V23990-P849-*5*-PM datasheet rd 1200 V / 8 A flow PIM 0 3 gen Features flow 0 housing ● 2 Clips housing in 12 and 17mm height ● Trench Fieldstop Technology IGBT4 ● Enhanced Rectifier ● Optional w/o BRC Target Applications 12mm housing 17mm housing Schematic ● Industrial Drives ● Embedded Generation Types ● V23990-P849-A58-PM ● V23990-P849-A59-PM ● V23990-P849-C58-PM ● V23990-P849-C59-PM Maximum Ratings T j = 25 °C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 44 50 A 370 A 370 A2s 56 85 W 150 °C 1200 V 15 19 A 24 A 16 A 61 92 W Rectifier Diode Repetitive peak reverse voltage V RRM DC forward current I FAV Surge forward current I FSM T j = T jmax T s = 80 °C T c = 80 °C t p = 10 ms 2 2 I t-value I t Power dissipation P tot Maximum Junction Temperature T jmax T j = T jmax T s = 80 °C T c = 80 °C Inverter IGBT Collector-emitter break down voltage DC collector current Pulsed collector current V CE IC I CRM Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC copyright Vincotech t p limited by T jmax V CE ≤ 1200 V, T j ≤ T op max Turn off safe operating area Maximum Junction Temperature T j = T jmax T s = 80 °C T c = 80 °C T j = T jmax T j ≤ 150 °C V GE = 15 V T jmax 1 T s = 80 °C T c = 80 °C ±20 V 10 800 µs V 175 °C 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Maximum Ratings T j = 25 °C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 15 15 A 20 A 46 70 W 175 °C 1200 V 10 10 A 12 A 8 A 47 71 W Inverter FWD Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current V RRM IF I FRM Power dissipation P tot Maximum Junction Temperature T jmax T s = 80 °C T c = 80 °C T j = T jmax t p limited by T jmax T s = 80 °C T c = 80 °C T j = T jmax Brake IGBT Collector-emitter break down voltage DC collector current Pulsed collector current V CE IC I CRM T j = T jmax t p limited by T jmax V CE ≤ 1200 V, T j ≤ T op max Turn off safe operating area Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature T s = 80 °C T c = 80 °C T s = 80 °C T c = 80 °C T j = T jmax T j ≤ 150 °C V GE = 15 V T jmax ±20 V 10 800 µs V 175 °C Brake FWD Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current V RRM IF I FRM T j = T jmax 1200 V T s = 80 °C T c = 80 °C 6 6 A 6 A T s = 80 °C T c = 80 °C 23 29 W t p limited by T jmax T j = T jmax Power dissipation P tot Maximum Junction Temperature T jmax 150 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(T jmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Thermal Properties Insulation Properties Insulation voltage Comparative tracking index copyright Vincotech V is t =2 s DC voltage CTI >200 2 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Unit Typ Max 1,19 1,17 0,91 0,79 8 11 1,7 Rectifier Diode Forward voltage VF 35 Threshold voltage (for power loss calc. only) V to 35 Slope resistance (for power loss calc. only) rt 35 Reverse current Ir Thermal resistance chip to heatsink 1600 R th(j-s) phase-change material λ = 3,4 W/mK V GE(th) V CE = V GE 25 125 25 125 25 125 25 145 V V mΩ 0,05 1,1 mA K/W 1,25 Inverter IGBT Gate emitter threshold voltage Collector-emitter saturation voltage V CEsat 0,0003 25 8 25 125 5,3 5,8 6,5 1,58 1,87 2,20 2,07 V V Collector-emitter cut-off current incl. Diode I CES 0 1200 25 0,001 mA Gate-emitter leakage current I GES 20 0 25 120 nA 600 25 125 25 125 25 125 25 125 25 125 25 125 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tr t d(off) tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Thermal resistance chip to heatsink none R th(j-s) R goff = 32 Ω R gon = 32 Ω 15 8 Ω 71 71 19 23 194 