V23990 P840 x4x D7 14

V23990-P840-*4*-PM
datasheet
flow PIM 0 3
rd
1200 V / 15 A
gen
Features
flow 0 housing
● 2 Clips housing in 12 and 17mm height
● Trench Fieldstop Technology IGBT4
● Optional w/o BRC
Target Applications
12mm housing
17mm housing
Schematic
● Industrial Drives
● Embedded Generation
Types
● V23990-P840-A48-PM
● V23990-P840-A49-PM
● V23990-P840-C48-PM
● V23990-P840-C49-PM
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
27
30
A
220
A
200
A2s
33
50
W
150
°C
1200
V
18
24
A
45
A
30
A
52
79
W
Rectifier Diode
Repetitive peak reverse voltage
V RRM
DC forward current
I FAV
Surge forward current
I FSM
T j = T jmax
T s = 80°C
T c = 80°C
t p = 10 ms
2
2
I t-value
I t
Power dissipation
P tot
Maximum Junction Temperature
T j = T jmax
T s = 80°C
T c = 80°C
T jmax
Inverter IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
V CE
IC
I CRM
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
copyright Vincotech
t p limited by T jmax
V CE ≤ 1200 V, T j ≤ T op max
Turn off safe operating area
Maximum Junction Temperature
T j = T jmax
T s = 80°C
T c = 80°C
T j = T jmax
T j ≤ 150 °C
V GE = 15 V
T jmax
1
T s = 80°C
T c = 80°C
±20
V
10
800
µs
V
175
°C
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
Inverter FWD
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
V RRM
IF
I FRM
P tot
T j = T jmax
1200
V
T s = 80°C
T c = 80°C
20
25
A
30
A
T s = 80°C
T c = 80°C
38
57
W
175
°C
1200
V
12
15
A
24
A
16
A
40
61
W
t p limited by T jmax
T j = T jmax
T jmax
Brake IGBT
Collector-emitter break down voltage
DC collector current
Pulsed collector current
V CE
IC
I CRM
T j = T jmax
t p limited by T jmax
V CE ≤ 1200 V, T j ≤ T op max
Turn off safe operating area
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
T s = 80°C
T c = 80°C
T s = 80°C
T c = 80°C
T j = T jmax
T j ≤ 150 °C
V GE = 15 V
T jmax
±20
V
10
800
µs
V
175
°C
Brake FWD
V RRM
1200
V
T s = 80°C
T c = 80°C
10
10
A
15
A
T s = 80°C
T c = 80°C
22
34
W
T jmax
150
°C
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(T jmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
IF
I FRM
P tot
T j = T jmax
t p limited by T jmax
T j = T jmax
Thermal Properties
Isolation Properties
Isolation voltage
Comparative tracking index
copyright Vincotech
V is
t=2s
DC voltage
CTI
>200
2
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or V GS
[V]
V r [V]
or V CE
[V] or
V DS [V]
Value
I C [A]
or I F
[A] or
I D [A]
T j [°C]
Min
Unit
Typ
Max
1,17
1,13
0,93
0,79
9,78
13,37
1,9
Rectifier Diode
Forward voltage
VF
25
Threshold voltage (for power loss calc. only)
V to
25
Slope resistance (for power loss calc. only)
rt
25
Reverse current
Ir
1600
R th(j-s)
phase-change
material
λ = 3,4 W/mK
Gate emitter threshold voltage
V GE(th)
V CE = V GE
Collector-emitter saturation voltage
V CEsat
Thermal resistance chip to heatsink
25
125
25
125
25
125
25
145
V
V
mΩ
0,05
1,1
mA
K/W
1,61
Inverter IGBT
0,0005
25
15
25
125
5
5,8
6,5
1,58
1,94
2,26
2,07
V
V
Collector-emitter cut-off current incl. Diode
I CES
0
1200
25
0,002
mA
Gate-emitter leakage current
I GES
20
0
25
120
nA
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
600
25
125
25
125
