V23990 P580 x4x D4 14

V23990-P580-*4*-PM
datasheet
flow PIM 1
1200 V / 35 A
Features
flow 1 housing
● 3~rectifier, optional BRC, Inverter, NTC
● Very compact housing, easy to route
● IGBT4 / EmCon4 technology for low saturation
Solder pins 12mm
losses and improved EMC behaviour
Solder pins 17mm
Press-fit pins
17mm
Target Applications
Schematic
● Industrial drives
● Embedded drives
Types
● V23990-P580-A41-PM
● V23990-P580-A41Y-PM
● V23990-P580-A418-PM
● V23990-P580-C41-PM
● V23990-P580-C41Y-PM
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
33
47
A
280
A
390
A2s
37
60
W
150
°C
1200
V
32
42
A
105
A
105
A
79
120
W
Rectifier Diode
Repetitive peak reverse voltage
V RRM
DC forward current
I FAV
Surge (non-repetitive) forward current
I FSM
I2t-value
Power dissipation
Maximum Junction Temperature
I 2t
P tot
T j = T jmax
T s = 80 °C
T c = 80 °C
t p = 10 ms
50 Hz half sine wave
T j = 150 °C
T j = T jmax
T s = 80 °C
T c = 80 °C
T jmax
Inverter Switch
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
V CE
IC
I CRM
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
copyright Vincotech
t p limited by T jmax
V CE ≤ 1200V, T j ≤ T op max
Turn off safe operating area
Maximum Junction Temperature
T j = T jmax
T s = 80 °C
T c = 80 °C
T j = T jmax
T j ≤ 150 °C
V GE = 15 V
T jmax
1
T s = 80 °C
T c = 80 °C
±20
V
10
800
µs
V
175
°C
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
T s = 80 °C
T c = 80 °C
34
44
A
70
A
T s = 80 °C
T c = 80 °C
61
93
W
175
°C
1200
V
25
31
A
75
A
50
A
62
94
W
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
V RRM
IF
I FRM
P tot
T j = T jmax
t p limited by T jmax
T j = T jmax
T jmax
Brake Switch
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
V CE
IC
I CRM
t p limited by T jmax
V CE ≤ 1200V, T j ≤ T op max
Turn off safe operating area
Power dissipation
P tot
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
T j = T jmax
T s = 80 °C
T c = 80 °C
T j = T jmax
T s = 80 °C
T c = 80 °C
T j ≤ 150 °C
V GE = 15 V
T jmax
±20
V
10
800
µs
V
175
°C
Brake Diode
Peak Repetitive Reverse Voltage
V RRM
1200
V
T s = 80 °C
T c = 80 °C
14
19
A
20
A
T s = 80 °C
T c = 80 °C
29
44
W
T jmax
175
°C
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(T jmax - 25)
°C
DC forward current
Repetitive peak forward current
Power dissipation
Maximum Junction Temperature
IF
I FRM
P tot
T j = T jmax
t p limited by T jmax
T j = T jmax
Thermal Properties
Insulation Properties
Isolation voltage
V is
DC voltage
tp = 2 s
4000
V
12 mm housing
min 8,06
mm
17 mm housing
min 12,7
mm
min 12,7
mm
Creepage distance
Clearance
Comparative tracking index
copyright Vincotech
CTI
>200
2
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Unit
Min
Typ
Max
0,8
1,16
1,13
0,90
0,78
8
11
1,6
Rectifier Diode
Forward voltage
VF
30
Threshold voltage (for power loss calc. only)
V to
30
Slope resistance (for power loss calc. only)
rt
30
Reverse current
Ir
Thermal resistance junction to sink
1600
R th(j-s)
phase-change
material
λ = 3,4 W/mK
V GE(th)
V CE=V GE
25
125
25
125
25
125
25
150
V
V
mΩ
0,02
2
1,89
mA
K/W
Inverter Switch
Gate emitter threshold voltage
Collector-emitter saturation voltage
V CEsat
0,0012
15
35
Collector-emitter cut-off current incl. Diode
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Thermal resistance junction to sink
