Maximum Ratings

V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
flow PIM 2 3rd
1200 V / 50 A
Features
flow 2 housing
● 3~rectifier,BRC,Inverter, NTC
● Very Compact housing, easy to route
● IGBT4/ EmCon4 technology for low saturation
a losses and improved EMC behavior
Target Applications
Schematic
● Motor Drives
● Power Generation
Types
● V23990-P768-A-PM
● V23990-P768-AY-PM
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
80
80
A
700
A
2450
A 2s
95
144
W
Tjmax
150
°C
VCE
1200
V
60
75
A
150
A
163
247
W
±20
V
10
900
µs
V
175
°C
Input Rectifier Diode
Repetitive peak reverse voltage
VRRM
Forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation
Ptot
Maximum Junction Temperature
DC current
Th=80°C
Tc=80°C
tp=10ms
Tj=25°C
Tj=Tjmax
Th=80°C
Tc=80°C
Inverter IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
IC
ICpulse
Power dissipation
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Tj≤150°C
VGE=15V
Tjmax
1
Th=80°C
Tc=80°C
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
60
80
A
100
A
114
173
W
175
°C
1200
V
44
45
A
105
A
130
198
W
±20
V
10
900
µs
V
Tjmax
175
°C
VRRM
1200
V
10
10
A
20
A
50
75
W
Tjmax
175
°C
VRRM
1200
V
25
25
A
50
A
75
114
W
175
°C
Inverter FWD
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tjmax
Brake IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpuls
Power dissipation
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Brake Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Brake Inverse Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Brake FWD
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
copyright Vincotech
Tjmax
2
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Thermal properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+Tjmax-25
°C
4000
VDC
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation properties
Insulation voltage
copyright Vincotech
Vis
t=1min
3
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
Vr [V] or IC [A] or
VGE [V] or
VCE [V] or IF [A] or
VGS [V]
VDS [V]
ID [A]
Tj
Min
Unit
Typ
Max
1,1
1,05
0,89
0,78
0,004
0,006
1,7
Input Rectifier Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
50
1500
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
Ω
0,05
1,1
mA
0,74
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
K/W
0,49
Inverter IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
VGE(th)
VCE=VGE
VCE(sat)
0,0017
15
50
Collector-emitter cut-off current incl. Diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
Coupled thermal resistance transistor-transistor
RthJHT-T
Coupled thermal resistance diode-transistor
RthJHD-T
5
5,8
6,5
1,86
2,3
2,3
0,02
200
4
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Rgoff=8 Ω
Rgon=8 Ω
±15
600
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
104
100
19
23,8
220
295
78
118
2,86
4,5
2,69
4,48
ns
mWs
2770
f=1MHz
0
25
Tj=25°C
205
±15
960
Tj=25°C
290
pF
160
nC
0,58
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
0,38
K/W
0,1
0,13
Inverter FWD
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
IRRM
trr
Qrr
Erec
Thermal resistance chip to heatsink
RthJH
Coupled thermal resistance transistor-diode
copyright Vincotech
Rgon=8 Ω
±15
600
di(rec)max
/dt
Reverse recovered energy
Thermal resistance chip to case
50
RthJC
50
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,75
1,71
65
82
162
313
4,62
9,95
2298
1106
1,92
3,98
2,2
V
A
ns
µC
A/µs
mWs
0,83
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
0,55
RthJHT-D
K/W
0,12
4
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
