V23990-P840-*4*-PM datasheet flow PIM 0 3 rd 1200 V / 15 A gen Features flow 0 housing ● 2 Clips housing in 12 and 17mm height ● Trench Fieldstop Technology IGBT4 ● Optional w/o BRC Target Applications 12mm housing 17mm housing Schematic ● Industrial Drives ● Embedded Generation Types ● V23990-P840-A48-PM ● V23990-P840-A49-PM ● V23990-P840-C48-PM ● V23990-P840-C49-PM Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 27 30 A 220 A 200 A2s 33 50 W 150 °C 1200 V 18 24 A 45 A 30 A 52 79 W Rectifier Diode Repetitive peak reverse voltage V RRM DC forward current I FAV Surge forward current I FSM T j = T jmax T s = 80°C T c = 80°C t p = 10 ms 2 2 I t-value I t Power dissipation P tot Maximum Junction Temperature T j = T jmax T s = 80°C T c = 80°C T jmax Inverter IGBT Collector-emitter break down voltage DC collector current Pulsed collector current V CE IC I CRM Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC copyright Vincotech t p limited by T jmax V CE ≤ 1200 V, T j ≤ T op max Turn off safe operating area Maximum Junction Temperature T j = T jmax T s = 80°C T c = 80°C T j = T jmax T j ≤ 150 °C V GE = 15 V T jmax 1 T s = 80°C T c = 80°C ±20 V 10 800 µs V 175 °C 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit Inverter FWD Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature V RRM IF I FRM P tot T j = T jmax 1200 V T s = 80°C T c = 80°C 20 25 A 30 A T s = 80°C T c = 80°C 38 57 W 175 °C 1200 V 12 15 A 24 A 16 A 40 61 W t p limited by T jmax T j = T jmax T jmax Brake IGBT Collector-emitter break down voltage DC collector current Pulsed collector current V CE IC I CRM T j = T jmax t p limited by T jmax V CE ≤ 1200 V, T j ≤ T op max Turn off safe operating area Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature T s = 80°C T c = 80°C T s = 80°C T c = 80°C T j = T jmax T j ≤ 150 °C V GE = 15 V T jmax ±20 V 10 800 µs V 175 °C Brake FWD V RRM 1200 V T s = 80°C T c = 80°C 10 10 A 15 A T s = 80°C T c = 80°C 22 34 W T jmax 150 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(T jmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature IF I FRM P tot T j = T jmax t p limited by T jmax T j = T jmax Thermal Properties Isolation Properties Isolation voltage Comparative tracking index copyright Vincotech V is t=2s DC voltage CTI >200 2 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Unit Typ Max 1,17 1,13 0,93 0,79 9,78 13,37 1,9 Rectifier Diode Forward voltage VF 25 Threshold voltage (for power loss calc. only) V to 25 Slope resistance (for power loss calc. only) rt 25 Reverse current Ir 1600 R th(j-s) phase-change material λ = 3,4 W/mK Gate emitter threshold voltage V GE(th) V CE = V GE Collector-emitter saturation voltage V CEsat Thermal resistance chip to heatsink 25 125 25 125 25 125 25 145 V V mΩ 0,05 1,1 mA K/W 1,61 Inverter IGBT 0,0005 25 15 25 125 5 5,8 6,5 1,58 1,94 2,26 2,07 V V Collector-emitter cut-off current incl. Diode I CES 0 1200 25 0,002 mA Gate-emitter leakage current I GES 20 0 25 120 nA Integrated Gate resistor R gint Turn-on delay time t d(on) 600 25 125 25 125 25 125 25 125 25 125 25 125 Rise time Turn-off delay time Fall time tr t d(off) tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Thermal resistance chip to heatsink none R th(j-s) R goff = 16 Ω R gon = 16 Ω ±15 15 Ω 60 60 15 19 197 239 79 106 0,88 1,25 0,88 1,24 ns mWs 1000 f = 1 MHz 0 25 25 100 pF 56 phase-change material λ = 3,4 W/mK K/W 1,35 Inverter FWD Diode forward voltage Peak reverse recovery current VF I RRM Reverse recovery time t rr Reverse recovered charge Q