236 79 108 0,50 0,75 0,43 0,62 ns mWs 490 f=1MHz 0 25 50 25 pF 30 phase-change material λ = 3,4 W/mK K/W 1,57 Inverter FWD Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink copyright Vincotech VF 10 I RRM t rr Q rr R gon = 32 Ω 15 600 ( di rf/dt )max E rec R th(j-s) phase-change material λ = 3,4 W/mK 8 25 125 25 125 25 125 25 125 25 125 25 125 1,35 1,70 1,66 8,5 9,9 251 383 0,89 1,57 84 69 0,34 0,63 2,07 3 2,05 V A ns µC A/µs mWs K/W 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] 0,00015 25 4 25 125 Min Unit Typ Max 5 5,8 6,5 1,6 1,96 2,17 2,1 Brake IGBT Gate emitter threshold voltage V GE(th) Collector-emitter saturation voltage V CEsat V CE = V GE 15 I CES 0 1200 25 Gate-emitter leakage current I GES 20 0 25 Integrated Gate resistor R gint Turn-on delay time t d(on) Collector-emitter cut-off incl diode Rise time Turn-off delay time Fall time tr t d(off) tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink R th(j-s) R goff = 64 Ω R gon = 64 Ω 15 600 4 V 500 mA 120 nA none 25 125 25 125 25 125 25 125 25 125 25 125 V Ω 93 90 19 24 184 226 71 99 0,25 0,34 0,22 0,30 ns mWs 250 f = 1 MHz 0 25 25 25 pF 15 15 960 4 25 phase-change material λ = 3,4 W/mK 26 nC 2,03 K/W Brake FWD Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovery energy Thermal resistance chip to heatsink 4 25 125 1200 25 600 4 25 125 25 125 25 125 25 125 25 125 I RRM t rr Q rr R gon = 64 Ω 15 ( di rf/dt )max E rec R th(j-s) 1 1,91 1,84 2,35 250 4,2 4,7 268 446 0,44 0,44 44 40 0,18 0,32 phase-change material λ = 3,4 W/mK V µA A ns µC A/µs mWs K/W 3,98 Thermistor Rated resistance Δ R/R Power dissipation P 22000 25 R Deviation of R100 R 100 = 1484 Ω 100 Power dissipation constant -5 5 mW 25 1,5 mW/K K B (25/50) Tol. ±1% 25 3962 B-value B (25/100) Tol. ±1% 25 4000 copyright Vincotech % 25 B-value Vincotech NTC Reference Ω 5 K I 4 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Inverter Charateristics Figure 1 Typical output characteristics I C = f(V CE) Inverter IGBT Figure 2 Inverter IGBT Typical output characteristics I C = f(V CE) 30 IC (A) IC (A) 30 25 25 20 20 15 15 10 10 5 5 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) Inverter IGBT 1 2 3 5 V CE (V) 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) 10 4 Inverter FWD IF (A) IC (A) 15 8 12 6 9 4 6 Tj = Tjmax-25°C 2 3 Tj = 25°C Tj = Tjmax-25°C Tj = 25°C 0 0 0 2 At tp = V CE = 250 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0,0 At tp = µs V 5 0,5 250 1,0 1,5 2,0 V F (V) 2,5 µs 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Inverter Charateristics Figure 5 Inverter IGBT Figure 6 Inverter IGBT Typical switching energy losses Typical switching energy losses as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) 1,5 1,4 E (mWs) E (mWs) Eon High T Eon High T 1,2 1,2 0,9 Eon Low T 1 Eoff High T Eon Low T 0,8 Eoff High T Eoff Low T 0,6 0,6 Eoff Low T 0,4 0,3 0,2 0 0 0 3 6 9 12 I C (A) 0 15 With an inductive load at Tj = °C 25/125 25/125 V CE = 600 V V GE = ±15 V R gon = 32 Ω R goff = 32 Ω 20 40 60 80 100 120 RG( Ω ) 140 With an inductive load at Tj = °C 25/125 25/125 V CE = 600 V V GE = ±15 V IC = 8 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) E (mWs) 1 Erec Inverter FWD 0,7 Tj = Tjmax -25°C Erec 0,6 Tj = Tjmax -25°C 0,8 0,5 0,6 0,4 Tj = 25°C Erec Tj = 25°C Erec 0,3 0,4 0,2 0,2 0,1 0 0 0 3 6 9 12 I C (A) 0 15 With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V R gon = 32 Ω copyright Vincotech 20 40 60 80 100 120 RG( Ω ) 140 With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V IC = 8 A 6 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Inverter Charateristics Figure 9 Inverter IGBT Figure 10 Inverter IGBT Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) 1,00 t ( µs) t ( µs) 1,00 tdoff tf 0,10 tdoff tdon tf 0,10 tdon tr tr 0,01 0,01 0,00 0,00 0 3 6 9 12 I C (A) 0 15 With an inductive load at Tj = 125 °C V CE = 600 V V GE = ±15 V R gon = 32 Ω R goff = 32 Ω 20 40 60 80 100 120 RG( Ω ) 140 With an inductive load at Tj = 125 °C V CE = 600 V V GE = ±15 V IC = 8 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I C) Inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) t rr( µs) 0,7 t rr( µs) 0,6 Inverter FWD trr 0,5 trr 0,6 Tj = Tjmax -25°C Tj = Tjmax -25°C 0,5 0,4 trr 0,4 trr 0,3 Tj = 25°C 0,3 Tj = 25°C 0,2 0,2 0,1 0,1 0,0 0,0 0 At Tj = V CE = V GE = R gon = 3 25/125 25/125 600 ±15 32 copyright Vincotech 6 9 12 I C (A) 0 15 At Tj = VR= IF= V GE = °C V V Ω 7 20 25/125 25/125 600 8 ±15 40 60 80 100 120 R gon ( Ω ) 140 °C V A V 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Inverter Charateristics Figure 13 Inverter FWD Figure 14 Inverter FWD Typical reverse recovery charge as a Typical reverse recovery charge as a function of collector current Q rr = f(I C) function of IGBT turn on gate resistor Q rr = f(R gon) Qrr( µC) 1,8 Qrr( µC) 2,5 Qrr Tj = Tjmax -25°C Tj = Tjmax -25°C Qrr 1,5 2 1,2 1,5 Tj = 25°C Qrr Qrr 0,9 Tj = 25°C 1 0,6 0,5 0,3 0 0 0 4 8 12 At At Tj = V CE = V GE = R gon = I C (A) 0 16 20 40 25/125 25/125 600 °C V At Tj = VR= 25/125 25/125 600 °C V ±15 32 V Ω IF= V GE = 8 ±15 A V Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) Inverter FWD 60 80 100 Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) R gon ( Ω) 140 Inverter FWD IrrM (A) 25 IrrM (A) 12 120 Tj = Tjmax -25°C 10 IRRM Tj = 25°C 8 20 IRRM 15 6 Tj = Tjmax - 25°C 10 4 Tj = 25°C IRRM 5 2 IRRM 0 0 0 At Tj = V CE = V GE = R gon = 4 25/125 25/125 600 ±15 32 copyright Vincotech 8 12 I C (A) 16 0 At Tj = VR= IF= V GE = °C V V Ω 8 20 25/125 25/125 600 8 ±15 40 60 80 100 120 R gon ( Ω ) 140 °C V A V 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Inverter Charateristics Figure 17 Inverter FWD Figure 18 Inverter FWD Typical rate of fall of forward Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I C) and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) direc / dt (A/ µs) direc / dt (A/µ s) 600 dI0/dt dIrec/dt 500 3000 dI0/dt dIrec/dt 2500 400 2000 300 1500 200 1000 100 500 0 0 0 At Tj = V CE = V GE = R gon = 4 8 12 I C (A) 0 16 20 40 25/125 25/125 600 °C V At Tj = VR= 25/125 25/125 600 °C V ±15 32 V Ω IF= V GE = 8 ±15 A V Figure 19 IGBT transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) Inverter IGBT 60 80 100 Figure 20 FWD transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) 140 R gon ( Ω ) Inverter FWD 101 Zth(j-s) (K/W) Zth-(j-s) (K/W) 101 120 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D = R th(j-s) = 10-4 10-3 10-2 10-1 100 t p (s) 10-5 10110 At D = R th(j-s) = tp/T 1,57 K/W IGBT thermal model values 10-4 10-2 10-1 100 t p (s) 10110 tp/T 2,07 K/W FWD thermal model values R (K/W) 0,14 0,63 0,40 Tau (s) 6,0E-01 7,7E-02 2,4E-02 R (K/W) 0,05 0,16 0,78 Tau (s) 4,3E+00 5,0E-01 7,9E-02 0,29 0,11 6,2E-03 1,4E-03 0,53 0,35 0,20 2,7E-02 5,0E-03 9,1E-04 copyright Vincotech 10-3 9 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Inverter Charateristics Figure 21 Inverter IGBT Figure 22 Inverter IGBT Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T s) function of heatsink temperature I C = f(T s) 25 IC (A) Ptot (W) 125 