V23990-P640-G/H-PM flowCON 0 1200V / 75A

V23990-P640-G/H-PM
preliminary datasheet
flowCON 0
1200V / 75A
Features
flow0 housing
● Input rectifier
● Optionally with brake chopper
● Vincotech clip-in housing
Target Applications
Schematic
● Motor drives
● UPS
Types
● V23990-P640-G-PM with brake choper
● V23990-P640-H-PM without brake chopper
Maximum Ratings
Parameter
Condition
Symbol
Value
Unit
1600
V
63
A
850
A
3610
As
67
W
150
°C
Input Rectifier Diode
Repetitive peak reverse voltage
VRRM
Forward current per diode
IFAV
Surge forward current
IFSM
2
Tj=Tjmax
DC current
Tj=Tjmax
Th=80°C
tp=10ms
half sine wave
Tj=45°C
2
I t-value
It
Power dissipation per Diode
Ptot
Maximum junction temperature
Copyright by Vincotech
Tj=Tjmax
Tjmax
1
Th=80°C
2
Revision: 1
V23990-P640-G/H-PM
preliminary datasheet
Maximum Ratings
Parameter
Condition
Symbol
Value
Unit
1200
V
34
A
105
A
65
W
±20
V
Transistor BRC
Collector-emitter break down voltage
DC collector current
VCE
IC
Tj=Tjmax
Repetitive peak collector current
Icpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Th=80°C
Th=80°C
tSC
Tj≤150°C
10
VCC
VGE=15V
900
μs
V
150
°C
1200
V
6
A
6
A
19
W
Tjmax
150
°C
VRRM
1200
V
23
A
50
A
38
W
Tjmax
150
°C
Storage temperature
Tstg
-40...+125
°C
Operation temperature
Top
-40...+110
°C
Short circuit ratings*
Maximum junction temperature
Tjmax
* It is recommended to not exceed 1000 short circuit situations in the lifetime of the module and to allow at least 1s between short circuits
BRC inverse diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum junction temperature
Th=80°C
Th=80°C
Diode BRC
Peak Repetitive Reverse Voltage
DC forward current
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum junction temperature
Th=80°C
Th=80°C
Thermal properties
Copyright by Vincotech
2
Revision: 1
V23990-P640-G/H-PM
preliminary datasheet
Maximum Ratings
Parameter
Condition
Symbol
Value
Unit
4000
V
Creepage distance
min 12.7
mm
Clearance
min 12.7
mm
Insulation properties
Insulation voltage
Copyright by Vincotech
Vis
t=2 s
DC voltage
3
Revision: 1
V23990-P640-G/H-PM
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE(V) or
VGS(V)
Vr(V) or
VCE(V) or
VDS(V)
Value
IC(A) or IF(A)
T(°C)
or ID(A)
Unit
Min
Typ
Max
1
1,17
1,13
0,91
0,78
3
5
1,5
Input Rectifier Bridge
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
Slope resistance (for power loss calc. only)
rt
Reverse leakage current
Ir
75
1500
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Thermal grease
thickness ≤50um λ=
0.61W/mK
VGE(th)
VCE=VGE
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=150°C
V
V
mΩ
0,5
1,5
mA
1,04
K/W
n.A.
K/W
Transistor BRC
Gate emitter threshold voltage
Collector-emitter saturation voltage
Collector-emitter cut-off
VCE(sat)
IGES
Integrated Gate resistor
Rgint
Turn-on delay time
15
ICES
Gate-emitter leakage current
0,0015
35
0
1200
20
0
Turn-off delay time
td(on)
td(off)
tf
Fall time
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
5
5,8
6,5
1,3
1,69
1,88
2,2
0,25
650
6
tr
Rise time
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Rgon=32Ohm
Rgoff=16Ohm
f=1MHz
600
15
0
35
960
35
nA
ns
ns
673
ns
171
mWs
3,34
mWs
3,99
Thermal grease
thickness ≤50um λ=
0.61W/mK
mA
ns
26
Tj=25°C
V
Ω
65
Tj=25°C
25
15
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
2,53
nF
0,132
nF
0,115
nF
203
nC
1,08
K/W
n.A.
K/W
BRC inverse diode
Diode forward voltage
Reverse leakage current
VF
Ir
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Copyright by Vincotech
3
1200
Thermal grease
thickness ≤50um λ=
0.61W/mK
4
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1
1,61
1,56
2,3
250
V
uA
3,62
K/W
n.A.
K/W
Revision: 1
V23990-P640-G/H-PM
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE(V) or
VGS(V)
Vr(V) or
VCE(V) or
VDS(V)
Value
IC(A) or IF(A)
T(°C)
or ID(A)
Unit
Min
Typ
Max
1
1,7
1,68
2,4
Diode BRC
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of reverse recovery current
VF
Ir
1200
IRRM
trr
Qrr
Rgon=32Ohm
Rgoff=16Ohm
15
600
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Copyright by Vincotech
35
Thermal grease
thickness ≤50um λ=
0.61W/mK
5
35
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
250
56,4
279
5,15
2460
1,94
V
mA
A
ns
mC
A/ms
mWs
1,86
K/W
n.A.
