V23990-P580-*4*-PM datasheet flow PIM 1 1200 V / 35 A Features flow 1 housing ● 3~rectifier, optional BRC, Inverter, NTC ● Very compact housing, easy to route ● IGBT4 / EmCon4 technology for low saturation Solder pins 12mm losses and improved EMC behaviour Solder pins 17mm Press-fit pins 17mm Target Applications Schematic ● Industrial drives ● Embedded drives Types ● V23990-P580-A41-PM ● V23990-P580-A41Y-PM ● V23990-P580-A418-PM ● V23990-P580-C41-PM ● V23990-P580-C41Y-PM Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 33 47 A 280 A 390 A2s 37 60 W 150 °C 1200 V 32 42 A 105 A 105 A 79 120 W Rectifier Diode Repetitive peak reverse voltage V RRM DC forward current I FAV Surge (non-repetitive) forward current I FSM I2t-value Power dissipation Maximum Junction Temperature I 2t P tot T j = T jmax T s = 80 °C T c = 80 °C t p = 10 ms 50 Hz half sine wave T j = 150 °C T j = T jmax T s = 80 °C T c = 80 °C T jmax Inverter Switch Collector-emitter break down voltage DC collector current Repetitive peak collector current V CE IC I CRM Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC copyright Vincotech t p limited by T jmax V CE ≤ 1200V, T j ≤ T op max Turn off safe operating area Maximum Junction Temperature T j = T jmax T s = 80 °C T c = 80 °C T j = T jmax T j ≤ 150 °C V GE = 15 V T jmax 1 T s = 80 °C T c = 80 °C ±20 V 10 800 µs V 175 °C 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V T s = 80 °C T c = 80 °C 34 44 A 70 A T s = 80 °C T c = 80 °C 61 93 W 175 °C 1200 V 25 31 A 75 A 50 A 62 94 W Inverter Diode Peak Repetitive Reverse Voltage DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature V RRM IF I FRM P tot T j = T jmax t p limited by T jmax T j = T jmax T jmax Brake Switch Collector-emitter break down voltage DC collector current Repetitive peak collector current V CE IC I CRM t p limited by T jmax V CE ≤ 1200V, T j ≤ T op max Turn off safe operating area Power dissipation P tot Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature T j = T jmax T s = 80 °C T c = 80 °C T j = T jmax T s = 80 °C T c = 80 °C T j ≤ 150 °C V GE = 15 V T jmax ±20 V 10 800 µs V 175 °C Brake Diode Peak Repetitive Reverse Voltage V RRM 1200 V T s = 80 °C T c = 80 °C 14 19 A 20 A T s = 80 °C T c = 80 °C 29 44 W T jmax 175 °C Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(T jmax - 25) °C DC forward current Repetitive peak forward current Power dissipation Maximum Junction Temperature IF I FRM P tot T j = T jmax t p limited by T jmax T j = T jmax Thermal Properties Insulation Properties Isolation voltage V is DC voltage tp = 2 s 4000 V 12 mm housing min 8,06 mm 17 mm housing min 12,7 mm min 12,7 mm Creepage distance Clearance Comparative tracking index copyright Vincotech CTI >200 2 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Unit Min Typ Max 0,8 1,16 1,13 0,90 0,78 8 11 1,6 Rectifier Diode Forward voltage VF 30 Threshold voltage (for power loss calc. only) V to 30 Slope resistance (for power loss calc. only) rt 30 Reverse current Ir Thermal resistance junction to sink 1600 R th(j-s) phase-change material λ = 3,4 W/mK V GE(th) V CE=V GE 25 125 25 125 25 125 25 150 V V mΩ 0,02 2 1,89 mA K/W Inverter Switch Gate emitter threshold voltage Collector-emitter saturation