V23990 K220 A41 D4 14

V23990-K220-A41-PM
MiniSKiiP® 2 PIM
1200 V / 35 A
Features
MiniSKiiP® 2 housing
● Solderless interconnection
● Trench Fieldstop IGBT4 technology
● Enhanced input rectifier
Target Applications
Schematic
● Industrial Motor Drives
Types
● V23990-K220-A41-PM
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
45
A
450
A
1020
A2s
77
W
T jmax
150
°C
V CE
1200
V
38
A
105
A
96
W
±20
V
10
800
µs
V
175
°C
Rectifier Diode
Repetitive peak reverse voltage
V RRM
DC forward current
I FAV
Surge forward current
I FSM
T s=80°C
t p=10ms
T j=150°C
2
I2t-value
I t
Power dissipation
P tot
Maximum Junction Temperature
T j=T jmax
T j=T jmax
T s=80°C
Inverter Switch\Brake Switch
Collector-emitter break down voltage
DC collector current
IC
T j=T jmax
Repetitive peak collector current
I CRM
t p limited by T jmax
Power dissipation
P tot
T j=T jmax
Gate-emitter peak voltage
V GE
Short circuit ratings
t SC
V CC
Maximum Junction Temperature
copyright Vincotech
T j≤150°C
V GE=15V
T jmax
1
T s=80°C
T s=80°C
26 Feb. 2016 / Revision 4
V23990-K220-A41-PM
Maximum Ratings
T j=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1200
V
25
A
225
A
62
W
175
°C
Inverter Diode\Brake Diode
Peak Repetitive Reverse Voltage
DC forward current
V RRM
IF
T j=T jmax
T s=80°C
Repetitive peak forward current
I FRM
t p=10ms half sine
Power dissipation
P tot
T j=T jmax
Maximum Junction Temperature
T s=80°C
T jmax
Thermal Properties
Storage temperature
T stg
-40…+125
°C
Operation temperature under switching condition
T op
-40…+(T jmax - 25)
°C
Insulation Properties
Insulation voltage
V is
4000
V
Creepage distance
min 12.7
mm
Clearance
min 12.7
mm
copyright Vincotech
t=2s
DC voltage
2
26 Feb. 2016 / Revision 4
V23990-K220-A41-PM
Characteristic Values
Parameter
Conditions
Symbol
V GE [V]
or
V GS [V]
V r [V]
or
V CE [V]
or
V DS [V]
Value
I C [A]
or
I F [A]
or
I D [A]
T j [°C]
Unit
Min
Typ
Max
0,8
1,2
1,12
0,85
0,73
14
15
1,35
Rectifier Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
V to
Slope resistance (for power loss calc. only)
rt
Reverse current
Ir
Thermal resistance chip to heatsink per chip
25
1600
R th(j-s)
Thermal grease
thickness≤50µm
λ=1W/mK
V GE(th)
V CE=V GE
25
125
25
125
25
125
25
125
V
V
mΩ
0,1
1,1
mA
K/W
0,90
Inverter Switch\Brake Switch
Gate emitter threshold voltage
Collector-emitter saturation voltage
V CEsat
0,0012
15
35
Collector-emitter cut-off current incl. diode
I CES
0
1200
Gate-emitter leakage current
I GES
20
0
Integrated Gate resistor
R gint
Turn-on delay time
t d(on)
Rise time
Turn-off delay time
Fall time
tf
Turn-on energy loss per pulse
E on
Turn-off energy loss per pulse
E off
Input capacitance
C ies
Output capacitance
C oss
Reverse transfer capacitance
C rss
Gate charge
QG