Value
Vr [V] or IC [A] or
VGE [V] or
VCE [V] or IF [A] or
VGS [V]
VDS [V]
ID [A]
Tj
Min
Unit
Typ
Max
5,8
6,5
1,91
2,37
2,3
Brake IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
VGE(th)
VCE=VGE
VCE(sat)
0,0012
15
35
Collector-emitter cut-off incl diode
ICES
0
1200
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
Rise time
Turn-off delay time
Fall time
tr
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
5
0,25
200
none
td(on)
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Rgoff=16 Ω
Rgon=16 Ω
±15
600
35
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
92
84
21
24
182
253
76
116
1,86
2,64
1,78
2,95
ns
mWs
1950
f=1MHz
0
155
Tj=25°C
25
pF
115
±15
Tj=25°C
960
200
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
nC
0,73
K/W
0,48
Brake Inverse Diode
Diode forward voltage
VF
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
10
Tj=25°C
Tj=150°C
1,1
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
1,89
1,8
2,1
V
1,86
K/W
1,23
K/W
Brake FWD
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
±15
600
35
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
25
Rgon=16 Ω
±15
600
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink
RthJH
Thermal resistance chip to case
RthJC
35
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,9
1,88
2,2
10
27,41
41,04
300
322
2,68
5,19
254
259
2,68
5,19
Thermal grease
thickness≤50µm
λ = 0,61 W/m·K
V
µA
A
ns
µC
A/µs
mWs
1,24
K/W
0,82
Thermistor
Rated resistance
R25
Deviation of R100
DR/R
Power dissipation
P
22
Tj=25°C
R100=1486 Ω
Tc=100°C
Power dissipation constant
-12
kΩ
12
%
Tj=25°C
200
mW
Tj=25°C
2
mW/K
B-value
B(25/50)
Tol. ±3%
Tj=25°C
3950
K
B-value
B(25/100) Tol. ±3%
Tj=25°C
3998
K
Vincotech NTC Reference
copyright Vincotech
B
5
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Output Inverter
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
150
IC (A)
IC (A)
150
Output inverter IGBT
125
125
100
100
75
75
50
50
25
25
0
0
0
1
2
3
VCE (V)
4
5
0
At
tp =
Tj =
1
2
3
4
VCE (V)
5
At
tp =
Tj =
250
µs
25
°C
VGE from 7 V to 17 V in steps of 1 V
250
µs
150
°C
VGE from 7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
Ic = f(V GE)
Output inverter IGBT
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
150
IC (A)
IF (A)
50
Output inverter FWD
125
40
100
30
75
20
50
Tj = Tjmax-25°C
Tj = 25°C
Tj = Tjmax-25°C
10
25
Tj = 25°C
0
0
0
At
tp =
VCE =
2
4
250
10
µs
V
copyright Vincotech
6
8
10
V GE (V)
12
0
At
tp =
6
0,5
1
250
µs
1,5
2
2,5
VF (V)
3
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Output Inverter
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I c)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
10
E (mWs)
10
Output inverter IGBT
Eon
8
Eon
8
Eoff
6
Eoff
Eoff
4
Eon
6
Eon:
4
Eoff
2
2
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
25/150
°C
25/150
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
R G( Ω )
32
40
With an inductive load at
Tj =
25/150
°C
25/150
VCE =
600
V
VGE =
±15
V
IC =
50
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(I c)
Output inverter IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
E (mWs)
4
E (mWs)
6
Output inverter IGBT
Erec
4,5
Erec
3
Erec
3
2
Erec
1,5
1
0
0
0
20
40
60
80
I C (A)
100
0
With an inductive load at
25/150
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
copyright Vincotech
8
16
24
32
R G( Ω )
40
With an inductive load at
25/150
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
50
A
7
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Output Inverter
