V23990-P768-A-PM V23990-P768-AY-PM datasheet flow PIM 2 3rd 1200 V / 50 A Features flow 2 housing ● 3~rectifier,BRC,Inverter, NTC ● Very Compact housing, easy to route ● IGBT4/ EmCon4 technology for low saturation a losses and improved EMC behavior Target Applications Schematic ● Motor Drives ● Power Generation Types ● V23990-P768-A-PM ● V23990-P768-AY-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 80 80 A 700 A 2450 A 2s 95 144 W Tjmax 150 °C VCE 1200 V 60 75 A 150 A 163 247 W ±20 V 10 900 µs V 175 °C Input Rectifier Diode Repetitive peak reverse voltage VRRM Forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation Ptot Maximum Junction Temperature DC current Th=80°C Tc=80°C tp=10ms Tj=25°C Tj=Tjmax Th=80°C Tc=80°C Inverter IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current IC ICpulse Power dissipation Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature copyright Vincotech Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 60 80 A 100 A 114 173 W 175 °C 1200 V 44 45 A 105 A 130 198 W ±20 V 10 900 µs V Tjmax 175 °C VRRM 1200 V 10 10 A 20 A 50 75 W Tjmax 175 °C VRRM 1200 V 25 25 A 50 A 75 114 W 175 °C Inverter FWD Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Tjmax Brake IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpuls Power dissipation Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Brake Inverse Diode Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Brake Inverse Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Brake FWD Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature copyright Vincotech Tjmax 2 Th=80°C Tc=80°C Th=80°C Tc=80°C 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Thermal properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+Tjmax-25 °C 4000 VDC Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation properties Insulation voltage copyright Vincotech Vis t=1min 3 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Characteristic Values Parameter Conditions Symbol Value Vr [V] or IC [A] or VGE [V] or VCE [V] or IF [A] or VGS [V] VDS [V] ID [A] Tj Min Unit Typ Max 1,1 1,05 0,89 0,78 0,004 0,006 1,7 Input Rectifier Diode Forward voltage VF Threshold voltage (for power loss calc. only) Vto Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink RthJH Thermal resistance chip to case RthJC 50 1500 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V Ω 0,05 1,1 mA 0,74 Thermal grease thickness≤50µm λ = 0,61 W/m·K K/W 0,49 Inverter IGBT Gate emitter threshold voltage Collector-emitter saturation voltage VGE(th) VCE=VGE VCE(sat) 0,0017 15 50 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink RthJH Thermal resistance chip to case RthJC Coupled thermal resistance transistor-transistor RthJHT-T Coupled thermal resistance diode-transistor RthJHD-T 5 5,8 6,5 1,86 2,3 2,3 0,02 200 4 tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Rgoff=8 Ω Rgon=8 Ω ±15 600 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 104 100 19 23,8 220 295 78 118 2,86 4,5 2,69 4,48 ns mWs 2770 f=1MHz 0 25 Tj=25°C 205 ±15 960 Tj=25°C 290 pF 160 nC 0,58 Thermal grease thickness≤50µm λ = 0,61 W/m·K 0,38 K/W 0,1 0,13 Inverter FWD Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF IRRM trr Qrr Erec Thermal resistance chip to heatsink RthJH Coupled thermal resistance transistor-diode copyright Vincotech Rgon=8 Ω ±15 600 di(rec)max /dt Reverse recovered energy Thermal resistance chip to case 50 RthJC 50 