K/W
Revision: 1
V23990-P640-G/H-PM
preliminary datasheet
Brake
Figure 1
Typical output characteristics
IC = f(VCE)
Figure 2
Typical output characteristics
IC = f(VCE)
100
100
IC (A)
IC (A)
Brake IGBT
80
80
60
60
40
40
20
20
Brake IGBT
0
0
0
1
2
3
V CE (V)
4
0
5
At
tp =
Tj =
1
2
3
4
V CE (V)
5
At
tp =
Tj =
250
μs
25
°C
VGE from 7 V to 17 V in steps of 1 V
250
μs
125
°C
VGE from 7 V to 17 V in steps of 1 V
Figure 3
Typical transfer characteristics
IC = f(VGE)
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Brake IGBT
Brake FRED
40
IF (A)
IC (A)
40
32
32
24
24
125 o C
25 o C
125 o C
25 o C
16
16
8
8
0
0
0
At
tp =
VCE =
2
4
250
μs
10
V
Copyright by Vincotech
6
8
10
V GE (V)
12
0
At
tp =
6
0,5
250
1
1,5
2
V F (V)
2,5
μs
Revision: 1
V23990-P640-G/H-PM
preliminary datasheet
Brake
Figure 5
Typical switching energy losses
Figure 6
Typical switching energy losses
Brake IGBT
as a function of collector current
E = f(IC)
Brake IGBT
as a function of gate resistor
E = f(RG)
10
E (mWs)
E (mWs)
10
Eon
8
8
Eoff
6
6
Eon
Eoff
4
4
Erec
2
2
Erec
0
0
0
10
20
30
40
50
60
I C (A)
0
70
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
15
V
Rgon =
32
Ω
Rgoff =
16
Ω
30
60
90
120
R G ( Ω ) 150
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
15
V
IC =
35
A
Figure 7
Typical switching times as a
function of collector current
t = f(IC)
Figure 8
Typical switching times as a
function of gate resistor
t = f(RG)
Brake IGBT
t ( μs)
10
t ( μs)
10
Brake IGBT
tdoff
tdoff
1
1
tdon
tf
tf
tdon
0,1
0,1
tr
tr
0,01
0,01
0,001
0,001
0
10
20
30
40
50
60
IC (A)
70
0
With an inductive load at
Tj =
125
°C
VCE =
600
V
VGE =
Rgon =
Rgoff =
15
32
16
VCE =
VGE =
IC =
V
Ω
Ω
Copyright by Vincotech
30
60
90
120
RG (Ω)
150
With an inductive load at
Tj =
125
°C
7
600
V
15
35
V
A
Revision: 1
V23990-P640-G/H-PM
preliminary datasheet
Brake
Figure 9
IGBT transient thermal impedance
Figure 10
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
100
10
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10-2
10-5
With
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-2
101 1
10-5
With
D=
RthJH =
tp / T
1,08
K/W
Copyright by Vincotech
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
8
10-4
10-3
10-2
10-1
100
t p (s)
101 1
tp / T
1,86
K/W
Revision: 1
V23990-P640-G/H-PM
preliminary datasheet
Brake
Figure 11
Power dissipation as a
Figure 12
Collector current as a
Brake IGBT
function of heatsink temperature
Ptot = f(Th)
Brake IGBT
function of heatsink temperature
IC = f(Th)
150
Ptot (W)
IC (A)
40
35
125
30
100
25
75
20
15
50
10
25
5
0
0
0
At
Tj =
50
150
100
150
Th ( o C)
200
0
50
At
Tj =
VGE =
ºC
Figure 13
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
150
15
100
150
200
ºC
V
Figure 14
Forward current as a
function of heatsink temperature
IF = f(Th)
Brake FRED
Th ( o C)
Brake FRED
30
IF (A)
Ptot (W)
90
75
25
60
20
45
15
30
10
15
5
0
0
0
At
Tj =
50
150
100
150
Th ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
9
50
150
100
150
Th ( o C)
200
ºC
Revision: 1
V23990-P640-G/H-PM
preliminary datasheet
Brake Inverse Diode
Figure 1
Typical diode forward current as
Figure 2
Diode transient thermal impedance
Brake inverse diode
a function of forward voltage
IF = f(VF)
Brake inverse diode
as a function of pulse width
ZthJH = f(tp)
14
ZthJC (K/W)
IF (A)
101
12
10
100
25°C
8
125°C
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
6
10-1
4
2
0
0
At
tp =
0,5
1
1,5
2
2,5
VF (V)
10-2
3
10-5
10-4
10-3
tp / T
3,62
K/W
10-2
10-1
100
t p (s)
1011
With
μs
250
D=
RthJH =
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
Brake inverse diode
Brake inverse diode
12
Ptot (W)
IF (A)
50
10
40
8
30
6
20
4
10
2
0
0
0
At
Tj =
50
150
100
150
Th ( o C)
0
200
At
Tj =
ºC
Copyright by Vincotech
10
50
150
100
150
Th ( o C)
200
ºC
Revision: 1
V23990-P640-G/H-PM
preliminary datasheet
Input Rectifier Bridge
Figure 1
Typical diode forward current as
Figure 2
Diode transient thermal impedance
Rectifier diode
a function of forward voltage
IF= f(VF)
Rectifier diode
as a function of pulse width
ZthJH = f(tp)
250
ZthJC (K/W)
IF (A)
101
200
25°C
125°C
100
150
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
100
10-1
50
0
0
At
tp =
0,4
0,8
1,2
1,6
10-2
2
10-5
10-4
10-3
tp / T
1,04
K/W
10-2
10-1
100
t p (s)
1011
With
μs
250
D=
RthJH =
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
Rectifier diode
Rectifier diode
90
150
IF (A)
Ptot (W)
VF (V)
75
120
60
90
45
60
30
30
15
0
0
0
At
Tj =
50
150
100
150
Th ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
11
50
150
100
150
Th ( o C)
200
ºC
Revision: 1
V23990-P640-G/H-PM
preliminary datasheet
Package Outline and Pinout
Outline
Pinout
Copyright by Vincotech
12
Revision: 1
V23990-P640-G/H-PM
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
13
Revision: 1