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1
t ( µs)
t ( µs)
1
Output inverter IGBT
tdoff
tdoff
tdon
tf
0,1
tf
0,1
tdon
tr
tr
0,01
0,01
0,001
0,001
0
20
40
60
80
I C (A)
100
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
RG (Ω )
32
40
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
50
A
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr( µs)
0,7
t rr( µs)
0,5
Output inverter FWD
trr
trr
0,6
0,4
0,5
trr
0,3
trr
0,4
0,3
0,2
0,2
0,1
0,1
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/150
25/150
600
±15
8
copyright Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
8
8
25/150
25/150
600
50
±15
16
24
32
R Gon ( Ω ) 40
°C
V
A
V
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Output Inverter
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(Ic)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
15
Output inverter FWD
12
Qrr ( µC)
Qrr ( µC)
Qrr
Qrr
10
12
8
9
Qrr
6
Qrr
6
4
3
2
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
20
25/150
25/150
600
±15
8
40
60
80
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(Ic)
Output inverter FWD
8
25/150
25/150
600
50
±15
16
24
R Gon ( Ω) 40
°C
V
A
V
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
Output inverter FWD
IrrM (A)
150
IrrM (A)
100
32
IRRM
80
120
IRRM
60
90
40
60
20
30
IRRM
0
IRRM
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/150
25/150
600
±15
8
copyright Vincotech
40
60
80
I C (A)
100
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
9
8
25/150
25/150
600
50
±15
16
24
32
R Gon ( Ω )
40
°C
V
A
V
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Output Inverter
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(I c)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
4000
Output inverter FWD
9000
direc / dt (A/ µs)
direc / dt (A/ µs)
dI0/dt
dIrec/dt
dI0/dt
dIrec/dt
7500
3000
6000
2000
4500
3000
1000
1500
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
20
25/150
25/150
600
±15
8
40
60
I C (A) 100
80
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Output inverter IGBT
8
25/150
25/150
600
50
±15
16
24
°C
V
A
V
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Output inverter FWD
100
ZthJH (K/W)
ZthJH (K/W)
100
R Gon ( Ω) 40
32
10-1
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-2
10-2
10-5
10-4
10-3
10-2
10-1
At
D=
RthJH =
tp / T
RthJH =
0,583
K/W
0,68
Single device heated
AlI devices heated
IGBT thermal model values
R (K/W)
0,07
0,13
0,27
0,08
0,04
Tau (s)
2,1E+00
2,4E-01
5,1E-02
1,2E-02
8,6E-04
copyright Vincotech
R (K/W)
0,17
0,13
0,27
0,08
0,04
100
t p (s)
10110
10-5
10-4
10-3
10-2
10-1
At
D=
RthJH =
tp / T
RthJH =
0,83
K/W
0,83
Single device heated
AlI devices heated
FWD thermal model values
K/W
Tau (s)
2,1E+00
2,4E-01
5,1E-02
1,2E-02
8,6E-04
R (K/W)
0,02
0,08
0,22
0,39
0,07
0,05
10
Tau (s)
9,7E+00
1,1E+00
1,3E-01
2,5E-02
2,0E-03
2,9E-04
R (K/W)
0,02
0,08
0,22
0,39
0,07
0,05
100
t p (s)
10110
K/W
Tau (s)
9,7E+00
1,1E+00
1,3E-01
2,5E-02
2,0E-03
2,9E-04
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Output Inverter
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
100
IC (A)
Ptot (W)
300
Output inverter IGBT
250
80
200
60
150
40
100
20
50
0
0
0
At
Tj =
50
175
100
°C
150
Th ( o C)
200
0
At
Tj =
single heating
overall heating
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
VGE =
Output inverter FWD
50
175
15
100
Th ( o C)
200
°C
V
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
Output inverter FWD
100
Ptot (W)
IF (A)
250
150
200
80
150
60
100
40
50
20
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