R th(j-s)
5
5,8
6,5
1,6
1,95
2,39
2,3
0,5
300
none
tr
t d(off)
25
125
25
125
25
125
25
125
R goff=16 Ω
R gon=16 Ω
±15
600
35
25
125
25
125
25
125
25
125
25
125
25
125
V
V
mA
nA
Ω
92
92
18
23
213
274
75
105
1,62
2,49
1,81
2,82
ns
mWs
1950
f=1MHz
0
25
155
25
pF
115
phase-change
material
λ = 3,4 W/mK
0,94
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance junction to sink
copyright Vincotech
VF
35
I RRM
t rr
Q rr
R gon=16 Ω
±15
1200
di(rec)max
/dt
E rec
R th(j-s)
phase-change
material
λ = 3,4 W/mK
35
25
125
25
125
25
125
25
125
25
125
25
125
1
1,83
1,80
69
79
150
277
3,93
7,47
4100
2080
1,69
3,31
1,19
3
2,2
V
A
ns
µC
A/µs
mWs
K/W
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Min
Unit
Typ
Max
5
5,8
6,5
1,6
1,86
2,31
2,2
Brake Switch
Gate emitter threshold voltage
Collector-emitter saturation voltage
V GE(th)
V CE=V GE
V CEsat
0,00085
15
25
Collector-emitter cut-off incl diode
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss
E on
Turn-off energy loss
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance junction to sink
R th(j-s)
0,005
200
none
tr
t d(off)
25
125
25
125
25
125
25
125
R goff=32 Ω
R gon=32 Ω
1200
±15
25
25
125
25
125
25
125
25
125
25
125
25
125
V
V
mA
nA
Ω
127
129
36
42
232
276
74
112
1,81
2,42
1,37
2,19
ns
mWs
1430
f=1MHz
25
0
25
115
pF
85
15
960
25
25
phase-change
material
λ = 3,4 W/mK
120
nC
1,53
K/W
Brake Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
t rr
Reverse recovered charge
Q rr
Reverse recovery energy
Thermal resistance junction to sink
1200
I RRM
Reverse recovery time
Peak rate of fall of recovery current
10
R gon=32 Ω
R gon=32 Ω
±15
600
di(rec)max
/dt
E rec
R th(j-s)
25
25
125
25
125
25
125
25
125
25
125
25
125
25
125
1,35
1,85
1,76
2,05
2,7
10
12
396
624
1,55
3,03
36
32
0,63
1,30
phase-change
material
λ = 3,4 W/mK
V
µA
A
ns
µC
A/µs
mWs
1,87
K/W
Thermistor
Rated resistance
R
25
Deviation of R25
Δ R/R
25
Power dissipation
P
25
200
mW
25
2
mW/K
25
3950
K
25
3998
Power dissipation constant
B-value
B (25/50)
B-value
B (25/100)
Tol. ±3%
Vincotech NTC Reference
copyright Vincotech
22000
-5
Ω
5
%
K
B
4
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Output Inverter
flow 1 housing
Figure 1
Typical output characteristics
I C = f(V CE)
Output inverter IGBT
Figure 2
Output inverter IGBT
Typical output characteristics
I C = f(V CE)
100
IC (A)
IC (A)
100
80
80
60
60
40
40
● V23990-P580-A41-PM
20
20
0
0
0
1
At
tp =
Tj =
V GE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
I C = f(V GE)
Output inverter IGBT
1
2
3
V CE (V)
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical diode forward current as
a function of forward voltage
I F = f(V F)
Output inverter FWD
IF (A)
60
IC (A)
35
4
30
50
25
40
20
30
15
Tj = Tjmax-25°C
20
Tj = Tjmax-25°C
10
Tj = 25°C
10
5
Tj = 25°C
0
0
0
At
tp =
V CE =
2
250
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0,0
At
tp =
µs
V
5
0,5
1,0
250
µs
1,5
2,0
2,5
V F (V) 3,0
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Output Inverter
Figure 5
Output inverter IGBT
Figure 6
Output inverter IGBT
Typical switching energy losses
as a function of collector current
E = f(I C)
as a function of gate resistor
E = f(R G)
5
8
Eoff High T
E (mWs)
E (mWs)
Typical switching energy losses
Eon High T
Eon High T
7
4