25
125
25
125
25
125
25
125
Rise time
Turn-off delay time
Fall time
tr
t d(off)
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Thermal resistance chip to heatsink
none
R th(j-s)
R goff = 16 Ω
R gon = 16 Ω
±15
15
Ω
60
60
15
19
197
239
79
106
0,88
1,25
0,88
1,24
ns
mWs
1000
f = 1 MHz
0
25
25
100
pF
56
phase-change
material
λ = 3,4 W/mK
K/W
1,35
Inverter FWD
Diode forward voltage
Peak reverse recovery current
VF
I RRM
Reverse recovery time
t rr
Reverse recovered charge
Q rr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink
copyright Vincotech
10
R gon = 16 Ω
±15
600
( di rf/dt )max
E rec
R th(j-s)
phase-change
material
λ = 3,4 W/mK
15
25
125
25
125
25
125
25
125
25
125
25
125
1,35
1,90
1,91
13
16
282
433
1,59
2,75
129
109
0,65
1,16
1,83
3
2,05
V
A
ns
µC
A/µs
mWs
K/W
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or V GS
[V]
V r [V]
or V CE
[V] or
V DS [V]
Value
I C [A]
or I F
[A] or
I D [A]
T j [°C]
0,0003
25
8
25
125
Min
Typ
Unit
Max
Brake IGBT
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
V CE = V GE
V CEsat
5
5,8
6,3
1,58
1,87
2,22
2,07
V
V
Collector-emitter cut-off incl diode
I CES
0
1200
25
0,001
mA
Gate-emitter leakage current
I GES
20
0
25
120
nA
600
25
125
25
125
25
125
25
125
25
125
25
125
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tr
t d(off)
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Thermal resistance chip to heatsink
R th(j-s)
Ω
none
R goff = 32 Ω
R gon = 32 Ω
±15
8
71
72
20
24
181
228
78
104
0,50
0,71
0,43
0,62
ns
mWs
490
f = 1 MHz
0
25
25
pF
50
30
phase-change
material
λ = 3,4 W/mK
K/W
1,57
Brake FWD
Diode forward voltage
VF
Reverse leakage current
Ir
Peak reverse recovery current
t rr
Reverse recovered charge
Q rr
Reverse recovery energy
Thermal resistance chip to heatsink
R gon = 32 Ω
R gon = 32 Ω
±15
( di rf/dt )max
E rec
R th(j-s)
25
125
1200
25
600
25
125
25
125
25
125
25
125
25
125
I RRM
Reverse recovery time
Peak rate of fall of recovery current
7,5
8
1,67
1,61
V
250
9
10
258
427
0,90
0,90
78
73
0,35
0,69
phase-change
material
λ = 3,4 W/mK
µA
A
ns
µC
A/µs
mWs
2,20
K/W
22000
Ω
Thermistor
Rated resistance
R
Deviation of R100
Δ R/R
Power dissipation
P
25
R 100 = 1484 Ω
100
25
Power dissipation constant
-5
5
%
5
mW
mW/K
25
1,5
B-value
B (25/50)
Tol. ±1%
25
3962
K
B-value
B (25/100)
Tol. ±1%
25
4000
K
Vincotech NTC Reference
copyright Vincotech
I
4
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Inverter Charateristics
Figure 1
Typical output characteristics
I C = f(V CE)
Inverter IGBT
Figure 2
Inverter IGBT
Typical output characteristics
I C = f(V CE)
50
IC (A)
IC (A)
50
40
40
30
30
20
20
10
10
0
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
Inverter IGBT
1
2
3
4
V CE (V)
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Inverter FWD
30
IF (A)
IC (A)
16
14
25
12
20
10
15
8
6
10
Tj = Tjmax-25°C
4
Tj = Tjmax-25°C
5
Tj = 25°C
2
Tj = 25°C
0
0,0
0
0
At
tp =
V CE =
2
250
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0,5
1,0
1,5
2,0
2,5
3,0
V F (V)
At
tp =
µs
V
5
250
µs
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Inverter Charateristics
Figure 5
Inverter IGBT
Figure 6
Inverter IGBT