100 20 75 15 50 10 25 5 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = V GE = °C Figure 23 Inverter FWD 50 175 15 100 150 200 °C V Figure 24 Power dissipation as a function of heatsink temperature P tot = f(T s) T h ( o C) Inverter FWD Forward current as a function of heatsink temperature I F = f(T s) 20 IF (A) Ptot (W) 90 75 15 60 45 10 30 5 15 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 10 50 175 100 150 T h ( o C) 200 °C 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Inverter Charateristics Inverter IGBT Figure 26 Gate voltage vs Gate charge of collector-emitter voltage I C = f(V CE) V GE = f(Q g) 103 17,5 VGE (V) Safe operating area as a function IC (A) Figure 25 Inverter IGBT 15 240V 102 960V 100uS 12,5 1mS 10 10mS 10 1 100mS 7,5 DC 5 10 0 2,5 0 10-1 100 At D = 101 103 102 V CE (V) 0 104 At IC = single pulse Ts = V GE = Tj = 80 ±15 T jmax 5 10 8 15 20 25 Q g (nC) 30 A ºC V ºC Figure 27 Inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage t sc = f(V GE) Inverter IGBT Typical short circuit collector current as a function of gate-emitter voltage I sc = f(V GE) 90 IC (sc) tsc (µS) 17,5 15 80 12,5 70 10 60 7,5 50 5 40 2,5 30 0 20 12 At V CE = Tj ≤ 13 14 1200 V 175 ºC copyright Vincotech 15 16 V GE (V) 17 12 At V CE ≤ Tj = 11 14 16 1200 V 175 ºC 18 V GE (V) 20 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Inverter Charateristics Figure 29 Reverse bias safe operating area Inverter IGBT I C = f(V CE) IC (A) 18 IC MAX 15 Ic CHIP Ic MODULE 12 9 6 VCE MAX 3 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = T jmax-25 copyright Vincotech ºC 12 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Brake Charateristics Figure 1 Brake IGBT Figure 2 Typical output characteristics I C = f(V CE) Brake IGBT Typical output characteristics I C = f(V CE) 15 IC (A) IC (A) 15 12 12 9 9 6 6 3 3 0 0 0 At tp = Tj = V GE from 1 2 3 V CE (V) 4 0 5 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Brake IGBT 1 2 3 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical transfer characteristics I C = f(V GE) V CE (V) Brake FWD Typical diode forward current as a function of forward voltage I F = f(V F) 14 IC (A) IF (A) 5 12 4 10 3 8 6 2 4 Tj = Tjmax-25°C Tj = 25°C 1 Tj = Tjmax-25°C 2 Tj = 25°C 0 0 0 At tp = V CE = 2 4 250 10 µs V copyright Vincotech 6 8 10 V GE (V) 0 12 At tp = 13 0,5 250 1 1,5 2 2,5 3 V F (V) 3,5 µs 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Brake Charateristics Figure 5 Brake IGBT Figure 6 Brake IGBT Typical switching energy losses Typical switching energy losses as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) 0,8 E (mWs) E (mWs) 0,8 Eon Eon Tj = Tjmax -25°C 0,6 0,6 Tj = Tjmax -25°C Eon Eoff Eon 0,4 0,4 Eoff Eoff Tj = 25°C Eoff 0,2 0,2 Tj = 25°C 0,0 0,0 0 0 2 4 6 I C (A) 50 100 150 200 250 8 With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V R gon = 64 Ω R goff = 64 Ω R G ( Ω ) 300 With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V IC = 4 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Brake FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) 0,4 E (mWs) 0,5 Brake FWD Erec Tj = Tjmax - 25°C Tj = Tjmax -25°C Erec 0,4 0,3 0,3 0,2 Erec Tj = 25°C Erec Tj = 25°C 0,2 0,1 0,1 0 0 0 0 2 4 6 I C (A) With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V R gon = 64 Ω copyright Vincotech 50 100 8 150 200 250 RG (Ω ) 300 With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V IC = 4 A 14 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Brake Charateristics Figure 9 Brake IGBT Figure 10 