Thermal resistance chip to heatsink per chip
R th(j-s)
5
5,8
6,5
1,6
1,87
2,3
2,15
0,05
300
-
tr
t d(off)
25
150
25
150
25
150
25
150
R goff=16Ω
R gon=16Ω
±15
600
35
25
150
25
150
25
150
25
150
25
150
25
150
V
V
mA
nA
Ω
78
79
24
29
196
268
77
131
2,54
3,84
1,92
3,18
ns
mWs
1950
f=1MHz
0
25
25
155
pF
115
Vcc=960V
15
40
25
Thermal grease
thickness≤50µm
λ=1W/mK
192
nC
1,07
K/W
Inverter Diode\Brake Diode
Diode forward voltage
Peak reverse recovery current
VF
I RRM
Reverse recovery time
t rr
Reverse recovered charge
Q rr
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
35
R gon=16Ω
±15
600
( di rf/dt )max
E rec
R th(j-s)
35
25
150
25
150
25
150
25
150
25
150
25
150
1,5
Thermal grease
thickness≤50µm
λ=1W/mK
2,36
2,34
16
22,6
336
550
2,2
5,36
63
67
0,77
2,07
2,65
V
A
ns
µC
A/µs
mWs
K/W
1,52
Thermistor
Rated resistance
Deviation of R100
R100
R
Δ R/R
T=25
R 100=1670 Ω
T=100
P
T=100
Power dissipation constant
1000
-3
Ω
3
1670,3125
%
Ω
T=25
mW/K
A-value
B (25/50)
Tol. %
T=25
7,635*10-3
1/K
B-value
B (25/100)
Tol. %
T=25
1,731*10-5
1/K²
Vincotech NTC Reference
copyright Vincotech
E
3
26 Feb. 2016 / Revision 4
V23990-K220-A41-PM
Inverter\Brake Characteristics
Figure 1
Inverter Switch\Brake Switch
Typical output characteristics
I C = f(V CE)
Figure 2
Inverter Switch\Brake Switch
Typical output characteristics
I C = f(V CE)
IC (A)
100
IC (A)
100
80
80
60
60
40
40
20
20
0
0
0
At
tp =
Tj =
V GE from
1
2
3
4
V CE (V)
5
0
At
tp =
Tj =
V GE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Figure 3
Inverter Switch\Brake Switch
Typical transfer characteristics
I C = f(V GE)
1
2
3
4
V CE (V)
5
250
µs
150
°C
7 V to 17 V in steps of 1 V
Figure 4
Inverter Diode\Brake Diode
Typical diode forward current as
a function of forward voltage
I F = f(V F)
100
Tj = 25°C
IF (A)
IC (A)
35
30
80
Tj = Tjmax-25°C
25
60
20
15
Tj = Tjmax-25°C
40
10
Tj = 25°C
20
5
0
0
0
At
tp =
V CE =
2
250
10
copyright Vincotech
4
6
8
10
V GE (V)
12
0
At
tp =
µs
V
4
1
250
2
3
4
V F (V)
5
µs
26 Feb. 2016 / Revision 4
V23990-K220-A41-PM
Inverter\Brake Characteristics
Figure 5
Inverter Switch\Brake Switch
Figure 6
Inverter Switch\Brake Switch
Typical switching energy losses
Typical switching energy losses
as a function of collector current
E = f(I C)
as a function of gate resistor
E = f(R G)
10
E (mWs)
10
E (mWs)
Eon High T
8
8
Eon High T
Eon Low T
6
6
Eon Low T
Eoff High T
4
4
Eoff High T
Eoff Low T
2
2
Eoff Low T
0
0
0
15
30
45
60
I C (A)
0
75
15
30
45
60
RG( Ω )
75
With an inductive load at
Tj =
°C
25/150
V CE =
600
V
V GE =
±15
V
IC =
35
A
Figure 7
Inverter Switch\Brake Switch
Typical reverse recovery energy loss
as a function of collector current
E rec = f(I C)
Figure 8
Inverter Switch\Brake Switch
Typical reverse recovery energy loss
as a function of gate resistor