6
Eon Low T
Eoff Low T
5
3
4
Eon Low T
Eoff High T
2
3
Eoff Low T
2
1
1
0
0
0
10
20
30
40
50
60
0
I C (A) 70
With an inductive load at
Tj =
°C
25/150
25/150
V CE =
600
V
V GE =
±15
V
R gon =
16
Ω
R goff =
16
Ω
20
30
40
50
60
R G ( Ω ) 70
With an inductive load at
Tj =
°C
25/150
25/150
V CE =
600
V
V GE =
±15
V
IC =
35
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
4,5
Output inverter FWD
4,5
Erec
E (mWs)
E (mWs)
10
4
Tj = Tjmax -25°C
4
3,5
3,5
3
3
Tj = Tjmax -25°C
Erec
2,5
2,5
Tj = 25°C
Erec
2
2
1,5
1,5
1
1
0,5
0,5
Tj = 25°C
Erec
0
0
0
10
20
30
40
50
60 I C (A)
70
0
With an inductive load at
25/150
Tj =
25/150
°C
V CE =
600
V
V GE =
±15
V
R gon =
16
Ω
copyright Vincotech
10
20
30
40
50
60 R G ( Ω ) 70
With an inductive load at
25/150
Tj =
25/150
°C
V CE =
600
V
V GE =
±15
V
IC =
35
A
6
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Output Inverter
Figure 9
Output inverter IGBT
Figure 10
Output inverter IGBT
Typical switching times as a
Typical switching times as a
function of collector current
t = f(I C)
function of gate resistor
t = f(R G)
1
t ( µs)
t ( µs)
1
tdoff
tdoff
tdon
tf
0,1
tf
0,1
tdon
tr
tr
0,01
0,01
0,001
0,001
0
10
20
30
40
50
60
I C (A) 70
0
With an inductive load at
Tj =
150
°C
V CE =
600
V
V GE =
±15
V
R gon =
16
Ω
R goff =
16
Ω
10
20
30
40
50
60 R G ( Ω ) 70
With an inductive load at
Tj =
150
°C
V CE =
600
V
V GE =
±15
V
IC =
35
A
Figure 11
Typical reverse recovery time as a
function of collector current
t rr = f(I C)
Output inverter FWD
Figure 12
Output inverter FWD
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
0,8
Tj = Tjmax -25°C
t rr( µs)
t rr( µs)
0,3
trr
trr
0,25
0,6
Tj = Tjmax -25°C
0,2
trr
Tj = 25°C
0,15
0,4
Tj = 25°C
trr
0,1
0,2
0,05
0
0
0
At
Tj =
V CE =
V GE =
R gon =
10
25/150
25/150
600
±15
16
copyright Vincotech
20
30
40
50
60 I C (A)
0
70
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
7
10
25/150
25/150
600
35
±15
20
30
40
50
60 R
70
g on ( Ω )
°C
V
A
V
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Output Inverter
Figure 13
Output inverter FWD
Figure 14
Output inverter FWD
Typical reverse recovery charge as a
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
function of IGBT turn on gate resistor
Q rr = f(R gon)
10
Qrr( µC)
Qrr( µC)
8,4
Qrr
Tj = Tjmax -25°C
Qrr
Tj = Tjmax -25°C
7,2
8
6
6
4,8
Tj = 25°C
Tj = 25°C
Qrr
Qrr
3,6
4
2,4
2
1,2
0
0
At
0
10
At
Tj =
V CE =
V GE =
R gon =
20
30
40
50
60 I C (A)
0
70
10
20
25/150
25/150
600
°C
V
At
Tj =
VR=
25/150
25/150
600
°C
V
±15
16
V
Ω
IF=
V GE =
35
±15
A
V
Figure 15
Output inverter FWD
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
30
40
50
60 R g on ( Ω) 70
Figure 16
Output inverter FWD
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
100
150
Tj = Tjmax -25°C
IrrM (A)
IrrM (A)
IRRM
IRRM
125
80
IRRM
Tj = 25°C
IRRM
100
60
75
40
50
Tj = Tjmax - 25°C
Tj = 25°C
20
25
0
0
0
At
Tj =
V CE =
V GE =
R gon =
10
25/150
25/150
600
±15
16
copyright Vincotech
20
30
40
50
60
I C (A)
70
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
8
10
25/150
25/150
600
35
±15
20
30
40
50
60 R gon ( Ω ) 70
°C
V
A
V
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Output Inverter
Figure 17
Output inverter FWD
Figure 18
Output inverter FWD
Typical rate of fall of forward
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I C)