Typical switching energy losses
as a function of collector current
E = f(I C)
as a function of gate resistor
E = f(R G)
2,5
3
E (mWs)
E (mWs)
Typical switching energy losses
Eon High T
2,5
Eon High T
2
Eoff High T
2
Eon Low T
Eon Low T
1,5
Eoff High T
Eoff Low T
1,5
1
Eoff Low T
1
0,5
0,5
0
0
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
°C
25/125
25/125
V CE =
600
V
V GE =
±15
V
R gon =
16
Ω
R goff =
16
Ω
40
60
R G (Ω)
80
With an inductive load at
Tj =
°C
25/125
25/125
V CE =
600
V
V GE =
±15
V
IC =
15
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
1,4
Inverter FWD
1,2
E (mWs)
E (mWs)
20
Erec
Tj = Tjmax -25°C
1,2
Erec
Tj = Tjmax -25°C
1
1
0,8
Erec
Tj = 25°C
0,8
Tj = 25°C
Erec
0,6
0,6
0,4
0,4
0,2
0,2
0
0
0
5
10
15
20
25
I C (A)
30
0
With an inductive load at
Tj =
25/125
25/125
°C
V CE =
600
V
V GE =
±15
V
R gon =
16
Ω
copyright Vincotech
20
40
60
R G (Ω)
80
With an inductive load at
Tj =
25/125
25/125
°C
V CE =
600
V
V GE =
±15
V
IC =
15
A
6
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Inverter Charateristics
Figure 9
Inverter IGBT
Figure 10
Inverter IGBT
Typical switching times as a
Typical switching times as a
function of collector current
t = f(I C)
function of gate resistor
t = f(R G)
1,00
t (µ
µ s)
t (µ
µ s)
1,00
tdoff
tdoff
tdon
tf
0,10
0,10
tf
tdon
tr
tr
0,01
0,01
0,00
0,00
0
5
10
15
20
25
I C (A) 30
0
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
±15
V
R gon =
16
Ω
R goff =
16
Ω
20
40
60
R G (Ω)
80
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
±15
V
IC =
15
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I C)
Inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,8
trr (µ
µ s)
0,6
Inverter FWD
trr (µ
µ s)
trr
Tj = Tjmax -25°C
0,5
Tj = Tjmax -25°C
trr
0,6
0,4
Tj = 25°C
trr
Tj = 25°C
trr
0,4
0,3
0,2
0,2
0,1
0,0
0,0
0
At
Tj =
V CE =
V GE =
R gon =
5
25/125
25/125
600
±15
16
copyright Vincotech
10
15
20
25
0
I C (A) 30
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
7
10
25/125
25/125
600
15
±15
20
30
40
50
60
R gon (Ω)
70
°C
V
A
V
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Inverter Charateristics
Figure 13
Inverter FWD
Figure 14
Inverter FWD
Typical reverse recovery charge as a
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
function of IGBT turn on gate resistor
Q rr = f(R gon)
Tj = Tjmax -25°C
Qrr (µ
µ C)
Qrr (µ
µ C)
4
Qrr
3
Qrr
Tj = Tjmax -25°C
2,5
3
2
2
Qrr
Tj = 25°C
1,5
Qrr
Tj = 25°C
1
1
0,5
0
0
0
5
10
15
20
25
At
At
Tj =
V CE =
V GE =
R gon =
30
0
20
40
25/125
25/125
600
°C
V
At
Tj =
VR=
25/125
25/125
600
°C
V
±15
16
V
Ω
IF=
V GE =
15
±15
A
V
Figure 15
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
Inverter FWD
60
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
18
R gon (Ω)
80
Inverter FWD
50
I RRM (A)
I RRM (A)
I C (A)
Tj = Tjmax -25°C
16
IRRM
40
14
Tj = 25°C
12
IRRM
30
10
Tj = Tjmax - 25°C
8
20
6
Tj = 25°C
4
10
IRRM
IRRM
2
0
0
0
At
Tj =
V CE =
V GE =
R gon =
5
25/125
25/125
600
±15
16
copyright Vincotech
10
15
20
25
I C (A)
30
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
8
20
25/125
25/125
600
15
±15
40
60
R gon (Ω)
80
°C
V
A
V
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Inverter Charateristics