°C
11
50
175
100
150
Th ( o C)
200
°C
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Output Inverter
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
Output inverter IGBT
VGE = f(Qg)
103
IC (A)
VGE (V)
17,5
15
240V
10
10uS
2
12,5
100uS
960V
10
100m
S
DC
101
10mS
1mS
7,5
5
100
2,5
0
10-1
10
0
At
D=
Th =
VGE =
Tj =
101
102
V CE (V)
10
0
3
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
copyright Vincotech
12
40
50
80
120
160
200
240 Qg (nC) 280
A
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Brake
Figure 2
Typical output characteristics
IC = f(VCE)
100
100
IC (A)
Brake IGBT
IC (A)
Figure 1
Typical output characteristics
IC = f(VCE)
80
80
60
60
40
40
20
20
0
Brake IGBT
0
0
1
2
3
V CE (V)
4
5
0
At
tp =
Tj =
1
2
3
V CE (V)
4
5
At
tp =
Tj =
250
µs
25
°C
VGE from 7 V to 17 V in steps of 1 V
250
µs
150
°C
VGE from 7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
IC = f(VGE)
Brake IGBT
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
75
IC (A)
IF (A)
35
Brake FWD
30
60
25
45
20
15
30
10
15
Tj = Tjmax-25°C
5
Tj = Tjmax-25°C
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
10
V GE (V) 12
0
At
tp =
µs
V
13
0,5
250
1
1,5
2
2,5
3
V F (V)
3,5
µs
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Brake
Figure 5
Typical switching energy losses
as a function of collector current
E = f(I C)
Brake IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
7
E (mWs)
6
Brake IGBT
Eon
Eon
6
5
Eoff
Eon
5
4
Eon
4
3
Eoff
3
Eoff
2
Eoff
2
1
1
0
0
0
15
30
45
60
I C (A)
75
0
With an inductive load at
25/150
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
30
45
60
R G( Ω )
75
With an inductive load at
25/150
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
35
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(I c)
Brake IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
3,5
Brake IGBT
2,5
E (mWs)
E (mWs)
15
Erec
3
2
Erec
2,5
1,5
2
Erec
1,5
Erec
1
1
0,5
0,5
0
0
0
15
30
45
60
I C (A)
75
0
With an inductive load at
25/150
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
copyright Vincotech
15
30
45
60
R G ( Ω ) 75
With an inductive load at
25/150
Tj =
25/150
°C
VCE =
600
V
VGE =
±15
V
IC =
35
A
14
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Brake
Figure 9
Typical switching times as a
function of collector current
t = f(I C)
Brake IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
1
t ( µs)
1
Brake IGBT
tdoff
tdon
tdoff
tf
0,1
tf
0,1
tdon
tr
tr
0,01
0,01
0,001
0,001
0
15
30
45
I C (A)
60
75
0
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
Rgon =
16
Ω
Rgoff =
16
Ω
15
30
45
RG (Ω )
60
75
With an inductive load at
Tj =
150
°C
VCE =
600
V
VGE =
±15
V
IC =
35
A
Figure 11
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
Brake IGBT
Figure 12
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
Brake IGBT
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
10-2
10-2
10-5
At
D=
RthJH =
10-4
tp / T
0,73
copyright Vincotech
10-3
10-2
10-1
100
t p (s)
101 10
10-5
At
D=
RthJH =
K/W
15
10-4
tp / T
1,24
10-3
10-2
10-1
100
t p (s)
101 10
K/W
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Brake
Figure 13
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake IGBT
Figure 14
Collector current as a
function of heatsink temperature
IC = f(Th)
50
Ptot (W)
IC (A)
250
Brake IGBT
200
40
150
30
100
20
50
10
0
0
0
50
At
Tj =
175
100
150
Th ( o C)
200
0
At
Tj =
VGE =
ºC
Figure 15
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake FWD
50
175
15
100
150
200
ºC
V
Figure 16
