The following document contains information on Cypress products. MB9B510T Series 32-bit ARM® Cortex®-M3 based Microcontroller MB9BF516S/T, MB9BF517S/T, MB9BF518S/T Data Sheet (Full Production) Notice to Readers: This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur. Publication Number MB9B510T-DS706-00019 CONFIDENTIAL Revision 2.0 Issue Date February 10, 2015 D a t a S h e e t Notice On Data Sheet Designations Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers of product information or intended specifications throughout the product life cycle, including development, qualification, initial production, and full production. In all cases, however, readers are encouraged to verify that they have the latest information before finalizing their design. The following descriptions of Spansion data sheet designations are presented here to highlight their presence and definitions. Advance Information The Advance Information designation indicates that Spansion Inc. is developing one or more specific products, but has not committed any design to production. Information presented in a document with this designation is likely to change, and in some cases, development on the product may discontinue. Spansion Inc. therefore places the following conditions upon Advance Information content: “This document contains information on one or more products under development at Spansion Inc. The information is intended to help you evaluate this product. Do not design in this product without contacting the factory. Spansion Inc. reserves the right to change or discontinue work on this proposed product without notice.” Preliminary The Preliminary designation indicates that the product development has progressed such that a commitment to production has taken place. This designation covers several aspects of the product life cycle, including product qualification, initial production, and the subsequent phases in the manufacturing process that occur before full production is achieved. Changes to the technical specifications presented in a Preliminary document should be expected while keeping these aspects of production under consideration. Spansion places the following conditions upon Preliminary content: “This document states the current technical specifications regarding the Spansion product(s) described herein. The Preliminary status of this document indicates that product qualification has been completed, and that initial production has begun. Due to the phases of the manufacturing process that require maintaining efficiency and quality, this document may be revised by subsequent versions or modifications due to changes in technical specifications.” Combination Some data sheets contain a combination of products with different designations (Advance Information, Preliminary, or Full Production). This type of document distinguishes these products and their designations wherever necessary, typically on the first page, the ordering information page, and pages with the DC Characteristics table and the AC Erase and Program table (in the table notes). The disclaimer on the first page refers the reader to the notice on this page. Full Production (No Designation on Document) When a product has been in production for a period of time such that no changes or only nominal changes are expected, the Preliminary designation is removed from the data sheet. Nominal changes may include those affecting the number of ordering part numbers available, such as the addition or deletion of a speed option, temperature range, package type, or VIO range. Changes may also include those needed to clarify a description or to correct a typographical error or incorrect specification. Spansion Inc. applies the following conditions to documents in this category: “This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur.” Questions regarding these document designations may be directed to your local sales office. MB9B510T-DS706-00019-2v0-E, February 10, 2015 CONFIDENTIAL MB9B510T Series 32-bit ARM® Cortex®-M3 based Microcontroller MB9BF516S/T, MB9BF517S/T, MB9BF518S/T Data Sheet (Full Production) Description The MB9B510T Series are highly integrated 32-bit microcontrollers dedicated for embedded controllers with high-performance and competitive cost. These series are based on the ARM Cortex-M3 Processor with on-chip Flash memory and SRAM, and has peripheral functions such as Motor Control Timers, ADCs and Communication Interfaces (USB, CAN, UART, CSIO, I2C, LIN). The products which are described in this data sheet are placed into TYPE2 product categories in "FM3 Family PERIPHERAL MANUAL". Note: ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries. Publication Number MB9B510T-DS706-00019 Revision 2.0 Issue Date february 10, 2015 This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur. CONFIDENTIAL D a t a S h e e t Features 32-bit ARM Cortex-M3 Core · Processor version: r2p1 · Up to 144 MHz Frequency Operation · Memory Protection Unit (MPU):improves the reliability of an embedded system · Integrated Nested Vectored Interrupt Controller (NVIC): 1 NMI (non-maskable interrupt) and 48 peripheral interrupts and 16 priority levels · 24-bit System timer (Sys Tick): System timer for OS task management On-chip Memories [Flash memory] · Up to 1 Mbyte · Built-in Flash Accelerator System with 16 Kbyte trace buffer memory · The read access to Flash memory can be achieved without wait cycle up to operation frequency of 72 MHz. Even at the operation frequency more than 72 MHz, an equivalent access to Flash memory can be obtained by Flash Accelerator System. · Security function for code protection [SRAM] This Series contain a total of up to 128 Kbyte on-chip SRAM memories. This is composed of two independent SRAM (SRAM0,SRAM1) . SRAM0 is connected to I-code bus and D-code bus of Cortex-M3 core. SRAM1 is connected to System bus. · SRAM0: Up to 64 Kbyte. · SRAM1: Up to 64 Kbyte. External Bus Interface · Supports SRAM, NOR and NAND Flash device · Up to 8 chip selects · 8-/16-bit Data width · Up to 25-bit Address bit · Maximum area size : Up to 256 Mbytes · Supports Address/Data multiplex · Supports external RDY input USB Interface (Max 2 channels) USB interface is composed of Function and Host. [USB function] · USB2.0 Full-Speed supported · Max 6 EndPoint supported · EndPoint 0 is control transfer · EndPoint 1,2 can be selected Bulk-transfer, Interrupt-transfer or Isochronous-transfer · EndPoint 3 – 5 can be selected Bulk-transfer or Interrupt-transfer · EndPoint 1 to 5 is comprised Double Buffer · EndPoint 0, 2 to 5:64 bytes · EndPoint 1: 256 bytes [USB host] · USB2.0 Full/Low speed supported · Bulk-transfer, interrupt-transfer and Isochronous-transfer support · USB Device connected/dis-connected automatically detect · IN/OUT token handshake packet automatically · Max 256-byte packet-length supported · Wake-up function supported 2 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t CAN Interface (Max. 2 channels) · Compatible with CAN Specification 2.0A/B · Maximum transfer rate: 1 Mbps · Built-in 32 message buffer Multi-function Serial Interface (Max 8 channels) · 4 channels with 16steps×9-bit FIFO (ch.4 to ch.7), 4 channels without FIFO (ch.0 to ch.3) · Operation mode is selectable from the followings for each channel. · UART · CSIO · LIN · I 2C [UART] · Full-duplex double buffer · Selection with or without parity supported · Built-in dedicated baud rate generator · External clock available as a serial clock · Hardware Flow control : Automatically control