Brake IGBT Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) 1,00 t ( µs) t ( µs) 1,00 tdoff tf tdon 0,10 tdon tdoff tf 0,10 tr tr 0,01 0,01 0,00 0,00 0 2 4 6 I C (A) 0 8 With an inductive load at Tj = 125 °C V CE = 600 V V GE = ±15 V R gon = 64 Ω R goff = 64 Ω 50 100 150 200 250 RG (Ω ) 300 With an inductive load at Tj = 125 °C V CE = 600 V V GE = ±15 V IC = 4 A Figure 11 IGBT transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) Brake IGBT Figure 12 FWD transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) Zth(j-s) (K/W) 101 Zth(j-s) (K/W) 101 Brake FWD 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 10-4 At R th(j-s) = 10-3 D = 2,03 copyright Vincotech 10-2 10-1 100 t p (s) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 101 10 10-5 tp/T 10-4 At R th(j-s) = K/W 15 10-3 D = 3,00 10-2 10-1 100 t p (s) 101 10 tp/T K/W 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Brake Charateristics Figure 13 Brake IGBT Figure 14 Brake IGBT Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T s) function of heatsink temperature I C = f(T s) 12 IC (A) Ptot (W) 90 80 10 70 60 8 50 6 40 30 4 20 2 10 0 0 0 At Tj = 50 175 100 T s ( o C) 150 200 0 At Tj = V GE = ºC Figure 15 Brake FWD 50 175 15 100 T s ( o C) 150 ºC V Figure 16 Power dissipation as a function of heatsink temperature P tot = f(T s) 200 Brake FWD Forward current as a function of heatsink temperature I F = f(T s) 8 IF (A) Ptot (W) 50 40 6 30 4 20 2 10 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 Ts ( o C) 150 0 At Tj = ºC 16 30 150 60 90 120 Ts ( o C) 150 ºC 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Rectifier Charateristics Figure 1 Rectifier Diode Figure 2 Rectifier Diode Typical diode forward current as Diode transient thermal impedance a function of forward voltage I F= f(V F) as a function of pulse width Z th(j-s) = f(t p) 101 IF (A) Zth(j-s) (K/W) 100 80 100 60 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 40 10-1 20 Tj = Tjmax-25°C Tj = 25°C 0 0 At tp = 0,5 1 1,5 V F (V) 10-2 2 10-5 10-4 10-3 At 250 10-2 10-1 100 t p (s) 10110 tp/T D = µs D = R th(j-s) = Figure 3 Rectifier Diode tp/T 1,25 K/W Figure 4 Power dissipation as a function of heatsink temperature P tot = f(T s) Rectifier Diode Forward current as a function of heatsink temperature I F = f(T s) 60 IF (A) Ptot (W) 125 50 100 40 75 30 50 20 25 10 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 120 T s ( o C) 150 0 At Tj = ºC 17 30 150 60 90 120 T s ( o C) 150 ºC 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Thermistor Figure 1 Thermistor Typical NTC characteristic as a function of temperature R T = f(T ) NTC-typical temperature characteristic R (Ω) 25000 20000 15000 10000 5000 0 25 copyright Vincotech 50 75 100 T (°C) 125 18 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Inverter Switching Definitions General conditions Tj = 125 °C = 32 Ω R gon R goff = 32 Ω Figure 1 Inverter IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 Inverter IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 125 250 tdoff % % VCE IC 200 100 VCE 90% VGE 90% 75 150 IC VCE VGE VGE 100 50 tEoff tdon 50 25 IC 1% VGE10% VCE 3% IC10% 0 0 tEon -50 -25 -0,1 0 0,1 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = -15 15 600 t doff = t E off = 0,2 0,3 0,4 0,5 time (us) 2,9 0,6 3 3,1 V V V V GE (0%) = V GE (100%) = V C (100%) = 8 A I C (100%) = 8 A 0,24 0,50 µs µs t don = t E on = 0,07 0,27 µs µs Figure 3 Inverter IGBT Turn-off Switching Waveforms & definition of t f -15 15 600 3,2 time(us) 3,3 V V V