V23990-P629-F73-PM preliminary datasheet flowBOOST 1200V/40A Features flow0 12mm housing ● High efficiency dual boost ● Ultra fast switching frequency ● Low Inductance Layout ● 1200V IGBT and 1200V Si diode Target Applications Schematic ● solar inverter Types ● V23990-P629-F73-PM Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V Bypass Diode Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tj=25°C Tj=Tjmax Th=80°C Tc=80°C tp=10ms sin 180° Tj=25°C Tj=Tjmax Th=80°C Tc=80°C 34 46 A 220 A 200 A2s 41 62 W 150 °C 1200 V 34 47 A tp limited by Tjmax 160 A VCE ≤ 800V, Tj ≤ Top max 160 A 108 164 W ±25 V 10 600 µs V 150 °C Tjmax Boost IGBT Collector-emitter break down voltage DC collector current Pulsed collector current VCE Tj=25°C IC Tj=Tjmax ICpulse Turn off safe operating area Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature copyright Vincotech Tj=Tjmax Tj≤150°C VGE=15V Tjmax 1 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 V23990-P629-F73-PM preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V 34 47 A 220 A 41 62 W 150 °C 1200 V 37 50 A 150 A Boost IGBT Protection Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tj=Tjmax Tc=80°C Surge forward current IFSM tp=10ms, sin 180° Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Tjmax Boost FWD Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Th=80°C Tc=80°C 82 125 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 1 V23990-P629-F73-PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Unit Typ Max 1,13 1,09 0,93 0,80 0,008 0,011 1,21 Bypass Diode Forward voltage VF Threshold voltage (for power loss calc. only) Vto 40 Slope resistance (for power loss calc. only) rt 40 Reverse current Ir 25 1600 Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Thermal grease thickness≤50um λ = 1 W/mK VGE(th) VCE=VGE Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V Ω 0,05 mA 1,71 K/W 1,13 Boost IGBT Gate emitter threshold voltage Collector-emitter saturation voltage VCE(sat) 0,00025 40 15 Collector-emitter cut-off ICES 0 1200 Gate-emitter leakage current IGES ±25 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 3,5 5,5 7,5 2,74 3,01 3,2 1 ±250 Rgoff=4 Ω Rgon=4 Ω 700 15 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω none td(on) td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 26 25 16 43 169 199 16 43 1,47 2,23 0,93 1,87 ns mWs 3200 f=1MHz 30 0 Tj=25°C pF 370 125 600 15 40 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK nC 220 0,65 K/W 0,43 Boost IGBT Protection Diode Diode forward voltage VF Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 25 Tj=25°C Tj=125°C Thermal grease thickness≤50um λ = 1 W/mK 1,13 1,08 1,21 V 1,71 K/W 1,13 Boost FWD Forward voltage Reverse leakage current VF Irm Peak recovery current IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Erec Peak rate of fall of recovery current 15 Rgon=4 Ω 700 700 15 di(rec)max /dt Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC copyright Vincotech 50 Thermal grease thickness≤50um λ = 1 W/mK 40 40 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,25 2,32 2,54 60 98 117 78 152 3,71 7,08 1,83 3,69 5120 4285 V µA A ns µC mWs A/µs 1,16 K/W 0,76 3 Revision: 1 V23990-P629-F73-PM preliminary datasheet Characteristic Values Parameter Value Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max Thermistor Rated resistance R Deviation of R25 ∆R/R Power dissipation P Tol. ±5% Tj=25°C