mC) Qrr (mC) 1,2 Qrr High T 1 1,20 Qrr High T 0,8 0,90 0,6 0,60 Qrr Low T 0,4 0,30 0,2 0,00 At 0 At Tj = VCE = VGE = Rgon = Qrr Low T 0 20 40 60 I C (A) 80 0 At Tj = VR = IF = VGE = °C V V Ω 25/125 350 ±15 2 FRED Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 8 25/125 350 40 ±15 16 24 32 R g on ( Ω) 40 °C V A V FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 75 IrrM (A) IrrM (A) 80 IRRM High T 70 60 60 IRRM Low T 50 45 40 30 30 IRRM High T 20 15 IRRM Low T 10 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 2 copyright by Vincotech 40 60 I C (A) 0 80 At Tj = VR = IF = VGE = °C V V Ω 8 8 25/125 350 40 ±15 16 24 32 R gon (W) 40 °C V A V Revision: 4 10-FZ12NMA080SH-M269F datasheet Buck half bridge IGBT and neutral point FRED FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 18000 direc / dt (A/ms) 10000 direc / dt (A/ms) FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dtHigh T dIrec/dtLow T 15000 8000 12000 6000 o/dtLow T didI 0/dtHigh T 9000 dIrec/dtHigh T 4000 6000 dI0/dtLow T 2000 3000 dI0/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 2 40 I C (A) 60 0 80 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 40 °C V A V FRED 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 -2 At D= RthJH = R gon (W) 32 ZthJH (K/W) ZthJH (K/W) 0 10-5 24 101 10-1 10 25/125 350 40 ±15 16 Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 10 8 10-4 10-3 10-2 10-1 100 t p (s) 10110 10 tp / T 0,60 -5 At D= RthJH = K/W 10 -4 10 -3 R (C/W) 0,10 0,28 0,16 0,04 0,02 R (C/W) 0,06 0,30 0,80 0,28 0,11 0,07 9 10 -1 10 0 t p (s) 1 10 10 K/W FRED thermal model values copyright by Vincotech -2 tp / T 1,61 IGBT thermal model values Tau (s) 1,7E+00 2,4E-01 6,7E-02 8,5E-03 5,6E-04 10 Tau (s) 9,8E+00 1,1E+00 1,8E-01 3,3E-02 5,6E-03 3,8E-04 Revision: 4 10-FZ12NMA080SH-M269F datasheet Buck half bridge IGBT and neutral point FRED IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 IC (A) Ptot (W) 300 90 250 80 70 200 60 150 50 40 100 30 20 50 10 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 200 °C V FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 120 T h ( o C) 100 40 80 30 60 20 40 10 20 0 0 0 At Tj = 50 150 copyright by Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 10 50 150 100 150 T h ( o C) 200 °C Revision: 4 10-FZ12NMA080SH-M269F datasheet Buck half bridge IGBT and neutral point FRED IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) VGE = f(Qg) 3 16 IC (A) VGE (V) 10 IGBT Figure 26 Gate voltage vs Gate charge 14 10 100uS 2 240V 12 10 960V 1mS 100m 10 10m 1 DC 8 6 100 4 2 10-1 0 0 50 100 150 200 250 300 350 400 Q g (nC) 10 At D= Th = VGE = Tj = 0 10 1 10 2 10 3 V CE (V) At IC = single pulse 80 ºC ±15 V Tjmax ºC copyright by Vincotech 11 40 A Revision: 4 10-FZ12NMA080SH-M269F datasheet Boost neutral point IGBT and half bridge FRED IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 120 IC (A) 120 100 100 80 80 60 60 40 40 20 20 0 0 0 At tp = Tj = VGE from 1 2 3 V CE (V) 4 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 40 V CE (V) IF (A) IC (A) 100 35 Tj = Tjmax-25°C 80 Tj = Tjmax-25°C 30 Tj = 25°C 25 60 20 Tj = 25°C 40 15 10 20 5 0 0 0 At tp = VCE = 2 250 10 copyright by Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 12 0,8 250 1,6 2,4 3,2 V F (V) 4 µs Revision: 4 10-FZ12NMA080SH-M269F datasheet Boost neutral point IGBT