V23990-K220-A41-PM MiniSKiiP® 2 PIM 1200 V / 35 A Features MiniSKiiP® 2 housing ● Solderless interconnection ● Trench Fieldstop IGBT4 technology ● Enhanced input rectifier Target Applications Schematic ● Industrial Motor Drives Types ● V23990-K220-A41-PM Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 45 A 450 A 1020 A2s 77 W T jmax 150 °C V CE 1200 V 38 A 105 A 96 W ±20 V 10 800 µs V 175 °C Rectifier Diode Repetitive peak reverse voltage V RRM DC forward current I FAV Surge forward current I FSM T s=80°C t p=10ms T j=150°C 2 I2t-value I t Power dissipation P tot Maximum Junction Temperature T j=T jmax T j=T jmax T s=80°C Inverter Switch\Brake Switch Collector-emitter break down voltage DC collector current IC T j=T jmax Repetitive peak collector current I CRM t p limited by T jmax Power dissipation P tot T j=T jmax Gate-emitter peak voltage V GE Short circuit ratings t SC V CC Maximum Junction Temperature copyright Vincotech T j≤150°C V GE=15V T jmax 1 T s=80°C T s=80°C 26 Feb. 2016 / Revision 4 V23990-K220-A41-PM Maximum Ratings T j=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 25 A 225 A 62 W 175 °C Inverter Diode\Brake Diode Peak Repetitive Reverse Voltage DC forward current V RRM IF T j=T jmax T s=80°C Repetitive peak forward current I FRM t p=10ms half sine Power dissipation P tot T j=T jmax Maximum Junction Temperature T s=80°C T jmax Thermal Properties Storage temperature T stg -40…+125 °C Operation temperature under switching condition T op -40…+(T jmax - 25) °C Insulation Properties Insulation voltage V is 4000 V Creepage distance min 12.7 mm Clearance min 12.7 mm copyright Vincotech t=2s DC voltage 2 26 Feb. 2016 / Revision 4 V23990-K220-A41-PM Characteristic Values Parameter Conditions Symbol V GE [V] or V GS [V] V r [V] or V CE [V] or V DS [V] Value I C [A] or I F [A] or I D [A] T j [°C] Unit Min Typ Max 0,8 1,2 1,12 0,85 0,73 14 15 1,35 Rectifier Diode Forward voltage VF Threshold voltage (for power loss calc. only) V to Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink per chip 25 1600 R th(j-s) Thermal grease thickness≤50µm λ=1W/mK V GE(th) V CE=V GE 25 125 25 125 25 125 25 125 V V mΩ 0,1 1,1 mA K/W 0,90 Inverter Switch\Brake Switch Gate emitter threshold voltage Collector-emitter saturation voltage V CEsat 0,0012 15 35 Collector-emitter cut-off current incl. diode I CES 0 1200 Gate-emitter leakage current I GES 20 0 Integrated Gate resistor R gint Turn-on delay time t d(on) Rise time Turn-off delay time Fall time tf Turn-on energy loss per pulse E on Turn-off energy loss per pulse E off Input capacitance C ies Output capacitance C oss Reverse transfer capacitance C rss Gate charge QG Thermal resistance chip to heatsink per chip R th(j-s) 5 5,8 6,5 1,6 1,87 2,3 2,15 0,05 300 - tr t d(off) 25 150 25 150 25 150 25 150 R goff=16Ω R gon=16Ω ±15 600 35 25 150 25 150 25 150 25 150 25 150 25 150 V V mA nA Ω 78 79 24 29 196 268 77 131 2,54 3,84 1,92 3,18 ns mWs 1950 f=1MHz 0 25 25 155 pF 115 Vcc=960V 15 40 25 Thermal grease thickness≤50µm λ=1W/mK 192 nC 1,07 K/W Inverter Diode\Brake Diode Diode forward voltage Peak reverse recovery current VF I RRM Reverse recovery time t rr Reverse recovered charge Q rr Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip 35 R gon=16Ω ±15 600 ( di rf/dt )max E rec R th(j-s) 35 25 150 25 150 25 150 25 150 25 150 25 150 1,5 Thermal grease thickness≤50µm λ=1W/mK 2,36 2,34 16 22,6 336 550 2,2 5,36 63 67 0,77 2,07 2,65 V A ns µC A/µs mWs K/W 1,52 Thermistor Rated resistance Deviation of R100 R100 R Δ R/R T=25 R 100=1670 Ω T=100 P T=100 Power dissipation constant 1000 -3 Ω 3 1670,3125 % Ω T=25 mW/K A-value B (25/50) Tol. % T=25 7,635*10-3 1/K B-value B (25/100) Tol. % T=25 1,731*10-5 1/K² Vincotech NTC Reference copyright Vincotech E 3 26 Feb. 2016 / Revision 4 V23990-K220-A41-PM Inverter\Brake Characteristics Figure 1 Inverter Switch\Brake Switch Typical output characteristics I C = f(V CE) Figure 2 Inverter Switch\Brake Switch Typical output characteristics I C = f(V CE) IC (A) 100 IC (A) 100 80 80 60 60 40 40 20 20 0 0 0 At tp = Tj = V GE from 1 2 3 4 V CE (V) 5 0 At tp = Tj = V GE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Figure 3 Inverter Switch\Brake Switch Typical transfer characteristics I C = f(V GE) 1 2 3 4 V CE (V) 5 250 µs 150 °C 7 V to 17 V in steps of 1 V Figure 4 Inverter Diode\Brake Diode Typical diode forward current as a function of forward voltage I F = f(V F) 100 Tj = 25°C IF (A) IC (A) 35 30 80 Tj = Tjmax-25°C 25 60 20 15 Tj = Tjmax-25°C 40 10 Tj = 25°C 20 5 0 0 0 At tp = V CE = 2 250 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 4 1 250 2 3 4 V F (V) 5 µs 26 Feb. 2016 / Revision 4 V23990-K220-A41-PM Inverter\Brake Characteristics Figure 5 Inverter Switch\Brake Switch Figure 6 Inverter Switch\Brake Switch Typical switching energy losses Typical switching energy losses as a function of collector current E = f(I C) as a function of gate resistor E = f(R G) 10 E (mWs) 10 E (mWs) Eon High T 8 8 Eon High T Eon Low T 6 6 Eon Low T Eoff High T 4 4 Eoff High T Eoff Low T 2 2 Eoff Low T 0 0 0 15 30 45 60 I C (A) 0 75 15 30 45 60 RG( Ω ) 75 With an inductive load at Tj = °C 25/150 V CE = 600 V V GE = ±15 V IC = 35 A Figure 7 Inverter Switch\Brake Switch Typical reverse recovery energy loss as a function of collector current E rec = f(I C) Figure 8 Inverter Switch\Brake Switch Typical reverse recovery energy loss as a function of gate resistor E rec = f(R G) 3 E (mWs) E (mWs) With an inductive load at Tj = °C 25/150 V CE = 600 V V GE = ±15 V R gon = 16 Ω R goff = 16 Ω 2,5 3 2,5 Erec Tj = Tjmax -25°C 2 2 1,5 1,5 Tj = Tjmax -25°C Erec Tj = 25°C 1 Erec 1 Tj = 25°C 0,5 Erec 0,5 0 0 0 15 30 45 60 I C (A) 75 0 With an inductive load at Tj = 25/150 °C V CE = 600 V V GE = ±15 V R gon = 16 Ω copyright Vincotech 15 30 45 60 RG( Ω ) 75 With an inductive load at Tj = 25/150 °C V CE = 600 V V GE = ±15 V IC = 35 A 5 26 Feb. 2016 / Revision 4 V23990-K220-A41-PM Inverter\Brake Characteristics Figure 9 Inverter Switch\Brake Switch Figure 10 Inverter Switch\Brake Switch Typical switching times as a Typical switching times as a function of collector current t = f(I C) function of gate resistor t = f(R G) 1 t ( µs) t ( µs) 1 tdoff tdoff tdon tf tf 0,1 0,1 tr tr tdon 0,01 0,01 0,001 0,001 0 15 30 45 I C (A) 60 75 0 15 30 45 60 RG( Ω ) 75 With an inductive load at Tj = 150 °C V CE = 600 V V GE = ±15 V R gon = 16 Ω R goff = 16 Ω With an inductive load at Tj = 150 °C V CE = 600 V V GE = ±15 V IC = 35 