R100=1503Ω Tc=100°C Tj=25°C Power dissipation constant Ω 22000 -5 +5 % 200 mW Tj=25°C 2 mW/K B-value B(25/50) Tol. ±3% Tj=25°C 3950 K B-value B(25/100) Tol. ±3% Tj=25°C 3996 K Vincotech NTC Reference copyright Vincotech B 4 Revision: 1 V23990-P629-F73-PM preliminary datasheet Boost IGBT Protection Diode Boost IGBT Protection Diode Figure 1 Typical FWD forward current as a function of forward voltage IF = f(VF) Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) Boost IGBT Protection Diode 101 ZthJC (K/W) IF (A) 100 80 100 60 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 40 10-1 20 Tj = Tjmax-25°C Tj = 25°C 0 0 At tp = 0,5 1 1,5 V F (V) 10-2 2 10-5 At D= RthJH = µs 250 Boost IGBT Protection Diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 tp / T 1,71 10-2 100 t p (s) 1021 K/W Boost IGBT Protection Diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 60 Ptot (W) IF (A) 100 10-1 50 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 Th ( o C) 0 200 At Tj = ºC 5 50 150 100 150 Th ( o C) 200 ºC Revision: 1 V23990-P629-F73-PM preliminary datasheet INPUT BOOST BOOST IGBT Figure 3 Typical output characteristics IC = f(VCE) BOOST FWD Figure 4 Typical output characteristics IC = f(VCE) 120 IC (A) IC(A) 120 100 100 80 80 60 60 40 40 20 20 0 0 0 At tp = Tj = VGS from 1 2 3 4 V CE (V) 0 5 At tp = Tj = VGS from µs 250 25 °C 7 V to 17 V in steps of 1 V BOOST IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1 2 3 4 5 250 µs 125 °C 7 V to 17 V in steps of 1 V BOOST FWD Figure 4 Typical FWD forward current as a function of forward voltage IF = f(VF) 125 IC (A) IF (A) 40 V CE (V) 100 30 75 20 50 10 25 Tj = Tjmax-25°C Tj = Tjmax-25°C Tj = 25°C Tj = 25°C 0 0 0 At tp = VDS = 2 250 10 copyright Vincotech 4 6 8 V GE (V) 10 0 At tp = µs V 6 1 250 2 3 4 V F (V) 5 µs Revision: 1 V23990-P629-F73-PM preliminary datasheet INPUT BOOST BOOST IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) BOOST IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 4 E (mWs) 5 Eon High T Eon High T 4 3 Eon Low T Eoff High T 3 Eoff High T Eon Low T 2 2 Eoff Low T Eoff Low T 1 1 0 0 40 20 60 I C (A) 0 80 0 With an inductive load at Tj = °C 25/126 VDS = 700 V VGS = 15 V Rgon = 4 Ω Rgoff = 4 Ω 5 10 15 RG (Ω ) 20 With an inductive load at Tj = 25/126 °C VDS = 700 V VGS = 15 V ID = A 40 BOOST IGBT Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(IC) BOOST IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) E (mWs) 5 E (mWs) 6 Erec High T 5 4 Erec High T 4 3 3 Erec Low T 2 2 Erec Low T 1 1 0 0 0 15 30 45 60 I C (A) 0 75 With an inductive load at Tj = °C 25/126 VDS = 700 V VGS = 15 V Rgon = 4 Ω copyright Vincotech 5 10 15 R G( Ω ) 20 With an inductive load at Tj = 25/126 °C VDS = 700 V VGS = 15 V ID = 40 A 7 Revision: 1 V23990-P629-F73-PM preliminary datasheet INPUT BOOST BOOST IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) BOOST IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1 t ( µs) t ( µs) 1 tdoff tdoff 0,1 0,1 tf tf tdon tdon 0,01 0,01 tr tr 0,001 0,001 0 15 30 45 60 0 75 I C (A) With an inductive load at Tj = °C 126 VDS = 700 V VGS = 15 V Rgon = 4 Ω Rgoff = 4 Ω 5 10 15 R G( Ω ) 20 With an inductive load at Tj = 126 °C VDS = 700 V VGS = 15 V IC = A 40 BOOST FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) BOOST FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,30 trr High T t rr( µs) t rr( µs) 0,25 trr High T 0,25 0,2 0,20 0,15 