V23990-P640-G10/H10-PM preliminary datasheet flowCON 0 1200V / 75A Features flow0 housing ● Input rectifier ● Optionally with brake chopper ● Vincotech clip-in housing Target Applications Schematic ● Motor drives ● UPS Types ● V23990-P640-G10-PM with brake chopper ● V23990-P640-H10-PM without brake chopper Maximum Ratings Parameter Condition Symbol Value Unit 1600 V 63 A 850 A 3610 As 67 W 150 °C 1600 V 42 A 450 A 1012 A2s 49 W 130 °C Input Rectifier Diode Repetitive peak reverse voltage VRRM Forward current per diode IFAV Surge forward current IFSM 2 Tj=Tjmax DC current Tj=Tjmax Th=80°C tp=10ms half sine wave Tj=45°C 2 I t-value It Power dissipation per Diode Ptot Maximum junction temperature Th=80°C Tj=Tjmax Tjmax 2 Input Rectifier Thyristor Repetitive peak reverse voltage Forward average current Surge forward current I2t-value VRRM IFAV Tj=25ºC DC current Tj=Tjmax Th=80°C tp=10ms half sine wave Tj=130°C IFSM 2 It Power dissipation per Thyristor Ptot Maximum junction temperature Tjmax Copyright by Vincotech Tj=Tjmax 1 Th=80°C Revision: 1 V23990-P640-G10/H10-PM preliminary datasheet Maximum Ratings Parameter Condition Symbol Value Unit 1200 V 34 A 105 A 65 W ±20 V Transistor BRC Collector-emitter break down voltage DC collector current VCE IC Tj=Tjmax Repetitive peak collector current Icpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Th=80°C Th=80°C tSC Tj≤150°C 10 VCC VGE=15V 1200 μs V 150 °C 1200 V 6 A 6 A 19 W Tjmax 150 °C VRRM 1200 V 23 A 50 A 38 W Tjmax 150 °C Storage temperature Tstg -40...+125 °C Operation temperature Top -40...+110 °C Short circuit ratings* Maximum junction temperature Tjmax * It is recommended to not exceed 1000 short circuit situations in the lifetime of the module and to allow at least 1s between short circuits BRC inverse diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum junction temperature Th=80°C Th=80°C Diode BRC Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum junction temperature Th=80°C Th=80°C Thermal properties Copyright by Vincotech 2 Revision: 1 V23990-P640-G10/H10-PM preliminary datasheet Maximum Ratings Parameter Condition Symbol Value Unit 4000 V Creepage distance min 12.7 mm Clearance min 12.7 mm Insulation properties Insulation voltage Copyright by Vincotech Vis t=2 s 3 Revision: 1 V23990-P640-G10/H10-PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE(V) or VGS(V) Vr(V) or VCE(V) or VDS(V) Value IC(A) or IF(A) T(°C) or ID(A) Unit Min Typ Max 1 1,17 1,13 0,91 0,78 3 5 1,5 Input Rectifier Bridge Forward voltage VF Threshold voltage (for power loss calc. only) Vto Slope resistance (for power loss calc. only) rt Reverse leakage current Ir Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 75 1500 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=150°C V mΩ 0,5 1,5 1,04 Thermal grease thickness ≤50um λ= 0.61W/mK V mA K/W n.A. Input Rectifier Thyristor Forward voltage VF Threshold voltage (for power loss calc. only) Vto Slope resistance (for power loss calc. only) rt Reverse current Gate controlled delay time Gate controlled rise time Ir tGD tGR Critical rate of rise of off-state voltage (dv/dt)cr Critical rate of rise of on-state current (di/dt)cr Circuit-commutated turn-off time tq Holding current IH Latching current IL Gate trigger voltage Ig=1A dig/dt=1A/s 1072 Ig=1A dig/dt=1A/s 1072 VGT Gate trigger current IGT Gate non-trigger voltage VGD Gate non-trigger current IGD Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Copyright by Vincotech 75 Thermal grease thickness ≤50um λ= 0.61W/mK 4 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=130°C Tj=25°C Tj=130°C Tj=25°C Tj=130°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=130°C Tj=25°C Tj=115°C 1 1,37 1,45 0,94 0,86 6 8 2 V V mΩ 0,2 1 mA ms 2 ms 1000 50 V/μs A/μs ms 150 165 330 1,98 100 mA mA V A V 0,25 A 6 1,12 K/W n.A. K/W Revision: 1 V23990-P640-G10/H10-PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE(V) or