E rec = f(R G)
3
E (mWs)
E (mWs)
With an inductive load at
Tj =
°C
25/150
V CE =
600
V
V GE =
±15
V
R gon =
16
Ω
R goff =
16
Ω
2,5
3
2,5
Erec
Tj = Tjmax -25°C
2
2
1,5
1,5
Tj = Tjmax -25°C
Erec
Tj = 25°C
1
Erec
1
Tj = 25°C
0,5
Erec
0,5
0
0
0
15
30
45
60
I C (A)
75
0
With an inductive load at
Tj =
25/150
°C
V CE =
600
V
V GE =
±15
V
R gon =
16
Ω
copyright Vincotech
15
30
45
60
RG( Ω )
75
With an inductive load at
Tj =
25/150
°C
V CE =
600
V
V GE =
±15
V
IC =
35
A
5
26 Feb. 2016 / Revision 4
V23990-K220-A41-PM
Inverter\Brake Characteristics
Figure 9
Inverter Switch\Brake Switch
Figure 10
Inverter Switch\Brake Switch
Typical switching times as a
Typical switching times as a
function of collector current
t = f(I C)
function of gate resistor
t = f(R G)
1
t ( µs)
t ( µs)
1
tdoff
tdoff
tdon
tf
tf
0,1
0,1
tr
tr
tdon
0,01
0,01
0,001
0,001
0
15
30
45
I C (A)
60
75
0
15
30
45
60
RG( Ω )
75
With an inductive load at
Tj =
150
°C
V CE =
600
V
V GE =
±15
V
R gon =
16
Ω
R goff =
16
Ω
With an inductive load at
Tj =
150
°C
V CE =
600
V
V GE =
±15
V
IC =
35
A
Figure 11
Inverter Diode\Brake Diode
Typical reverse recovery time as a
function of collector current
t rr = f(I C)
Figure 12
Inverter Diode\Brake Diode
Typical reverse recovery time as a
function of IGBT turn on gate resistor
t rr = f(R gon)
1
t rr( µs)
t rr( µs)
1
0,8
trr
0,8
trr
Tj = Tjmax -25°C
Tj = Tjmax -25°C
0,6
0,6
trr
Tj = 25°C
trr
0,4
0,4
Tj = 25°C
0,2
0,2
0
0
0
At
Tj =
V CE =
V GE =
R gon =
15
25/150
600
±15
16
copyright Vincotech
30
45
60
I C (A)
75
0
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
6
15
25/150
600
35
±15
30
45
60
R g on ( Ω )
75
°C
V
A
V
26 Feb. 2016 / Revision 4
V23990-K220-A41-PM
Inverter\Brake Characteristics
Figure 13
Inverter Diode\Brake Diode
Figure 14
Inverter Diode\Brake Diode
Typical reverse recovery charge as a
Typical reverse recovery charge as a
function of collector current
Q rr = f(I C)
function of IGBT turn on gate resistor
Q rr = f(R gon)
8
Qrr( µC)
Qrr( µC)
8
Qrr
Tj = Tjmax -25°C
6
6
Tj = Tjmax -25°C
Qrr
4
4
Qrr
Tj = 25°C
Tj = 25°C
2
2
0
At
Qrr
0
0
At
Tj =
V CE =
V GE =
R gon =
15
30
45
60
I C (A)
75
0
15
30
25/150
600
°C
V
At
Tj =
VR=
25/150
600
°C
V
±15
16
V
Ω
IF=
V GE =
35
±15
A
V
Figure 15
Inverter Diode\Brake Diode
Typical reverse recovery current as a
function of collector current
I RRM = f(I C)
45
60
R g on ( Ω)
75
Figure 16
Inverter Diode\Brake Diode
Typical reverse recovery current as a
function of IGBT turn on gate resistor
I RRM = f(R gon)
80
IrrM (A)
IrrM (A)
30
Tj = Tjmax -25°C
25
60
20
IRRM
Tj = 25°C
40
15
IRRM
Tj = Tjmax - 25°C
10
20
5
Tj = 25°C
IRRM
0
0
0
At
Tj =
V CE =
V GE =
R gon =
15
25/150
600
±15
16
copyright Vincotech
30
45
60
I C (A)
0
75
At
Tj =
VR=
IF=
V GE =
°C
V