voltage V CEsat 0,0012 15 35 Collector-emitter cut-off current incl. Diode I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Thermal resistance junction to sink R th(j-s) 5 5,8 6,5 1,6 1,95 2,39 2,3 0,5 300 none tr t d(off) 25 125 25 125 25 125 25 125 R goff=16 Ω R gon=16 Ω ±15 600 35 25 125 25 125 25 125 25 125 25 125 25 125 V V mA nA Ω 92 92 18 23 213 274 75 105 1,62 2,49 1,81 2,82 ns mWs 1950 f=1MHz 0 25 155 25 pF 115 phase-change material λ = 3,4 W/mK 0,94 K/W Inverter Diode Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy Thermal resistance junction to sink copyright Vincotech VF 35 I RRM t rr Q rr R gon=16 Ω ±15 1200 di(rec)max /dt E rec R th(j-s) phase-change material λ = 3,4 W/mK 35 25 125 25 125 25 125 25 125 25 125 25 125 1 1,83 1,80 69 79 150 277 3,93 7,47 4100 2080 1,69 3,31 1,19 3 2,2 V A ns µC A/µs mWs K/W 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Min Unit Typ Max 5 5,8 6,5 1,6 1,86 2,31 2,2 Brake Switch Gate emitter threshold voltage Collector-emitter saturation voltage V GE(th) V CE=V GE V CEsat 0,00085 15 25 Collector-emitter cut-off incl diode I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss E on Turn-off energy loss E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance junction to sink R th(j-s) 0,005 200 none tr t d(off) 25 125 25 125 25 125 25 125 R goff=32 Ω R gon=32 Ω 1200 ±15 25 25 125 25 125 25 125 25 125 25 125 25 125 V V mA nA Ω 127 129 36 42 232 276 74 112 1,81 2,42 1,37 2,19 ns mWs 1430 f=1MHz 25 0 25 115 pF 85 15 960 25 25 phase-change material λ = 3,4 W/mK 120 nC 1,53 K/W Brake Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir t rr Reverse recovered charge Q rr Reverse recovery energy Thermal resistance junction to sink 1200 I RRM Reverse recovery time Peak rate of fall of recovery current 10 R gon=32 Ω R gon=32 Ω ±15 600 di(rec)max /dt E rec R th(j-s) 25 25 125 25 125 25 125 25 125 25 125 25 125 25 125 1,35 1,85 1,76 2,05 2,7 10 12 396 624 1,55 3,03 36 32 0,63 1,30 phase-change material λ = 3,4 W/mK V µA A ns µC A/µs mWs 1,87 K/W Thermistor Rated resistance R 25 Deviation of R25 Δ R/R 25 Power dissipation P 25 200 mW 25 2 mW/K 25 3950 K 25 3998 Power dissipation constant B-value B (25/50) B-value B (25/100) Tol. ±3% Vincotech NTC Reference copyright Vincotech 22000 -5 Ω 5 % K B 4 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Output Inverter flow 1 housing Figure 1 Typical output characteristics I C = f(V CE) Output inverter IGBT Figure 2 Output inverter IGBT Typical output characteristics I C = f(V CE) 100 IC (A) IC (A) 100 80 80 60 60 40 40 ● V23990-P580-A41-PM 20 20 0 0 0 1 At tp = Tj = V GE from 2 3 V CE (V) 4 5 0 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics I C = f(V GE) Output inverter IGBT 1 2 3 V CE (V) 5 250 µs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Typical diode forward current as a function of forward voltage I F = f(V F) Output inverter FWD IF (A) 60 IC (A) 35 4 30 50 25 40 20 30 15 Tj = Tjmax-25°C 20 Tj = Tjmax-25°C 10 Tj = 25°C 10 5 Tj = 25°C 0 0 0 At tp = V CE = 2 250 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0,0 At tp = µs V 5 0,5 1,0 250 µs 1,5 2,0 2,5 V F (V) 3,0 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Output Inverter Figure 