the transmission by CTS/RTS (only ch.4) · Various error detect functions available (parity errors, framing errors, and overrun errors) [CSIO] · Full-duplex double buffer · Built-in dedicated baud rate generator · Overrun error detect function available [LIN] · LIN protocol Rev.2.1 supported · Full-duplex double buffer · Master/Slave mode supported · LIN break field generate (can be changed 13-16bit length) · LIN break delimiter generate (can be changed 1-4bit length) · Various error detect functions available (parity errors, framing errors, and overrun errors) 2 [I C] · Standard-mode (Max 100kbps) / Fast-mode (Max 400kbps) supported DMA Controller (8 channels) DMA Controller has an independent bus for CPU, so CPU and DMA Controller can process simultaneously. · · · · · · · 8 independently configured and operated channels Transfer can be started by software or request from the built-in peripherals Transfer address area: 32 bit (4 Gbyte) Transfer mode: Block transfer/Burst transfer/Demand transfer Transfer data type: byte/half-word/word Transfer block count: 1 to 16 Number of transfers: 1 to 65536 A/D Converter (Max 32 channels) [12-bit A/D Converter] · Successive Approximation Register type · Built-in 3unit · Conversion time: 1.0 μs@ 5 V · Priority conversion available (priority at 2 levels) · Scanning conversion mode · Built-in FIFO for conversion data storage (for SCAN conversion:16 steps, for Priority conversion:4 steps) February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 3 D a t a S h e e t Base Timer (Max 16 channels) Operation mode is selectable from the followings for each channel. · · · · 16-bit PWM timer 16-bit PPG timer 16-/32-bit reload timer 16-/32-bit PWC timer General Purpose I/O Port This series can use its pins as I/O ports when they are not used for external bus or peripherals. Moreover, the port relocate function is built in. It can set which I/O port the peripheral function can be allocated. · · · · · Capable of pull-up control per pin Capable of reading pin level directly Built-in the port relocate function Up 154 fast I/O Ports@176pin Package Some pin is 5 V tolerant I/O. See "Pin Description" to confirm the corresponding pins. Multi-function Timer (Max 3units) The Multi-function timer is composed of the following blocks. · · · · · · 16-bit free-run timer × 3ch/unit Input capture × 4ch/unit Output compare × 6ch/unit A/D activation compare × 3ch/unit Waveform generator × 3ch/unit 16-bit PPG timer × 3ch/unit The following function can be used to achieve the motor control. · · · · · · PWM signal output function DC chopper waveform output function Dead time function Input capture function A/D convertor activate function DTIF (Motor emergency stop) interrupt function Quadrature Position/Revolution Counter (QPRC) (Max 3 channels) The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position encoder. Moreover, it is possible to use up/down counter. · · · · The detection edge of the three external event input pins AIN, BIN and ZIN is configurable. 16-bit position counter 16-bit revolution counter Two 16-bit compare registers Dual Timer (32-/16-bit Down Counter) The Dual Timer consists of two programmable 32-/16-bit down counters. Operation mode is selectable from the followings for each channel. · Free-running · Periodic (=Reload) · One-shot Watch Counter The Watch counter is used for wake up from power saving mode. · Interval timer: up to 64 s(Max)@ Sub Clock : 32.768 kHz 4 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t External Interrupt Controller Unit · Up to 32 external interrupt input pin · Include one non-maskable interrupt(NMI) Watch dog Timer (2 channels) A watchdog timer can generate interrupts or a reset when a time-out value is reached. This series consists of two different watchdogs, a "Hardware" watchdog and a "Software" watchdog. "Hardware" watchdog timer is clocked by low speed internal CR oscillator. Therefore, "Hardware" watchdog is active in any power saving mode except STOP mode. CRC (Cyclic Redundancy Check) Accelerator The CRC accelerator helps a verify data transmission or storage integrity. CCITT CRC16 and IEEE-802.3 CRC32 are supported. · CCITT CRC16 Generator Polynomial: 0x1021 · IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7 Clock and Reset [Clocks] Five clock sources (2 external oscillators, 2 internal CR oscillator, and Main PLL) that are dynamically selectable. · · · · · Main Clock: Sub Clock: High-speed internal CR Clock: Low-speed internal CR Clock: Main PLL Clock 4 MHz to 48 MHz 32.768 kHz 4 MHz 100 kHz [Resets] · Reset requests from INITX pin · Power on reset · Software reset · Watchdog timers reset · Low voltage detector reset · Clock supervisor reset Clock Super Visor (CSV) Clocks generated by internal CR oscillators are used to supervise abnormality of the external clocks. · External OSC clock failure (clock stop) is detected, reset is asserted. · External OSC frequency anomaly is detected, interrupt or reset is asserted. February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 5 D a t a S h e e t Low Voltage Detector (LVD) This Series include 2-stage monitoring of voltage on the VCC pins. When the voltage falls below the voltage has been set, Low Voltage Detector generates an interrupt or reset. · LVD1: error reporting via interrupt · LVD2: auto-reset operation Low Power Mode Three power saving modes supported. · SLEEP · TIMER · STOP Debug · Serial Wire JTAG Debug Port (SWJ-DP) · Embedded Trace Macrocells (ETM) provide comprehensive debug and trace facilities. Power Supply · Three Power Supplies · Wide range voltage VCC = 2.7 V to 5.5 V · USBVCC0 = 3.0 V to 3.6 V: for USB ch.0 I/O voltage, when USB ch.0 is used. = 2.7 V to 5.5 V: when GPIO is used. · USBVCC1 = 3.0 V to 3.6 V: for USB ch.1 I/O voltage, when USB ch.1 is used. = 2.7 V to 5.5 V: when GPIO is used. 6 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Product Lineup Memory size Product name On-chip Flash memory On-chip RAM MB9BF516S/T 512 Kbyte 64 Kbyte MB9BF517S/T 768 Kbyte 96 Kbyte MB9BF518S/T 1 Mbyte 128 Kbyte Function MB9BF516S MB9BF517S MB9BF518S Product name Pin count CPU 144 Freq. Power supply voltage range USB2.0 (Function/Host) CAN Interface DMAC External Bus Interface 176/192 Cortex-M3 144 MHz VCC:2.7 V to 5.5 V ( USBVCC0:3.0 V to 3.6 V ) ( USBVCC1:3.0 V to 3.6 V ) 2ch. (Max) 2ch. (Max) 8ch. Addr:19-bit (Max) R/Wdata:8-/16-bit (Max) CS: 8 (Max) Support: SRAM, NOR & NAND Flash Multi-function Serial Interface (UART/CSIO/LIN/I2C) MB9BF516T MB9BF517T MB9BF518T Addr:25-bit (Max) R/Wdata:8-/16-bit (Max) CS:8 (Max) Support: SRAM, NOR & NAND Flash 8ch. (Max) ch.4 to ch.7: FIFO (16steps × 9-bit) ch.0 to ch.3: No FIFO Base Timer 16ch. (Max) (PWC/ Reload timer/PWM/PPG) A/D activation 3ch. compare Input capture 4ch. Free-run timer 3ch. MF3 units (Max) Timer Output compare 6ch. Waveform 3ch. generator PPG 3ch. QPRC 3ch. (Max) Dual Timer 1 unit Watch Counter 1 unit CRC Accelerator Yes Watchdog timer 1ch. (SW) + 1ch. (HW) External Interrupts 32 pins (Max)+ NMI × 1 I/O ports 122 pins (Max) 154 pins (Max) 12-bit A/D converter 24ch. (3 units) 32ch. (3 units) CSV (Clock Super Visor) Yes LVD (Low Voltage Detector) 2ch. High-speed 4 MHz Built-in CR Low-speed 100 kHz Debug Function SWJ-DP/ETM Note: All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the General I/O port according to your function use. See " Electrical Characteristics 4.AC Characteristics (3)Built-in CR Oscillation Characteristics" for accuracy of built-in CR. February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 7 D a t a S h e e t Packages Product name Package LQFP: FPT-144P-M08 (0.5 mm pitch) LQFP: FPT-176P-M07 (0.5 mm pitch) BGA: BGA-192P-M06 (0.8 mm pitch) MB9BF516S MB9BF517S MB9BF518S MB9BF516T MB9BF517T MB9BF518T - : Supported Note : See "Package Dimensions" for detailed information on each package. 