and half bridge FRED IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 2,5 2,5 E (mWs) E (mWs) Eoff High T 2 IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eon High T 2 Eoff Low T Eon Low T Eoff High T 1,5 1,5 Eon High T Eoff Low T 1 1 Eon Low T 0,5 0,5 0 0 0 20 40 60 I C (A) 80 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG(Ω ) 40 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 41 A IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 2,5 E (mWs) E (mWs) 2,5 Erec High T 2 2 1,5 1,5 Erec High T 1 1 Erec Low T 0,5 Erec Low T 0,5 0 0 0 20 40 60 I C (A) 80 0 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 8 Ω copyright by Vincotech 8 16 24 32 RG (Ω ) 40 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 41 A 13 Revision: 4 10-FZ12NMA080SH-M269F datasheet Boost neutral point IGBT and half bridge FRED IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) 1 t ( µs) 1 tdoff tdon tdoff tdon 0,1 tf 0,1 tf tr tr 0,01 0,01 0,001 0,001 0 20 40 60 I C (A) 80 0 With an inductive load at Tj = °C 125 VCE = 350 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 32 RG(Ω ) 40 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 41 A FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr(ms) 0,6 t rr(ms) 0,2 trr High T trr High T 0,5 0,16 0,4 0,12 0,3 0,08 trr Low T 0,2 trr Low T 0,04 0,1 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 8 copyright by Vincotech 40 60 I C (A) 80 0 At Tj = VR = IF = VGE = °C V V Ω 14 8 25/125 350 41 ±15 16 24 32 R gon (W) 40 °C V A V Revision: 4 10-FZ12NMA080SH-M269F datasheet Boost neutral point IGBT and half bridge FRED FRED Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 8 Qrr (mC) Qrr (mC) 10 Qrr High T Qrr High T 8 6 6 4 Qrr Low T 4 Qrr Low T 2 2 0 0 At 0 At Tj = VCE = VGE = Rgon = 20 40 60 I C (A) 80 0 °C V V Ω 25/125 350 ±15 8 8 At Tj = VR = IF = VGE = FRED Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 16 25/125 350 41 ±15 24 32 R g on ( Ω) 40 °C V A V FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 150 100 IrrM (A) IrrM (A) IRRM High T 120 80 IRRM Low T 60 90 40 60 20 30 IRRM High T IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 8 copyright by Vincotech 40 60 I C (A) 80 °C V V Ω 15 0 8 At Tj = VR = IF = VGE = 25/125 350 41 ±15 16 24 32 R gon (W) 40 °C V A V Revision: 4 10-FZ12NMA080SH-M269F datasheet Boost neutral point IGBT and half bridge FRED FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 20000 direc / dt (A/ms) 10000 direc / dt (A/ms) FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dIrec/dtLow T 8000 dIrec/dtLow T 16000 dIrec/dtHigh T 6000 12000 dIrec/dtHigh T 4000 8000 dIo/dtLow T 2000 4000 dI0/dtHigh T di0/dtHigh T dI0/dtLow T 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 350 ±15 8 40 I C (A) 60 80 0 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125 350 41 ±15 16 24 R gon (W) 32 40 °C V A V FRED Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 100 10 8 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 10-2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10 -5 At D= RthJH = 10 -4 tp / T 1,30 10 -3 10 -2 10 -1 10 0 t p (s) 1 10 10 10 -5 At D= RthJH = K/W 10 -4 tp / T 1,55 10 -3 FRED thermal model values R (C/W) 0,04 0,17 0,62 0,31 0,12 0,06 R (C/W) 0,06 0,30 0,77 0,28 0,14 copyright by Vincotech 16 -2 10 -1 10 0 t p (s) 1 10 10 K/W