V
Ω
7
15
25/150
600
35
±15
30
45
60
R gon ( Ω )
75
°C
V
A
V
26 Feb. 2016 / Revision 4
V23990-K220-A41-PM
Inverter\Brake Characteristics
Figure 17
Inverter Diode\Brake Diode
Figure 18
Inverter Diode\Brake Diode
Typical rate of fall of forward
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI 0/dt ,dI rec/dt = f(I C)
and reverse recovery current as a
function of IGBT turn on gate resistor
dI 0/dt ,dI rec/dt = f(R gon)
1500
direc / dt (A/ µs)
direc / dt (A/µ s)
6000
dI0/dt
dIrec/dt
dI0/dt
dIrec/dt
5000
1200
dIo/dtLow T
4000
900
3000
600
di0/dtHigh T
Tj = Tjmax - 25°C
2000
dIrec/dtLow T
Tj = 25°C
300
1000
dIrec/dtHigh T
dIrec/dtHigh T
0
0
0
At
Tj =
V CE =
V GE =
R gon =
15
30
45
I C (A)
60
75
0
15
30
25/150
600
°C
V
At
Tj =
VR=
25/150
600
°C
V
±15
16
V
Ω
IF=
V GE =
35
±15
A
V
Figure 19
Inverter Switch\Brake Switch
IGBT transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
45
R gon ( Ω )
60
75
Figure 20
Inverter Diode\Brake Diode
FWD transient thermal impedance
as a function of pulse width
Z thJH = f(t p)
Zth-JH (K/W)
101
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10-2
10-5
At
D =
R thJH =
10-4
10-3
10-2
10-1
100
t p (s)
10110
tp/T
0,99
K/W
10-5
10-4
At
D =
R thJH =
tp/T
1,23
10-3
FWD thermal model values
R (K/W)
0,10
0,31
0,41
Tau (s)
1,5E+00
2,7E-01
8,9E-02
R (K/W)
0,08
0,33
0,50
Tau (s)
2,1E+00
2,4E-01
6,6E-02
0,13
0,03
1,4E-02
2,8E-03
0,22
0,10
1,3E-02
2,3E-03
8
10-1
100
t p (s)
10110
K/W
IGBT thermal model values
copyright Vincotech
10-2
26 Feb. 2016 / Revision 4
V23990-K220-A41-PM
Inverter\Brake Characteristics
Figure 21
Inverter Switch\Brake Switch
Figure 22
Inverter Switch\Brake Switch
Power dissipation as a
Collector current as a
function of heatsink temperature
P tot = f(T h)
function of heatsink temperature
I C = f(T h)
50
IC (A)
Ptot (W)
180
150
40
120
30
90
20
60
10
30
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
0
200
At
Tj =
V GE =
°C
Figure 23
Inverter Diode\Brake Diode FWD
50
175
15
100
T h ( o C)
200
°C
V
Figure 24
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
150
Inverter Diode\Brake Diode FWD
Forward current as a
function of heatsink temperature
I F = f(T h)
40
Ptot (W)
IF (A)
150
120
30
90
20
60
10
30
0
0
0
At
Tj =
50
175
copyright Vincotech
100
150
T h ( o C) 200
0
At
Tj =
°C
9
50
175
100
150
T h ( o C)
200
°C
26 Feb. 2016 / Revision 4
V23990-K220-A41-PM
Inverter\Brake Characteristics
Figure 25
Safe operating area as a function
Inverter Switch\Brake Switch
Figure 26
Gate voltage vs Gate charge
of collector-emitter voltage
I C = f(V CE)
V GE = f(Q GE)
103
Inverter Switch\Brake Switch
IC (A)
VGE (V)
16
14
10uS
102
12
240V
100uS
DC
100mS
10mS
1mS
960V
10
8
101
6
4
100
2
0
10-1 0
10
At
D =
Th =
V GE =
Tj =
101
102
V CE (V)
0
103
At
IC =