Figure 17
Inverter FWD
Figure 18
Inverter FWD
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I C)
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
1600
6000
dI0/dt
dIrec/dt
dI0/dt
direc / dt (A/ms)
direc / dt (A/ms)
Typical rate of fall of forward
1400
dIrec/dt
5000
1200
4000
1000
800
3000
600
2000
400
1000
200
0
0
0
5
10
15
20
25
30
0
I C (A)
At
Tj =
V CE =
V GE =
R gon =
10
20
30
25/125
25/125
600
°C
V
At
Tj =
VR=
25/125
25/125
600
°C
V
±15
16
V
Ω
IF=
V GE =
15
±15
A
V
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
Inverter IGBT
40
50
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
101
60
70
R gon (Ω
Ω)
80
Inverter FWD
Zth(j-s) (K/W)
Zth(j-s) (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D =
R th(j-s) =
10-4
10-3
10-2
10-1
100
t p (s)
10-5
10110
At
D =
R th(j-s) =
tp/T
1,35
K/W
IGBT thermal model values
10-4
10-2
10-1
100
t p (s)
10
tp/T
1,83
K/W
FWD thermal model values
R (K/W)
0,04
0,21
0,57
Tau (s)
5,6E+00
8,7E-01
1,7E-01
R (K/W)
0,03
0,19
0,75
Tau (s)
9,6E+00
8,2E-01
1,2E-01
0,31
0,14
0,08
3,4E-02
6,2E-03
5,5E-04
0,50
0,20
0,16
2,6E-02
3,4E-03
3,8E-04
copyright Vincotech
10-3
9
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Inverter Charateristics
Figure 21
Inverter IGBT
Figure 22
Inverter IGBT
Power dissipation as a
Collector current as a
function of heatsink temperature
P tot = f(T s)
function of heatsink temperature
I C = f(T s)
30
Ptot (W)
IC (A)
150
125
25
100
20
75
15
50
10
25
5
0
0
0
At
Tj =
50
175
100
150
T s (oC)
200
0
At
Tj =
V GE =
°C
Figure 23
Inverter FWD
50
175
15
100
T s (oC)
200
°C
V
Figure 24
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
150
Inverter FWD
Forward current as a
function of heatsink temperature
I F = f(T s)
30
P tot (W)
IF (A)
100
25
80
20
60
15
40
10
20
5
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T s(oC)
200
0
At
Tj =
°C
10
50
175
100
150
T s (oC)
200
°C
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Inverter Charateristics
Figure 25
Safe operating area as a function
Inverter IGBT
Figure 26
Gate voltage vs Gate charge
of collector-emitter voltage
I C = f(V CE)
V GE = f(Q g)
VGE (V)
IC (A)
103
Inverter IGBT
20
17,5
240 V
102
15
100uS
960 V
12,5
10
101
1mS
7,5
10mS
5
100
100mS
DC
10-1
2,5
0
100
101
At
D =
103
102
V CE (V)
0
104
At
IC =
single pulse
Ts =
V GE =
Tj =
80
±15
T jmax
25
50
15
75
100
Q g (nC)
125
A
ºC
V
ºC
Figure 27
Inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
t sc = f(V GE)
Inverter IGBT
Typical short circuit collector current as a function of
gate-emitter voltage
I sc = f(V GE)
150
IC (sc)
tsc (µS)
17,5
15
125
12,5
100
10
75
7,5
50
5
25
2,5
0
0
12
At
V CE =
Tj ≤
13
14
1200
V
175
ºC
copyright Vincotech
15
16
V GE (V)
17
12
At
V CE ≤
Tj =
11
14
16
1200
V
175
ºC
18
V GE (V)
20
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Inverter Charateristics
Figure 29
Reverse bias safe operating area
Inverter IGBT
I C = f(V CE)
IC (A)
35
IC MAX
30
Ic
MODULE
20
15
VCE MAX Ic CHIP
25
10
5
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
T jmax-25
copyright Vincotech
ºC
12
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Brake Charateristics