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
9000
direc / dt (A/ µs)
direc / dt (A/µ s)
4500
dI0/dt
dIrec/dt
4000
3500
dI0/dt
dIrec/dt
8000
7000
3000
6000
2500
5000
2000
4000
1500
3000
1000
2000
1000
500
0
0
0
At
Tj =
V CE =
V GE =
R gon =
10
20
30
40
50
60 I C (A)
0
70
10
20
25/150
25/150
600
°C
V
At
Tj =
VR=
25/150
25/150
600
°C
V
±15
16
V
Ω
IF=
V GE =
35
±15
A
V
Figure 19
IGBT transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
Output inverter IGBT
30
40
Figure 20
FWD transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
60 R
gon (
70
Ω)
Output inverter FWD
101
Zth(j-s) (K/W)
Zth(j-s) (K/W)
100
50
100
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D =
R th(j-s) =
10-4
10-3
10-2
10-1
100
t p (s)
10110
tp/T
0,94
K/W
10-5
10-4
At
D =
R th(j-s) =
tp/T
1,19
10-3
10-2
FWD thermal model values
phase-change material
R (K/W) Tau (s)
0,063
2,9E+00
0,130
4,1E-01
0,550
7,4E-02
0,072
0,038
0,226
0,115
0,095
0,009
copyright Vincotech
9
100
t p (s)
10110
K/W
IGBT thermal model values
phase-change material
R (K/W) Tau (s)
0,115
9,5E-01
0,415
1,2E-01
0,299
4,8E-02
5,9E-03
5,6E-04
10-1
2,2E-02
4,5E-03
5,8E-04
2,1E-04
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Output Inverter
Figure 21
Output inverter IGBT
Figure 22
Output inverter IGBT
Power dissipation as a
Collector current as a
function of heatsink temperature
P tot = f(T s )
function of heatsink temperature
I C = f(T s )
Ptot (W)
IC (A)
200
60
175
50
150
40
125
100
30
75
20
50
10
25
0
0
0
At
Tj =
50
175
100
150
T s ( o C)
200
0
At
Tj =
V GE =
°C
Figure 23
Output inverter FWD
50
175
15
100
T s ( o C)
200
°C
V
Figure 24
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
150
Output inverter FWD
Forward current as a
function of heatsink temperature
I F = f(T s)
150
Ptot (W)
IF (A)
60
125
50
100
40
75
30
50
20
25
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T s ( o C)
200
0
At
Tj =
°C
10
50
175
100
150
T s ( o C)
200
°C
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Output Inverter
Figure 25
Safe operating area as a function
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
of collector-emitter voltage
I C = f(V CE)
V GE = f(Q G)
Output inverter IGBT
IC (A)
VGE (V)
16
14
103
10uS
100uS
12
1mS
10
240V
102
10mS
960V
8
100mS
101
6
DC
10
4
0
2
0
10-1
10
At
D =
Ts =
V GE =
Tj =
0
101
10
V CE (V)
2
0
103
80
120
160
200
240
Q g (nC)
At
IC =
single pulse
80
±15
T jmax
40
35
A
ºC
V
ºC
Figure 27
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
t sc = f(V GE)
Output inverter IGBT
Typical short circuit collector current as a function of
gate-emitter voltage
Isc = f(V GE)
tsc (µS)
IC (sc)
50
180
160
40
140
120
30
100
80
20
60
40
10
20
0
0
10
At
V CE =
Tj ≤
12
14
1200
V
175
ºC
copyright Vincotech
16
18
V GE (V)
20
10
At
V CE ≤
Tj =
11
11
12
1200
V
175
ºC
13
14
15
16
17
V GE (V)
18
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Output Inverter
Figure 29
IGBT
Reverse bias safe operating area
I C = f(V CE)
IC (A)
80
IC MAX
70
60
Ic
40
Ic CHIP
MODULE
50
30
VCE MAX
20
10
0
0
200
400
600
800
1000
1200
1400
V CE (V)
At
Tj =
T jmax-25
copyright Vincotech
ºC
12
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Brake
Figure 1
Brake IGBT
Figure 2
Typical output characteristics
I C = f(V CE)
Brake IGBT