rr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink copyright Vincotech 10 R gon = 16 Ω ±15 600 ( di rf/dt )max E rec R th(j-s) phase-change material λ = 3,4 W/mK 15 25 125 25 125 25 125 25 125 25 125 25 125 1,35 1,90 1,91 13 16 282 433 1,59 2,75 129 109 0,65 1,16 1,83 3 2,05 V A ns µC A/µs mWs K/W 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] 0,0003 25 8 25 125 Min Typ Unit Max Brake IGBT Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) V CE = V GE V CEsat 5 5,8 6,3 1,58 1,87 2,22 2,07 V V Collector-emitter cut-off incl diode I CES 0 1200 25 0,001 mA Gate-emitter leakage current I GES 20 0 25 120 nA 600 25 125 25 125 25 125 25 125 25 125 25 125 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tr t d(off) tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Thermal resistance chip to heatsink R th(j-s) Ω none R goff = 32 Ω R gon = 32 Ω ±15 8 71 72 20 24 181 228 78 104 0,50 0,71 0,43 0,62 ns mWs 490 f = 1 MHz 0 25 25 pF 50 30 phase-change material λ = 3,4 W/mK K/W 1,57 Brake FWD Diode forward voltage VF Reverse leakage current Ir Peak reverse recovery current t rr Reverse recovered charge Q rr Reverse recovery energy Thermal resistance chip to heatsink R gon = 32 Ω R gon = 32 Ω ±15 ( di rf/dt )max E rec R th(j-s) 25 125 1200 25 600 25 125 25 125 25 125 25 125 25 125 I RRM Reverse recovery time Peak rate of fall of recovery current 7,5 8 1,67 1,61 V 250 9 10 258 427 0,90 0,90 78 73 0,35 0,69 phase-change material λ = 3,4 W/mK µA A ns µC A/µs mWs 2,20 K/W 22000 Ω Thermistor Rated resistance R Deviation of R100 Δ R/R Power dissipation P 25 R 100 = 1484 Ω 100 25 Power dissipation constant -5 5 % 5 mW mW/K 25 1,5 B-value B (25/50) Tol. ±1% 25 3962 K B-value B (25/100) Tol. ±1% 25 4000 K Vincotech NTC Reference copyright Vincotech I 4 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Inverter Charateristics Figure 1 Typical output characteristics I C = f(V CE) Inverter IGBT Figure 2 Inverter IGBT Typical output characteristics I C = f(V CE) 50 IC (A) IC (A) 50 40 40 30 30 20 20 10 10 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) Inverter IGBT 1 2 3 4 V CE (V) 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) Inverter FWD 30 IF (A) IC (A) 16 14 25 12 20 10 15 8 6 10 Tj = Tjmax-25°C 4 Tj = Tjmax-25°C 5 Tj = 25°C 2 Tj = 25°C 0 0,0 0 0 At tp = V CE = 2 250 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0,5 1,0 1,5 2,0 2,5 3,0 V F (V) At tp = µs V 5 250 µs 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Inverter Charateristics Figure 5 Inverter IGBT Figure 6 Inverter IGBT Typical switching energy losses as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) 2,5 3 E (mWs) E (mWs) Typical switching energy losses Eon High T 2,5 Eon High T 2 Eoff High T 2 Eon Low T Eon Low T 1,5 Eoff High T Eoff Low T 1,5 1 Eoff Low T 1 0,5 0,5 0 0 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = °C 25/125 25/125 V CE = 600 V V GE = ±15 V R gon = 16 Ω R goff = 16 Ω 40 60 R G (Ω) 80 With an inductive load at Tj = °C 25/125 25/125 V CE = 600 V V GE = ±15 V IC = 15 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 1,4 Inverter FWD 1,2 E (mWs) E (mWs) 20 Erec Tj = Tjmax -25°C 1,2 Erec Tj = Tjmax -25°C 1 1 0,8 Erec Tj = 25°C 0,8 Tj = 25°C Erec 0,6 0,6 0,4 0,4 0,2 0,2 0 0 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V R gon = 16 Ω copyright Vincotech 20 40 60 R G (Ω) 80 With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V IC = 15 A 6 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Inverter Charateristics Figure 9 Inverter IGBT Figure 10 