Figure 1
Brake IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
Brake IGBT
Typical output characteristics
I C = f(V CE)
25
IC (A)
IC (A)
25
20
20
15
15
10
10
5
5
0
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
0
5
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Brake IGBT
1
2
3
4
5
250
µs
125
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical transfer characteristics
I C = f(V GE)
V CE (V)
Brake FWD
Typical diode forward current as
a function of forward voltage
I F = f(V F)
9
IF (A)
IC (A)
30
7,5
25
6
20
4,5
15
3
10
Tj = Tjmax-25°C
Tj = Tjmax-25°C
5
1,5
Tj = 25°C
Tj = 25°C
0
0
0
At
tp =
V CE =
2
250
10
copyright Vincotech
4
6
8
10
V GE (V)
0
12
At
tp =
µs
V
13
0,5
250
1
1,5
2
2,5
V F (V)
3
µs
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Brake Charateristics
Figure 5
Brake IGBT
Figure 6
Brake IGBT
Typical switching energy losses
Typical switching energy losses
as a function of collector current
E = f(I C)
as a function of gate resistor
E = f(R G)
1,4
Eon
E (mWs)
E (mWs)
1,4
1,2
Eon
1,2
Tj = Tjmax -25°C
Tj = Tjmax -25°C
Eoff
1,0
1
Eon
Eon
0,8
0,8
Eoff
Eoff
0,6
0,6
Eoff
Tj = 25°C
0,4
0,4
0,2
0,2
Tj = 25°C
0
0,0
0
2
4
6
8
10
12
14
I C (A)
0
16
With an inductive load at
Tj =
25/125
25/125
°C
V CE =
600
V
V GE =
±15
V
R gon =
32
Ω
R goff =
32
Ω
20
40
60
80
100
120
140
RG (Ω )
With an inductive load at
Tj =
25/125
25/125
°C
V CE =
600
V
V GE =
±15
V
IC =
8
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Brake FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
E (mWs)
1
E (mWs)
Erec
Brake FWD
0,7
Erec
Tj = Tjmax -25°C
0,6
0,8
Tj = Tjmax - 25°C
0,5
0,6
0,4
Tj = 25°C
Erec
Tj = 25°C
Erec
0,3
0,4
0,2
0,2
0,1
0
0
0
2
4
6
8
10
12
14
I C (A)
0
16
40
60
80
100
120
140
RG (Ω )
With an inductive load at
Tj =
25/125
25/125
°C
V CE =
600
V
V GE =
±15
V
R gon =
32
Ω
copyright Vincotech
20
With an inductive load at
Tj =
25/125
25/125
°C
V CE =
600
V
V GE =
±15
V
IC =
8
A
14
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Brake Charateristics
Figure 9
Brake IGBT
Figure 10
Brake IGBT
Typical switching times as a
Typical switching times as a
function of collector current
t = f(I C)
function of gate resistor
t = f(R G)
1,00
t (µ
µ s)
t ( µs)
1,00
tdoff
tdoff
tdon
tf
0,10
tf
0,10
tdon
tr
tr
0,01
0,01
0,00
0,00
0
2
4
6
8
10
12
14
16
0
20
40
60
80
100
120
I C (A)
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
±15
V
R gon =
32
Ω
R goff =
32
Ω
RG (Ω )
140
With an inductive load at
Tj =
125
°C
V CE =
600
V
V GE =
±15
V
IC =
8
A
Figure 11
IGBT transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
Brake IGBT
Figure 12
FWD transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
Zth(j-s) (K/W)
101
Zth(j-s) (K/W)
101
Brake FWD
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0,000
10-1
10-2
10-2
10-5
10-4
At
R th(j-s) =
10-3
D =
1,57
copyright Vincotech
10-2
10-1
100
t p (s)
101 10
10-5
tp/T
10-4
At
R th(j-s) =
K/W
15
10-3
D =
2,20
10-2
10-1
100
t p (s)
101 10
tp/T
K/W
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Brake Charateristics
Figure 13
Brake IGBT
Figure 14
Brake IGBT
Power dissipation as a