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,75 1,71 65 82 162 313 4,62 9,95 2298 1106 1,92 3,98 2,2 V A ns µC A/µs mWs 0,83 Thermal grease thickness≤50µm λ = 0,61 W/m·K 0,55 RthJHT-D K/W 0,12 4 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Characteristic Values Parameter Conditions Symbol Value Vr [V] or IC [A] or VGE [V] or VCE [V] or IF [A] or VGS [V] VDS [V] ID [A] Tj Min Unit Typ Max 5,8 6,5 1,91 2,37 2,3 Brake IGBT Gate emitter threshold voltage Collector-emitter saturation voltage VGE(th) VCE=VGE VCE(sat) 0,0012 15 35 Collector-emitter cut-off incl diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink RthJH Thermal resistance chip to case RthJC 5 0,25 200 none td(on) td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Rgoff=16 Ω Rgon=16 Ω ±15 600 35 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 92 84 21 24 182 253 76 116 1,86 2,64 1,78 2,95 ns mWs 1950 f=1MHz 0 155 Tj=25°C 25 pF 115 ±15 Tj=25°C 960 200 Thermal grease thickness≤50µm λ = 0,61 W/m·K nC 0,73 K/W 0,48 Brake Inverse Diode Diode forward voltage VF Thermal resistance chip to heatsink RthJH Thermal resistance chip to case RthJC 10 Tj=25°C Tj=150°C 1,1 Thermal grease thickness≤50µm λ = 0,61 W/m·K 1,89 1,8 2,1 V 1,86 K/W 1,23 K/W Brake FWD Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current ±15 600 35 IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current 25 Rgon=16 Ω ±15 600 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink RthJH Thermal resistance chip to case RthJC 35 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,9 1,88 2,2 10 27,41 41,04 300 322 2,68 5,19 254 259 2,68 5,19 Thermal grease thickness≤50µm λ = 0,61 W/m·K V µA A ns µC A/µs mWs 1,24 K/W 0,82 Thermistor Rated resistance R25 Deviation of R100 DR/R Power dissipation P 22 Tj=25°C R100=1486 Ω Tc=100°C Power dissipation constant -12 kΩ 12 % Tj=25°C 200 mW Tj=25°C 2 mW/K B-value B(25/50) Tol. ±3% Tj=25°C 3950 K B-value B(25/100) Tol. ±3% Tj=25°C 3998 K Vincotech NTC Reference copyright Vincotech B 5 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Output Inverter Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 150 IC (A) IC (A) 150 Output inverter IGBT 125 125 100 100 75 75 50 50 25 25 0 0 0 1 2 3 VCE (V) 4 5 0 At tp = Tj = 1 2 3 4 VCE (V) 5 At tp = Tj = 250 µs 25 °C VGE from 7 V to 17 V in steps of 1 V 250 µs 150 °C VGE from 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics Ic = f(V GE) Output inverter IGBT Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 150 IC (A) IF (A) 50 Output inverter FWD 125 40 100 30 75 20 50 Tj = Tjmax-25°C Tj = 25°C Tj = Tjmax-25°C 10 25 Tj = 25°C 0 0 0 At tp = VCE = 2 4 250 10 µs V copyright Vincotech 6 8 10 V GE (V) 12 0 At tp = 6 0,5 1 250 µs 1,5 2 2,5 VF (V) 3 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Output Inverter Figure 5 Typical switching energy losses as a function of collector current E = f(I c) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 10 E (mWs) 10 Output inverter IGBT Eon 8 Eon 8 Eoff 6 Eoff Eoff 4 Eon 6 Eon: 4 Eoff 2 2 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = 25/150 °C 25/150 VCE = 600 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 R G( Ω ) 32 40 With an inductive load at Tj = 25/150 °C 25/150 VCE = 600 V VGE = ±15 V IC = 50 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(I c) Output inverter IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 4 E (mWs) 6 Output inverter IGBT Erec 4,5 Erec 3 Erec 