Inverter IGBT Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) 1,00 t (µ µ s) t (µ µ s) 1,00 tdoff tdoff tdon tf 0,10 0,10 tf tdon tr tr 0,01 0,01 0,00 0,00 0 5 10 15 20 25 I C (A) 30 0 With an inductive load at Tj = 125 °C V CE = 600 V V GE = ±15 V R gon = 16 Ω R goff = 16 Ω 20 40 60 R G (Ω) 80 With an inductive load at Tj = 125 °C V CE = 600 V V GE = ±15 V IC = 15 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I C) Inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,8 trr (µ µ s) 0,6 Inverter FWD trr (µ µ s) trr Tj = Tjmax -25°C 0,5 Tj = Tjmax -25°C trr 0,6 0,4 Tj = 25°C trr Tj = 25°C trr 0,4 0,3 0,2 0,2 0,1 0,0 0,0 0 At Tj = V CE = V GE = R gon = 5 25/125 25/125 600 ±15 16 copyright Vincotech 10 15 20 25 0 I C (A) 30 At Tj = VR= IF= V GE = °C V V Ω 7 10 25/125 25/125 600 15 ±15 20 30 40 50 60 R gon (Ω) 70 °C V A V 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Inverter Charateristics Figure 13 Inverter FWD Figure 14 Inverter FWD Typical reverse recovery charge as a Typical reverse recovery charge as a function of collector current Q rr = f(I C) function of IGBT turn on gate resistor Q rr = f(R gon) Tj = Tjmax -25°C Qrr (µ µ C) Qrr (µ µ C) 4 Qrr 3 Qrr Tj = Tjmax -25°C 2,5 3 2 2 Qrr Tj = 25°C 1,5 Qrr Tj = 25°C 1 1 0,5 0 0 0 5 10 15 20 25 At At Tj = V CE = V GE = R gon = 30 0 20 40 25/125 25/125 600 °C V At Tj = VR= 25/125 25/125 600 °C V ±15 16 V Ω IF= V GE = 15 ±15 A V Figure 15 Typical reverse recovery current as a function of collector current I RRM = f(I C) Inverter FWD 60 Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) 18 R gon (Ω) 80 Inverter FWD 50 I RRM (A) I RRM (A) I C (A) Tj = Tjmax -25°C 16 IRRM 40 14 Tj = 25°C 12 IRRM 30 10 Tj = Tjmax - 25°C 8 20 6 Tj = 25°C 4 10 IRRM IRRM 2 0 0 0 At Tj = V CE = V GE = R gon = 5 25/125 25/125 600 ±15 16 copyright Vincotech 10 15 20 25 I C (A) 30 0 At Tj = VR= IF= V GE = °C V V Ω 8 20 25/125 25/125 600 15 ±15 40 60 R gon (Ω) 80 °C V A V 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Inverter Charateristics Figure 17 Inverter FWD Figure 18 Inverter FWD Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I C) and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 1600 6000 dI0/dt dIrec/dt dI0/dt direc / dt (A/ms) direc / dt (A/ms) Typical rate of fall of forward 1400 dIrec/dt 5000 1200 4000 1000 800 3000 600 2000 400 1000 200 0 0 0 5 10 15 20 25 30 0 I C (A) At Tj = V CE = V GE = R gon = 10 20 30 25/125 25/125 600 °C V At Tj = VR= 25/125 25/125 600 °C V ±15 16 V Ω IF= V GE = 15 ±15 A V Figure 19 IGBT transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) Inverter IGBT 40 50 Figure 20 FWD transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) 101 60 70 R gon (Ω Ω) 80 Inverter FWD Zth(j-s) (K/W) Zth(j-s) (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D = R th(j-s) = 10-4 10-3 10-2 10-1 100 t p (s) 10-5 10110 At D = R th(j-s) = tp/T 1,35 K/W IGBT thermal model values 10-4 10-2 10-1 100 t p (s) 10 tp/T 1,83 K/W FWD thermal model values R (K/W) 0,04 0,21 0,57 Tau (s) 5,6E+00 8,7E-01 1,7E-01 R (K/W) 0,03 0,19 0,75 Tau (s) 9,6E+00 8,2E-01 1,2E-01 0,31 0,14 0,08 3,4E-02 6,2E-03 5,5E-04 0,50 0,20 0,16 2,6E-02 3,4E-03 3,8E-04 copyright Vincotech 10-3 9 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Inverter Charateristics Figure 21 Inverter IGBT Figure 22 Inverter IGBT Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T s) function of heatsink temperature I C = f(T s) 30 Ptot (W) IC (A) 150 125 25 100 20 75 15 50 10 25 5 0 0 0 At Tj = 50 175 100 150 T s (oC) 200 0 At Tj = V GE = °C Figure 