5 Output inverter IGBT Figure 6 Output inverter IGBT Typical switching energy losses as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) 5 8 Eoff High T E (mWs) E (mWs) Typical switching energy losses Eon High T Eon High T 7 4 6 Eon Low T Eoff Low T 5 3 4 Eon Low T Eoff High T 2 3 Eoff Low T 2 1 1 0 0 0 10 20 30 40 50 60 0 I C (A) 70 With an inductive load at Tj = °C 25/150 25/150 V CE = 600 V V GE = ±15 V R gon = 16 Ω R goff = 16 Ω 20 30 40 50 60 R G ( Ω ) 70 With an inductive load at Tj = °C 25/150 25/150 V CE = 600 V V GE = ±15 V IC = 35 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 4,5 Output inverter FWD 4,5 Erec E (mWs) E (mWs) 10 4 Tj = Tjmax -25°C 4 3,5 3,5 3 3 Tj = Tjmax -25°C Erec 2,5 2,5 Tj = 25°C Erec 2 2 1,5 1,5 1 1 0,5 0,5 Tj = 25°C Erec 0 0 0 10 20 30 40 50 60 I C (A) 70 0 With an inductive load at 25/150 Tj = 25/150 °C V CE = 600 V V GE = ±15 V R gon = 16 Ω copyright Vincotech 10 20 30 40 50 60 R G ( Ω ) 70 With an inductive load at 25/150 Tj = 25/150 °C V CE = 600 V V GE = ±15 V IC = 35 A 6 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Output Inverter Figure 9 Output inverter IGBT Figure 10 Output inverter IGBT Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) 1 t ( µs) t ( µs) 1 tdoff tdoff tdon tf 0,1 tf 0,1 tdon tr tr 0,01 0,01 0,001 0,001 0 10 20 30 40 50 60 I C (A) 70 0 With an inductive load at Tj = 150 °C V CE = 600 V V GE = ±15 V R gon = 16 Ω R goff = 16 Ω 10 20 30 40 50 60 R G ( Ω ) 70 With an inductive load at Tj = 150 °C V CE = 600 V V GE = ±15 V IC = 35 A Figure 11 Typical reverse recovery time as a function of collector current t rr = f(I C) Output inverter FWD Figure 12 Output inverter FWD Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 0,8 Tj = Tjmax -25°C t rr( µs) t rr( µs) 0,3 trr trr 0,25 0,6 Tj = Tjmax -25°C 0,2 trr Tj = 25°C 0,15 0,4 Tj = 25°C trr 0,1 0,2 0,05 0 0 0 At Tj = V CE = V GE = R gon = 10 25/150 25/150 600 ±15 16 copyright Vincotech 20 30 40 50 60 I C (A) 0 70 At Tj = VR= IF= V GE = °C V V Ω 7 10 25/150 25/150 600 35 ±15 20 30 40 50 60 R 70 g on ( Ω ) °C V A V 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Output Inverter Figure 13 Output inverter FWD Figure 14 Output inverter FWD Typical reverse recovery charge as a Typical reverse recovery charge as a function of collector current Q rr = f(I C) function of IGBT turn on gate resistor Q rr = f(R gon) 10 Qrr( µC) Qrr( µC) 8,4 Qrr Tj = Tjmax -25°C Qrr Tj = Tjmax -25°C 7,2 8 6 6 4,8 Tj = 25°C Tj = 25°C Qrr Qrr 3,6 4 2,4 2 1,2 0 0 At 0 10 At Tj = V CE = V GE = R gon = 20 30 40 50 60 I C (A) 0 70 10 20 25/150 25/150 600 °C V At Tj = VR= 25/150 25/150 600 °C V ±15 16 V Ω IF= V GE = 35 ±15 A V Figure 15 Output inverter FWD Typical reverse recovery current as a function of collector current I RRM = f(I C) 30 40 50 60 R g on ( Ω) 70 Figure 16 Output inverter FWD Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) 100 150 Tj = Tjmax -25°C IrrM (A) IrrM (A) IRRM IRRM 125 80 IRRM Tj = 25°C IRRM 100 60 75 40 50 Tj = Tjmax - 25°C Tj = 25°C 20 25 0 0 0 At Tj = V CE = V GE = R gon = 10 25/150 25/150 600 ±15 16 copyright Vincotech 20 30 40 50 60 I C (A) 70 0 At Tj = VR= IF= V GE = °C V V Ω 8 10 25/150 25/150 600 35 ±15 20 30 40 50 60 R gon ( Ω ) 