trr Low T 0,15 trr Low T 0,1 0,10 0,05 0,05 0 0,00 0 At Tj = VCE = VGE = Rgon = 15 25/126 700 15 4 copyright Vincotech 30 45 60 I C (A) 75 0 At Tj = VR = IF = VGS = °C V V Ω 8 5 25/126 700 40 15 10 15 R Gon ( Ω ) 20 °C V A V Revision: 1 V23990-P629-F73-PM preliminary datasheet INPUT BOOST BOOST FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) BOOST FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr ( µC) 8 Qrr ( µC) 12 Qrr High T 10 Qrr High T 6 8 6 4 Qrr Low T Qrr Low T 4 2 2 0 0 0 At At Tj = VCE = VGE = Rgon = 15 25/126 700 15 4 30 45 60 I C (A) 75 0 5 At Tj = °C V V Ω 25/126 700 40 15 VR = IF = VGS = BOOST FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 150 15 R Gon ( Ω) 20 °C V A V BOOST FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 175 IrrM (A) IRRM High T IrrM (A) 10 150 125 IRRM Low T 125 100 100 75 75 IRRM High T 50 IRRM Low T 50 25 25 0 0 0 At Tj = VCE = VGE = Rgon = 15 25/126 700 15 4 copyright Vincotech 30 45 60 I C (A) 75 0 At Tj = VR = IF = VGS = °C V V Ω 9 5 25/126 700 40 15 10 15 R Gon ( Ω ) 20 °C V A V Revision: 1 V23990-P629-F73-PM preliminary datasheet INPUT BOOST BOOST FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 7500 10000 direc / dt (A/ µs) direc / dt (A/ µs) dI0/dt dIrec/dt 6000 dI0/dt dIrec/dt 8000 4500 6000 3000 4000 1500 2000 0 0 0 At Tj = VCE = VGE = Rgon = 20 25/126 700 15 4 40 I C (A) 60 80 0 At Tj = VR = IF = VGS = °C V V Ω BOOST IGBT Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) ZthJH (K/W) ZthJH (K/W) 100 10 -2 25/126 700 40 15 10 R Gon ( Ω) 15 20 °C V A V BOOST FWD 101 100 -1 5 Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 10 BOOST FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-5 At D= RthJH = 10-4 10-3 10-2 10-1 100 t p (s) 1021 -1 10 -2 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-5 At D= RthJH = tp / T 0,65 10 K/W 10-4 10-3 R (C/W) 0,198 0,347 0,075 0,028 0,027 R (C/W) 0,041 0,115 0,447 0,324 0,154 10 100 t p (s) 1021 K/W FWD thermal model values copyright Vincotech 10-1 tp / T 1,16 IGBT thermal model values Tau (s) 0,495 0,111 0,015 0,001 0,004 10-2 Tau (s) 5,298 1,001 0,186 0,053 0,012 Revision: 1 V23990-P629-F73-PM preliminary datasheet INPUT BOOST BOOST IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) BOOST IGBT Figure 22 Collector/Drain current as a function of heatsink temperature IC = f(Th) 250 IC (A) Ptot (W) 75 200 60 150 45 100 30 50 15 0 0 0 At Tj = 50 100 150 Th ( o C) 200 0 At Tj = VGS = ºC 150 BOOST FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 15 100 150 Th ( o C) 200 ºC V BOOST FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 60 IF (A) Ptot (W) 175 150 50 125 40 100 30 75 20 50 10 25 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 T h ( o C) 0 200 At Tj = ºC 11 50 175 100 150 T h ( o C) 200 ºC Revision: 1 V23990-P629-F73-PM preliminary datasheet INPUT BOOST BOOST IGBT Figure 25 Safe operating area as a function of drain-source voltage IC = f(VCE) BOOST IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 103 IC (A) VGE (V) 15 200V 600V 12 102 10uS 10mS 9 100uS 1mS 100mS 10 6 DC 10 3 0 0 10 At D= Th = VGS = Tj = 1 10 2 10 3 100 150 200 250 Qg (nC) At ID = single pulse 80 ºC V 15 Tjmax ºC copyright Vincotech 50 V CE (V) 12 40 A Revision: 1 V23990-P629-F73-PM preliminary datasheet Bypass Diode Bypass Diode Figure 1 Typical Diode forward current as a function of forward voltage IF= f(VF) Bypass Diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 ZthJC (K/W) IF (A) 101 80 100 60 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 40 10-1 20 Tj = Tjmax-25°C Tj = 25°C 0 10-2 0 At tp = 0,5 1 1,5 V F (V) 2 10-5 At D= RthJH = µs 250 10-4 Bypass Diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 10-2 10-1 100 1021 tp / T 1,705 K/W Bypass Diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 70 Ptot (W) IF (A) 100 t p (s) 60 80 50 60 40 30 40 20 20 10 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 T h ( o C) 200 0 At Tj = ºC 13 50 150 100 150 T h ( o C) 200 ºC Revision: 1 V23990-P629-F73-PM preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 25000 20000 15000 10000 5000 0 25 copyright Vincotech 50 75 100 T (°C) 125 14 Revision: 1 V23990-P629-F73-PM preliminary datasheet Switching Definitions BOOST IGBT General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω Boost IGBT Figure 1 Boost IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 400 tdoff % VCE % IC 100 VGE 90% 300 VCE 90% 75 200 IC 50 VCE tEoff 100 tdon 25 IC 1% VGE10% VGE VCE 3% IC 10% 0 tEon 0 VGE -25 -0,2 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 0 15 700 40 0,20 0,54 0,4 time (us) -100 2,95 0,6 3,05 3,1 3,15 3,2 time(us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Boost IGBT Figure 3 0 15 700 40 0,03 0,15 V V V A µs µs Boost IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 125 400 VCE fitted % 3 % IC IC 100 300 IC 90% 75 200 IC 60% 50 VCE IC 40% IC 90% 100 tr 25 IC 10% IC10% 0 0 tf -25 0,05 VC (100%) = IC (100%) = tf = copyright Vincotech 0,1 0,15 700 40 0,04 0,2 time (us) -100 2,95 0,25 3 3,05 3,1 3,15 time(us) VC (100%) = IC (100%) = tr = V A µs 15 700 40 0,01 V A µs Revision: 1 V23990-P629-F73-PM preliminary datasheet Switching Definitions BOOST IGBT Boost IGBT Figure 5 Boost IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 300 % IC 1% % Pon 100 250 Eoff Poff 80 200 60 150 40 100 Eon 20 50 VGE 90% VGE 0 VCE 3% 10% tEon 0 tEoff -20 -0,2 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 27,95 1,87 0,54 0,4 time (us) -50 2,95 0,6 3 3,05 Pon (100%) = Eon (100%) = tEon = kW mJ µs Boost IGBT Figure 7 Gate voltage vs Gate charge (measured) 27,95 2,23 0,15 3,1 3,15 time(us) 3,2 kW mJ µs Boost FWD Figure 8 Turn-off Switching Waveforms & definition of trr 200 VGE (V) 20 % Id 100 15 trr fitted 0 10 IRRM 10% 5 -100 0 -200 -5 -300 -50 0 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech 50 0 15 700 40 178,86 100 150 Qg (nC) Vd IRRM 90% IRRM 100% 3 200 Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 16 3,1 3,2 700 40 -117 0,15 3,3 time(us) 3,4 V A A µs Revision: 1 V23990-P629-F73-PM preliminary datasheet Switching Definitions BOOST FWD Boost FWD Figure 9 Boost FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 200 % 200 % Id Prec Qrr 100 150 tQrr Erec 0 100 tErec -100 50 -200 0 -300 -50 2,8 Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 3,2 3,6 40 7,08 1,00 4 time(us) 4,4 3 Prec (100%) = Erec (100%) = tErec = A µC µs 17 3,2 3,4 3,6 27,95 3,69 1,00 kW mJ µs 3,8 4 time(us) 4,2 Revision: 1 V23990-P629-F73-PM preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 12mm housing Ordering Code V23990-P629-F73-PM in DataMatrix as P629-F73-PM in packaging barcode as P629-F73-PM Outline Pinout copyright Vincotech 18 Revision: 1 V23990-P629-F73-PM preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 19 Revision: 1