IGBT thermal model values Tau (s) 9,0E+00 1,1E+00 1,7E-01 3,9E-02 6,7E-03 4,1E-04 10 Tau (s) 3,9E+00 3,8E-01 7,8E-02 1,2E-02 1,2E-03 Revision: 4 10-FZ12NMA080SH-M269F datasheet Boost neutral point IGBT and half bridge FRED IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 70 IC (A) Ptot (W) 150 60 125 50 100 40 75 30 50 20 25 10 0 0 0 50 At Tj = 100 150 T h ( o C) 200 0 At Tj = VGE = ºC 175 FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) ºC V FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 120 200 100 40 80 30 60 20 40 10 20 0 0 0 At Tj = 50 150 copyright by Vincotech 100 150 Th ( o C) 0 200 At Tj = ºC 17 50 150 100 150 Th ( o C) 200 ºC Revision: 4 10-FZ12NMA080SH-M269F datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) Thermistor Figure 2 Typical NTC resistance values NTC-typical temperature characteristic R(T ) = R25 ⋅ e R/Ω 25000 B25/100⋅ 1 − 1 T T25 [Ω] 20000 15000 10000 5000 0 25 50 copyright by Vincotech 75 100 T (°C) 125 18 Revision: 4 10-FZ12NMA080SH-M269F datasheet Switching Definitions BUCK IGBT General conditions = 125 °C Tj = 8Ω Rgon Rgoff = 8Ω half bridge IGBT Figure 1 half bridge IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 250 150 IC tdoff 200 VCE 100 VGE 90% 150 IC % VCE VCE 90% %50 100 tEoff tdon IC 1% VGE 50 0 VGE10% VCE3% IC10% 0 VGE -50 -0,2 tEon -50 -0,05 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,1 0,25 time (us) 0,4 0,55 0,7 2,3 2,5 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs -15 15 700 40 0,28 0,63 2,4 half bridge IGBT Figure 3 2,6 -15 15 700 40 0,13 0,23 2,7 time(us) 2,9 3 V V V A µs µs half bridge IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 2,8 Turn-on Switching Waveforms & definition of tr 150 250 Ic fitted 200 100 VCE IC IC 90% 150 IC 60% VCE %50 %100 IC 40% IC90% tr 50 IC10% 0 IC10% 0 tf -50 0,15 0,2 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,25 700 40 0,07 time (us) 0,3 0,35 -50 0,4 2,4 VC (100%) = IC (100%) = tr = V A µs 19 2,5 time(us) 2,6 700 40 0,02 2,7 2,8 2,9 V A µs Revision: 4 10-FZ12NMA080SH-M269F datasheet Switching Definitions BUCK IGBT half bridge IGBT Figure 5 half bridge IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 160 % Eoff Poff % 100 Pon 130 Eon 80 100 60 70 40 40 20 VGE90% VGE10% VCE3% 10 0 tEoff tEon IC 1% -20 -0,1 0 0,1 Poff (100%) = Eoff (100%) = tEoff = 0,2 28,05 1,65 0,63 0,3 time (us) 0,4 0,5 0,6 -20 2,45 0,7 2,5 2,55 Pon (100%) = Eon (100%) = tEon = kW mJ µs half bridge IGBT Figure 7 Gate voltage vs Gate charge (measured) 2,6 2,65 time(us) 28,05 0,70 0,23 2,7 2,75 2,8 2,85 kW mJ µs half bridge IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 20 150 Id 15 100 10 trr 50 VGE (V) 5 fitted Vd % 0 0 IRRM10% -5 -50 -10 IRRM90% -100 IRRM100% -15 -20 -100 0 100 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright by Vincotech 200 -15 15 700 40 1556,37 300 Qg (nC) 400 500 600 -150 2,62 700 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 20 2,64 2,66 700 40 -43 0,04 2,68 time(us) 2,7 2,72 2,74 V A A µs Revision: 4 10-FZ12NMA080SH-M269F datasheet Switching Definitions BUCK IGBT neutral point FRED Figure 9 neutral point FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 120 Erec Id Qrr 100 100 tQrr 80 tErec 50 60 % 0 % 40 -50 20 -100 -150 2,62 Prec 0 2,64 Id (100%) = Qrr (100%) = tQrr = 2,66 40 0,95 0,08 2,68 2,7 time(us) 