8 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Pin Assignment FPT-176P-M07 P00/TRSTX P01/TCK/SWCLK P02/TDI P03/TMS/SWDIO P04/TDO/SWO P90/TIOB08_0/RTO20_1/INT30_0/MAD19_0 P91/TIOB09_0/RTO21_1/INT31_0/MAD20_0 P92/TIOB10_0/RTO22_1/SIN5_1/MAD21_0 P93/TIOB11_0/RTO23_1/SOT5_1/MAD22_0 P94/TIOB12_0/RTO24_1/SCK5_1/INT26_0/MAD23_0 P95/TIOB13_0/RTO25_1/INT27_0/MAD24_0 PC0 PC1 PC2 PC3/TIOA06_1 PC4/TIOA08_2 PC5/TIOA10_2 PC6/TIOA14_0 PC7/CROUT_1 PC8 PC9 PCA VCC VSS PCB PCC PCD PCE/RTS4_0/TIOB06_1 PCF/CTS4_0/TIOB08_2 PD0/SCK4_0/TIOB10_2/INT30_1 PD1/SOT4_0/TIOB14_0/INT31_1 PD2/SIN4_0/TIOA03_2/INT00_2 PD3/TIOB03_2 P62/SCK5_0/ADTG_3 P61/SOT5_0/TIOB02_2/UHCONX0 P60/SIN5_0/TIOA02_2/INT15_1 PF3/TIOA06_0/SIN6_2/INT06_0/AIN2_1 PF4/TIOB06_0/SOT6_2/INT07_0/BIN2_1 PF5/SCK6_2/INT08_0/ZIN2_1 USBVCC0 P80/UDM0 P81/UDP0 VCC 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 VSS (TOP VIEW) VCC 1 132 VSS PA0/RTO20_0/TIOA08_0/FRCK1_0 2 131 P83/UDP1 PA1/RTO21_0/TIOA09_0/IC10_0 3 130 P82/UDM1 PA2/RTO22_0/TIOA10_0/IC11_0 4 129 USBVCC1 PA3/RTO23_0/TIOA11_0/IC12_0 5 128 PF6/FRCK2_0/NMIX PA4/RTO24_0/TIOA12_0/IC13_0/RX0_2/INT03_0 6 127 P20/INT05_0/CROUT_0/UHCONX1/AIN1_1/MAD18_0 PA5/RTO25_0/TIOA13_0/TX0_2/INT10_2 7 126 P21/SIN0_0/INT06_1/BIN1_1 P05/TRACED0/TIOA05_2/SIN4_2/INT00_1 8 125 P22/AN31/SOT0_0/TIOB07_1/ZIN1_1 P06/TRACED1/TIOB05_2/SOT4_2/INT01_1 9 124 P23/AN30/SCK0_0/TIOA07_1/RTO00_1 P07/TRACED2/ADTG_0/SCK4_2 10 123 P24/AN29/SIN2_1/INT01_2/RX1_0/RTO01_1/MAD17_0 P08/TRACED3/TIOA00_2/CTS4_2 11 122 P25/AN28/SOT2_1/TX1_0/RTO02_1/MAD16_0 P09/TRACECLK/TIOB00_2/RTS4_2/DTTI2X_0 12 121 P26/AN27/SCK2_1/RTO03_1/MAD15_0 P50/INT00_0/AIN0_2/SIN3_1/RTO10_0/IC20_0/MOEX_0 13 120 P27/AN26/INT02_2/RTO04_1/MAD14_0 P51/INT01_0/BIN0_2/SOT3_1/RTO11_0/IC21_0/MWEX_0 14 119 P28/AN25/ADTG_4/INT09_0/RTO05_1/MAD13_0 P52/INT02_0/ZIN0_2/SCK3_1/RTO12_0/IC22_0/MDQM0_0 15 118 P29/AN24/MAD12_0 P53/SIN6_0/TIOA01_2/INT07_2/RTO13_0/IC23_0/MDQM1_0 16 117 PB7/AN23/TIOB12_1/INT23_0/ZIN2_2 P54/SOT6_0/TIOB01_2/RTO14_0/MALE_0 17 116 PB6/AN22/TIOA12_1/SCK0_2/INT22_0/BIN2_2 P55/SCK6_0/ADTG_1/RTO15_0/MRDY_0 18 115 PB5/AN21/TIOB11_1/SOT0_2/INT21_0/AIN2_2 P56/SIN1_0/INT08_2/TIOA09_2/DTTI1X_0/MNALE_0 19 114 PB4/AN20/TIOA11_1/SIN0_2/INT20_0 P57/SOT1_0/TIOB09_2/INT16_1/MNCLE_0 20 113 PB3/AN19/TIOB10_1/INT19_0 P58/SCK1_0/TIOA11_2/INT17_1/MNWEX_0 21 112 PB2/AN18/TIOA10_1/SCK7_2/INT18_0 P59/SIN7_0/RX1_1/TIOB11_2/INT09_2/MNREX_0 22 111 PB1/AN17/TIOB09_1/SOT7_2/INT17_0 P5A/SOT7_0/TX1_1/TIOA13_1/INT18_1/MCSX0_0 23 110 PB0/AN16/TIOA09_1/SIN7_2/INT16_0 P5B/SCK7_0/TIOB13_1/INT19_1/MCSX1_0 24 109 VSS P5C/TIOA06_2/INT28_0/IC20_1 25 108 AVSS P5D/TIOB06_2/INT29_0/DTTI2X_1 26 107 AVRH VSS 27 106 AVCC P30/AIN0_0/TIOB00_1/INT03_2 28 105 P1F/AN15/ADTG_5/INT29_1/TIOB15_2/FRCK0_1/MAD11_0 P31/BIN0_0/TIOB01_1/SCK6_1/INT04_2 29 104 P1E/AN14/RTS4_1/INT28_1/TIOA15_2/DTTI0X_1/MAD10_0 P32/ZIN0_0/TIOB02_1/SOT6_1/INT05_2 30 103 P1D/AN13/CTS4_1/INT27_1/TIOB14_2/IC03_1/MAD09_0 P33/INT04_0/TIOB03_1/SIN6_1/ADTG_6 31 102 P1C/AN12/SCK4_1/INT26_1/TIOA14_2/IC02_1/MAD08_0 P34/FRCK0_0/TIOB04_1/TX0_1 32 101 P1B/AN11/SOT4_1/INT25_1/TIOB13_2/IC01_1/MAD07_0 P35/IC03_0/TIOB05_1/RX0_1/INT08_1 33 100 P1A/AN10/SIN4_1/INT05_1/TIOA13_2/IC00_1/MAD06_0 P36/IC02_0/SIN5_2/INT09_1/TIOA12_2/MCSX2_0 34 99 P19/AN09/SCK2_2/INT22_1/MAD05_0 P37/IC01_0/SOT5_2/INT10_1/TIOB12_2/MCSX3_0 35 98 P18/AN08/SOT2_2/INT21_1/MAD04_0 P38/IC00_0/SCK5_2/INT11_1/MCLKOUT_0 36 97 P17/AN07/SIN2_2/INT04_1/MAD03_0 P39/DTTI0X_0/ADTG_2 37 96 P16/AN06/SCK0_1/INT20_1/MAD02_0 P3A/RTO00_0/TIOA00_1 38 95 P15/AN05/SOT0_1/IC03_2/MAD01_0 P3B/RTO01_0/TIOA01_1 39 94 P14/AN04/SIN0_1/INT03_1/IC02_2/MAD00_0 P3C/RTO02_0/TIOA02_1 40 93 P13/AN03/SCK1_1/IC01_2/MCSX4_0 P3D/RTO03_0/TIOA03_1 41 92 P12/AN02/SOT1_1/TX1_2/IC00_2/MCSX5_0 P3E/RTO04_0/TIOA04_1 42 91 P11/AN01/SIN1_1/INT02_1/RX1_2/FRCK0_2/MCSX6_0 P3F/RTO05_0/TIOA05_1 43 90 P10/AN00/MCSX7_0 VSS 44 89 VCC 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 VSS VCC P46/X0A P47/X1A INITX P48/DTTI1X_1/INT14_1/SIN3_2 P49/TIOB00_0/IC10_1/AIN0_1/SOT3_2 P4A/TIOB01_0/IC11_1/BIN0_1/SCK3_2/MADATA00_0 P4B/TIOB02_0/IC12_1/ZIN0_1/MADATA01_0 P4C/TIOB03_0/IC13_1/SCK7_1/AIN1_2/MADATA02_0 P4D/TIOB04_0/FRCK1_1/SOT7_1/BIN1_2/MADATA03_0 P4E/TIOB05_0/INT06_2/SIN7_1/ZIN1_2/MADATA04_0 P70/TX0_0/TIOA04_2/MADATA05_0 P71/RX0_0/INT13_2/TIOB04_2/MADATA06_0 P72/SIN2_0/INT14_2/AIN2_0/MADATA07_0 P73/SOT2_0/INT15_2/BIN2_0/MADATA08_0 P74/SCK2_0/ZIN2_0/MADATA09_0 P75/SIN3_0/ADTG_8/INT07_1/MADATA10_0 P76/SOT3_0/TIOA07_2/INT11_2/MADATA11_0 P77/SCK3_0/TIOB07_2/INT12_2/MADATA12_0 P78/AIN1_0/TIOA15_0/MADATA13_0 P79/BIN1_0/TIOB15_0/INT23_1/MADATA14_0 P7A/ZIN1_0/INT24_1/MADATA15_0 P7B/TIOB07_0/INT10_0 P7C/TIOA07_0/INT11_0 P7D/TIOA14_1/FRCK2_1/INT12_0 P7E/TIOB14_1/IC21_1/INT24_0 P7F/TIOA15_1/IC22_1/INT25_0 PF0/TIOB15_1/SIN1_2/INT13_0/IC23_1 PF1/TIOA08_1/SOT1_2/INT14_0 PF2/TIOB08_1/SCK1_2/INT15_0 PE0/MD1 88 52 C VSS 51 P45/TIOA05_0/RTO15_1 87 50 P44/TIOA04_0/RTO14_1 PE3/X1 49 P43/TIOA03_0/RTO13_1/ADTG_7 86 48 P42/TIOA02_0/RTO12_1 85 47 MD0 46 P41/TIOA01_0/RTO11_1/INT13_1 PE2/X0 45 VCC P40/TIOA00_0/RTO10_1/INT12_1 LQFP - 176 <Note> The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. TIOA09_0, TIOA09_1, and TIOA09_2 cannot be used as the external startup trigger input (TGIN signal) at I/O mode 1 (timer full mode) of the Base Timer. See "Base Timer" in "Handling Devices" for details. February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 9 D a t a S h e e t FPT-144P-M08 P00/TRSTX P01/TCK/SWCLK P02/TDI P03/TMS/SWDIO P04/TDO/SWO PC0 PC1 PC2 PC3/TIOA06_1 PC4/TIOA08_2 PC5/TIOA10_2 PC6/TIOA14_0 PC7/CROUT_1 PC8 PC9 PCA VCC VSS PCB PCC PCD PCE/RTS4_0/TIOB06_1 PCF/CTS4_0/TIOB08_2 PD0/SCK4_0/TIOB10_2/INT30_1 PD1/SOT4_0/TIOB14_0/INT31_1 PD2/SIN4_0/TIOA03_2/INT00_2 PD3/TIOB03_2 P62/SCK5_0/ADTG_3 P61/SOT5_0/TIOB02_2/UHCONX0 P60/SIN5_0/TIOA02_2/INT15_1 PF5/SCK6_2/INT08_0/ZIN2_1 USBVCC0 P80/UDM0 P81/UDP0 VCC 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 VSS (TOP VIEW) VCC 1 108 VSS PA0/RTO20_0/TIOA08_0/FRCK1_0 2 107 P83/UDP1 PA1/RTO21_0/TIOA09_0/IC10_0 3 106 P82/UDM1 PA2/RTO22_0/TIOA10_0/IC11_0 4 105 USBVCC1 PA3/RTO23_0/TIOA11_0/IC12_0 5 104 PF6/FRCK2_0/NMIX PA4/RTO24_0/TIOA12_0/IC13_0/RX0_2/INT03_0 6 103 P20/INT05_0/CROUT_0/UHCONX1/AIN1_1/MAD18_0 PA5/RTO25_0/TIOA13_0/TX0_2/INT10_2 7 102 P21/SIN0_0/INT06_1/BIN1_1 P05/TRACED0/TIOA05_2/SIN4_2/INT00_1 8 101 P22/AN31/SOT0_0/TIOB07_1/ZIN1_1 P06/TRACED1/TIOB05_2/SOT4_2/INT01_1 9 100 P23/AN30/SCK0_0/TIOA07_1/RTO00_1 P07/TRACED2/ADTG_0/SCK4_2 10 99 P24/AN29/SIN2_1/INT01_2/RX1_0/RTO01_1/MAD17_0 P08/TRACED3/TIOA00_2/CTS4_2 11 98 P25/AN28/SOT2_1/TX1_0/RTO02_1/MAD16_0 P09/TRACECLK/TIOB00_2/RTS4_2/DTTI2X_0 12 97 P26/AN27/SCK2_1/RTO03_1/MAD15_0 P50/INT00_0/AIN0_2/SIN3_1/RTO10_0/IC20_0/MOEX_0 13 96 P27/AN26/INT02_2/RTO04_1/MAD14_0 P51/INT01_0/BIN0_2/SOT3_1/RTO11_0/IC21_0/MWEX_0 14 95 P28/AN25/ADTG_4/INT09_0/RTO05_1/MAD13_0 P52/INT02_0/ZIN0_2/SCK3_1/RTO12_0/IC22_0/MDQM0_0 15 94 P29/AN24/MAD12_0 P53/SIN6_0/TIOA01_2/INT07_2/RTO13_0/IC23_0/MDQM1_0 16 93 VSS P54/SOT6_0/TIOB01_2/RTO14_0/MALE_0 17 92 AVSS 91 AVRH 90 AVCC P55/SCK6_0/ADTG_1/RTO15_0/MRDY_0 18 P56/SIN1_0/INT08_2/TIOA09_2/DTTI1X_0/MNALE_0 19 P57/SOT1_0/TIOB09_2/INT16_1/MNCLE_0 20 89 P1F/AN15/ADTG_5/INT29_1/TIOB15_2/FRCK0_1/MAD11_0 