3 2 Erec 1,5 1 0 0 0 20 40 60 80 I C (A) 100 0 With an inductive load at 25/150 Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 8 Ω copyright Vincotech 8 16 24 32 R G( Ω ) 40 With an inductive load at 25/150 Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 50 A 7 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Output Inverter Figure 9 Typical switching times as a function of collector current t = f(I C) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) t ( µs) 1 Output inverter IGBT tdoff tdoff tdon tf 0,1 tf 0,1 tdon tr tr 0,01 0,01 0,001 0,001 0 20 40 60 80 I C (A) 100 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 8 Ω Rgoff = 8 Ω 8 16 24 RG (Ω ) 32 40 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 50 A Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr( µs) 0,7 t rr( µs) 0,5 Output inverter FWD trr trr 0,6 0,4 0,5 trr 0,3 trr 0,4 0,3 0,2 0,2 0,1 0,1 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/150 25/150 600 ±15 8 copyright Vincotech 40 60 80 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω 8 8 25/150 25/150 600 50 ±15 16 24 32 R Gon ( Ω ) 40 °C V A V 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Output Inverter Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(Ic) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 15 Output inverter FWD 12 Qrr ( µC) Qrr ( µC) Qrr Qrr 10 12 8 9 Qrr 6 Qrr 6 4 3 2 0 0 0 At At Tj = VCE = VGE = Rgon = 20 25/150 25/150 600 ±15 8 40 60 80 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(Ic) Output inverter FWD 8 25/150 25/150 600 50 ±15 16 24 R Gon ( Ω) 40 °C V A V Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) Output inverter FWD IrrM (A) 150 IrrM (A) 100 32 IRRM 80 120 IRRM 60 90 40 60 20 30 IRRM 0 IRRM 0 0 At Tj = VCE = VGE = Rgon = 20 25/150 25/150 600 ±15 8 copyright Vincotech 40 60 80 I C (A) 100 0 At Tj = VR = IF = VGE = °C V V Ω 9 8 25/150 25/150 600 50 ±15 16 24 32 R Gon ( Ω ) 40 °C V A V 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Output Inverter Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(I c) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 4000 Output inverter FWD 9000 direc / dt (A/ µs) direc / dt (A/ µs) dI0/dt dIrec/dt dI0/dt dIrec/dt 7500 3000 6000 2000 4500 3000 1000 1500 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/150 25/150 600 ±15 8 40 60 I C (A) 100 80 0 At Tj = VR = IF = VGE = °C V V Ω Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) Output inverter IGBT 8 25/150 25/150 600 50 ±15 16 24 °C V A V Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) Output inverter FWD 100 ZthJH (K/W) ZthJH (K/W) 100 R Gon ( Ω) 40 32 10-1 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-2 10-2 10-5 10-4 10-3 10-2 10-1 At D= RthJH = tp / T RthJH = 0,583 K/W 0,68 Single device heated AlI devices heated IGBT thermal model values R (K/W) 0,07 0,13 0,27 0,08 0,04 Tau (s) 2,1E+00 2,4E-01 5,1E-02 1,2E-02 8,6E-04 copyright Vincotech R (K/W) 0,17 0,13 0,27 0,08 0,04 100 t p (s) 10110 10-5 10-4 10-3 10-2 10-1 At D= RthJH = tp / T RthJH = 0,83 K/W 0,83 Single device heated AlI devices heated FWD thermal model values K/W Tau (s) 2,1E+00 2,4E-01 5,1E-02 1,2E-02 8,6E-04 R (K/W) 0,02 0,08 0,22 0,39 0,07 0,05 10 Tau (s) 9,7E+00 1,1E+00 1,3E-01 2,5E-02 2,0E-03 2,9E-04 R (K/W) 0,02 0,08 0,22 0,39 0,07 0,05 100 t p (s) 10110 K/W Tau (s) 9,7E+00 1,1E+00 1,3E-01 2,5E-02 2,0E-03 2,9E-04 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Output