23 Inverter FWD 50 175 15 100 T s (oC) 200 °C V Figure 24 Power dissipation as a function of heatsink temperature P tot = f(T s) 150 Inverter FWD Forward current as a function of heatsink temperature I F = f(T s) 30 P tot (W) IF (A) 100 25 80 20 60 15 40 10 20 5 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T s(oC) 200 0 At Tj = °C 10 50 175 100 150 T s (oC) 200 °C 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Inverter Charateristics Figure 25 Safe operating area as a function Inverter IGBT Figure 26 Gate voltage vs Gate charge of collector-emitter voltage I C = f(V CE) V GE = f(Q g) VGE (V) IC (A) 103 Inverter IGBT 20 17,5 240 V 102 15 100uS 960 V 12,5 10 101 1mS 7,5 10mS 5 100 100mS DC 10-1 2,5 0 100 101 At D = 103 102 V CE (V) 0 104 At IC = single pulse Ts = V GE = Tj = 80 ±15 T jmax 25 50 15 75 100 Q g (nC) 125 A ºC V ºC Figure 27 Inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage t sc = f(V GE) Inverter IGBT Typical short circuit collector current as a function of gate-emitter voltage I sc = f(V GE) 150 IC (sc) tsc (µS) 17,5 15 125 12,5 100 10 75 7,5 50 5 25 2,5 0 0 12 At V CE = Tj ≤ 13 14 1200 V 175 ºC copyright Vincotech 15 16 V GE (V) 17 12 At V CE ≤ Tj = 11 14 16 1200 V 175 ºC 18 V GE (V) 20 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Inverter Charateristics Figure 29 Reverse bias safe operating area Inverter IGBT I C = f(V CE) IC (A) 35 IC MAX 30 Ic MODULE 20 15 VCE MAX Ic CHIP 25 10 5 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = T jmax-25 copyright Vincotech ºC 12 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Brake Charateristics Figure 1 Brake IGBT Figure 2 Typical output characteristics I C = f(V CE) Brake IGBT Typical output characteristics I C = f(V CE) 25 IC (A) IC (A) 25 20 20 15 15 10 10 5 5 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 0 5 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Brake IGBT 1 2 3 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V Figure 4 Typical transfer characteristics I C = f(V GE) V CE (V) Brake FWD Typical diode forward current as a function of forward voltage I F = f(V F) 9 IF (A) IC (A) 30 7,5 25 6 20 4,5 15 3 10 Tj = Tjmax-25°C Tj = Tjmax-25°C 5 1,5 Tj = 25°C Tj = 25°C 0 0 0 At tp = V CE = 2 250 10 copyright Vincotech 4 6 8 10 V GE (V) 0 12 At tp = µs V 13 0,5 250 1 1,5 2 2,5 V F (V) 3 µs 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Brake Charateristics Figure 5 Brake IGBT Figure 6 Brake IGBT Typical switching energy losses Typical switching energy losses as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) 1,4 Eon E (mWs) E (mWs) 1,4 1,2 Eon 1,2 Tj = Tjmax -25°C Tj = Tjmax -25°C Eoff 1,0 1 Eon Eon 0,8 0,8 Eoff Eoff 0,6 0,6 Eoff Tj = 25°C 0,4 0,4 0,2 0,2 Tj = 25°C 0 0,0 0 2 4 6 8 10 12 14 I C (A) 0 16 With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V R gon = 32 Ω R goff = 32 Ω 20 40 60 80 100 120 140 RG (Ω ) With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V IC = 8 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Brake FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) E (mWs) 1 E (mWs) Erec Brake FWD 0,7 Erec Tj = Tjmax -25°C 0,6 0,8 Tj = Tjmax - 25°C 0,5 0,6 0,4 Tj = 25°C Erec Tj = 25°C Erec 0,3 0,4 0,2 0,2 0,1 0 0 0 2 4 6 8 10 12 14 I C (A) 0 16 40 60 80 100 120 140 RG (Ω ) With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V R gon = 32 Ω copyright Vincotech 20 With an inductive load at Tj = 25/125 25/125 °C V CE = 600 V V GE = ±15 V IC = 8 A 14 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Brake Charateristics