single pulse
80
±15
T jmax
copyright Vincotech
20
35
40
60
80
100
120
140
160
180
Q g (nC)
200
A
ºC
V
ºC
10
26 Feb. 2016 / Revision 4
V23990-K220-A41-PM
Rectifier Diode
Figure 1
Rectifier Diode diode
Figure 2
Rectifier Diode diode
Typical diode forward current as
Diode transient thermal impedance
a function of forward voltage
I F= f(V F)
as a function of pulse width
Z thJH = f(t p)
75
IF (A)
ZthJC (K/W)
101
60
100
45
30
Tj = Tjmax-25°C
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
Tj = 25°C
15
0
0
0,4
At
tp =
250
0,8
1,2
1,6
V F (V)
10-2
2
µs
Figure 3
Rectifier Diode diode
10-5
10-4
At
D =
R thJH =
10-3
tp/T
0,905
10-2
10-1
t p (s)
10110
K/W
Figure 4
Power dissipation as a
function of heatsink temperature
P tot = f(T h)
100
Rectifier Diode diode
Forward current as a
function of heatsink temperature
I F = f(T h)
50
IF (A)
Ptot (W)
200
160
40
120
30
80
20
40
10
0
0
0
At
Tj =
30
150
copyright Vincotech
60
90
o
120 T h ( C)
150
0
At
Tj =
ºC
11
30
150
60
90
o
120 T h ( C)
150
ºC
26 Feb. 2016 / Revision 4
V23990-K220-A41-PM
Thermistor
Figure 1
Thermistor
Typical PTC characteristic
as a function of temperature
R T = f(T )
PTC-typical temperature characteristic
R/Ω
2000
1800
1600
1400
1200
1000
25
copyright Vincotech
50
75
100
T (°C)
125
12
26 Feb. 2016 / Revision 4
V23990-K220-A41-PM
Switching Definitions Inverter
General conditions
Tj
= 150 °C
= 16 Ω
R gon
R goff
= 16 Ω
Figure 1
IGBT
Turn-off Switching Waveforms & definition of t doff, t Eoff
Figure 2
IGBT
Turn-on Switching Waveforms & definition of t don, t Eon
(t E off = integrating time for E off)
(t E on = integrating time for E on)
180
130
%
tdoff
%
VCE
110
90
IC
150
VGE 90%
VCE 90%
120
VCE
70
90
IC
VGE
50
tEoff
tdon
60
30
IC 1%
10
30
IC10%
VCE 3%
VGE10%
-10
0
VGE
-30
-0,2
-0,05
0,1
0,25
V GE (0%) =
V GE (100%) =
V C (100%) =
I C (100%) =
-15
15
600
t doff =
t E off =
0,4
0,55
0,7
time (us)
tEon
-30
0,85
2,7
2,8
2,9
3,1
V GE (0%) =
V GE (100%) =
V C (100%) =
35
A
I C (100%) =
35
A
0,27
0,60
µs
µs
t don =
t E on =
0,08
0,39
µs
µs
Figure 3
Turn-off Switching Waveforms & definition of t f
IGBT
-15
15
600
3
V
V
V
3,2
3,3 time(us) 3,4
V
V
V
Figure 4
Turn-on Switching Waveforms & definition of t r
140
IGBT
180
%
%
Ic
fitted
120
VCE
150
100
IC
120
IC 90%
VCE
80
90
IC90%
IC 60%
60
tr
60
IC 40%
40
30
20
tf
0
-20
0,15
IC10%
IC10%
0
-30
0,2
0,25
0,3
0,35
0,4
0,45
time (us)
2,9
0,5
3
3,1
3,3
time(us)
V C (100%) =
I C (100%) =
600
35
V
A
V C (100%) =
I C (100%) =
600
35
V
A
tf =
0,13
µs
tr =
0,03
µs
copyright Vincotech
3,2
13
26 Feb. 2016 / Revision 4
V23990-K220-A41-PM
Switching Definitions Inverter
Figure 5
Turn-off Switching Waveforms & definition of t Eoff
IGBT
Figure 6
Turn-on Switching Waveforms & definition of t Eon
120
IGBT
180
%
Poff
Pon
%