Inverter Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 100 IC (A) Ptot (W) 300 Output inverter IGBT 250 80 200 60 150 40 100 20 50 0 0 0 At Tj = 50 175 100 °C 150 Th ( o C) 200 0 At Tj = single heating overall heating Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) VGE = Output inverter FWD 50 175 15 100 Th ( o C) 200 °C V Figure 24 Forward current as a function of heatsink temperature IF = f(Th) Output inverter FWD 100 Ptot (W) IF (A) 250 150 200 80 150 60 100 40 50 20 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = °C 11 50 175 100 150 Th ( o C) 200 °C 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Output Inverter Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge Output inverter IGBT VGE = f(Qg) 103 IC (A) VGE (V) 17,5 15 240V 10 10uS 2 12,5 100uS 960V 10 100m S DC 101 10mS 1mS 7,5 5 100 2,5 0 10-1 10 0 At D= Th = VGE = Tj = 101 102 V CE (V) 10 0 3 At IC = single pulse 80 ºC ±15 V Tjmax ºC copyright Vincotech 12 40 50 80 120 160 200 240 Qg (nC) 280 A 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Brake Figure 2 Typical output characteristics IC = f(VCE) 100 100 IC (A) Brake IGBT IC (A) Figure 1 Typical output characteristics IC = f(VCE) 80 80 60 60 40 40 20 20 0 Brake IGBT 0 0 1 2 3 V CE (V) 4 5 0 At tp = Tj = 1 2 3 V CE (V) 4 5 At tp = Tj = 250 µs 25 °C VGE from 7 V to 17 V in steps of 1 V 250 µs 150 °C VGE from 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics IC = f(VGE) Brake IGBT Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 75 IC (A) IF (A) 35 Brake FWD 30 60 25 45 20 15 30 10 15 Tj = Tjmax-25°C 5 Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 13 0,5 250 1 1,5 2 2,5 3 V F (V) 3,5 µs 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Brake Figure 5 Typical switching energy losses as a function of collector current E = f(I C) Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 7 E (mWs) 6 Brake IGBT Eon Eon 6 5 Eoff Eon 5 4 Eon 4 3 Eoff 3 Eoff 2 Eoff 2 1 1 0 0 0 15 30 45 60 I C (A) 75 0 With an inductive load at 25/150 Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 30 45 60 R G( Ω ) 75 With an inductive load at 25/150 Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 35 A Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(I c) Brake IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 3,5 Brake IGBT 2,5 E (mWs) E (mWs) 15 Erec 3 2 Erec 2,5 1,5 2 Erec 1,5 Erec 1 1 0,5 0,5 0 0 0 15 30 45 60 I C (A) 75 0 With an inductive load at 25/150 Tj = 25/150 °C VCE = 600 V VGE = ±15 V Rgon = 16 Ω copyright Vincotech 15 30 45 60 R G ( Ω ) 75 With an inductive load at 25/150 Tj = 25/150 °C VCE = 600 V VGE = ±15 V IC = 35 A 14 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Brake Figure 9 Typical switching times as a function of collector current t = f(I C) Brake IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) 1 t ( µs) 1 Brake IGBT tdoff tdon tdoff tf 0,1 tf 0,1 tdon tr tr 0,01 0,01 0,001 0,001 0 15 30 45 I C (A) 60 75 0 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V Rgon = 16 Ω Rgoff = 16 Ω 15 30 45 RG (Ω ) 60 75 With an inductive load at Tj = 150 °C VCE = 600 V VGE = ±15 V IC = 35 A Figure 11 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) Brake IGBT Figure 12 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) 101 ZthJH (K/W) 101 Brake IGBT 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 10-2 10-2 10-5 At D= RthJH = 10-4 tp / T 0,73 copyright Vincotech 10-3 10-2 10-1 100 t p (s) 101 10 10-5 At D= RthJH = K/W 15 10-4 tp / T 1,24 10-3 10-2 10-1 100 t p (s) 101 10 K/W 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Brake Figure 13 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake IGBT Figure 14 Collector current as a function of heatsink temperature IC = f(Th) 50 Ptot (W) IC (A) 250 Brake IGBT 200 40 150 30 100 20 50 10 0 0 0 50 At Tj = 175 100 150 Th ( o C) 200 0 At Tj = VGE = ºC Figure 15 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake FWD 50 175 15 100 150 200 ºC V Figure 16 Forward current as a function of heatsink temperature IF = f(Th) Brake FWD 25 IF (A) Ptot (W) 150 Th ( o C) 125 20 100 15 75 10 50 5 25 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 16 50 175 100 150 Th ( o C) 200 ºC 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Brake Inverse Diode Figure 1 Typical diode forward current as a function of forward voltage IF = f(VF) Brake inverse diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 30 Brake inverse diode 25 ZthJC (K/W) IF (A) 101 20 100 15 10 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 Tj = Tjmax-25°C Tj = 25°C 5 0 0 At tp = 1 250 2 VF (V) 10-2 4 10-5 10-4 At D= RthJH = µs Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake inverse diode 10-3 tp / T 1,86 10-2 100 t p (s) 10110 K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 100 10-1 Brake inverse diode 10 IF (A) Ptot (W) 3 80 8 60 6 40 4 20 2 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th ( o C) 200 0 At Tj = ºC 17 50 175 100 150 Th ( o C) 200 ºC 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Input Rectifier Bridge Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 150 IF (A) 10 Rectifier diode 0 ZthJC (K/W) Tj = 25°C 125 Tj = Tjmax-25°C 100 75 10 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 50 25 0 0 At tp = 0,5 250 1 VF (V) 1,5 10-2 2 µs Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) Rectifier diode 10-5 10-4 At D= RthJH = tp / T 0,74 10-2 10-1 100 t p (s) 101 10 K/W Figure 4 Forward current as a function of heatsink temperature IF = f(Th) Rectifier diode 80 IF (A) 210 Ptot (W) 10-3 180 60 150 120 40 90 60 20 30 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 Th ( o C) 150 0 At Tj = ºC 18 30 150 60 90 120 Th ( o C) 150 ºC 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) Thermistor NTC-typical temperature characteristic R (Ω) 25000 20000 15000 10000 5000 0 25 copyright Vincotech 50 75 100 T (°C) 125 19 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Switching Definitions Output Inverter General Tj Rgon Rgoff Figure 1 conditions = 150 °C = 8Ω = 8Ω Output inverter IGBT Figure 2 Output inverter IGBT Turn-off Switching Waveforms & definition of tdoff, tEoff Turn-on Switching Waveforms & definition of tdon, tEon (tEoff = integrating time for Eoff) (tEon = integrating time for Eon) 300 120 % tdoff % Uce 100 Ic 250 Uce 90% Uge 90% 80 200 UGE 60 Ic 150 Uce 40 Uge 100 tEoff tdon 20 50 Ic 1% Ic10% 0 Uce3% Uge10% 0 tEon -20 -0,2 0 0,2 0,4 0,6 0,8 -50 1 2,9 time (µs) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = -15 15 600 50 0,30 0,67 V V V A µs µs 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = Figure 3 Output inverter IGBT Turn-off Switching Waveforms & definition of t f 3,1 3,2 -15 15 600 50 0,10 0,34 V V V A µs µs 3,3 3,4 3,5 time(µs) Figure 4 Output inverter IGBT Turn-on Switching Waveforms & definition of tr 120 300 fitted % % 100 Ic 250 Uce Ic Ic 90% 80 200 Ic 