P58/SCK1_0/TIOA11_2/INT17_1/MNWEX_0 21 88 P1E/AN14/RTS4_1/INT28_1/TIOA15_2/DTTI0X_1/MAD10_0 P59/SIN7_0/RX1_1/TIOB11_2/INT09_2/MNREX_0 22 87 P1D/AN13/CTS4_1/INT27_1/TIOB14_2/IC03_1/MAD09_0 P5A/SOT7_0/TX1_1/TIOA13_1/INT18_1/MCSX0_0 23 86 P1C/AN12/SCK4_1/INT26_1/TIOA14_2/IC02_1/MAD08_0 P5B/SCK7_0/TIOB13_1/INT19_1/MCSX1_0 24 85 P1B/AN11/SOT4_1/INT25_1/TIOB13_2/IC01_1/MAD07_0 VSS 25 84 P1A/AN10/SIN4_1/INT05_1/TIOA13_2/IC00_1/MAD06_0 LQFP - 144 71 72 VSS PE3/X1 69 70 PE2/X0 MD0 68 PE0/MD1 67 P7A/ZIN1_0/INT24_1/MADATA15_0 P79/BIN1_0/TIOB15_0/INT23_1/MADATA14_0 P78/AIN1_0/TIOA15_0/MADATA13_0 P77/SCK3_0/TIOB07_2/INT12_2/MADATA12_0 P76/SOT3_0/TIOA07_2/INT11_2/MADATA11_0 P74/SCK2_0/ZIN2_0/MADATA09_0 P75/SIN3_0/ADTG_8/INT07_1/MADATA10_0 P73/SOT2_0/INT15_2/BIN2_0/MADATA08_0 P72/SIN2_0/INT14_2/AIN2_0/MADATA07_0 P71/RX0_0/INT13_2/TIOB04_2/MADATA06_0 P70/TX0_0/TIOA04_2/MADATA05_0 P4E/TIOB05_0/INT06_2/SIN7_1/ZIN1_2/MADATA04_0 P4D/TIOB04_0/FRCK1_1/SOT7_1/BIN1_2/MADATA03_0 P4B/TIOB02_0/IC12_1/ZIN0_1/MADATA01_0 P4C/TIOB03_0/IC13_1/SCK7_1/AIN1_2/MADATA02_0 P4A/TIOB01_0/IC11_1/BIN0_1/SCK3_2/MADATA00_0 P49/TIOB00_0/IC10_1/AIN0_1/SOT3_2 P48/DTTI1X_1/INT14_1/SIN3_2 INITX P47/X1A P46/X0A VCC VSS C P45/TIOA05_0/RTO15_1 P44/TIOA04_0/RTO14_1 P42/TIOA02_0/RTO12_1 P43/TIOA03_0/RTO13_1/ADTG_7 VCC P41/TIOA01_0/RTO11_1/INT13_1 P40/TIOA00_0/RTO10_1/INT12_1 66 VCC 65 73 64 36 63 P10/AN00/MCSX7_0 VSS 62 74 61 35 60 P11/AN01/SIN1_1/INT02_1/RX1_2/FRCK0_2/MCSX6_0 P3F/RTO05_0/TIOA05_1 59 75 58 34 57 P12/AN02/SOT1_1/TX1_2/IC00_2/MCSX5_0 P3E/RTO04_0/TIOA04_1 56 76 55 33 54 P13/AN03/SCK1_1/IC01_2/MCSX4_0 P3D/RTO03_0/TIOA03_1 53 P14/AN04/SIN0_1/INT03_1/IC02_2/MAD00_0 77 52 78 32 51 31 P3C/RTO02_0/TIOA02_1 50 P15/AN05/SOT0_1/IC03_2/MAD01_0 P3B/RTO01_0/TIOA01_1 49 79 48 30 47 P16/AN06/SCK0_1/INT20_1/MAD02_0 P3A/RTO00_0/TIOA00_1 46 80 45 29 44 P17/AN07/SIN2_2/INT04_1/MAD03_0 P39/DTTI0X_0/ADTG_2 43 81 42 28 41 P18/AN08/SOT2_2/INT21_1/MAD04_0 P38/IC00_0/SCK5_2/INT11_1/MCLKOUT_0 40 P19/AN09/SCK2_2/INT22_1/MAD05_0 82 39 83 27 38 26 37 P36/IC02_0/SIN5_2/INT09_1/TIOA12_2/MCSX2_0 P37/IC01_0/SOT5_2/INT10_1/TIOB12_2/MCSX3_0 <Note> The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. TIOA09_0 and TIOA09_2 cannot be used as the external startup trigger input (TGIN signal) at I/O mode 1 (timer full mode) of the Base Timer. See "●Base Timer" in "Handling Devices" for details. 10 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t BGA-192P-M06 (TOP VIEW) 1 A 2 3 UDP0 UDM0 4 5 6 7 8 9 10 11 12 13 14 USB VSS PCD PCB VSS VCC PC8 VSS TCK VCC VCC0 B VSS PA0 PF5 PF3 P61 PD1 PCA PC1 P95 P92 TDO TMS C VCC PA1 PA2 PF4 P60 PD2 PCC PC5 PC0 P93 P90 D PA5 PA4 P05 P06 PA3 PD3 PCE PC6 PC2 P94 P91 P21 P20 UDM1 E VSS P07 P08 P09 P50 P62 PCF PC7 PC3 P25 P24 P23 P22 VCC1 F P51 P52 P53 P54 P55 P56 PD0 PC9 PC4 P29 P28 P27 P26 VSS G VSS P57 P58 P59 P5A P5B VSS VSS PB7 PB6 PB5 PB4 PB3 AVSS H P5C P5D P30 P31 P32 P33 VSS VSS P1F P1E PB2 PB1 PB0 AVRH J VSS P37 P36 P35 P34 P70 VSS P76 P1D P1C P1B P1A P19 AVCC K P38 P39 P3A P3B P4A P4E VSS P74 P7B P7F P18 P16 P15 P17 L P3C P3D P3E P43 P49 P4D VSS P73 P7A P7E P14 P13 P12 VSS M VSS P3F P42 P44 P48 P4C VSS P72 P79 PF0 PF2 P11 P10 VCC N VCC P40 P41 P45 INITX P4B VSS P71 P78 P7D PF1 MD0 MD1 VSS TRSTX VSS TDI PF6 UDP1 USB P C VSS VCC X0A X1A VSS P75 P77 P7C VSS X0 X1 <Note> The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. TIOA09_0, TIOA09_1, and TIOA09_2 cannot be used as the external startup trigger input (TGIN signal) at I/O mode 1 (timer full mode) of the Base Timer. See "●Base Timer" in "Handling Devices" for details. February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 11 D a t a S h e e t List of Pin Functions List of pin numbers The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. LQFP-176 1 Pin No LQFP-144 1 BGA-192 C1 2 2 B2 3 3 C2 4 4 C3 5 5 D5 6 6 D2 7 7 D1 8 8 D3 9 9 D4 12 CONFIDENTIAL Pin Name VCC PA0 RTO20_0 TIOA08_0 FRCK1_0 PA1 RTO21_0 TIOA09_0 IC10_0 PA2 RTO22_0 TIOA10_0 IC11_0 PA3 RTO23_0 TIOA11_0 IC12_0 PA4 RTO24_0 TIOA12_0 RX0_2 IC13_0 INT03_0 PA5 RTO25_0 TX0_2 TIOA13_0 INT10_2 P05 TRACED0 TIOA05_2 SIN4_2 INT00_1 P06 TRACED1 TIOB05_2 SOT4_2 INT01_1 I/O circuit type Pin state type - G I G I G I G I G H G H E F E F MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t LQFP-176 Pin No LQFP-144 BGA-192 10 10 E2 11 11 E3 12 12 E4 13 13 E5 14 14 F1 15 15 F2 February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Pin Name P07 TRACED2 ADTG_0 SCK4_2 P08 TRACED3 TIOA00_2 CTS4_2 P09 TRACECLK TIOB00_2 RTS4_2 DTTI2X_0 P50 INT00_0 AIN0_2 SIN3_1 RTO10_0 IC20_0 MOEX_0 P51 INT01_0 BIN0_2 SOT3_1 RTO11_0 IC21_0 MWEX_0 P52 INT02_0 ZIN0_2 SCK3_1 RTO12_0 IC22_0 MDQM0_0 I/O circuit type Pin state type E G E G E G E H E H E H 13 D a t a S h e e t LQFP-176 Pin No LQFP-144 BGA-192 16 16 F3 17 17 F4 18 18 F5 19 19 F6 20 20 G2 21 21 G3 22 22 G4 14 CONFIDENTIAL Pin Name P53 SIN6_0 TIOA01_2 INT07_2 RTO13_0 IC23_0 MDQM1_0 P54 SOT6_0 TIOB01_2 RTO14_0 MALE_0 P55 SCK6_0 ADTG_1 RTO15_0 MRDY_0 P56 SIN1_0 INT08_2 TIOA09_2 DTTI1X_0 MNALE_0 P57 SOT1_0 TIOB09_2 INT16_1 MNCLE_0 P58 SCK1_0 TIOA11_2 INT17_1 MNWEX_0 P59 SIN7_0 RX1_1 TIOB11_2 INT09_2 MNREX_0 I/O circuit type Pin state type E H E I E I E H E H E H E H MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t LQFP-176 Pin No LQFP-144 BGA-192 23 23 G5 24 24 G6 25 - H1 26 - H2 27 25 J1 28 - H3 29 - H4 30 - H5 31 - H6 February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Pin name P5A SOT7_0 TX1_1 TIOA13_1 INT18_1 MCSX0_0 P5B SCK7_0 TIOB13_1 INT19_1 MCSX1_0 P5C TIOA06_2 INT28_0 IC20_1 P5D TIOB06_2 INT29_0 DTTI2X_1 VSS P30 AIN0_0 TIOB00_1 INT03_2 P31 BIN0_0 TIOB01_1 SCK6_1 INT04_2 P32 ZIN0_0 TIOB02_1 SOT6_1 INT05_2 P33 INT04_0 TIOB03_1 SIN6_1 ADTG_6 I/O circuit type Pin state type E H E H E H E H - E H E H E H E H 15 D a t a S h e e t LQFP-176 Pin No LQFP-144 BGA-192 32 - J5 33 - J4 34 26 J3 35 27 J2 36 28 K1 37 29 K2 38 30 K3 39 31 K4 40 32 L1 16 CONFIDENTIAL Pin name P34 FRCK0_0 TX0_1 TIOB04_1 P35 IC03_0 RX0_1 TIOB05_1 INT08_1 P36 IC02_0 SIN5_2 INT09_1 TIOA12_2 MCSX2_0 P37 IC01_0 SOT5_2 INT10_1 TIOB12_2 MCSX3_0 P38 IC00_0 SCK5_2 INT11_1 MCLKOUT_0 P39 DTTI0X_0 ADTG_2 P3A RTO00_0 TIOA00_1 P3B RTO01_0 TIOA01_1 P3C RTO02_0 TIOA02_1 I/O circuit type Pin state type E I E H E H E H E H E I G I G I G I MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t LQFP-176 Pin No LQFP-144 BGA-192 41 33 L2 42 34 L3 43 35 M2 44 45 36 37 M1 N1 46 38 N2 47 39 N3 48 40 M3 49 41 L4 50 42 M4 51 43 N4 52 53 54 44 45 46 P2 P3 P4 55 47 P5 56 48 P6 57 49 N5 58 50 M5 February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Pin name P3D RTO03_0 TIOA03_1 P3E RTO04_0 TIOA04_1 P3F RTO05_0 TIOA05_1 VSS VCC P40 TIOA00_0 RTO10_1 INT12_1 P41 TIOA01_0 RTO11_1 INT13_1 P42 TIOA02_0 RTO12_1 P43 TIOA03_0 RTO13_1 ADTG_7 P44 TIOA04_0 RTO14_1 P45 TIOA05_0 RTO15_1 C VSS VCC P46 X0A P47 X1A INITX P48 DTTI1X_1 INT14_1 SIN3_2 I/O circuit type Pin state type G I G I G I - G H G H G I G I G I G I - D M D N B C E H 17 D a t a S h e e t LQFP-176 Pin No LQFP-144 BGA-192 59 51 L5 60 52 K5 61 53 N6 62 54 M6 63 55 L6 64 56 K6 65 57 J6 66 58 N8 18 CONFIDENTIAL Pin name P49 TIOB00_0 IC10_1 AIN0_1 SOT3_2 P4A TIOB01_0 IC11_1 BIN0_1 SCK3_2 MADATA00_0 P4B TIOB02_0 IC12_1 ZIN0_1 MADATA01_0 P4C TIOB03_0 IC13_1 SCK7_1 AIN1_2 MADATA02_0 P4D TIOB04_0 FRCK1_1 SOT7_1 BIN1_2 MADATA03_0 P4E TIOB05_0 INT06_2 SIN7_1 ZIN1_2 MADATA04_0 P70 TIOA04_2 TX0_0 MADATA05_0 P71 INT13_2 TIOB04_2 RX0_0 MADATA06_0 I/O circuit type Pin state type E I E I E I E I E I E H E I E H MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t LQFP-176 