Figure 9 Brake IGBT Figure 10 Brake IGBT Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) 1,00 t (µ µ s) t ( µs) 1,00 tdoff tdoff tdon tf 0,10 tf 0,10 tdon tr tr 0,01 0,01 0,00 0,00 0 2 4 6 8 10 12 14 16 0 20 40 60 80 100 120 I C (A) With an inductive load at Tj = 125 °C V CE = 600 V V GE = ±15 V R gon = 32 Ω R goff = 32 Ω RG (Ω ) 140 With an inductive load at Tj = 125 °C V CE = 600 V V GE = ±15 V IC = 8 A Figure 11 IGBT transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) Brake IGBT Figure 12 FWD transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) Zth(j-s) (K/W) 101 Zth(j-s) (K/W) 101 Brake FWD 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10-1 10-2 10-2 10-5 10-4 At R th(j-s) = 10-3 D = 1,57 copyright Vincotech 10-2 10-1 100 t p (s) 101 10 10-5 tp/T 10-4 At R th(j-s) = K/W 15 10-3 D = 2,20 10-2 10-1 100 t p (s) 101 10 tp/T K/W 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Brake Charateristics Figure 13 Brake IGBT Figure 14 Brake IGBT Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T s) function of heatsink temperature I C = f(T s) 25 IC (A) Ptot (W) 125 100 20 75 15 50 10 25 5 0 0 0 At Tj = 50 175 100 150 T s ( o C) 0 200 At Tj = V GE = ºC Figure 15 Brake FWD 175 15 100 T s ( o C) 150 200 ºC V Figure 16 Power dissipation as a function of heatsink temperature P tot = f(T s) Brake FWD Forward current as a function of heatsink temperature I F = f(T s) 70 12 IF (A) Ptot (W) 50 60 10 50 8 40 6 30 4 20 2 10 0 0 At Tj = 25 150 copyright Vincotech 50 75 100 125 0 Ts ( o C) 150 0 At Tj = ºC 16 25 50 150 ºC 75 100 125 Ts ( o C) 150 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Rectifier Diode Figure 1 Rectifier Diode Figure 2 Rectifier Diode Typical diode forward current as Diode transient thermal impedance a function of forward voltage I F= f(V F) as a function of pulse width Z th(j-s) = f(t p) 101 IF (A) Zth(j-s) (K/W) 100 80 100 60 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 40 10-1 20 Tj = Tjmax-25°C Tj = 25°C 0 0,0 At tp = 0,5 1,0 1,5 V F (V) 10-2 2,0 10-5 10-4 At 250 10-3 D = 10-2 10-1 100 t p (s) 10110 tp/T µs D = R th(j-s) = Figure 3 Rectifier Diode tp/T 1,61 K/W Figure 4 Rectifier Diode 100 60 IF (A) Forward current as a function of heatsink temperature I F = f(T h) Ptot (W) Power dissipation as a function of heatsink temperature P tot = f(T h) 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 25 150 copyright Vincotech 50 75 100 125 T h ( o C) 150 0 At Tj = ºC 17 25 50 150 ºC 75 100 125 T h ( o C) 150 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Thermistor Figure 1 Thermistor Typical NTC characteristic as a function of temperature R T = f(T ) NTC-typical temperature characteristic R(Ω) 25000 20000 15000 10000 5000 0 25 copyright Vincotech 50 75 100 T (°C) 125 18 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Inverter Switching Definitions General conditions Tj = 125 °C = 16 Ω R gon R goff = 16 Ω Inverter IGBT Figure 1 Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 Inverter IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 125 250 tdoff % % VCE IC 200 100 VCE 90% VGE 90% 150 75 IC VGE VCE 100 50 tEoff VGE tdon 50 25 IC 1% VGE10% VCE 3% IC10% 0 0 tEon -50 -25 -0,2 0 0,2 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = -15 15 600 t doff = t E off = 0,4 0,6 time (us) 2,9 0,8 3 3,1 V V V V GE (0%) = V GE (100%) = V C (100%) = 15 A I C (100%) = 15 A 0,24 0,56 µs µs t don = t E on = 0,06 0,25 µs µs Figure 3 Inverter IGBT Turn-off Switching Waveforms & definition of t f -15 15 600 3,2 time(us) 3,3 