70 °C V A V 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Output Inverter Figure 17 Output inverter FWD Figure 18 Output inverter FWD Typical rate of fall of forward Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I C) and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 9000 direc / dt (A/ µs) direc / dt (A/µ s) 4500 dI0/dt dIrec/dt 4000 3500 dI0/dt dIrec/dt 8000 7000 3000 6000 2500 5000 2000 4000 1500 3000 1000 2000 1000 500 0 0 0 At Tj = V CE = V GE = R gon = 10 20 30 40 50 60 I C (A) 0 70 10 20 25/150 25/150 600 °C V At Tj = VR= 25/150 25/150 600 °C V ±15 16 V Ω IF= V GE = 35 ±15 A V Figure 19 IGBT transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) Output inverter IGBT 30 40 Figure 20 FWD transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) 60 R gon ( 70 Ω) Output inverter FWD 101 Zth(j-s) (K/W) Zth(j-s) (K/W) 100 50 100 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D = R th(j-s) = 10-4 10-3 10-2 10-1 100 t p (s) 10110 tp/T 0,94 K/W 10-5 10-4 At D = R th(j-s) = tp/T 1,19 10-3 10-2 FWD thermal model values phase-change material R (K/W) Tau (s) 0,063 2,9E+00 0,130 4,1E-01 0,550 7,4E-02 0,072 0,038 0,226 0,115 0,095 0,009 copyright Vincotech 9 100 t p (s) 10110 K/W IGBT thermal model values phase-change material R (K/W) Tau (s) 0,115 9,5E-01 0,415 1,2E-01 0,299 4,8E-02 5,9E-03 5,6E-04 10-1 2,2E-02 4,5E-03 5,8E-04 2,1E-04 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Output Inverter Figure 21 Output inverter IGBT Figure 22 Output inverter IGBT Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T s ) function of heatsink temperature I C = f(T s ) Ptot (W) IC (A) 200 60 175 50 150 40 125 100 30 75 20 50 10 25 0 0 0 At Tj = 50 175 100 150 T s ( o C) 200 0 At Tj = V GE = °C Figure 23 Output inverter FWD 50 175 15 100 T s ( o C) 200 °C V Figure 24 Power dissipation as a function of heatsink temperature P tot = f(T s) 150 Output inverter FWD Forward current as a function of heatsink temperature I F = f(T s) 150 Ptot (W) IF (A) 60 125 50 100 40 75 30 50 20 25 10 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T s ( o C) 200 0 At Tj = °C 10 50 175 100 150 T s ( o C) 200 °C 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Output Inverter Figure 25 Safe operating area as a function Output inverter IGBT Figure 26 Gate voltage vs Gate charge of collector-emitter voltage I C = f(V CE) V GE = f(Q G) Output inverter IGBT IC (A) VGE (V) 16 14 103 10uS 100uS 12 1mS 10 240V 102 10mS 960V 8 100mS 101 6 DC 10 4 0 2 0 10-1 10 At D = Ts = V GE = Tj = 0 101 10 V CE (V) 2 0 103 80 120 160 200 240 Q g (nC) At IC = single pulse 80 ±15 T jmax 40 35 A ºC V ºC Figure 27 Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage t sc = f(V GE) Output inverter IGBT Typical short circuit collector current as a function of gate-emitter voltage Isc = f(V GE) tsc (µS) IC (sc) 50 180 160 40 140 120 30 100 80 20 60 40 10 20 0 0 10 At V CE = Tj ≤ 12 14 1200 V 175 ºC copyright Vincotech 16 18 V GE (V) 20 10 At V CE ≤ Tj = 11 11 12 1200 V 175 ºC 13 14 15 16 17 V GE (V) 18 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Output Inverter Figure 29 IGBT Reverse bias safe operating area I C = f(V CE) IC (A) 80 IC MAX 70 60 Ic 40 Ic CHIP MODULE 50 30 VCE