Pin No LQFP-144 BGA-192 67 59 M8 68 60 L8 69 61 K8 70 62 P8 71 63 J8 72 64 P9 73 65 N9 74 66 M9 - - E1 G1 February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Pin name P72 SIN2_0 INT14_2 AIN2_0 MADATA07_0 P73 SOT2_0 INT15_2 BIN2_0 MADATA08_0 P74 SCK2_0 ZIN2_0 MADATA09_0 P75 SIN3_0 ADTG_8 INT07_1 MADATA10_0 P76 SOT3_0 TIOA07_2 INT11_2 MADATA11_0 P77 SCK3_0 TIOB07_2 INT12_2 MADATA12_0 P78 AIN1_0 TIOA15_0 MADATA13_0 P79 BIN1_0 TIOB15_0 INT23_1 MADATA14_0 VSS VSS I/O circuit type Pin state type E H E H E I E H E H E H E I E H - 19 D a t a S h e e t LQFP-176 Pin No LQFP-144 BGA-192 75 67 L9 76 - K9 77 - P10 78 - N10 79 - L10 80 - K10 81 - M10 82 - N11 83 - M11 84 68 N13 85 69 N12 86 70 P12 87 71 P13 88 89 - 72 73 - N14 M14 L7 K7 20 CONFIDENTIAL Pin name P7A ZIN1_0 INT24_1 MADATA15_0 P7B TIOB07_0 INT10_0 P7C TIOA07_0 INT11_0 P7D TIOA14_1 FRCK2_1 INT12_0 P7E TIOB14_1 IC21_1 INT24_0 P7F TIOA15_1 IC22_1 INT25_0 PF0 TIOB15_1 SIN1_2 INT13_0 IC23_1 PF1 TIOA08_1 SOT1_2 INT14_0 PF2 TIOB08_1 SCK1_2 INT15_0 PE0 MD1 MD0 PE2 X0 PE3 X1 VSS VCC VSS VSS I/O circuit type Pin state type E H E H E H E H E H E H I* H I* H I* H C P J D A A A B - MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t LQFP-176 Pin No LQFP-144 BGA-192 90 74 M13 91 75 M12 92 76 L13 93 77 L12 94 78 L11 95 79 K13 96 80 K12 97 81 K14 - - P7 P11 L14 February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Pin name P10 AN00 MCSX7_0 P11 AN01 SIN1_1 RX1_2 INT02_1 FRCK0_2 MCSX6_0 P12 AN02 SOT1_1 TX1_2 IC00_2 MCSX5_0 P13 AN03 SCK1_1 IC01_2 MCSX4_0 P14 AN04 SIN0_1 INT03_1 IC02_2 MAD00_0 P15 AN05 SOT0_1 IC03_2 MAD01_0 P16 AN06 SCK0_1 INT20_1 MAD02_0 P17 AN07 SIN2_2 INT04_1 MAD03_0 VSS VSS VSS I/O circuit type Pin state type F K F L F K F K F L F K F L F L - 21 D a t a S h e e t LQFP-176 Pin No LQFP-144 BGA-192 98 82 K11 99 83 J13 100 84 J12 101 85 J11 102 86 J10 103 87 J9 104 88 H10 22 CONFIDENTIAL Pin name P18 AN08 SOT2_2 INT21_1 MAD04_0 P19 AN09 SCK2_2 INT22_1 MAD05_0 P1A AN10 SIN4_1 INT05_1 TIOA13_2 IC00_1 MAD06_0 P1B AN11 SOT4_1 INT25_1 TIOB13_2 IC01_1 MAD07_0 P1C AN12 SCK4_1 INT26_1 TIOA14_2 IC02_1 MAD08_0 P1D AN13 CTS4_1 INT27_1 TIOB14_2 IC03_1 MAD09_0 P1E AN14 RTS4_1 INT28_1 TIOA15_2 DTTI0X_1 MAD10_0 I/O circuit type Pin state type F L F L F L F L F L F L F L MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t LQFP-176 Pin No LQFP-144 BGA-192 105 89 H9 106 107 108 109 90 91 92 93 J14 H14 G14 F14 110 - H13 111 - H12 112 - H11 113 - G13 114 - G12 115 - G11 - - G7 J7 February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Pin name P1F AN15 ADTG_5 INT29_1 TIOB15_2 FRCK0_1 MAD11_0 AVCC AVRH AVSS VSS PB0 AN16 TIOA09_1 SIN7_2 INT16_0 PB1 AN17 TIOB09_1 SOT7_2 INT17_0 PB2 AN18 TIOA10_1 SCK7_2 INT18_0 PB3 AN19 TIOB10_1 INT19_0 PB4 AN20 TIOA11_1 SIN0_2 INT20_0 PB5 AN21 TIOB11_1 SOT0_2 INT21_0 AIN2_2 VSS VSS I/O circuit type Pin state type F L - F L F L F L F L F L F L - 23 D a t a S h e e t LQFP-176 Pin No LQFP-144 BGA-192 116 - G10 117 - G9 118 94 F10 119 95 F11 120 96 F12 121 97 F13 122 98 E10 123 99 E11 24 CONFIDENTIAL Pin name PB6 AN22 TIOA12_1 SCK0_2 INT22_0 BIN2_2 PB7 AN23 TIOB12_1 INT23_0 ZIN2_2 P29 AN24 MAD12_0 P28 AN25 ADTG_4 INT09_0 RTO05_1 MAD13_0 P27 AN26 INT02_2 RTO04_1 MAD14_0 P26 AN27 SCK2_1 RTO03_1 MAD15_0 P25 AN28 SOT2_1 TX1_0 RTO02_1 MAD16_0 P24 AN29 SIN2_1 RX1_0 INT01_2 RTO01_1 MAD17_0 I/O circuit type Pin state type F L F L F K F L F L F K F K F L MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t LQFP-176 Pin No LQFP-144 BGA-192 124 100 E12 125 101 E13 126 102 D12 127 103 D13 128 104 C13 129 105 E14 130 106 D14 131 107 C14 132 133 108 109 B14 A13 134 110 B13 135 111 A12 136 112 C12 137 113 B12 138 114 B11 139 - C11 - - A8 February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Pin name P23 AN30 SCK0_0 TIOA07_1 RTO00_1 P22 AN31 SOT0_0 TIOB07_1 ZIN1_1 P21 SIN0_0 INT06_1 BIN1_1 P20 INT05_0 CROUT_0 UHCONX1 AIN1_1 MAD18_0 PF6 FRCK2_0 NMIX USBVCC1 P82 UDM1 P83 UDP1 VSS VCC P00 TRSTX P01 TCK SWCLK P02 TDI P03 TMS SWDIO P04 TDO SWO P90 TIOB08_0 RTO20_1 INT30_0 MAD19_0 VSS I/O circuit type Pin state type F K F K E H E H I* J - H O H O - E E E E E E E E E E E H - 25 D a t a S h e e t LQFP-176 Pin No LQFP-144 BGA-192 140 - D11 141 - B10 142 - C10 143 - D10 144 - B9 145 146 147 115 116 117 C9 B8 D9 148 118 E9 149 119 F9 150 120 C8 - - A5 26 CONFIDENTIAL Pin name P91 TIOB09_0 RTO21_1 INT31_0 MAD20_0 P92 TIOB10_0 RTO22_1 SIN5_1 MAD21_0 P93 TIOB11_0 RTO23_1 SOT5_1 MAD22_0 P94 TIOB12_0 RTO24_1 SCK5_1 INT26_0 MAD23_0 P95 TIOB13_0 RTO25_1 INT27_0 MAD24_0 PC0 PC1 PC2 PC3 TIOA06_1 PC4 TIOA08_2 PC5 TIOA10_2 VSS I/O circuit type Pin state type E H E I E I E H E H K K K Q Q Q K Q K Q K Q - MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t LQFP-176 Pin No LQFP-144 BGA-192 151 121 D8 152 122 E8 153 154 155 156 157 158 159 160 123 124 125 126 127 128 129 130 A10 F8 B7 A9 A11 A7 C7 A6 161 131 D7 162 132 E7 163 133 F7 164 134 B6 - - N7 G8 H7 H8 February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Pin name PC6 TIOA14_0 PC7 CROUT_1 PC8 PC9 PCA VCC VSS PCB PCC PCD PCE RTS4_0 TIOB06_1 PCF CTS4_0 TIOB08_2 PD0 SCK4_0 TIOB10_2 INT30_1 PD1 SOT4_0 TIOB14_0 INT31_1 VSS VSS VSS VSS I/O circuit type Pin state type K Q L Q K K K Q Q Q - L K K Q Q Q L Q L Q L R L R - 27 D a t a S h e e t LQFP-176 Pin No LQFP-144 BGA-192 165 135 C6 166 136 D6 167 137 E6 168 138 B5 169 139 C5 170 - B4 171 - C4 172 140 B3 173 141 A4 174 142 A3 175 143 A2 144 - B1 M7 176 * : 5V tolerant I/O 28 CONFIDENTIAL Pin name PD2 SIN4_0 TIOA03_2 INT00_2 PD3 TIOB03_2 P62 SCK5_0 ADTG_3 P61 SOT5_0 TIOB02_2 UHCONX0 P60 SIN5_0 TIOA02_2 INT15_1 PF3 TIOA06_0 SIN6_2 INT06_0 AIN2_1 PF4 TIOB06_0 SOT6_2 INT07_0 BIN2_1 PF5 SCK6_2 INT08_0 ZIN2_1 USBVCC0 P80 UDM0 P81 UDP0 VSS VSS I/O circuit type Pin state type L R L Q E Q E I E H I* H I* H I* H - H O H O - MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t List of pin functions The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Module Pin name ADC ADTG_0 ADTG_1 ADTG_2 ADTG_3 ADTG_4 ADTG_5 ADTG_6 ADTG_7 ADTG_8 AN00 AN01 AN02 AN03 AN04 AN05 AN06 AN07 AN08 AN09 AN10 AN11 AN12 AN13 AN14 AN15 AN16 AN17 AN18 AN19 AN20 AN21 AN22 AN23 AN24 AN25 AN26 AN27 AN28 AN29 AN30 AN31 Function A/D converter external trigger input pin A/D converter analog input pin ANxx describes ADC ch.xx February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Pin No LQFP-176 LQFP-144 BGA-192 10 18 37 167 119 105 31 49 70 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 10 18 29 137 95 89 41 62 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 94 95 96 97 98 99 100 101 E2 F5 K2 E6 F11 H9 H6 L4 P8 M13 M12 L13 L12 L11 K13 K12 K14 K11 J13 J12 J11 J10 J9 H10 H9 H13 H12 H11 G13 G12 G11 G10 G9 F10 F11 F12 F13 E10 E11 E12 E13 29 D a t a S h e e t Module Pin name Base Timer 0 TIOA0_0 TIOA0_1 TIOA0_2 TIOB0_0 TIOB0_1 TIOB0_2 TIOA1_0 TIOA1_1 TIOA1_2 TIOB1_0 TIOB1_1 TIOB1_2 TIOA2_0 TIOA2_1 TIOA2_2 TIOB2_0 TIOB2_1 TIOB2_2 TIOA3_0 TIOA3_1 TIOA3_2 TIOB3_0 TIOB3_1 TIOB3_2 TIOA4_0 TIOA4_1 TIOA4_2 TIOB4_0 TIOB4_1 TIOB4_2 TIOA5_0 TIOA5_1 TIOA5_2 TIOB5_0 TIOB5_1 TIOB5_2 TIOA6_0 TIOA6_1 TIOA6_2 TIOB6_0 TIOB6_1 TIOB6_2 Base Timer 1 Base Timer 2 Base Timer 3 Base Timer 4 Base Timer 5 Base Timer 6 30 CONFIDENTIAL Function Base timer ch.0 TIOA pin Base timer ch.0 TIOB pin Base timer ch.1 TIOA pin Base timer ch.1 TIOB pin Base timer ch.2 TIOA pin Base timer ch.2 TIOB pin Base timer ch.3 TIOA pin Base timer ch.3 TIOB pin Base timer ch.4 TIOA pin Base timer ch.4 TIOB pin Base timer ch.5 TIOA pin Base timer ch.5 TIOB pin Base timer ch.6 TIOA pin Base timer ch.6 TIOB