Collector current as a
function of heatsink temperature
P tot = f(T s)
function of heatsink temperature
I C = f(T s)
25
IC (A)
Ptot (W)
125
100
20
75
15
50
10
25
5
0
0
0
At
Tj =
50
175
100
150
T s ( o C)
0
200
At
Tj =
V GE =
ºC
Figure 15
Brake FWD
175
15
100
T s ( o C)
150
200
ºC
V
Figure 16
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
Brake FWD
Forward current as a
function of heatsink temperature
I F = f(T s)
70
12
IF (A)
Ptot (W)
50
60
10
50
8
40
6
30
4
20
2
10
0
0
At
Tj =
25
150
copyright Vincotech
50
75
100
125
0
Ts ( o C) 150
0
At
Tj =
ºC
16
25
50
150
ºC
75
100
125
Ts ( o C) 150
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Rectifier Diode
Figure 1
Rectifier Diode
Figure 2
Rectifier Diode
Typical diode forward current as
Diode transient thermal impedance
a function of forward voltage
I F= f(V F)
as a function of pulse width
Z th(j-s) = f(t p)
101
IF (A)
Zth(j-s) (K/W)
100
80
100
60
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
40
10-1
20
Tj = Tjmax-25°C
Tj = 25°C
0
0,0
At
tp =
0,5
1,0
1,5
V F (V)
10-2
2,0
10-5
10-4
At
250
10-3
D =
10-2
10-1
100
t p (s)
10110
tp/T
µs
D =
R th(j-s) =
Figure 3
Rectifier Diode
tp/T
1,61
K/W
Figure 4
Rectifier Diode
100
60
IF (A)
Forward current as a
function of heatsink temperature
I F = f(T h)
Ptot (W)
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
50
80
40
60
30
40
20
20
10
0
0
0
At
Tj =
25
150
copyright Vincotech
50
75
100
125
T h ( o C)
150
0
At
Tj =
ºC
17
25
50
150
ºC
75
100
125
T h ( o C)
150
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Thermistor
Figure 1
Thermistor
Typical NTC characteristic
as a function of temperature
R T = f(T )
NTC-typical temperature characteristic
R(Ω)
25000
20000
15000
10000
5000
0
25
copyright Vincotech
50
75
100
T (°C)
125
18
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Inverter Switching Definitions
General conditions
Tj
= 125 °C
= 16 Ω
R gon
R goff
= 16 Ω
Inverter IGBT
Figure 1
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
Inverter IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
125
250
tdoff
%
%
VCE
IC
200
100
VCE 90%
VGE 90%
150
75
IC
VGE
VCE
100
50
tEoff
VGE
tdon
50
25
IC 1%
VGE10%
VCE 3%
IC10%
0
0
tEon
-50
-25
-0,2
0
0,2
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
-15
15
600
t doff =
t E off =
0,4
0,6
time (us)
2,9
0,8
3
3,1
V
V
V
V GE (0%) =
V GE (100%) =
V C (100%) =
15
A
I C (100%) =
15
A
0,24
0,56
µs
µs
t don =
t E on =
0,06
0,25
µs
µs
Figure 3
Inverter IGBT
Turn-off Switching Waveforms & definition of t f
-15
15
600
3,2
time(us)
3,3
V
V
V
Figure 4
Inverter IGBT
Turn-on Switching Waveforms & definition of t r
125
250
VCE
fitted
%
%
IC
100
Ic
200
IC 90%
75
150
IC 60%
VCE
50
100
IC 40%
tr
25
IC90%
50
IC10%
0
IC10%
0
tf
-25
-50
0
0,1
0,2
0,3
0,4
0,5
0,6
2,9
3
3,1
V C (100%) =
I C (100%) =
600
15
V
A
V C (100%) =
I C (100%) =
600
15
V
A
tf =
0,11
µs
tr =
0,02
µs
copyright Vincotech
3,2
3,3
time(us)
time (us)
19
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Inverter Switching Definitions
Figure 5
Inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Inverter IGBT
Turn-on Switching Waveforms & definition of t Eon
125