MAX 20 10 0 0 200 400 600 800 1000 1200 1400 V CE (V) At Tj = T jmax-25 copyright Vincotech ºC 12 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Brake Figure 1 Brake IGBT Figure 2 Typical output characteristics I C = f(V CE) Brake IGBT Typical output characteristics I C = f(V CE) 40 IC (A) IC (A) 40 35 35 30 30 25 25 20 20 15 15 10 10 5 5 0 0 0 1 At tp = Tj = V GE from 2 3 4 V CE (V) 0 5 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Brake IGBT 1 2 3 4 5 250 µs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Typical transfer characteristics I C = f(V GE) V CE (V) Brake FWD Typical diode forward current as a function of forward voltage I F = f(V F) 35 IC (A) IF (A) 25 30 20 25 15 20 Tj = Tjmax-25°C 15 10 Tj = 25°C 10 Tj = Tjmax-25°C 5 5 Tj = 25°C 0 0 0 At tp = V CE = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 10 0 At tp = µs V 13 0,5 250 1 1,5 2 2,5 3 V F (V) 3,5 µs 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Brake Figure 5 Brake IGBT Figure 6 Brake IGBT Typical switching energy losses Typical switching energy losses as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) 5 E (mWs) E (mWs) 7 Tj = Tjmax -25°C 6 Eon 4 5 Eoff Eon 3 4 Tj = Tjmax -25°C Eoff Eon 3 2 Eoff 2 1 Eoff 1 Tj = 25°C Tj = 25°C 0 0 0 10 20 30 40 I C (A) 0 50 With an inductive load at 25/150 Tj = 25/150 °C V CE = 600 V V GE = ±15 V R gon = 32 Ω R goff = 32 Ω 25 50 75 100 125 R G ( Ω ) 150 With an inductive load at 25/150 Tj = 25/150 °C V CE = 600 V V GE = ±15 V IC = 25 A Figure 7 Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Brake FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 1,6 Brake FWD E (mWs) E (mWs) 1,6 Erec Tj = Tjmax - 25°C Tj = Tjmax -25°C 1,2 1,2 Erec Erec 0,8 0,8 Tj = 25°C Tj = 25°C Erec 0,4 0,4 0,0 0,0 0 10 20 30 40 I C (A) 0 50 With an inductive load at 25/150 Tj = 25/150 °C V CE = 600 V V GE = ±15 V R gon = 32 Ω copyright Vincotech 25 50 75 100 125 R G ( Ω ) 150 With an inductive load at 25/150 Tj = 25/150 °C V CE = 600 V V GE = ±15 V IC = 25 A 14 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Brake Figure 9 Brake IGBT Figure 10 Brake IGBT Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) 1 tdoff t ( µs) t ( µs) 1 tdon tdoff tdon tf tf 0,1 0,1 tr tr 0,01 0,01 0,001 0,001 0 10 20 30 I C (A) 40 50 0 With an inductive load at 25/150 Tj = 25/150 °C V CE = 600 V V GE = ±15 V R gon = 32 Ω R goff = 32 Ω 25 50 75 100 125 R G ( Ω ) 150 With an inductive load at 25/150 Tj = 25/150 °C V CE = 600 V V GE = ±15 V IC = 25 A Figure 11 IGBT transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) Brake IGBT Figure 12 FWD transient thermal impedance as a function of pulse width Z th(j-s) = f(t p) Zth(j-s) (K/W) 101 Zth(j-s) (K/W) 101 Brake FWD 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 10-4 10-3 At D = phase-change material R th(j-s) = 1,01 K/W copyright Vincotech 10-2 10-1 100 t p (s) 101 10 10-5 tp/T 10-4 10-3 At D = phase-change material R th(j-s) = 2,07 K/W 15 10-2 10-1 100 t p (s) 101 10 tp/T 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Brake Figure 13 Brake IGBT Figure 14 Brake IGBT Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T s) function of heatsink temperature I C = f(T s) 50 IC (A) Ptot (W) 175 150 40 125 