A Figure 11 Inverter Diode\Brake Diode Typical reverse recovery time as a function of collector current t rr = f(I C) Figure 12 Inverter Diode\Brake Diode Typical reverse recovery time as a function of IGBT turn on gate resistor t rr = f(R gon) 1 t rr( µs) t rr( µs) 1 0,8 trr 0,8 trr Tj = Tjmax -25°C Tj = Tjmax -25°C 0,6 0,6 trr Tj = 25°C trr 0,4 0,4 Tj = 25°C 0,2 0,2 0 0 0 At Tj = V CE = V GE = R gon = 15 25/150 600 ±15 16 copyright Vincotech 30 45 60 I C (A) 75 0 At Tj = VR= IF= V GE = °C V V Ω 6 15 25/150 600 35 ±15 30 45 60 R g on ( Ω ) 75 °C V A V 26 Feb. 2016 / Revision 4 V23990-K220-A41-PM Inverter\Brake Characteristics Figure 13 Inverter Diode\Brake Diode Figure 14 Inverter Diode\Brake Diode Typical reverse recovery charge as a Typical reverse recovery charge as a function of collector current Q rr = f(I C) function of IGBT turn on gate resistor Q rr = f(R gon) 8 Qrr( µC) Qrr( µC) 8 Qrr Tj = Tjmax -25°C 6 6 Tj = Tjmax -25°C Qrr 4 4 Qrr Tj = 25°C Tj = 25°C 2 2 0 At Qrr 0 0 At Tj = V CE = V GE = R gon = 15 30 45 60 I C (A) 75 0 15 30 25/150 600 °C V At Tj = VR= 25/150 600 °C V ±15 16 V Ω IF= V GE = 35 ±15 A V Figure 15 Inverter Diode\Brake Diode Typical reverse recovery current as a function of collector current I RRM = f(I C) 45 60 R g on ( Ω) 75 Figure 16 Inverter Diode\Brake Diode Typical reverse recovery current as a function of IGBT turn on gate resistor I RRM = f(R gon) 80 IrrM (A) IrrM (A) 30 Tj = Tjmax -25°C 25 60 20 IRRM Tj = 25°C 40 15 IRRM Tj = Tjmax - 25°C 10 20 5 Tj = 25°C IRRM 0 0 0 At Tj = V CE = V GE = R gon = 15 25/150 600 ±15 16 copyright Vincotech 30 45 60 I C (A) 0 75 At Tj = VR= IF= V GE = °C V V Ω 7 15 25/150 600 35 ±15 30 45 60 R gon ( Ω ) 75 °C V A V 26 Feb. 2016 / Revision 4 V23990-K220-A41-PM Inverter\Brake Characteristics Figure 17 Inverter Diode\Brake Diode Figure 18 Inverter Diode\Brake Diode Typical rate of fall of forward Typical rate of fall of forward and reverse recovery current as a function of collector current dI 0/dt ,dI rec/dt = f(I C) and reverse recovery current as a function of IGBT turn on gate resistor dI 0/dt ,dI rec/dt = f(R gon) 1500 direc / dt (A/ µs) direc / dt (A/µ s) 6000 dI0/dt dIrec/dt dI0/dt dIrec/dt 5000 1200 dIo/dtLow T 4000 900 3000 600 di0/dtHigh T Tj = Tjmax - 25°C 2000 dIrec/dtLow T Tj = 25°C 300 1000 dIrec/dtHigh T dIrec/dtHigh T 0 0 0 At Tj = V CE = V GE = R gon = 15 30 45 I C (A) 60 75 0 15 30 25/150 600 °C V At Tj = VR= 25/150 600 °C V ±15 16 V Ω IF= V GE = 35 ±15 A V Figure 19 Inverter Switch\Brake Switch IGBT transient thermal impedance as a function of pulse width Z thJH = f(t p) 45 R gon ( Ω ) 60 75 Figure 20 Inverter Diode\Brake Diode FWD transient thermal impedance as a function of pulse width Z thJH = f(t p) Zth-JH (K/W) 101 ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 At D = R thJH = 10-4 10-3 10-2 10-1 100 t p (s) 10110 tp/T 0,99 K/W 10-5 10-4 At D = R thJH = tp/T 1,23 10-3 FWD thermal model values R (K/W) 0,10 0,31 0,41 Tau (s) 1,5E+00 2,7E-01 8,9E-02 R (K/W) 0,08 0,33 0,50 Tau (s) 2,1E+00 2,4E-01 6,6E-02 0,13 0,03 1,4E-02 2,8E-03 0,22 0,10 1,3E-02 2,3E-03 8 10-1 100 t p (s) 10110 K/W IGBT thermal model values copyright Vincotech 10-2 26 Feb. 2016 / Revision 4 V23990-K220-A41-PM Inverter\Brake