V V V Figure 4 Inverter IGBT Turn-on Switching Waveforms & definition of t r 125 250 VCE fitted % % IC 100 Ic 200 IC 90% 75 150 IC 60% VCE 50 100 IC 40% tr 25 IC90% 50 IC10% 0 IC10% 0 tf -25 -50 0 0,1 0,2 0,3 0,4 0,5 0,6 2,9 3 3,1 V C (100%) = I C (100%) = 600 15 V A V C (100%) = I C (100%) = 600 15 V A tf = 0,11 µs tr = 0,02 µs copyright Vincotech 3,2 3,3 time(us) time (us) 19 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Inverter Switching Definitions Figure 5 Inverter IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Inverter IGBT Turn-on Switching Waveforms & definition of t Eon 125 200 % % Eoff 100 Pon Poff 150 75 Eon 100 50 50 25 VCE 3% VGE 10% IC 1% VGE 90% 0 tEon 0 tEoff -50 -25 -0,2 0 0,2 P off (100%) = E off (100%) = t E off = 9,00 1,24 0,56 0,4 0,6 time (us) 2,9 0,8 3 3,1 3,2 3,3 time(us) kW mJ µs P on (100%) = E on (100%) = t E on = 9,00 1,25 0,25 kW mJ µs Figure 7 Inverter FWD Turn-off Switching Waveforms & definition of t rr 150 % Id 100 trr 50 Vd fitted 0 IRRM 10% -50 IRRM 90% IRRM 100% -100 -150 2,8 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 3 3,2 600 15 -16 0,43 3,4 time(us) 3,6 V A A µs 20 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Inverter Switching Definitions Figure 8 Inverter FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 Inverter FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 120 Erec % % Id Qrr 100 100 tQrr 80 tErec 50 60 0 40 Prec -50 20 -100 0 -150 -20 2,8 3 3,2 3,4 3,6 3,8 4 3 time(us) I D (100%) = Q rr (100%) = t Q rr = copyright Vincotech 15 2,75 0,90 A µC µs 3,2 P rec (100%) = E rec (100%) = t E rec = 21 3,4 3,6 9,00 1,16 0,90 kW mJ µs 3,8 4 4,2 time(us) 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code without brake without thermal paste 12mm housing V23990-P840-A48-PM V23990-P840-C48-PM with brake without thermal pastee 17mm housing without brake without thermal paste 17mm housing V23990-P840-A49-PM V23990-P840-C49-PM with brake without thermal paste 12mm housing Name NNNNNNNNNVV Date code UL & VIN Lot Serial WWYY UL VIN LLLLL SSSS Type&Ver Lot number Serial Date code TTTTTTTVV SSSS WWYY Text VIN WWYY NNNNNNNVV UL LLLLL SSSS Datamatrix LLLLL Outline Pin table Y Function Pin X 1 2 25,5 25,5 2,7 0 NTC1 NTC2 3 4 5 6 7 8 9 22,8 20,1 16,2 13,5 10,8 8,1 5,4 0 0 0 0 0 0 0 -DC BRCG 10 11 12 13 2,7 0 0 0 0 0 19,8 22,5 E5 G4 E4 G1 U 14 15 16 17 18 19 20 21 22 23 7,5 7,5 15 15 22,8 25,5 33,5 33,5 33,5 33,5 19,8 22,5 19,8 22,5 22,5 22,5 22,5 15 7,5 0 G2 V G3 W +INV +DC BRC+ L1 L2 L3 copyright Vincotech Pinout variation Modul subtype Not assembled pins P840-A4* - P840-C4* 4,5,20 BRCE G6 E6 G5 22 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Ordering Code and Marking - Outline - Pinout Pinout Identification ID Component Voltage Current Function T1, T2, T3, T4, T5, T6 IGBT 1200 V 15 A Inverter Switch D1, D2, D3, D4, D5, D6 FWD 1200 V 15 A Inverter Diode T7 IGBT 1200 V 8A Brake Switch D7 FWD 1200 V 7,5 A Brake Diode Diode 1600 V 25 A D8, D9, D10, D11, D12, D13 NTC copyright Vincotech Comment Rectifier NTC Thermistor 23 19 Mar. 2016 / Revision 7 V23990-P840-*4*-PM datasheet Packaging instruction Standard packaging quantity (SPQ) >SPQ 135 Standard <SPQ Sample Handling instruction Handling instructions for flow 0 packages see vincotech.com website. Package data Package data for flow 0 packages see vincotech.com website. Document No.: Date: Modification: Pages V23990-P840-*4*-PM-D7-14 19 Mar. 2016 New style, NTC changed All DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 24 19 Mar. 2016 / Revision 7