Forward current as a
function of heatsink temperature
IF = f(Th)
Brake FWD
25
IF (A)
Ptot (W)
150
Th ( o C)
125
20
100
15
75
10
50
5
25
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
16
50
175
100
150
Th ( o C)
200
ºC
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Brake Inverse Diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Brake inverse diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
30
Brake inverse diode
25
ZthJC (K/W)
IF (A)
101
20
100
15
10
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
Tj = Tjmax-25°C
Tj = 25°C
5
0
0
At
tp =
1
250
2
VF (V)
10-2
4
10-5
10-4
At
D=
RthJH =
µs
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Brake inverse diode
10-3
tp / T
1,86
10-2
100
t p (s)
10110
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
100
10-1
Brake inverse diode
10
IF (A)
Ptot (W)
3
80
8
60
6
40
4
20
2
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Th ( o C)
200
0
At
Tj =
ºC
17
50
175
100
150
Th ( o C)
200
ºC
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Input Rectifier Bridge
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
150
IF (A)
10
Rectifier diode
0
ZthJC (K/W)
Tj = 25°C
125
Tj = Tjmax-25°C
100
75
10
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
50
25
0
0
At
tp =
0,5
250
1
VF (V)
1,5
10-2
2
µs
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Rectifier diode
10-5
10-4
At
D=
RthJH =
tp / T
0,74
10-2
10-1
100
t p (s)
101 10
K/W
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
Rectifier diode
80
IF (A)
210
Ptot (W)
10-3
180
60
150
120
40
90
60
20
30
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
120
Th ( o C)
150
0
At
Tj =
ºC
18
30
150
60
90
120
Th ( o C)
150
ºC
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
Thermistor
NTC-typical temperature characteristic
R (Ω)
25000
20000
15000
10000
5000
0
25
copyright Vincotech
50
75
100
T (°C)
125
19
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Switching Definitions Output Inverter
General
Tj
Rgon
Rgoff
Figure 1
conditions
= 150 °C
= 8Ω
= 8Ω
Output inverter IGBT
Figure 2
Output inverter IGBT
Turn-off Switching Waveforms & definition of tdoff, tEoff
Turn-on Switching Waveforms & definition of tdon, tEon
(tEoff = integrating time for Eoff)
(tEon = integrating time for Eon)
300
120
%
tdoff
%
Uce
100
Ic
250
Uce 90%
Uge 90%
80
200
UGE
60
Ic
150
Uce
40
Uge
100
tEoff
tdon
20
50
Ic 1%
Ic10%
0
Uce3%
Uge10%
0
tEon
-20
-0,2
0
0,2
0,4
0,6
0,8
-50
1
2,9
time (µs)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
-15
15
600
50
0,30
0,67
V
V
V
A
µs
µs
3
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
Figure 3
Output inverter IGBT
Turn-off Switching Waveforms & definition of t f
3,1
3,2
-15
15
600
50
0,10
0,34
V
V
V
A
µs
µs
3,3
3,4
3,5
time(µs)
Figure 4
Output inverter IGBT
Turn-on Switching Waveforms & definition of tr
120
300
fitted
%
%
100
Ic
250
Uce
Ic
Ic 90%
80
200
Ic 60%
60
150
Uce
Ic 40%
40
Ic90%
100
tr
20
50
Ic10%
0
-20
0,25
Ic10%
0
tf
0,3
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
0,35
0,4
600
50
0,12
0,45
0,5
0,55
-50
3,05
0,6
0,65
time (µs)
V
A
µs
VC (100%) =
IC (100%) =
tr =
20
3,1
3,15
600
50
0,02
3,2
time(µs)
3,25
V
A
µs
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Switching Definitions Output Inverter
Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of tEon
120
250
%
%
Eoff
100
Pon
200
Poff
80
150
60
Eon
100
40
50
20
Uce3%
Uge10%
0
0
-20
-0,1
0,05
Poff (100%) =
Eoff (100%) =
tEoff =
tEon
tEoff
Uge90%
0,2
29,95
4,48
0,67
0,35
Ic 1%
0,5
0,65
0,8
-50
2,95
0,95