Characteristics Figure 21 Inverter Switch\Brake Switch Figure 22 Inverter Switch\Brake Switch Power dissipation as a Collector current as a function of heatsink temperature P tot = f(T h) function of heatsink temperature I C = f(T h) 50 IC (A) Ptot (W) 180 150 40 120 30 90 20 60 10 30 0 0 0 At Tj = 50 175 100 150 T h ( o C) 0 200 At Tj = V GE = °C Figure 23 Inverter Diode\Brake Diode FWD 50 175 15 100 T h ( o C) 200 °C V Figure 24 Power dissipation as a function of heatsink temperature P tot = f(T h) 150 Inverter Diode\Brake Diode FWD Forward current as a function of heatsink temperature I F = f(T h) 40 Ptot (W) IF (A) 150 120 30 90 20 60 10 30 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = °C 9 50 175 100 150 T h ( o C) 200 °C 26 Feb. 2016 / Revision 4 V23990-K220-A41-PM Inverter\Brake Characteristics Figure 25 Safe operating area as a function Inverter Switch\Brake Switch Figure 26 Gate voltage vs Gate charge of collector-emitter voltage I C = f(V CE) V GE = f(Q GE) 103 Inverter Switch\Brake Switch IC (A) VGE (V) 16 14 10uS 102 12 240V 100uS DC 100mS 10mS 1mS 960V 10 8 101 6 4 100 2 0 10-1 0 10 At D = Th = V GE = Tj = 101 102 V CE (V) 0 103 At IC = single pulse 80 ±15 T jmax copyright Vincotech 20 35 40 60 80 100 120 140 160 180 Q g (nC) 200 A ºC V ºC 10 26 Feb. 2016 / Revision 4 V23990-K220-A41-PM Rectifier Diode Figure 1 Rectifier Diode diode Figure 2 Rectifier Diode diode Typical diode forward current as Diode transient thermal impedance a function of forward voltage I F= f(V F) as a function of pulse width Z thJH = f(t p) 75 IF (A) ZthJC (K/W) 101 60 100 45 30 Tj = Tjmax-25°C D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 Tj = 25°C 15 0 0 0,4 At tp = 250 0,8 1,2 1,6 V F (V) 10-2 2 µs Figure 3 Rectifier Diode diode 10-5 10-4 At D = R thJH = 10-3 tp/T 0,905 10-2 10-1 t p (s) 10110 K/W Figure 4 Power dissipation as a function of heatsink temperature P tot = f(T h) 100 Rectifier Diode diode Forward current as a function of heatsink temperature I F = f(T h) 50 IF (A) Ptot (W) 200 160 40 120 30 80 20 40 10 0 0 0 At Tj = 30 150 copyright Vincotech 60 90 o 120 T h ( C) 150 0 At Tj = ºC 11 30 150 60 90 o 120 T h ( C) 150 ºC 26 Feb. 2016 / Revision 4 V23990-K220-A41-PM Thermistor Figure 1 Thermistor Typical PTC characteristic as a function of temperature R T = f(T ) PTC-typical temperature characteristic R/Ω 2000 1800 1600 1400 1200 1000 25 copyright Vincotech 50 75 100 T (°C) 125 12 26 Feb. 2016 / Revision 4 V23990-K220-A41-PM Switching Definitions Inverter General conditions Tj = 150 °C = 16 Ω R gon R goff = 16 Ω Figure 1 IGBT Turn-off Switching Waveforms & definition of t doff, t Eoff Figure 2 IGBT Turn-on Switching Waveforms & definition of t don, t Eon (t E off = integrating time for E off) (t E on = integrating time for E on) 180 130 % tdoff % VCE 110 90 IC 150 VGE 90% VCE 90% 120 VCE 70 90 IC VGE 50 tEoff tdon 60 30 IC 1% 10 30 IC10% VCE 3% VGE10% -10 0 VGE -30 -0,2 -0,05 0,1 0,25 V GE (0%) = V GE (100%) = V C (100%) = I C (100%) = -15 15 600 t doff = t E off = 0,4 0,55 0,7 time (us) tEon -30 0,85 2,7 2,8 2,9 3,1 V GE (0%) = V GE (100%) = V C (100%) = 35 A I C (100%) = 35 A 0,27 0,60 µs µs t don = t E on = 0,08 0,39 µs µs Figure 3 Turn-off Switching Waveforms & definition of t f IGBT -15 15 600 3 V V V 3,2 3,3 time(us) 3,4 V V V Figure 4 Turn-on Switching Waveforms & definition of t r 140 IGBT 180 % % Ic fitted 120 VCE 150 100 IC 120 IC 90% VCE 80 90 IC90% IC 60% 60 tr 60 IC 40% 40 30 20 tf 0 -20 0,15 IC10% IC10% 0 -30 0,2 0,25 0,3 0,35 0,4 0,45 time (us) 2,9 0,5 3 3,1 3,3 time(us) V C (100%) = I C (100%) = 600 35 V A V C (100%) = I C (100%) = 600 35 V A tf = 0,13 µs tr = 0,03 µs copyright Vincotech 3,2 13 26 Feb. 2016 / Revision 4 V23990-K220-A41-PM Switching Definitions Inverter Figure 5 Turn-off Switching Waveforms & definition of t Eoff IGBT Figure 6 Turn-on Switching Waveforms & definition of t Eon 120 IGBT 180 % Poff Pon % Eoff 100 140 80 Eon 100 60 40 60 20 VGE 10% 20 0 tEoff VCE 3% tEon VGE 90% IC 1% -20 -20 -0,2 0 P off (100%) = E off (100%) = t E off = 0,2 20,88 3,18 0,60 0,4 0,6 time (us) 2,6 0,8 2,75 3,05 3,2 3,35 3,5 time(us) kW mJ µs P on (100%) = E on (100%) = t E on = Figure 7 Turn-off Switching Waveforms & definition of t rr 2,9 20,88 3,84 0,39 kW mJ µs FWD 120 % Id 80 trr 40 Vd 0 IRRM10% -40 IRRM90% IRRM100% fitted -80 -120 2,6 2,8 V d (100%) = I d (100%) = I RRM (100%) = t rr = copyright Vincotech 3 600 35 23 0,57 3,2 3,4 3,6 time(us) 3,8 V A A µs 14 26 Feb. 2016 / Revision 4 V23990-K220-A41-PM Switching Definitions Inverter Figure 8 Turn-on Switching Waveforms & definition of t Qrr (t Q rr = integrating time for Q rr) FWD Figure 9 Turn-on Switching Waveforms & definition of t Erec (t Erec= integrating time for E rec) 150 FWD 120 Erec % % Qrr 100 100 Id 80 tQrr 50 tErec 60 40 0 20 Prec -50 0 -100 -20 2,6 2,8 I d (100%) = Q rr (100%) = t Q rr = copyright Vincotech 3 35 5,40 0,80 3,2 3,4 3,6 3,8 time(us) 4 2,6 A µC µs 2,8 P rec (100%) = E rec (100%) = t E rec = 15 3 20,88 2,10 0,80 3,2 3,4 3,6 3,8 time(us) 4 kW mJ µs 26 Feb. 2016 / Revision 4 V23990-K220-A41-PM Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Ordering Code with std lid (black V23990-K12-T-PM) V23990-K220-A41-/0A/-PM with std lid (black V23990-K12-T-PM) and P12 V23990-K220-A41-/1A/-PM with thin lid (white V23990-K13-T-PM) V23990-K220-A41-/0B/-PM with thin lid (white V23990-K13-T-PM) and P12 V23990-K220-A41-/1B/-PM Vinco Date code Name&Ver UL Lot Serial Vinco WWYY NNNNNNNVV UL LLLLL SSSS Type&Ver Lot number Serial Date code TTTTTTTVV LLLLL SSSS WWYY Text Datamatrix Outline Pinout Identification ID Component Voltage Current Function T1,T2,T3,T4,T5,T6 IGBT 1200 V 35 A Inverter Switch D1,D2,D3,D4,D5,D6 FWD 1200 V 35 A Inverter Diode T7 IGBT 1200 V 35 A Brake Switch D7 FWD 1200 V 35 A Brake Diode D8,D9,D10,D11,D12,D13 Rectifier 1600 V 25 A Rectifier Diode T PTC copyright Vincotech Comment Thermistor 16 26 Feb. 2016 / Revision 4 V23990-K220-A41-PM Packaging instruction Standard packaging quantity (SPQ) >SPQ 72 Standard <SPQ Sample Handling instruction Handling instructions for MiniSkiiP ® 2 packages see vincotech.com website. Package data Package data for MiniSkiiP ® 2 packages see vincotech.com website. Document No.: Date: Modification: Pages V23990-K220-A41-D4-14 26 Feb. 2016 New brand, Disclaimer all DISCLAIMER The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s intended use. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 17 26 Feb. 2016 / Revision 4