V23990-P629-L59-PM preliminary datasheet flowBOOST 1200V/40A Features flow0 17mm housing ● High efficiency dual boost ● Ultra fast switching frequency ● Low Inductance Layout ● 1200V IGBT and 1200V Si diode Target Applications Schematic ● solar inverter Types ● V23990-P629-L59-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V Bypass Diode ( D7 , D8 ) Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=25°C Tj=Tjmax Th=80°C Tc=80°C tp=10ms sin 180° Tj=25°C Tj=Tjmax Th=80°C Tc=80°C Tjmax 34 40 A 220 A 240 A2s 42 63 W 150 °C 1200 V 40 45 A 120 A 113 171 W ±20 V 10 800 µs V 175 °C Boost IGBT ( T1 , T2 ) Collector-emitter break down voltage DC collector current Pulsed collector current VCE Tj=25°C IC Tj=Tjmax ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature copyright Vincotech Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Revision: 1 V23990-P629-L59-PM preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V 10 13 A 21 A 26 39 W 150 °C 1200 V 39 53 A 270 A Boost IGBT Protection Diode ( D9 , D10 ) Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tj=Tjmax Tc=80°C Surge forward current IFSM tp=10ms, sin 180°, Tj=Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Tjmax Boost FWD (D1 , D4 ) Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tc=80°C Tj=Tjmax Surge forward current IFSM tp=10ms, sin 180°, Tj=25°C Power dissipation Ptot Tj=Tjmax Th=80°C 89 Tc=80°C 134 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 1 V23990-P629-L59-PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Unit Tj Min Typ Max Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 0,7 1,15 1,11 0,92 0,82 0,009 0,012 1,4 Bypass Diode ( D7 , D8 ) Forward voltage VF Threshold voltage (for power loss calc. only) Vto 24 Slope resistance (for power loss calc. only) rt 24 Reverse current Ir Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 25 1600 V Ω 0,05 Thermal grease thickness≤50um λ = 1 W/mK V mA 1,67 K/W 1,10 Boost IGBT ( T1 , T2 ) Gate emitter threshold voltage Collector-emitter saturation voltage VGE(th) VGE=VCE VCE(sat) 0,0015 40 15 Collector-emitter cut-off ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 5,2 5,8 6,4 1,7 2,10 2,48 2,6 0,25 200 Rgoff=4 Ω Rgon=4 Ω 700 15 24 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω none td(on) td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 22 21 35 68 225 293 35 68 1,09 1,82 1,01 1,61 ns mWs 2300 f=1MHz 25 0 150 Tj=25°C pF 135 600 15 40 Tj=25°C 185 Thermal grease thickness≤50um λ = 1 W/mK nC 0,84 K/W 0,56 Boost IGBT Protection Diode ( D9 , D10 ) Diode forward voltage VF Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 3 Tj=25°C Tj=125°C 0,7 Thermal grease thickness≤50um λ = 1 W/mK 1,66 1,58 2,4 V 2,72 K/W 1,80 Boost FWD ( D1 , D4 ) Forward voltage Reverse leakage current VF Irm Peak recovery current IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Erec Peak rate of fall of recovery current 1200 Rgon=4 Ω 700 15 di(rec)max /dt Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC copyright Vincotech 50 Thermal grease thickness≤50um λ = 1 W/mK 24 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,5 2,28 2,36 2,8 60 63 78 83 208 2,25 5,02 0,98 2,42 5304 3201 V µA A ns µC mWs A/µs 1,07 K/W 0,71 3 Revision: 1 V23990-P629-L59-PM preliminary datasheet Characteristic Values Parameter Value Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max