time (µs)
kW
mJ
µs
3,05
Pon (100%) =
Eon (100%) =
tEon =
3,15
29,95
4,50
0,34
3,25
3,35
time(µs)
3,45
kW
mJ
µs
Figure 7
Output inverter FWD
Turn-off Switching Waveforms & definition of t rr
120
Id
%
80
trr
40
fitted
Ud
0
IRRM10%
-40
-80
-120
IRRM90%
-160
IRRM100%
-200
3
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
copyright Vincotech
21
3,1
3,2
3,3
600
50
-82
0,31
V
A
A
µs
3,4
3,5
time(µs)
3,6
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Switching Definitions Output Inverter
Figure 8
Output inverter FWD
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Figure 9
Output inverter FWD
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
%
150
%
Qrr
Id
Erec
100
100
80
50
tErec
tQrr
0
60
-50
40
-100
20
-150
0
-200
Prec
-20
3
3,2
Id (100%) =
Qrr (100%) =
tQint =
copyright Vincotech
3,4
50
9,95
0,64
3,6
3,8
time(µs)
4
3
A
µC
µs
Prec (100%) =
Erec (100%) =
tErec =
22
3,2
3,4
29,95
3,98
0,64
3,6
3,8
time(µs)
4
kW
mJ
µs
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
Ordering Code & Marking
Version
Ordering Code
V23990-P768-A-PM
without thermal paste with solder pins
without thermal paste with Press-fit pins
in DataMatrix as
V23990-P768-AY-PM
V23990-P768-A-/3/-PM
V23990-P768-AY-/3/-PM
with thermal paste with solder pins
with thermal paste with Press-fit pins
in packaging barcode as
P768A
P768AY
P768A
P768A
P768AY
P768A-/3/
P768AY
P768AY-/3/
Outline
Pin
X
Y
DCDCDCDC-
71,2
68,7
66,2
63,7
0
0
0
0
30
31
32
33
U
U
E
G
2,5
5
7,8
10,6
37,2
37,2
37,2
37,2
5
6
7
8
9
10
11
DC+
DC+
DC+
DC+
DC+
DC+
E
55,95
53,45
55,95
53,45
48,4
45,9
38,9
0
0
2,8
2,8
0
0
0
34
35
36
37
38
39
40
G
E
V
V
V
W
W
18,45
21,25
24,05
26,55
29,05
36,1
38,6
37,2
37,2
37,2
37,2
37,2
37,2
37,2
12
13
14
15
16
17
DCG
DCDCE
DC-
36,1
38,9
36,1
31,3
28,5
31,3
0
2,8
2,8
0
0
2,8
41
42
43
44
45
46
W
E
G
L1
L1
L1
41,1
43,9
46,7
53,7
56,2
58,7
37,2
37,2
37,2
37,2
37,2
37,2
18
19
20
21
G
R1
R2
DC+
28,5
19,3
19,3
12,3
2,8
0
2,8
0
47
48
49
50
L2
L2
L2
L3
71,2
71,2
71,2
71,2
37,2
34,7
32,2
25,2
22
23
24
25
DC+
DC+
DC+
E
9,8
12,3
9,8
2,8
0
2,8
2,8
0
51
52
53
54
L3
L3
BrC
BrC
71,2
71,2
71,2
68,7
22,7
20,2
12,8
12,8
26 DC27 G
0
2,8
0
2,8
55 BrG
56 BrE
71,2
71,2
5,6
2,8
28 DC29 U
0
0
2,8
37,2
1
2
3
4
X
Pin table
Y
Pin
Pinout
Identification
ID
T1,T3,T5
T7,T9,T11
D9,D10,D11,
D12,D13,D14
T13
D7
D8
D1,D2,D3,D4,D5,D6
NTC
copyright Vincotech
Component
Voltage
Current
Function
IGBT
1200V
50A
Inverter Switch
FWD
1200V
50A
Inverter Diode
IGBT
FWD
FWD
1200V
1200V
1200V
Rectifier
NTC
1600V
-
50A
25A
10A
50A
-
Brake Switch
Brake Diode
Brake Protection Diode
Rectifier
Thermistor
23
Comment
05 Jun 2015 / Revision: 5
V23990-P768-A-PM
V23990-P768-AY-PM
datasheet
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are
presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete
and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any
changes without further notice to any products to improve reliability, function or design. No representation, guarantee
or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application
or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or
that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and
determine the suitability of the information and the product for reader’s intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the
express written approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support
or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can
be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
24
05 Jun 2015 / Revision: 5