VGS(V) Vr(V) or VCE(V) or VDS(V) Value IC(A) or IF(A) T(°C) or ID(A) Unit Min Typ Max 5 5,8 6,5 1,3 1,69 1,88 2,2 Transistor BRC Gate emitter threshold voltage VGE(th) VCE=VGE 0,0015 VCE(sat) 15 Collector-emitter cut-off ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Collector-emitter saturation voltage Turn-on delay time 35 Turn-off delay time td(on) td(off) tf Fall time Turn-on energy loss per pulse Rgon=32Ohm Rgoff=16Ohm 15 600 35 Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 0,25 650 f=1MHz 0 25 15 960 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 35 ns 673 ns 171 mWs 3,34 mWs 3,99 Thermal grease thickness ≤50um λ= 0.61W/mK nA ns 26 Tj=25°C V mA ns 65 Tj=25°C V Ω 6 tr Rise time Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,53 nF 0,132 nF 0,115 nF 203 nC 1,08 K/W n.A. K/W BRC inverse diode Diode forward voltage Reverse leakage current VF Ir Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Copyright by Vincotech 3 1200 Thermal grease thickness ≤50um λ= 0.61W/mK 5 Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1 1,61 1,56 2,3 250 V uA 3,62 K/W n.A. K/W Revision: 1 V23990-P640-G10/H10-PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE(V) or VGS(V) Vr(V) or VCE(V) or VDS(V) Value IC(A) or IF(A) T(°C) or ID(A) Unit Min Typ Max 1 1,7 1,68 2,4 Diode BRC Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of reverse recovery current VF Ir 1200 IRRM trr Qrr Rgon=32Ohm Rgoff=16Ohm 15 600 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Copyright by Vincotech 35 Thermal grease thickness ≤50um λ= 0.61W/mK 6 35 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 250 56,4 279 5,15 2460 1,94 V mA A ns mC A/ms mWs 1,86 K/W n.A. K/W Revision: 1 V23990-P640-G10/H10-PM preliminary datasheet Brake Figure 1 Typical output characteristics IC = f(VCE) Figure 2 Typical output characteristics IC = f(VCE) 100 100 IC (A) IC (A) Brake IGBT 80 80 60 60 40 40 20 20 Brake IGBT 0 0 0 1 2 3 V CE (V) 4 0 5 At tp = Tj = 1 2 3 4 V CE (V) 5 At tp = Tj = 250 μs 25 °C VGE from 7 V to 17 V in steps of 1 V 250 μs 125 °C VGE from 7 V to 17 V in steps of 1 V Figure 3 Typical transfer characteristics IC = f(VGE) Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) Brake IGBT Brake FRED 40 IF (A) IC (A) 40 32 32 24 24 125 o C 125 25 o C 16 16 8 8 0 o 25 C o C 0 0 At tp = VCE = 2 4 250 μs 10 V Copyright by Vincotech 6 8 10 V GE (V) 12 0 At tp = 7 0,5 250 1 1,5 2 V F (V) 2,5 μs Revision: 1 V23990-P640-G10/H10-PM preliminary datasheet Brake Figure 5 Typical switching energy losses Figure 6 Typical switching energy losses Brake IGBT as a function of collector current E = f(IC) Brake IGBT as a function of gate resistor E = f(RG) 10 E (mWs) E (mWs) 10 Eon 8 8 Eoff 6 6 Eon Eoff 4 4 Erec 2 2 Erec 0 0 0 10 20 30 40 50 60 I C (A) 0 70 With an inductive load at Tj = 125 °C VCE = 600 V VGE = 15 V Rgon = 32 Ω Rgoff = 16 Ω 30 60 90 120 R G ( Ω ) 150 With an inductive load at Tj = 125 °C VCE = 600 V VGE = 15 V IC = 35 A Figure 7 Typical switching times as a function of collector current t = f(IC) Figure 8 Typical switching times as a function of gate resistor t = f(RG) Brake IGBT 10 Brake IGBT t ( μs) t ( μs) 10 tdoff tdoff 1 1 tdon tf tf tdon 0,1 0,1 tr tr 0,01 0,01 0,001 0,001 0 10 20 30 40 50 60 IC (A) 0 70 With an inductive load at Tj = 125 °C VCE = 600 V VGE = Rgon = Rgoff = 15 32 16 VCE = VGE = IC = V Ω Ω Copyright by Vincotech 30 60 90 120 RG (Ω) 150 With an inductive load at Tj = 125 °C 8 600 V 15 35 V A Revision: 1 V23990-P640-G10/H10-PM preliminary datasheet Brake Figure 9 IGBT transient thermal impedance Figure 10 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 10 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10-2 10-5 With D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 10-2 101 1 10-5 With D= RthJH = tp / T 1,08 K/W Copyright by Vincotech