Thermistor Rated resistance R Tj=25°C Deviation of R25 ∆R/R Power dissipation P Tj=25°C B-value B(25/50) B-value B(25/100) Tol. ±1% Tj=25°C R100=1486Ω Tc=100°C Power dissipation constant Vincotech NTC Reference copyright Vincotech Ω 21511 -4,5 +4,5 % 210 mW Tj=25°C 3,5 mW/K Tj=25°C 3884 K 3964 K F 4 Revision: 1 V23990-P629-L59-PM preliminary datasheet Boost IGBT Protection Diode Boost IGBT Protection Diode Figure 1 Typical FWD forward current as a function of forward voltage IF = f(VF) Boost IGBT Protection Diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 20 IF (A) 101 ZthJC (K/W) Tj = 25°C 15 100 Tj = Tjmax-25°C 10 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 5 0 0 At tp = 1 2 3 V F (V) 10-2 4 µs 250 Boost IGBT Protection Diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-5 10-4 10-3 At D= RthJH = tp / T 2,72 K/W 10-2 100 t p (s) 10110 Boost IGBT Protection Diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 20 IF (A) Ptot (W) 60 10-1 45 15 30 10 15 5 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 Th ( o C) 0 200 At Tj = ºC 5 50 150 100 150 Th ( o C) 200 ºC Revision: 1 V23990-P629-L59-PM preliminary datasheet INPUT BOOST BOOST IGBT Figure 3 Typical output characteristics IC = f(VCE) BOOST FWD Figure 4 Typical output characteristics IC = f(VCE) 120 IC(A) IC (A) 120 90 90 60 60 30 30 0 0 0 At tp = Tj = VGS from 1 2 3 4 V CE (V) 0 5 At tp = Tj = VGS from µs 250 25 °C 7 V to 17 V in steps of 1 V BOOST IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V BOOST FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 150 IC (A) IF (A) 40 V CE (V) Tj = Tjmax-25°C Tj = 25°C 120 30 90 20 60 10 30 Tj = Tjmax-25°C Tj = 25°C 0 0 0 At tp = VDS = 2 250 10 copyright Vincotech 4 6 8 10 V GE (V) 12 0 At tp = µs V 6 1 250 2 3 4 5 V F (V) 6 µs Revision: 1 V23990-P629-L59-PM preliminary datasheet INPUT BOOST BOOST IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) BOOST IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 8 E (mWs) E (mWs) 8 Eon High T Eon High T 6 6 Eoff High T Eon Low T 4 4 Eon Low T Eoff Low T Eoff High T 2 2 0 Eoff Low T 0 0 20 40 60 I C (A) 80 0 With an inductive load at Tj = °C 25/125 VDS = 700 V VGS = 15 V Rgon = 4 Ω Rgoff = 4 Ω 16 32 48 64 RG (Ω ) 80 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = 15 V ID = A 24 BOOST IGBT Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(IC) BOOST IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 5 E (mWs) E (mWs) 5 Erec High T 4 4 3 3 Erec Low T 2 2 Erec High T 1 1 Erec Low T 0 0 0 20 40 60 I C (A) 0 80 With an inductive load at Tj = °C 25/125 VDS = 700 V VGS = 15 V Rgon = 4 Ω copyright Vincotech 16 32 48 64 R G( Ω ) 80 With an inductive load at Tj = 25/125 °C VDS = 700 V VGS = 15 V ID = 24 A 7 Revision: 1 V23990-P629-L59-PM preliminary datasheet INPUT BOOST BOOST IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) BOOST IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 10 t ( µs) t ( µs) 10 1 tdoff 1 tdoff tdon tf 0,1 0,1 tr tf tdon 0,01 0,01 tr 0,001 0,001 0 20 40 60 I C (A) 80 0 With an inductive load at Tj = °C 125 VDS = 700 V VGS = 15 V Rgon = 4 Ω Rgoff = 4 Ω 16 32 48 64 R G( Ω ) 80 With an inductive load at Tj = 125 °C VDS = 700 V VGS = 15 V IC = A 24 BOOST FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) BOOST FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,6 trr