pin Pin No LQFP-176 LQFP-144 BGA-192 46 38 11 59 28 12 47 39 16 60 29 17 48 40 169 61 30 168 49 41 165 62 31 166 50 42 65 63 32 66 51 43 8 64 33 9 170 148 25 171 161 26 38 30 11 51 12 39 31 16 52 17 40 32 139 53 138 41 33 135 54 136 42 34 57 55 58 43 35 8 56 9 118 131 - N2 K3 E3 L5 H3 E4 N3 K4 F3 K5 H4 F4 M3 L1 C5 N6 H5 B5 L4 L2 C6 M6 H6 D6 M4 L3 J6 L6 J5 N8 N4 M2 D3 K6 J4 D4 B4 E9 H1 C4 D7 H2 MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Module Pin name Base Timer 7 TIOA07_0 TIOA07_1 TIOA07_2 TIOB07_0 TIOB07_1 TIOB07_2 TIOA08_0 TIOA08_1 TIOA08_2 TIOB08_0 TIOB08_1 TIOB08_2 TIOA09_0 TIOA09_1 TIOA09_2 TIOB09_0 TIOB09_1 TIOB09_2 TIOA10_0 TIOA10_1 TIOA10_2 TIOB10_0 TIOB10_1 TIOB10_2 TIOA11_0 TIOA11_1 TIOA11_2 TIOB11_0 TIOB11_1 TIOB11_2 TIOA12_0 TIOA12_1 TIOA12_2 TIOB12_0 TIOB12_1 TIOB12_2 TIOA13_0 TIOA13_1 TIOA13_2 TIOB13_0 TIOB13_1 TIOB13_2 Base Timer 8 Base Timer 9 Base Timer 10 Base Timer 11 Base Timer 12 Base Timer 13 Function Base timer ch.7 TIOA pin Base timer ch.7 TIOB pin Base timer ch.8 TIOA pin Base timer ch.8 TIOB pin Base timer ch.9 TIOA pin Base timer ch.9 TIOB pin Base timer ch.10 TIOA pin Base timer ch.10 TIOB pin Base timer ch.11 TIOA pin Base timer ch.11 TIOB pin Base timer ch.12 TIOA pin Base timer ch.12 TIOB pin Base timer ch.13 TIOA pin Base timer ch.13 TIOB pin February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Pin No LQFP-176 LQFP-144 BGA-192 77 124 71 76 125 72 2 82 149 139 83 162 3 110 19 140 111 20 4 112 150 141 113 163 5 114 21 142 115 22 6 116 34 143 117 35 7 23 100 144 24 101 100 63 101 64 2 119 132 3 19 20 4 120 133 5 21 22 6 26 27 7 23 84 24 85 P10 E12 J8 K9 E13 P9 B2 N11 F9 C11 M11 E7 C2 H13 F6 D11 H12 G2 C3 H11 C8 B10 G13 F7 D5 G12 G3 C10 G11 G4 D2 G10 J3 D10 G9 J2 D1 G5 J12 B9 G6 J11 31 D a t a S h e e t Module Pin name Base Timer 14 TIOA14_0 TIOA14_1 TIOA14_2 TIOB14_0 TIOB14_1 TIOB14_2 TIOA15_0 TIOA15_1 TIOA15_2 TIOB15_0 TIOB15_1 TIOB15_2 TX0_0 TX0_1 TX0_2 RX0_0 RX0_1 RX0_2 TX1_0 TX1_1 TX1_2 RX1_0 RX1_1 RX1_2 SWCLK Base Timer 15 CAN 0 CAN 1 Debugger SWDIO SWO TCK TDI TDO TMS TRACECLK TRACED0 TRACED1 TRACED2 TRACED3 TRSTX 32 CONFIDENTIAL Pin No Function LQFP-176 LQFP-144 BGA-192 Base timer ch.14 TIOA pin Base timer ch.14 TIOB pin Base timer ch.15 TIOA pin Base timer ch.15 TIOB pin CAN interface ch.0 TX output CAN interface ch.0 RX output CAN interface ch.1 TX output CAN interface ch.1 RX output Serial wire debug interface clock input Serial wire debug interface data input / output Serial wire viewer output J-TAG test clock input J-TAG test data input J-TAG debug data output J-TAG test mode state input/output Trace CLK output of ETM Trace data output of ETM J-TAG test reset Input 151 78 102 164 79 103 73 80 104 74 81 105 65 32 7 66 33 6 122 23 92 123 22 91 135 121 86 134 87 65 88 66 89 57 7 58 6 98 23 76 99 22 75 111 D8 N10 J10 B6 L10 J9 N9 K10 H10 M9 M10 H9 J6 J5 D1 N8 J4 D2 E10 G5 L13 E11 G4 M12 A12 137 113 B12 138 135 136 138 137 12 8 9 10 11 134 114 111 112 114 113 12 8 9 10 11 110 B11 A12 C12 B11 B12 E4 D3 D4 E2 E3 B13 MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Module Pin name External Bus MAD00_0 MAD01_0 MAD02_0 MAD03_0 MAD04_0 MAD05_0 MAD06_0 MAD07_0 MAD08_0 MAD09_0 MAD10_0 MAD11_0 MAD12_0 MAD13_0 MAD14_0 MAD15_0 MAD16_0 MAD17_0 MAD18_0 MAD19_0 MAD20_0 MAD21_0 MAD22_0 MAD23_0 MAD24_0 MCSX0_0 MCSX1_0 MCSX2_0 MCSX3_0 MCSX4_0 MCSX5_0 MCSX6_0 MCSX7_0 MDQM0_0 MDQM1_0 MOEX_0 MWEX_0 Function External bus interface address bus External bus interface chip select output pin External bus interface byte mask signal output External bus interface read enable signal for SRAM External bus interface write enable signal for SRAM February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Pin No LQFP-176 LQFP-144 BGA-192 94 95 96 97 98 99 100 101 102 103 104 105 118 119 120 121 122 123 127 139 140 141 142 143 144 23 24 34 35 93 92 91 90 15 16 78 79 80 81 82 83 84 85 86 87 88 89 94 95 96 97 98 99 103 23 24 26 27 77 76 75 74 15 16 L11 K13 K12 K14 K11 J13 J12 J11 J10 J9 H10 H9 F10 F11 F12 F13 E10 E11 D13 C11 D11 B10 C10 D10 B9 G5 G6 J3 J2 L12 L13 M12 M13 F2 F3 13 13 E5 14 14 F1 33 D a t a S h e e t Module Pin name External Bus MNALE_0 MNCLE_0 MNREX_0 MNWEX_0 MADATA00_0 MADATA01_0 MADATA02_0 MADATA03_0 MADATA04_0 MADATA05_0 MADATA06_0 MADATA07_0 MADATA08_0 MADATA09_0 MADATA10_0 MADATA11_0 MADATA12_0 MADATA13_0 MADATA14_0 MADATA15_0 MALE_0 MRDY_0 MCLKOUT_0 34 CONFIDENTIAL Pin No Function LQFP-176 LQFP-144 BGA-192 External bus interface ALE signal to control NAND Flash output pin External bus interface CLE signal to control NAND Flash output pin External bus interface read enable signal to control NAND Flash External bus interface write enable signal to control NAND Flash External bus interface data bus (Address / data multiplex bus) External bus interface Address Latch enable output signal for multiplex External bus interface external RDY input signal External bus interface external clock output 19 19 F6 20 20 G2 22 22 G4 21 21 G3 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 K5 N6 M6 L6 K6 J6 N8 M8 L8 K8 P8 J8 P9 N9 M9 L9 17 17 F4 18 18 F5 36 28 K1 MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Module Pin name External Interrupt INT00_0 INT00_1 INT00_2 INT01_0 INT01_1 INT01_2 INT02_0 INT02_1 INT02_2 INT03_0 INT03_1 INT03_2 INT04_0 INT04_1 INT04_2 INT05_0 INT05_1 INT05_2 INT06_0 INT06_1 INT06_2 INT07_0 INT07_1 INT07_2 INT08_0 INT08_1 INT08_2 INT09_0 INT09_1 INT09_2 INT10_0 INT10_1 INT10_2 INT11_0 INT11_1 INT11_2 INT12_0 INT12_1 INT12_2 INT13_0 INT13_1 INT13_2 INT14_0 INT14_1 INT14_2 Function External interrupt request 00 input pin External interrupt request 01 input pin External interrupt request 02 input pin External interrupt request 03 input pin External interrupt request 04 input pin External interrupt request 05 input pin External interrupt request 06 input pin External interrupt request 07 input pin External interrupt request 08 input pin External interrupt request 09 input pin External interrupt request 10 input pin External interrupt request 11 input pin External interrupt request 12 input pin External interrupt request 13 input pin External interrupt request 14 input pin February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Pin No LQFP-176 LQFP-144 BGA-192 13 8 165 14 9 123 15 91 120 6 94 28 31 97 29 127 100 30 170 126 64 171 70 16 172 33 19 119 34 22 76 35 7 77 36 71 78 46 72 81 47 66 82 58 67 13 8 135 14 9 99 15 75 96 6 78 81 103 84 102 56 62 16 140 19 95 26 22 27 7 28 63 38 64 39 58 50 59 E5 D3 C6 F1 D4 E11 F2 M12 F12 D2 L11 H3 H6 K14 H4 D13 J12 H5 B4 D12 K6 C4 P8 F3 B3 J4 F6 F11 J3 G4 K9 J2 D1 P10 K1 J8 N10 N2 P9 M10 N3 N8 N11 M5 M8 35 D a t a S h e e t Module Pin name External Interrupt INT15_0 INT15_1 INT15_2 INT16_0 INT16_1 INT17_0 INT17_1 INT18_0 INT18_1 INT19_0 INT19_1 INT20_0 INT20_1 INT21_0 INT21_1 INT22_0 INT22_1 INT23_0 INT23_1 INT24_0 INT24_1 INT25_0 INT25_1 INT26_0 INT26_1 INT27_0 INT27_1 INT28_0 INT28_1 INT29_0 INT29_1 INT30_0 INT30_1 INT31_0 INT31_1 NMIX 36 CONFIDENTIAL Pin No Function LQFP-176 LQFP-144 BGA-192 External interrupt request 15 input pin External interrupt request 16 input pin External interrupt request 17 input pin External interrupt request 18 input pin External interrupt request 19 input pin External interrupt request 20 input pin External interrupt request 21 input pin External interrupt request 22 input pin External interrupt request 23 input pin External interrupt request 24 input pin External interrupt request 25 input pin External interrupt request 26 input pin External interrupt request 