D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 9 10-4 10-3 10-2 10-1 100 t p (s) 101 1 tp / T 1,86 K/W Revision: 1 V23990-P640-G10/H10-PM preliminary datasheet Brake Figure 11 Power dissipation as a Figure 12 Collector current as a Brake IGBT function of heatsink temperature Ptot = f(Th) Brake IGBT function of heatsink temperature IC = f(Th) 150 Ptot (W) IC (A) 40 35 125 30 100 25 20 75 15 50 10 25 5 0 0 0 At Tj = 50 150 100 150 Th ( o C) 0 200 50 At Tj = VGE = ºC Figure 13 Power dissipation as a function of heatsink temperature Ptot = f(Th) 150 15 100 150 200 ºC V Figure 14 Forward current as a function of heatsink temperature IF = f(Th) Brake FRED Th ( o C) Brake FRED 30 IF (A) Ptot (W) 90 75 25 60 20 45 15 30 10 15 5 0 0 0 At Tj = 50 150 100 150 Th ( o C) 200 0 At Tj = ºC Copyright by Vincotech 10 50 150 100 150 Th ( o C) 200 ºC Revision: 1 V23990-P640-G10/H10-PM preliminary datasheet Brake Inverse Diode Figure 1 Typical diode forward current as Figure 2 Diode transient thermal impedance Brake inverse diode a function of forward voltage IF = f(VF) Brake inverse diode as a function of pulse width ZthJH = f(tp) 14 ZthJC (K/W) IF (A) 101 12 10 100 25°C 8 125°C D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 6 10-1 4 2 0 0 At tp = 0,5 1 1,5 2 2,5 VF (V) 10-2 3 10-5 10-4 10-3 tp / T 3,62 K/W 10-2 10-1 100 t p (s) 101 With μs 250 D= RthJH = Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) Figure 4 Forward current as a function of heatsink temperature IF = f(Th) Brake inverse diode Brake inverse diode 12 Ptot (W) IF (A) 50 10 40 8 30 6 20 4 10 2 0 0 0 At Tj = 50 150 100 150 Th ( o C) 0 200 At Tj = ºC Copyright by Vincotech 11 50 150 100 150 Th ( o C) 200 ºC Revision: 1 V23990-P640-G10/H10-PM preliminary datasheet Input Rectifier Bridge Figure 1 Typical diode forward current as Figure 2 Diode transient thermal impedance Rectifier diode a function of forward voltage IF= f(VF) Rectifier diode as a function of pulse width ZthJH = f(tp) 250 ZthJC (K/W) IF (A) 101 200 25°C 125°C 100 150 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 100 10-1 50 0 0 At tp = 0,4 0,8 1,2 1,6 VF (V) 10-2 2 10-5 10-4 10-3 tp / T 1,04 K/W 10-2 10-1 100 t p (s) 101 With μs 250 D= RthJH = Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) Figure 4 Forward current as a function of heatsink temperature IF = f(Th) Rectifier diode Rectifier diode 90 IF (A) Ptot (W) 150 75 120 60 90 45 60 30 30 15 0 0 0 At Tj = 50 150 100 150 Th ( o C) 0 200 At Tj = ºC Copyright by Vincotech 12 50 150 100 150 Th ( o C) 200 ºC Revision: 1 V23990-P640-G10/H10-PM preliminary datasheet Thyristor Figure 1 Typical thyristor forward current as Figure 2 Thyristor transient thermal impedance Thyristor a function of forward voltage IF= f(VF) Thyristor as a function of pulse width ZthJH = f(tp) 240 ZthJC (K/W) IF (A) 101 200 25°C 160 100 125°C 120 80 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 40 0 0 At tp = 0,5 1 1,5 2 2,5 10-2 3 10-5 10-4 10-3 tp / T 1,12 K/W 10-2 10-1 100 t p (s) 101 With μs 250 D= RthJH = Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) Figure 4 Forward current as a function of heatsink temperature IF = f(Th) Thyristor Thyristor 100 150 IF (A) Ptot (W) VF (V) 125 75 100 50 75 50 25 25 0 0 0 At Tj = 50 135 100 150 Th ( o C) 200 0 At Tj = ºC Copyright by Vincotech 13 50 135 100 150 Th ( o C) 200 ºC Revision: 1 V23990-P640-G10/H10-PM preliminary datasheet Thyristor Figure 5 Gate trigger characteristics Thyristor 102 VG(V) 100W (0,5ms) 20V;20 Ohm 150W (0,1ms) 101 VGT BSZ 10 0 PG(tp) o TJ=- 40 C 50W (8ms) TJ=25oC TJ=130 oC VGD(1300) IGT IGD(1300) 10-1 10-3 Copyright by Vincotech 10-2 10-1 100 14 101 IG(A) 102 Revision: 1 V23990-P640-G10/H10-PM preliminary datasheet Package Outline and Pinout Outline Pinout Copyright by Vincotech 15 Revision: 1 V23990-P640-G10/H10-PM preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 16 Revision: 1