High T t rr( µs) t rr( µs) 0,6 0,5 0,5 trr Low T trr High T 0,4 0,4 0,3 0,3 trr Low T 0,2 0,2 0,1 0,1 0 0,0 0 At Tj = VCE = VGE = Rgon = 20 25/125 700 15 4 copyright Vincotech 40 60 I C (A) 80 0 At Tj = VR = IF = VGS = °C V V Ω 8 16 25/125 700 24 15 32 48 64 R Gon ( Ω ) 80 °C V A V Revision: 1 V23990-P629-L59-PM preliminary datasheet INPUT BOOST BOOST FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) BOOST FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 10 Qrr ( µC) Qrr ( µC) 10 Qrr High T 8 8 6 6 Qrr Low T Qrr High T 4 4 2 2 Qrr Low T 0 0 0 At At Tj = VCE = VGE = Rgon = 20 40 60 I C (A) 80 16 VR = IF = VGS = 25/125 700 24 15 At Tj = °C V V Ω 25/125 700 15 4 0 BOOST FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 32 48 64 80 °C V A V BOOST FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) 100 IrrM (A) 100 R Gon ( Ω) IRRM High T 80 80 IRRM Low T 60 60 40 40 20 20 IRRM High T IRRM Low T 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 700 15 4 copyright Vincotech 40 60 I C (A) 0 80 At Tj = VR = IF = VGS = °C V V Ω 9 16 25/125 700 24 15 32 48 64 R Gon ( Ω ) 80 °C V A V Revision: 1 V23990-P629-L59-PM preliminary datasheet INPUT BOOST BOOST FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 8000 direc / dt (A/ µs) direc / dt (A/ µs) 8000 dI0/dt dIrec/dt dI0/dt dIrec/dt 6000 6000 4000 4000 2000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/125 700 15 4 40 I C (A) 60 80 0 At Tj = VR = IF = VGS = °C V V Ω BOOST IGBT Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 16 25/125 700 24 15 32 48 R Gon ( Ω) 64 80 °C V A V BOOST FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 BOOST FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 10 -5 At D= RthJH = 10 -4 10 -3 10 -2 10 -1 10 0 t p (s) 1 10 10 -2 10 -5 At D= RthJH = tp / T 0,84 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 -2 10 0 K/W 10 -4 10 R (C/W) 0,107 0,391 0,223 0,092 0,030 R (C/W) 0,027 0,098 0,284 0,405 0,171 10 -2 10 -1 10 0 t p (s) 1 10 10 K/W FWD thermal model values copyright Vincotech 10 tp / T 1,07 IGBT thermal model values Tau (s) 1,413 0,188 0,056 0,011 0,001 -3 Tau (s) 8,145 1,332 0,228 0,069 0,014 Revision: 1 V23990-P629-L59-PM preliminary datasheet INPUT BOOST BOOST IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) BOOST IGBT Figure 22 Collector/Drain current as a function of heatsink temperature IC = f(Th) 250 IC (A) Ptot (W) 50 200 40 150 30 100 20 50 10 0 0 0 At Tj = 50 100 150 Th ( o C) 200 0 At Tj = VGS = ºC 175 BOOST FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 Th ( o C) 200 ºC V BOOST FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 70 IF (A) Ptot (W) 200 60 150 50 40 100 30 20 50 10 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 0 200 At Tj = ºC 11 50 175 100 150 T h ( o C) 200 ºC Revision: 1 V23990-P629-L59-PM preliminary datasheet INPUT BOOST BOOST IGBT Figure 25 Safe operating area as a function of drain-source voltage IC = f(VCE) VGE = f(Qg) 103 VGE (V) 18 IC (A) 10 BOOST IGBT Figure 26 Gate voltage vs Gate charge 16 14 2 240V 10uS 12 10mS 960V 100uS 1mS 10 10 100mS 1 8 DC 6 10 0 4 2 1 0 0 10 At D= Th = VGS = Tj = 1 10 2 10 3 100 150 200 250 Qg (nC) At ID = single pulse 80 ºC V 15 Tjmax ºC copyright Vincotech 50 V CE (V) 12 24 A Revision: 1 V23990-P629-L59-PM preliminary datasheet Bypass Diode Bypass Diode Figure 1 Typical Diode forward