27 input pin External interrupt request 28 input pin External interrupt request 29 input pin External interrupt request 30 input pin External interrupt request 31 input pin Non-Maskable Interrupt input 83 169 68 110 20 111 21 112 23 113 24 114 96 115 98 116 99 117 74 79 75 80 101 143 102 144 103 25 104 26 105 139 163 140 164 128 139 60 20 21 23 24 80 82 83 66 67 85 86 87 88 89 133 134 104 M11 C5 L8 H13 G2 H12 G3 H11 G5 G13 G6 G12 K12 G11 K11 G10 J13 G9 M9 L10 L9 K10 J11 D10 J10 B9 J9 H1 H10 H2 H9 C11 F7 D11 B6 C13 MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Module Pin name GPIO P00 P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P1A P1B P1C P1D P1E P1F P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 Function General-purpose I/O port 0 General-purpose I/O port 1 General-purpose I/O port 2 February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Pin No LQFP-176 LQFP-144 BGA-192 134 135 136 137 138 8 9 10 11 12 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 127 126 125 124 123 122 121 120 119 118 110 111 112 113 114 8 9 10 11 12 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 103 102 101 100 99 98 97 96 95 94 B13 A12 C12 B12 B11 D3 D4 E2 E3 E4 M13 M12 L13 L12 L11 K13 K12 K14 K11 J13 J12 J11 J10 J9 H10 H9 D13 D12 E13 E12 E11 E10 F13 F12 F11 F10 37 D a t a S h e e t Module Pin name GPIO P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P3A P3B P3C P3D P3E P3F P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P4A P4B P4C P4D P4E P50 P51 P52 P53 P54 P55 P56 P57 P58 P59 P5A P5B P5C P5D 38 CONFIDENTIAL Function General-purpose I/O port 3 General-purpose I/O port 4 General-purpose I/O port 5 Pin No LQFP-176 LQFP-144 BGA-192 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 46 47 48 49 50 51 55 56 58 59 60 61 62 63 64 13 14 15 16 17 18 19 20 21 22 23 24 25 26 26 27 28 29 30 31 32 33 34 35 38 39 40 41 42 43 47 48 50 51 52 53 54 55 56 13 14 15 16 17 18 19 20 21 22 23 24 - H3 H4 H5 H6 J5 J4 J3 J2 K1 K2 K3 K4 L1 L2 L3 M2 N2 N3 M3 L4 M4 N4 P5 P6 M5 L5 K5 N6 M6 L6 K6 E5 F1 F2 F3 F4 F5 F6 G2 G3 G4 G5 G6 H1 H2 MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Module Pin name GPIO P60 P61 P62 P70 P71 P72 P73 P74 P75 P76 P77 P78 P79 P7A P7B P7C P7D P7E P7F P80 P81 P82 P83 P90 P91 P92 P93 P94 P95 PA0 PA1 PA2 PA3 PA4 PA5 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 Function General-purpose I/O port 6 General-purpose I/O port 7 General-purpose I/O port 8 General-purpose I/O port 9 General-purpose I/O port A General-purpose I/O port B February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Pin No LQFP-176 LQFP-144 BGA-192 169 168 167 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 174 175 130 131 139 140 141 142 143 144 2 3 4 5 6 7 110 111 112 113 114 115 116 117 139 138 137 57 58 59 60 61 62 63 64 65 66 67 142 143 106 107 2 3 4 5 6 7 - C5 B5 E6 J6 N8 M8 L8 K8 P8 J8 P9 N9 M9 L9 K9 P10 N10 L10 K10 A3 A2 D14 C14 C11 D11 B10 C10 D10 B9 B2 C2 C3 D5 D2 D1 H13 H12 H11 G13 G12 G11 G10 G9 39 D a t a S h e e t Module Pin name GPIO PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PCA PCB PCC PCD PCE PCF PD0 PD1 PD2 PD3 PE0 PE2 PE3 PF0 PF1 PF2 PF3 PF4 PF5 PF6 40 CONFIDENTIAL Function General-purpose I/O port C General-purpose I/O port D General-purpose I/O port E General-purpose I/O port F* Pin no LQFP-176 LQFP-144 BGA-192 145 146 147 148 149 150 151 152 153 154 155 158 159 160 161 162 163 164 165 166 84 86 87 81 82 83 170 171 172 128 115 116 117 118 119 120 121 122 123 124 125 128 129 130 131 132 133 134 135 136 68 70 71 140 104 C9 B8 D9 E9 F9 C8 D8 E8 A10 F8 B7 A7 C7 A6 D7 E7 F7 B6 C6 D6 N13 P12 P13 M10 N11 M11 B4 C4 B3 C13 MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Module Pin name Multi Function Serial 0 SIN0_0 SIN0_1 SIN0_2 SOT0_0 (SDA0_0) SOT0_1 (SDA0_1) SOT0_2 (SDA0_2) SCK0_0 (SCL0_0) SCK0_1 (SCL0_1) Multi Function Serial 1 SCK0_2 (SCL0_2) SIN1_0 SIN1_1 SIN1_2 SOT1_0 (SDA1_0) SOT1_1 (SDA1_1) SOT1_2 (SDA1_2) SCK1_0 (SCL1_0) SCK1_1 (SCL1_1) SCK1_2 (SCL1_2) Function 126 94 114 102 78 - D12 L11 G12 Multifunction serial interface ch.0 output pin. This pin operates as SOT0 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA0 when it is used in an I2C (operation mode 4). 125 101 E13 95 79 K13 115 - G11 Multifunction serial interface ch.0 clock I/O pin. This pin operates as SCK0 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL0 when it is used in an I2C (operation mode 4). 124 100 E12 96 80 K12 116 - G10 19 91 81 19 75 - F6 M12 M10 Multifunction serial interface ch.1 output pin. This pin operates as SOT1 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA1 when it is used in an I2C (operation mode 4). 20 20 G2 92 76 L13 82 - N11 Multifunction serial interface ch.1 clock I/O pin. This pin operates as SCK1 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL1 when it is used in an I2C (operation mode 4). 21 21 G3 93 77 L12 83 - M11 Multifunction serial interface ch.0 input pin Multifunction serial interface ch.1 input pin February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Pin No. LQFP-176 LQFP-144 BGA-192 41 D a t a S h e e t Module Pin name Multi Function Serial 2 SIN2_0 SIN2_1 SIN2_2 SOT2_0 (SDA2_0) SOT2_1 (SDA2_1) SOT2_2 (SDA2_2) SCK2_0 (SCL2_0) SCK2_1 (SCL2_1) SCK2_2 (SCL2_2) SIN3_0 SIN3_1 Multi Function Serial 3 42 CONFIDENTIAL SIN3_2 SOT3_0 (SDA3_0) SOT3_1 (SDA3_1) SOT3_2 (SDA3_2) SCK3_0 (SCL3_0) SCK3_1 (SCL3_1) SCK3_2 (SCL3_2) Pin No. Function LQFP-176 LQFP-144 BGA-192 Multifunction serial interface ch.2 input pin Multifunction serial interface ch.2 output pin. This pin operates as SOT2 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA2 when it is used in an I2C (operation mode 4). Multifunction serial interface ch.2 clock I/O pin. This pin operates as SCK2 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL2 when it is used in an I2C (operation mode 4). Multifunction serial interface ch.3 input pin Multifunction serial interface ch.3 output pin. This pin operates as SOT3 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA3 when it is used in an I2C (operation mode 4). Multifunction serial interface ch.3 clock I/O pin. This pin operates as SCK3 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL3 when it is used in an I2C (operation mode 4). 67 123 97 59 99 81 M8 E11 K14 68 60 L8 122 98 E10 98 82 K11 69 61 K8 121 97 F13 99 83 J13 70 13 62 13 P8 E5 58 50 M5 71 63 J8 14 14 F1 59 51 L5 72 64 P9 15 15 F2 60 52 K5 MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Module Pin name Multi Function Serial 4 SIN4_0 SIN4_1 SIN4_2 SOT4_0 (SDA4_0) SOT4_1 (SDA4_1) SOT4_2 (SDA4_2) SCK4_0 (SCL4_0) SCK4_1 (SCL4_1) SCK4_2 (SCL4_2) RTS4_0 RTS4_1 RTS4_2 CTS4_0 CTS4_1 CTS4_2 SIN5_0 SIN5_1 SIN5_2 Multi Function Serial 5 SOT5_0 (SDA5_0) SOT5_1 (SDA5_1) SOT5_2 (SDA5_2) SCK5_0 (SCL5_0) SCK5_1 (SCL5_1) Function Multifunction serial interface ch.4 input pin Multifunction serial interface ch.4 output pin. This pin operates as SOT4 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA4 when it is used in an I2C (operation mode 4). Multifunction serial interface ch.4 clock I/O pin. This pin operates as SCK4 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL4 when it is used in an I2C (operation mode 4). Multifunction serial interface ch.4 RTS output pin Multifunction serial interface ch.4 CTS input pin Multifunction serial interface ch.5 input pin Multifunction serial interface ch.5 output pin. This pin operates as SOT5 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA5 when it is used in an I2C (operation mode 