200
%
%
Eoff
100
Pon
Poff
150
75
Eon
100
50
50
25
VCE 3%
VGE 10%
IC 1%
VGE 90%
0
tEon
0
tEoff
-50
-25
-0,2
0
0,2
P off (100%) =
E off (100%) =
t E off =
9,00
1,24
0,56
0,4
0,6
time (us)
2,9
0,8
3
3,1
3,2
3,3
time(us)
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
9,00
1,25
0,25
kW
mJ
µs
Figure 7
Inverter FWD
Turn-off Switching Waveforms & definition of t rr
150
%
Id
100
trr
50
Vd
fitted
0
IRRM 10%
-50
IRRM 90%
IRRM 100%
-100
-150
2,8
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
3
3,2
600
15
-16
0,43
3,4
time(us)
3,6
V
A
A
µs
20
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Inverter Switching Definitions
Figure 8
Inverter FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
Inverter FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
120
Erec
%
%
Id
Qrr
100
100
tQrr
80
tErec
50
60
0
40
Prec
-50
20
-100
0
-150
-20
2,8
3
3,2
3,4
3,6
3,8
4
3
time(us)
I D (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
15
2,75
0,90
A
µC
µs
3,2
P rec (100%) =
E rec (100%) =
t E rec =
21
3,4
3,6
9,00
1,16
0,90
kW
mJ
µs
3,8
4
4,2
time(us)
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
without brake without thermal paste 12mm housing
V23990-P840-A48-PM
V23990-P840-C48-PM
with brake without thermal pastee 17mm housing
without brake without thermal paste 17mm housing
V23990-P840-A49-PM
V23990-P840-C49-PM
with brake without thermal paste 12mm housing
Name
NNNNNNNNNVV
Date code
UL & VIN
Lot
Serial
WWYY
UL VIN
LLLLL
SSSS
Type&Ver Lot number
Serial
Date code
TTTTTTTVV
SSSS
WWYY
Text
VIN WWYY
NNNNNNNVV UL
LLLLL SSSS
Datamatrix
LLLLL
Outline
Pin table
Y
Function
Pin
X
1
2
25,5
25,5
2,7
0
NTC1
NTC2
3
4
5
6
7
8
9
22,8
20,1
16,2
13,5
10,8
8,1
5,4
0
0
0
0
0
0
0
-DC
BRCG
10
11
12
13
2,7
0
0
0
0
0
19,8
22,5
E5
G4
E4
G1
U
14
15
16
17
18
19
20
21
22
23
7,5
7,5
15
15
22,8
25,5
33,5
33,5
33,5
33,5
19,8
22,5
19,8
22,5
22,5
22,5
22,5
15
7,5
0
G2
V
G3
W
+INV
+DC
BRC+
L1
L2
L3
copyright Vincotech
Pinout variation
Modul subtype
Not assembled pins
P840-A4*
-
P840-C4*
4,5,20
BRCE
G6
E6
G5
22
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Pinout
Identification
ID
Component
Voltage
Current
Function
T1, T2, T3, T4, T5, T6
IGBT
1200 V
15 A
Inverter Switch
D1, D2, D3, D4, D5, D6
FWD
1200 V
15 A
Inverter Diode
T7
IGBT
1200 V
8A
Brake Switch
D7
FWD
1200 V
7,5 A
Brake Diode
Diode
1600 V
25 A
D8, D9, D10,
D11, D12, D13
NTC
copyright Vincotech
Comment
Rectifier
NTC
Thermistor
23
19 Mar. 2016 / Revision 7
V23990-P840-*4*-PM
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
>SPQ
135
Standard
<SPQ
Sample
Handling instruction
Handling instructions for flow 0 packages see vincotech.com website.
Package data
Package data for flow 0 packages see vincotech.com website.
Document No.:
Date:
Modification:
Pages
V23990-P840-*4*-PM-D7-14
19 Mar. 2016
New style, NTC changed
All
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s
intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of
Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in
significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of
the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
24
19 Mar. 2016 / Revision 7