Eoff
100
140
80
Eon
100
60
40
60
20
VGE 10%
20
0
tEoff
VCE 3%
tEon
VGE 90%
IC 1%
-20
-20
-0,2
0
P off (100%) =
E off (100%) =
t E off =
0,2
20,88
3,18
0,60
0,4
0,6
time (us)
2,6
0,8
2,75
3,05
3,2
3,35
3,5
time(us)
kW
mJ
µs
P on (100%) =
E on (100%) =
t E on =
Figure 7
Turn-off Switching Waveforms & definition of t rr
2,9
20,88
3,84
0,39
kW
mJ
µs
FWD
120
%
Id
80
trr
40
Vd
0
IRRM10%
-40
IRRM90%
IRRM100%
fitted
-80
-120
2,6
2,8
V d (100%) =
I d (100%) =
I RRM (100%) =
t rr =
copyright Vincotech
3
600
35
23
0,57
3,2
3,4
3,6 time(us) 3,8
V
A
A
µs
14
26 Feb. 2016 / Revision 4
V23990-K220-A41-PM
Switching Definitions Inverter
Figure 8
Turn-on Switching Waveforms & definition of t Qrr
(t Q rr = integrating time for Q rr)
FWD
Figure 9
Turn-on Switching Waveforms & definition of t Erec
(t Erec= integrating time for E rec)
150
FWD
120
Erec
%
%
Qrr
100
100
Id
80
tQrr
50
tErec
60
40
0
20
Prec
-50
0
-100
-20
2,6
2,8
I d (100%) =
Q rr (100%) =
t Q rr =
copyright Vincotech
3
35
5,40
0,80
3,2
3,4
3,6
3,8 time(us) 4
2,6
A
µC
µs
2,8
P rec (100%) =
E rec (100%) =
t E rec =
15
3
20,88
2,10
0,80
3,2
3,4
3,6
3,8 time(us) 4
kW
mJ
µs
26 Feb. 2016 / Revision 4
V23990-K220-A41-PM
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Ordering Code
with std lid (black V23990-K12-T-PM)
V23990-K220-A41-/0A/-PM
with std lid (black V23990-K12-T-PM) and P12
V23990-K220-A41-/1A/-PM
with thin lid (white V23990-K13-T-PM)
V23990-K220-A41-/0B/-PM
with thin lid (white V23990-K13-T-PM) and P12
V23990-K220-A41-/1B/-PM
Vinco
Date code
Name&Ver
UL
Lot
Serial
Vinco
WWYY
NNNNNNNVV
UL
LLLLL
SSSS
Type&Ver
Lot number
Serial
Date code
TTTTTTTVV
LLLLL
SSSS
WWYY
Text
Datamatrix
Outline
Pinout
Identification
ID
Component
Voltage
Current
Function
T1,T2,T3,T4,T5,T6
IGBT
1200 V
35 A
Inverter Switch
D1,D2,D3,D4,D5,D6
FWD
1200 V
35 A
Inverter Diode
T7
IGBT
1200 V
35 A
Brake Switch
D7
FWD
1200 V
35 A
Brake Diode
D8,D9,D10,D11,D12,D13
Rectifier
1600 V
25 A
Rectifier Diode
T
PTC
copyright Vincotech
Comment
Thermistor
16
26 Feb. 2016 / Revision 4
V23990-K220-A41-PM
Packaging instruction
Standard packaging quantity (SPQ)
>SPQ
72
Standard
<SPQ
Sample
Handling instruction
Handling instructions for MiniSkiiP
®
2 packages see vincotech.com website.
Package data
Package data for MiniSkiiP ® 2 packages see vincotech.com website.
Document No.:
Date:
Modification:
Pages
V23990-K220-A41-D4-14
26 Feb. 2016
New brand, Disclaimer
all
DISCLAIMER
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s
intended use.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of
Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in
significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of
the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
17
26 Feb. 2016 / Revision 4