Typical output characteristics
I C = f(V CE)
40
IC (A)
IC (A)
40
35
35
30
30
25
25
20
20
15
15
10
10
5
5
0
0
0
1
At
tp =
Tj =
V GE from
2
3
4
V CE (V)
0
5
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Brake IGBT
1
2
3
4
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Typical transfer characteristics
I C = f(V GE)
V CE (V)
Brake FWD
Typical diode forward current as
a function of forward voltage
I F = f(V F)
35
IC (A)
IF (A)
25
30
20
25
15
20
Tj = Tjmax-25°C
15
10
Tj = 25°C
10
Tj = Tjmax-25°C
5
5
Tj = 25°C
0
0
0
At
tp =
V CE =
2
250
10
copyright Vincotech
4
6
8
V GE (V) 10
0
At
tp =
µs
V
13
0,5
250
1
1,5
2
2,5
3
V F (V) 3,5
µs
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Brake
Figure 5
Brake IGBT
Figure 6
Brake IGBT
Typical switching energy losses
Typical switching energy losses
as a function of collector current
E = f(I C)
as a function of gate resistor
E = f(R G)
5
E (mWs)
E (mWs)
7
Tj = Tjmax -25°C
6
Eon
4
5
Eoff
Eon
3
4
Tj = Tjmax -25°C
Eoff
Eon
3
2
Eoff
2
1
Eoff
1
Tj = 25°C
Tj = 25°C
0
0
0
10
20
30
40
I C (A)
0
50
With an inductive load at
25/150
Tj =
25/150
°C
V CE =
600
V
V GE =
±15
V
R gon =
32
Ω
R goff =
32
Ω
25
50
75
100
125 R G ( Ω ) 150
With an inductive load at
25/150
Tj =
25/150
°C
V CE =
600
V
V GE =
±15
V
IC =
25
A
Figure 7
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Brake FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
1,6
Brake FWD
E (mWs)
E (mWs)
1,6
Erec
Tj = Tjmax - 25°C
Tj = Tjmax -25°C
1,2
1,2
Erec
Erec
0,8
0,8
Tj = 25°C
Tj = 25°C
Erec
0,4
0,4
0,0
0,0
0
10
20
30
40
I C (A)
0
50
With an inductive load at
25/150
Tj =
25/150
°C
V CE =
600
V
V GE =
±15
V
R gon =
32
Ω
copyright Vincotech
25
50
75
100
125
R G ( Ω ) 150
With an inductive load at
25/150
Tj =
25/150
°C
V CE =
600
V
V GE =
±15
V
IC =
25
A
14
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Brake
Figure 9
Brake IGBT
Figure 10
Brake IGBT
Typical switching times as a
Typical switching times as a
function of collector current
t = f(I C)
function of gate resistor
t = f(R G)
1
tdoff
t ( µs)
t ( µs)
1
tdon
tdoff
tdon
tf
tf
0,1
0,1
tr
tr
0,01
0,01
0,001
0,001
0
10
20
30
I C (A)
40
50
0
With an inductive load at
25/150
Tj =
25/150
°C
V CE =
600
V
V GE =
±15
V
R gon =
32
Ω
R goff =
32
Ω
25
50
75
100
125 R G ( Ω ) 150
With an inductive load at
25/150
Tj =
25/150
°C
V CE =
600
V
V GE =
±15
V
IC =
25
A
Figure 11
IGBT transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
Brake IGBT
Figure 12
FWD transient thermal impedance
as a function of pulse width
Z th(j-s) = f(t p)
Zth(j-s) (K/W)
101
Zth(j-s) (K/W)
101
Brake FWD
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
10-4
10-3
At
D =
phase-change material
R th(j-s) =
1,01
K/W
copyright Vincotech
10-2
10-1
100
t p (s)
101 10
10-5
tp/T
10-4
10-3
At
D =
phase-change material
R th(j-s) =
2,07
K/W
15
10-2
10-1
100
t p (s)
101 10
tp/T
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Brake
Figure 13
Brake IGBT
Figure 14
Brake IGBT
Power dissipation as a
Collector current as a
function of heatsink temperature
P tot = f(T s)
function of heatsink temperature
I C = f(T s)
50
IC (A)
Ptot (W)
175
150
40
125
30
100
75
20
50
10
25
0
0
0
At
Tj =
50
175
100
150
T s ( o C)
200
0
At
Tj =
V GE =
ºC
Figure 15
Brake FWD
175
15
100
150
T s ( o C)
200
ºC
V