60% 60 150 Uce Ic 40% 40 Ic90% 100 tr 20 50 Ic10% 0 -20 0,25 Ic10% 0 tf 0,3 VC (100%) = IC (100%) = tf = copyright Vincotech 0,35 0,4 600 50 0,12 0,45 0,5 0,55 -50 3,05 0,6 0,65 time (µs) V A µs VC (100%) = IC (100%) = tr = 20 3,1 3,15 600 50 0,02 3,2 time(µs) 3,25 V A µs 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Switching Definitions Output Inverter Figure 5 Output inverter IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Output inverter IGBT Turn-on Switching Waveforms & definition of tEon 120 250 % % Eoff 100 Pon 200 Poff 80 150 60 Eon 100 40 50 20 Uce3% Uge10% 0 0 -20 -0,1 0,05 Poff (100%) = Eoff (100%) = tEoff = tEon tEoff Uge90% 0,2 29,95 4,48 0,67 0,35 Ic 1% 0,5 0,65 0,8 -50 2,95 0,95 time (µs) kW mJ µs 3,05 Pon (100%) = Eon (100%) = tEon = 3,15 29,95 4,50 0,34 3,25 3,35 time(µs) 3,45 kW mJ µs Figure 7 Output inverter FWD Turn-off Switching Waveforms & definition of t rr 120 Id % 80 trr 40 fitted Ud 0 IRRM10% -40 -80 -120 IRRM90% -160 IRRM100% -200 3 Vd (100%) = Id (100%) = IRRM (100%) = trr = copyright Vincotech 21 3,1 3,2 3,3 600 50 -82 0,31 V A A µs 3,4 3,5 time(µs) 3,6 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Switching Definitions Output Inverter Figure 8 Output inverter FWD Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Figure 9 Output inverter FWD Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 % 150 % Qrr Id Erec 100 100 80 50 tErec tQrr 0 60 -50 40 -100 20 -150 0 -200 Prec -20 3 3,2 Id (100%) = Qrr (100%) = tQint = copyright Vincotech 3,4 50 9,95 0,64 3,6 3,8 time(µs) 4 3 A µC µs Prec (100%) = Erec (100%) = tErec = 22 3,2 3,4 29,95 3,98 0,64 3,6 3,8 time(µs) 4 kW mJ µs 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet Ordering Code & Marking Version Ordering Code V23990-P768-A-PM without thermal paste with solder pins without thermal paste with Press-fit pins in DataMatrix as V23990-P768-AY-PM V23990-P768-A-/3/-PM V23990-P768-AY-/3/-PM with thermal paste with solder pins with thermal paste with Press-fit pins in packaging barcode as P768A P768AY P768A P768A P768AY P768A-/3/ P768AY P768AY-/3/ Outline Pin X Y DCDCDCDC- 71,2 68,7 66,2 63,7 0 0 0 0 30 31 32 33 U U E G 2,5 5 7,8 10,6 37,2 37,2 37,2 37,2 5 6 7 8 9 10 11 DC+ DC+ DC+ DC+ DC+ DC+ E 55,95 53,45 55,95 53,45 48,4 45,9 38,9 0 0 2,8 2,8 0 0 0 34 35 36 37 38 39 40 G E V V V W W 18,45 21,25 24,05 26,55 29,05 36,1 38,6 37,2 37,2 37,2 37,2 37,2 37,2 37,2 12 13 14 15 16 17 DCG DCDCE DC- 36,1 38,9 36,1 31,3 28,5 31,3 0 2,8 2,8 0 0 2,8 41 42 43 44 45 46 W E G L1 L1 L1 41,1 43,9 46,7 53,7 56,2 58,7 37,2 37,2 37,2 37,2 37,2 37,2 18 19 20 21 G R1 R2 DC+ 28,5 19,3 19,3 12,3 2,8 0 2,8 0 47 48 49 50 L2 L2 L2 L3 71,2 71,2 71,2 71,2 37,2 34,7 32,2 25,2 22 23 24 25 DC+ DC+ DC+ E 9,8 12,3 9,8 2,8 0 2,8 2,8 0 51 52 53 54 L3 L3 BrC BrC 71,2 71,2 71,2 68,7 22,7 20,2 12,8 12,8 26 DC27 G 0 2,8 0 2,8 55 BrG 56 BrE 71,2 71,2 5,6 2,8 28 DC29 U 0 0 2,8 37,2 1 2 3 4 X Pin table Y Pin Pinout Identification ID T1,T3,T5 T7,T9,T11 D9,D10,D11, D12,D13,D14 T13 D7 D8 D1,D2,D3,D4,D5,D6 NTC copyright Vincotech Component Voltage Current Function IGBT 1200V 50A Inverter Switch FWD 1200V 50A Inverter Diode IGBT FWD FWD 1200V 1200V 1200V Rectifier NTC 1600V - 50A 25A 10A 50A - Brake Switch Brake Diode Brake Protection Diode Rectifier Thermistor 23 Comment 05 Jun 2015 / Revision: 5 V23990-P768-A-PM V23990-P768-AY-PM datasheet DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 24 05 Jun 2015 / Revision: 5