Figure 4 Inverter IGBT Turn-on Switching Waveforms & definition of t r 250 125 fitted % % VCE IC Ic 200 100 IC 90% 150 75 IC 60% VCE 100 50 IC 40% tr IC90% 50 25 IC10% 0 IC10% 0 tf -50 -25 0,1 0,2 0,3 0,4 time (us) 2,9 0,5 3 3,1 3,2 3,4 time(us) V C (100%) = I C (100%) = 600 8 V A V C (100%) = I C (100%) = 600 8 V A tf = 0,11 µs tr = 0,02 µs copyright Vincotech 3,3 19 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Inverter Switching Definitions Figure 5 Inverter IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Inverter IGBT Turn-on Switching Waveforms & definition of t Eon 200 125 % Eoff Poff 100 Pon % IC 1% 150 75 Eon 100 50 50 25 VCE 3% VGE 10% VGE 90% 0 tEon 0 tEoff -25 -0,2 -50 0 0,2 P off (100%) = E off (100%) = t E off = 4,93 0,62 0,50 0,4 0,6 time (us) 2,9 0,8 kW mJ µs P on (100%) = E on (100%) = t E on = 3 3,1 4,93 0,75 0,27 3,2 time(us) 3,3 kW mJ µs Figure 7 Inverter FWD Turn-off Switching Waveforms & definition of t rr 150 % Id 100 trr 50 Vd 0 fitted IRRM 10% -50 -100 IRRM 90% IRRM 100% -150 2,8 3 3,2 3,4 3,6 time(us) V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 600 8 -10 0,38 V A A µs 20 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Inverter Switching Definitions Figure 8 Inverter FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 Inverter FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 125 Id % % Qrr 100 Erec 100 tQrr 50 75 0 50 -50 25 -100 0 tErec Prec -150 -25 2,8 3 3,2 3,4 3,6 3,8 4 2,8 3 3,2 3,4 4,93 0,63 0,80 kW mJ µs time(us) I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 8 1,57 0,80 A µC µs P rec (100%) = E rec (100%) = t E rec = 21 3,6 3,8 time(us) 4 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code without brake without thermal paste 12mm housing V23990-P849-A58-PM V23990-P849-C58-PM with brake without thermal pastee 17mm housing without brake without thermal paste 17mm housing V23990-P849-A59-PM V23990-P849-C59-PM with brake without thermal paste 12mm housing Name NNNNNNNNNVV Date code UL & Vinco Lot Serial WWYY UL Vinco LLLLL SSSS Type&Ver Lot number Serial Date code TTTTTTTVV SSSS WWYY Text VIN WWYY NNNNNNNVV UL LLLLL SSSS Datamatrix LLLLL Outline Pin table Y Function Pin X 1 2 25,5 25,5 2,7 0 NTC1 NTC2 3 4 5 6 7 8 9 22,8 20,1 16,2 13,5 10,8 8,1 5,4 0 0 0 0 0 0 0 -DC BRCG 10 11 12 13 2,7 0 0 0 0 0 19,8 22,5 E5 G4 E4 G1 U 14 15 16 17 18 19 20 21 22 23 7,5 7,5 15 15 22,8 25,5 33,5 33,5 33,5 33,5 19,8 22,5 19,8 22,5 22,5 22,5 22,5 15 7,5 0 G2 V G3 W +INV +DC BRC+ L1 L2 L3 copyright Vincotech Pinout variation Modul subtype Not assembled pins P849-A4* - P849-C4* 4,5,20 BRCE G6 E6 G5 22 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Ordering Code and Marking - Outline - Pinout Pinout Identification ID Component Voltage Current Function T1, T2, T3, T4, T5, T6 IGBT 1200 V 8A Inverter Switch D1, D2, D3, D4, D5, D6 FWD 1200 V 8A Inverter Diode T7 IGBT 1200 V 4A Brake Switch D7 FWD 1200 V 4A Brake Diode Diode 1200 V 35 A D8, D9, D10, D11, D12, D13 NTC copyright Vincotech Comment Rectifier NTC Thermistor 23 19 Mar. 2016 / Revision 7 V23990-P849-*5*-PM datasheet Packaging instruction Standard packaging quantity (SPQ) >SPQ 135 Standard <SPQ Sample Handling instruction Handling instructions for flow 0 packages see vincotech.com website. Package data Package data for flow 0 packages see vincotech.com website. Document No.: Date: Modification: Pages V23990-P849-x5x-PM-D7-14 19 Mar. 2016 New style, NTC changed All pages DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 24 19 Mar. 2016 / Revision 7