2,72 2,74 -20 2,62 2,76 2,64 Prec (100%) = Erec (100%) = tErec = A µC µs 2,66 28,05 0,12 0,08 2,68 2,7 time(us) 2,72 2,74 2,76 kW mJ µs Measurement circuit Figure 11 BUCK stage switching measurement circuit copyright by Vincotech 21 Revision: 4 10-FZ12NMA080SH-M269F datasheet Switching Definitions BOOST IGBT General conditions = 125 °C Tj = 8Ω Rgon Rgoff = 8Ω neutral point IGBT Figure 1 neutral point IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 140 300 % % tdoff IC 120 250 100 200 VCE 90% VGE 90% 80 150 tEoff 60 IC VCE 100 40 20 tdon IC 1% 50 VCE VGE VGE10% IC10% 0 0 VGE -20 -0,2 -0,1 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,1 -15 15 350 40 0,21 0,40 0,2 0,3 0,4 0,5 time (us) 2,99 3,03 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs neutral point IGBT Figure 3 VCE3% tEon -50 2,95 3,07 3,11 -15 15 350 40 0,10 0,20 3,15 3,19 3,27 time(us) V V V A µs µs neutral point IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,23 Turn-on Switching Waveforms & definition of tr 140 350 % % fitted 120 300 VCE IC 100 250 Ic 90% 80 200 Ic 60% 60 150 Ic VCE Ic 40% 40 100 20 IC90% tr 50 Ic10% 0 -20 -0,10 0,00 VC (100%) = IC (100%) = tf = copyright by Vincotech 0,10 350 40 0,099 IC10% 0 tf 0,20 0,30 0,40 -50 3,01 0,50 time (us) VC (100%) = IC (100%) = tr = V A µs 22 3,06 3,11 350 40 0,013 3,16 3,21 3,26 time(us) V A µs Revision: 4 10-FZ12NMA080SH-M269F datasheet Switching Definitions BOOST IGBT neutral point IGBT Figure 5 neutral point IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 160 Eoff 100 Pon 140 Poff 120 Eon 80 100 60 %80 % 60 40 40 20 20 Uce3% Uge10% 0 0 Uge90% -20 -0,2 tEoff -0,1 0 Poff (100%) = Eoff (100%) = tEoff = 0,1 0,2 time (us) 13,96 1,50 0,40 tEon Ic 1% 0,3 0,4 0,5 -20 2,95 0,6 3 3,05 Pon (100%) = Eon (100%) = tEon = kW mJ µs neutral point IGBT Figure 7 3,1 3,15 3,2 3,25 time(us) 13,9552 0,72 0,2025 3,35 3,4 kW mJ µs half bridge FRED Figure 8 Gate voltage vs Gate charge (measured) 3,3 Turn-off Switching Waveforms & definition of trr 20 150 15 100 Id trr 10 50 5 Uge (V) 0 fitted Ud % 0 IRRM10% -50 -5 -100 -10 -150 -15 IRRM90% -20 -50 0 50 100 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright by Vincotech 150 -15 15 350 40 464,74 200 250 Qg (nC) 300 350 400 450 -200 3,03 500 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 23 IRRM100% 3,08 3,13 350 40 -79 0,17 3,18 time(us) 3,23 3,28 3,33 V A A µs Revision: 4 10-FZ12NMA080SH-M269F datasheet Switching Definitions BOOST IGBT Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) half bridge FRED Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 200 half bridge FRED 120 Id 100 Qrr Prec 100 Erec 80 tQint % tErec % 60 0 40 -100 20 0 -200 3 Id (100%) = Qrr (100%) = tQint = 3,5 40 6,14 1,00 time(us) 4 3 4,5 Prec (100%) = Erec (100%) = tErec = A µC µs 3,5 13,96 1,79 1,00 time(us) 4 4,5 kW mJ µs Measurement circuit Figure 11 BOOST stage switching measurement circuit copyright by Vincotech 24 Revision: 4 10-FZ12NMA080SH-M269F datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version w/o thermal paste 12mm housing solder pin Ordering Code 10-FZ06NMA080SH-M269F in DataMatrix as M269F in packaging barcode as M269F Outline Pinout copyright by Vincotech 25 Revision: 4 10-FZ12NMA080SH-M269F datasheet DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by Vincotech 26 Revision: 4