30 100 75 20 50 10 25 0 0 0 At Tj = 50 175 100 150 T s ( o C) 200 0 At Tj = V GE = ºC Figure 15 Brake FWD 175 15 100 150 T s ( o C) 200 ºC V Figure 16 Power dissipation as a function of heatsink temperature P tot = f(T s) Brake FWD Forward current as a function of heatsink temperature I F = f(T s) 25 IF (A) 90 Ptot (W) 50 80 20 70 60 15 50 40 10 30 20 5 10 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Ts ( o C) 200 0 At Tj = ºC 16 50 175 100 150 Ts ( o C) 200 ºC 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Rectifier Diode Figure 1 Rectifier diode Figure 2 Rectifier diode Diode transient thermal impedance a function of forward voltage I F= f(V F) as a function of pulse width Z th(j-s) = f(t p) 90 101 Zth(j-s) (K/W) IF (A) Typical diode forward current as 80 70 60 100 50 40 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 30 10 Tj = Tjmax-25°C -1 20 10 Tj = 25°C 0 0,0 At tp = 0,3 0,5 250 0,8 1,0 1,3 1,5 V F (V) 1,8 10-2 10-5 At D = R th(j-s) = µs Figure 3 Rectifier diode 10-4 10-3 10-2 10-1 t p (s) 10110 tp/T 1,03 K/W Figure 4 Power dissipation as a function of heatsink temperature P tot = f(T s) 100 Rectifier diode Forward current as a function of heatsink temperature I F = f(T s) 160 IF (A) Ptot (W) 60 140 50 120 40 100 80 30 60 20 40 10 20 0 0 At Tj = 25 150 copyright Vincotech 50 75 100 125 T s ( o C) 0 150 0 At Tj = ºC 17 25 50 150 ºC 75 100 o 125 T s ( C) 150 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Thermistor Figure 1 Thermistor Figure 2 Typical NTC characteristic Thermistor Typical NTC resistance values as a function of temperature R T = f(T ) B25/100⋅ 1 − 1 T T 25 R (Ω) NTC-typical temperature characteristic 22000 R(T ) = R25 ⋅ e 20000 [Ω] 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 25 45 65 85 105 125 T (°C) copyright Vincotech 18 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Switching Definitions Output Inverter General conditions Tj = 150 °C = 16 Ω R gon R goff = 16 Ω flow 1 housing Figure 1 Output inverter IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 Output inverter IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 140 350 % % IC 120 tdoff 300 VCE 100 VGE 90% 80 VCE 90% 250 IC 200 60 150 40 ● V23990-P580-A41-PM tEoff VGE tdon IC 1% 0 VCE 100 20 50 IC10% VGE -20 VCE 3% VGE10% 0 tEon -40 -0,4 -50 -0,2 0 0,2 0,4 0,6 0,8 2,9 3 3,1 3,2 3,3 3,4 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = -15 15 600 t doff = t E off = 3,5 time(us) time (us) V V V V GE (0%) = V GE (100%) = V C (100%) = 35 A I C (100%) = 35 A 0,27 0,54 µs µs t don = t E on = 0,09 0,31 µs µs Figure 3 Output inverter IGBT Turn-off Switching Waveforms & definition of t f -15 15 600 V V V Figure 4 Output inverter IGBT Turn-on Switching Waveforms & definition of t r 140 325 % % 120 fitted IC Ic 275 VCE 100 225 IC 90% 80 175 IC 60% 60 125 40 IC 40% IC90% tr 75 20 IC10% 0 25 IC10% tf -20 0,1 0,2 0,3 0,4 0,5 VCE -25 0,6 3 3,1 3,2 V C (100%) = I C (100%) = 600 35 V A V C (100%) = I C (100%) = 600 35 V A tf = 0,11 µs tr = 0,02 µs copyright Vincotech 3,3 3,4 time(us) time (us) 19 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Switching Definitions Output Inverter Figure 5 Output inverter IGBT Turn-off Switching Waveforms & definition