current as a function of forward voltage IF= f(VF) Bypass Diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 35 ZthJC (K/W) IF (A) 101 30 Tj = 25°C Tj = Tjmax-25°C 25 100 20 15 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 5 0 10-2 0 0,3 At tp = 0,6 0,9 1,2 V F (V) 1,5 10-5 At D= RthJH = µs 250 10-4 Bypass Diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 10-1 100 10110 tp / T 1,674 K/W Bypass Diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 50 Ptot (W) IF (A) 100 t p (s) 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 13 50 150 100 150 T h ( o C) 200 ºC Revision: 1 V23990-P629-L59-PM preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 25000 20000 15000 10000 5000 0 25 copyright Vincotech 50 75 100 T (°C) 125 14 Revision: 1 V23990-P629-L59-PM preliminary datasheet Switching Definitions BOOST IGBT General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω Boost IGBT Figure 1 Boost IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 500 tdoff % % VCE 400 100 VGE 90% IC VCE 90% 300 75 IC 200 50 tEoff VCE VGE 100 25 tdon IC 1% VGE10% IC 10% 0 0 VCE 3% tEon VGE -25 -0,2 0 0,2 0,4 0,6 -100 2,95 0,8 3 3,05 3,1 3,15 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs 0 15 700 24 0,29 0,42 Boost IGBT Figure 3 3,2 time(us) 0 15 700 24 0,02 0,14 V V V A µs µs Boost IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 125 500 fitted % VCE % IC IC 400 100 IC 90% 300 75 IC 60% 200 50 IC 40% IC 90% VCE 100 25 tr IC10% IC 10% 0 0 tf -100 -25 0,1 VC (100%) = IC (100%) = tf = copyright Vincotech 0,2 700 24 0,06 0,3 time (us) 3 0,4 3,025 3,05 3,075 3,1 time(us) VC (100%) = IC (100%) = tr = V A µs 15 700 24 0,01 V A µs Revision: 1 V23990-P629-L59-PM preliminary datasheet Switching Definitions BOOST IGBT Boost IGBT Figure 5 Boost IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 % 350 % Eoff Pon 300 100 Poff 250 80 200 60 150 Eon 40 100 IC 1% 20 50 VGE 90% VGE 0 tEoff -20 -0,2 0 VCE 3% 10% tEon 0 0,2 0,4 -50 2,95 0,6 3 3,05 3,1 3,15 Poff (100%) = Eoff (100%) = tEoff = 16,97 1,55 0,42 Pon (100%) = Eon (100%) = tEon = kW mJ µs Boost IGBT Figure 7 Gate voltage vs Gate charge (measured) 3,2 time(us) time (us) 16,97 1,85 0,14 kW mJ µs Boost FWD Figure 8 Turn-off Switching Waveforms & definition of trr 20 200 VGE (V) % 100 15 trr Id 0 Vd fitted 10 IRRM 10% -100 5 -200 0 -300 -400 2,95 -5 -50 0 50 100 150 IRRM 90% IRRM 100% 3,1 3,25 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech 0 15 700 24 144,01 3,4 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 16 700 24 -76 0,21 V A A µs Revision: 1 V23990-P629-L59-PM preliminary datasheet Switching Definitions BOOST FWD Boost FWD Figure 9 Boost FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 200 150 % % Qrr 125 100 tQrr Erec 100 0 tErec 75 Id -100 50 -200 25 Prec -300 -400 2,95 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 0 3,1 3,25 24 4,94 0,43 3,4 time(us) -25 2,95 3,55 Prec (100%) = Erec (100%) = tErec = A µC µs 17 3,1 3,25 16,97 2,36 0,43 3,4 time(us) 3,55 kW mJ µs Revision: 1 V23990-P629-L59-PM preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 17mm housing Ordering Code V23990-P629-L59-PM in DataMatrix as P629-L59-PM in packaging barcode as P629-L59-PM Outline Pinout copyright Vincotech 18 Revision: 1 V23990-P629-L59-PM preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 19 Revision: 1