Figure 16
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
Brake FWD
Forward current as a
function of heatsink temperature
I F = f(T s)
25
IF (A)
90
Ptot (W)
50
80
20
70
60
15
50
40
10
30
20
5
10
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
Ts ( o C)
200
0
At
Tj =
ºC
16
50
175
100
150
Ts ( o C)
200
ºC
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Rectifier Diode
Figure 1
Rectifier diode
Figure 2
Rectifier diode
Diode transient thermal impedance
a function of forward voltage
I F= f(V F)
as a function of pulse width
Z th(j-s) = f(t p)
90
101
Zth(j-s) (K/W)
IF (A)
Typical diode forward current as
80
70
60
100
50
40
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
30
10
Tj = Tjmax-25°C
-1
20
10
Tj = 25°C
0
0,0
At
tp =
0,3
0,5
250
0,8
1,0
1,3
1,5
V F (V)
1,8
10-2
10-5
At
D =
R th(j-s) =
µs
Figure 3
Rectifier diode
10-4
10-3
10-2
10-1
t p (s)
10110
tp/T
1,03
K/W
Figure 4
Power dissipation as a
function of heatsink temperature
P tot = f(T s)
100
Rectifier diode
Forward current as a
function of heatsink temperature
I F = f(T s)
160
IF (A)
Ptot (W)
60
140
50
120
40
100
80
30
60
20
40
10
20
0
0
At
Tj =
25
150
copyright Vincotech
50
75
100
125
T s ( o C)
0
150
0
At
Tj =
ºC
17
25
50
150
ºC
75
100
o
125 T s ( C)
150
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Thermistor
Figure 1
Thermistor
Figure 2
Typical NTC characteristic
Thermistor
Typical NTC resistance values
as a function of temperature
R T = f(T )



 B25/100⋅ 1 − 1  
 T T 


25  

R (Ω)
NTC-typical temperature characteristic
22000
R(T ) = R25 ⋅ e
20000
[Ω]
18000
16000
14000
12000
10000
8000
6000
4000
2000
0
25
45
65
85
105
125
T (°C)
copyright Vincotech
18
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Switching Definitions Output Inverter
General conditions
Tj
= 150 °C
= 16 Ω
R gon
R goff
= 16 Ω
flow 1 housing
Figure 1
Output inverter IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
Output inverter IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
140
350
%
%
IC
120
tdoff
300
VCE
100
VGE 90%
80
VCE 90%
250
IC
200
60
150
40
● V23990-P580-A41-PM
tEoff
VGE
tdon
IC 1%
0
VCE
100
20
50
IC10%
VGE
-20
VCE 3%
VGE10%
0
tEon
-40
-0,4
-50
-0,2
0
0,2
0,4
0,6
0,8
2,9
3
3,1
3,2
3,3
3,4
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
-15
15
600
t doff =
t E off =
3,5
time(us)
time (us)
V
V
V
V GE (0%) =
V GE (100%) =
V C (100%) =
35
A
I C (100%) =
35
A
0,27
0,54
µs
µs
t don =
t E on =
0,09
0,31
µs
µs
Figure 3
Output inverter IGBT
Turn-off Switching Waveforms & definition of t f
-15
15
600
V
V
V
Figure 4
Output inverter IGBT
Turn-on Switching Waveforms & definition of t r
140
325
%
%
120
fitted
IC
Ic
275
VCE
100
225
IC 90%
80
175
IC 60%
60
125
40
IC 40%
IC90%
tr
75
20
IC10%
0
25
IC10%
tf
-20
0,1
0,2
0,3
0,4
0,5
VCE
-25
0,6
3
3,1
3,2
V C (100%) =
I C (100%) =
600
35
V
A
V C (100%) =
I C (100%) =
600
35
V
A
tf =
0,11
µs
tr =
0,02
µs
copyright Vincotech
3,3
3,4
time(us)
time (us)
19
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Switching Definitions Output Inverter
Figure 5
Output inverter IGBT
Turn-off Switching Waveforms & definition of t Eoff
Figure 6
Output inverter IGBT
Turn-on Switching Waveforms & definition of t Eon
120
225
%
%
Eoff
100
Poff
Pon
175
80
125
60
Eon
40
75
20
VGE 90%
25
VCE 3%
VGE 10%
0
tEoff
tEon