of t Eoff Figure 6 Output inverter IGBT Turn-on Switching Waveforms & definition of t Eon 120 225 % % Eoff 100 Poff Pon 175 80 125 60 Eon 40 75 20 VGE 90% 25 VCE 3% VGE 10% 0 tEoff tEon IC 1% -25 -20 -0,1 0,1 0,3 0,5 3 0,7 3,1 3,2 time (us) P off (100%) = E off (100%) = t E off = 21,01 2,82 0,54 3,3 3,4 time(us) kW mJ µs P on (100%) = E on (100%) = t E on = 21,01 2,49 0,31 kW mJ µs Figure 7 Output inverter IGBT Turn-off Switching Waveforms & definition of t rr 120 % Id 80 trr 40 Vd 0 IRRM10% -40 fitted -80 -120 -160 IRRM90% -200 IRRM100% -240 3 3,1 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 3,2 3,3 600 35 -79 0,28 V A A µs 3,4 3,5 time(us) 3,6 20 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Switching Definitions Output Inverter Figure 8 Output inverter FWD Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) Figure 9 Output inverter FWD Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 120 150 % Id 100 Erec % Qrr 100 tQrr 50 80 tErec 0 60 -50 40 -100 20 -150 Prec 0 -200 -250 -20 3 3,2 3,4 3,6 3,8 4 4,2 3 time(us) I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 35 7,47 1,00 A µC µs P rec (100%) = E rec (100%) = t E rec = 21 3,5 4 21,01 3,31 1,00 4,5 time(us) 5 kW mJ µs 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code without thermal paste 17mm housing solder pins V23990-P580-A41-PM without thermal paste 17mm housing press-fit pins V23990-P580-A41Y-PM without thermal paste 12mm housing solder pins V23990-P580-A418-PM without thermal paste 17mm housing solder pins without brake V23990-P580-C41-PM without thermal paste 17mm housing press-fit pins without brake Vinco Vinco Text Datamatrix Date code WWYY V23990-P580-C41Y-PM Name&Ver NNNNNNNVV UL UL Lot LLLLL Type&Ver Lot number Serial Date code TTTTTTTVV LLLLL SSSS WWYY Serial SSSS Outline Pin table Pin X Y 1 52,55 0 Function BrG 2 47,7 0 DC- 3 44,8 0 DC- 4 37,8 0 DC+ 5 37,8 2,8 DC+ 6 35 0 Inv+ 7 35 2,8 Inv+ 8 28 0 R1 9 25,2 0 R2 10 22,4 0 N6 11 19,6 0 G6 12 16,8 0 S6 13 14 0 N4 14 11,2 0 G4 15 8,4 0 S4 16 5,6 0 N2 17 2,8 0 G2 18 0 0 S2 19 0 28,5 U 20 2,8 28,5 G1 Pin X Y Function Pin X Y Function 21 7,5 28,5 S1 25 29 28,5 W 29 52,55 25 L2 22 14,5 28,5 V 26 31,8 28,5 G5 30 52,55 16,9 L3 23 17,3 28,5 G3 27 36,5 28,5 S5 31 52,55 8,6 BrC 24 22 28,5 S3 28 43,5 28,5 L1 32 52,55 2,8 BrE Pin table Pin table Pinout Identification ID Component Voltage Current Function T1,T2,T3,T4,T5,T6 IGBT 1200 35 Inverter Switch D1,D2,D3,D4,D5,D6 FWD 1200 35 Inverter Diode T7 IGBT 1200 25 Brake Switch D7 Rectifier 1200 10 Brake Diode D8,D9,D10,D11,D12,D13 Rectifier 1600 30 Rectifier Diode NTC NTC copyright Vincotech Comment Thermistor 22 15 Jan. 2016 / Revision 4 V23990-P580-*4*-PM datasheet Packaging instruction Standard packaging quantity (SPQ) >SPQ 100 Standard <SPQ Sample Handling instruction Handling instructions for flow 1 packages see vincotech.com website. Package data Package data for flow 1 packages see vincotech.com website. UL recognition and file number This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website. Document No.: Date: Modification: Pages V23990-P580-x4x-D4-14 15 Jan. 2016 Thermal values All DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 23 15 Jan. 2016 / Revision 4