IC 1%
-25
-20
-0,1
0,1
0,3
0,5
3
0,7
3,1
3,2
time (us)
P off (100%) =
E off (100%) =
t E off =
21,01
2,82
0,54
3,3
3,4
time(us)
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
21,01
2,49
0,31
kW
mJ
µs
Figure 7
Output inverter IGBT
Turn-off Switching Waveforms & definition of t rr
120
%
Id
80
trr
40
Vd
0
IRRM10%
-40
fitted
-80
-120
-160
IRRM90%
-200
IRRM100%
-240
3
3,1
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
3,2
3,3
600
35
-79
0,28
V
A
A
µs
3,4
3,5
time(us)
3,6
20
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Switching Definitions Output Inverter
Figure 8
Output inverter FWD
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
Figure 9
Output inverter FWD
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
120
150
%
Id
100
Erec
%
Qrr
100
tQrr
50
80
tErec
0
60
-50
40
-100
20
-150
Prec
0
-200
-250
-20
3
3,2
3,4
3,6
3,8
4
4,2
3
time(us)
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
35
7,47
1,00
A
µC
µs
P rec (100%) =
E rec (100%) =
t E rec =
21
3,5
4
21,01
3,31
1,00
4,5
time(us)
5
kW
mJ
µs
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
without thermal paste 17mm housing solder pins
V23990-P580-A41-PM
without thermal paste 17mm housing press-fit pins
V23990-P580-A41Y-PM
without thermal paste 12mm housing solder pins
V23990-P580-A418-PM
without thermal paste 17mm housing solder pins without brake
V23990-P580-C41-PM
without thermal paste 17mm housing press-fit pins without brake
Vinco
Vinco
Text
Datamatrix
Date code
WWYY
V23990-P580-C41Y-PM
Name&Ver
NNNNNNNVV
UL
UL
Lot
LLLLL
Type&Ver
Lot number
Serial
Date code
TTTTTTTVV
LLLLL
SSSS
WWYY
Serial
SSSS
Outline
Pin table
Pin
X
Y
1
52,55
0
Function
BrG
2
47,7
0
DC-
3
44,8
0
DC-
4
37,8
0
DC+
5
37,8
2,8
DC+
6
35
0
Inv+
7
35
2,8
Inv+
8
28
0
R1
9
25,2
0
R2
10
22,4
0
N6
11
19,6
0
G6
12
16,8
0
S6
13
14
0
N4
14
11,2
0
G4
15
8,4
0
S4
16
5,6
0
N2
17
2,8
0
G2
18
0
0
S2
19
0
28,5
U
20
2,8
28,5
G1
Pin
X
Y
Function
Pin
X
Y
Function
21
7,5
28,5
S1
25
29
28,5
W
29
52,55
25
L2
22
14,5
28,5
V
26
31,8
28,5
G5
30
52,55
16,9
L3
23
17,3
28,5
G3
27
36,5
28,5
S5
31
52,55
8,6
BrC
24
22
28,5
S3
28
43,5
28,5
L1
32
52,55
2,8
BrE
Pin table
Pin table
Pinout
Identification
ID
Component
Voltage
Current
Function
T1,T2,T3,T4,T5,T6
IGBT
1200
35
Inverter Switch
D1,D2,D3,D4,D5,D6
FWD
1200
35
Inverter Diode
T7
IGBT
1200
25
Brake Switch
D7
Rectifier
1200
10
Brake Diode
D8,D9,D10,D11,D12,D13
Rectifier
1600
30
Rectifier Diode
NTC
NTC
copyright Vincotech
Comment
Thermistor
22
15 Jan. 2016 / Revision 4
V23990-P580-*4*-PM
datasheet
Packaging instruction
Standard packaging quantity (SPQ)
>SPQ
100
Standard
<SPQ
Sample
Handling instruction
Handling instructions for flow 1 packages see vincotech.com website.
Package data
Package data for flow 1 packages see vincotech.com website.
UL recognition and file number
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.
Document No.:
Date:
Modification:
Pages
V23990-P580-x4x-D4-14
15 Jan. 2016
Thermal values
All
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s
intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of
Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in
significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of
the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
23
15 Jan. 2016 / Revision 4