4). Multifunction serial interface ch.5 clock I/O pin. This pin operates as SCK5 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL5 when it is used in an I2C (operation mode 4). SCK5_2 (SCL5_2) February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Pin No LQFP-176 LQFP-144 BGA-192 165 100 8 135 84 8 C6 J12 D3 164 134 B6 101 85 J11 9 9 D4 163 133 F7 102 86 J10 10 10 E2 161 104 12 162 103 11 169 141 34 131 88 12 132 87 11 139 26 D7 H10 E4 E7 J9 E3 C5 B10 J3 168 138 B5 142 - C10 35 27 J2 167 137 E6 143 - D10 36 28 K1 43 D a t a S h e e t Module Pin name Multi Function Serial 6 SIN6_0 SIN6_1 SIN6_2 SOT6_0 (SDA6_0) SOT6_1 (SDA6_1) SOT6_2 (SDA6_2) SCK6_0 (SCL6_0) SCK6_1 (SCL6_1) SCK6_2 (SCL6_2) SIN7_0 SIN7_1 SIN7_2 Multi Function Serial 7 SOT7_0 (SDA7_0) SOT7_1 (SDA7_1) SOT7_2 (SDA7_2) SCK7_0 (SCL7_0) SCK7_1 (SCL7_1) SCK7_2 (SCL7_2) 44 CONFIDENTIAL Pin No Function LQFP-176 LQFP-144 BGA-192 Multifunction serial interface ch.6 input pin Multifunction serial interface ch.6 output pin. This pin operates as SOT6 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA6 when it is used in an I2C (operation mode 4). Multifunction serial interface ch.6 clock I/O pin. This pin operates as SCK6 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL6 when it is used in an I2C (operation mode 4). Multifunction serial interface ch.7 input pin Multifunction serial interface ch.7 output pin. This pin operates as SOT7 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA7 when it is used in an I2C (operation mode 4). Multifunction serial interface ch.7 clock I/O pin. This pin operates as SCK7 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL7 when it is used in an I2C (operation mode 4). 16 31 170 16 - F3 H6 B4 17 17 F4 30 - H5 171 - C4 18 18 F5 29 - H4 172 140 B3 22 64 110 22 56 - G4 K6 H13 23 23 G5 63 55 L6 111 - H12 24 24 G6 62 54 M6 112 - H11 MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Pin No Module Pin name Function Multi Function Timer 0 DTTI0X_0 Input signal controlling wave form generator outputs RTO00 to RTO05 of multi-function timer 0. DTTI0X_1 FRCK0_0 FRCK0_1 FRCK0_2 IC00_0 IC00_1 IC00_2 IC01_0 IC01_1 IC01_2 IC02_0 IC02_1 IC02_2 IC03_0 IC03_1 IC03_2 RTO00_0 (PPG00_0) RTO00_1 (PPG00_1) RTO01_0 (PPG00_0) RTO01_1 (PPG00_1) RTO02_0 (PPG02_0) RTO02_1 (PPG02_1) RTO03_0 (PPG02_0) RTO03_1 (PPG02_1) RTO04_0 (PPG04_0) RTO04_1 (PPG04_1) RTO05_0 (PPG04_0) RTO05_1 (PPG04_1) 16-bit free-run timer ch.0 external clock input pin 16-bit input capture ch.0 input pin of multi-function timer 0 ICxx describes channel number. Wave form generator output of multi-function timer 0 This pin operates as PPG00 when it is used in PPG0 output modes. Wave form generator output of multi-function timer 0 This pin operates as PPG00 when it is used in PPG0 output modes. Wave form generator output of multi-function timer 0 This pin operates as PPG02 when it is used in PPG0 output modes. Wave form generator output of multi-function timer 0 This pin operates as PPG02 when it is used in PPG0 output modes. Wave form generator output of multi-function timer 0 This pin operates as PPG04 when it is used in PPG0 output modes. Wave form generator output of multi-function timer 0 This pin operates as PPG04 when it is used in PPG0 output modes. February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL LQFP-176 LQFP-144 BGA-192 37 29 K2 104 88 H10 32 105 91 36 100 92 35 101 93 34 102 94 33 103 95 89 75 28 84 76 27 85 77 26 86 78 87 79 J5 H9 M12 K1 J12 L13 J2 J11 L12 J3 J10 L11 J4 J9 K13 38 30 K3 124 100 E12 39 31 K4 123 99 E11 40 32 L1 122 98 E10 41 33 L2 121 97 F13 42 34 L3 120 96 F12 43 35 M2 119 95 F11 45 D a t a S h e e t Module Multi Function Timer 1 Function DTTI1X_0 Input signal controlling wave form generator outputs RTO10 to RTO15 of multi-function timer 1. 19 19 F6 58 50 M5 16-bit free-run timer ch.1 external clock input pin 2 63 3 59 4 60 5 61 6 62 2 55 3 51 4 52 5 53 6 54 B2 L6 C2 L5 C3 K5 D5 N6 D2 M6 13 13 E5 46 38 N2 14 14 F1 47 39 N3 15 15 F2 48 40 M3 16 16 F3 49 41 L4 17 17 F4 50 42 M4 18 18 F5 51 43 N4 DTTI1X_1 FRCK1_0 FRCK1_1 IC10_0 IC10_1 IC11_0 IC11_1 IC12_0 IC12_1 IC13_0 IC13_1 RTO10_0 (PPG10_0) RTO10_1 (PPG10_1) RTO11_0 (PPG10_0) RTO11_1 (PPG10_1) RTO12_0 (PPG12_0) RTO12_1 (PPG12_1) RTO13_0 (PPG12_0) RTO13_1 (PPG12_1) RTO14_0 (PPG14_0) 46 CONFIDENTIAL Pin No Pin name LQFP-176 LQFP-144 BGA-192 16-bit input capture ch.1 input pin of multi-function timer 1. ICxx describes channel number Wave form generator output of multi-function timer 1. This pin operates as PPG10 when it is used in PPG1 output modes. Wave form generator output of multi-function timer 1. This pin operates as PPG10 when it is used in PPG1 output modes. Wave form generator output of multi-function timer 1. This pin operates as PPG12 when it is used in PPG1 output modes. Wave form generator output of multi-function timer 1. This pin operates as PPG12 when it is used in PPG1 output modes. RTO14_1 (PPG14_1) Wave form generator output of multi-function timer 1. This pin operates as PPG14 when it is used in PPG1 output modes. RTO15_0 (PPG14_0) RTO15_1 (PPG14_1) Wave form generator output of multi-function timer 1. This pin operates as PPG14 when it is used in PPG1 output modes. MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Pin No Module Pin name Function Multi Function Timer 2 DTTI2X_0 Input signal controlling wave form generator outputs RTO20 to RTO25 of multi-function timer 2. 12 12 E4 26 - H2 16-bit free-run timer ch.2 external clock input pin 128 78 13 25 14 79 15 80 16 81 104 13 14 15 16 - C13 N10 E5 H1 F1 L10 F2 K10 F3 M10 2 2 B2 139 - C11 3 3 C2 140 - D11 4 4 C3 141 - B10 5 5 D5 142 - C10 6 6 D2 143 - D10 7 7 D1 144 - B9 DTTI2X_1 FRCK2_0 FRCK2_1 IC20_0 IC20_1 IC21_0 IC21_1 IC22_0 IC22_1 IC23_0 IC23_1 RTO20_0 (PPG20_0) RTO20_1 (PPG20_1) RTO21_0 (PPG20_0) RTO21_1 (PPG20_1) RTO22_0 (PPG22_0) RTO22_1 (PPG22_1) RTO23_0 (PPG22_0) RTO23_1 (PPG22_1) RTO24_0 (PPG24_0) 16-bit input capture ch.2 input pin of multi-function timer 2. ICxx describes channel number. Wave form generator output of multi-function timer 2. This pin operates as PPG20 when it is used in PPG2 output modes. Wave form generator output of multi-function timer 2. This pin operates as PPG20 when it is used in PPG2 output modes. Wave form generator output of multi-function timer 2. This pin operates as PPG22 when it is used in PPG2 output modes. Wave form generator output of multi-function timer 2. This pin operates as PPG22 when it is used in PPG2 output modes. RTO24_1 (PPG24_1) Wave form generator output of multi-function timer 2. This pin operates as PPG24 when it is used in PPG2 output modes. RTO25_0 (PPG24_0) RTO25_1 (PPG24_1) Wave form generator output of multi-function timer 2. This pin operates as PPG24 when it is used in PPG2 output modes. February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL LQFP-176 LQFP-144 BGA-192 47 D a t a S h e e t Module Pin name Quadrature Position/ Revolution Counter 0 AIN0_0 Function 28 - H3 59 51 L5 AIN0_2 13 13 E5 BIN0_0 29 - H4 60 52 K5 14 14 F1 30 - H5 61 53 N6 ZIN0_2 15 15 F2 AIN1_0 73 65 N9 127 103 D13 AIN1_2 62 54 M6 BIN1_0 74 66 M9 126 102 D12 63 55 L6 AIN0_1 BIN0_1 QPRC ch.0 AIN input pin QPRC ch.0 BIN input pin BIN0_2 ZIN0_0 ZIN0_1 Quadrature Position/ Revolution Counter 1 AIN1_1 BIN1_1 QPRC ch.0 ZIN input pin QPRC ch.1 AIN input pin QPRC ch.1 BIN input pin BIN1_2 ZIN1_0 75 67 L9 125 101 E13 ZIN1_2 64 56 K6 AIN2_0 67 59 M8 ZIN1_1 Quadrature Position/ Revolution Counter 2 AIN2_1 QPRC ch.1 ZIN input pin 170 - B4 AIN2_2 115 - G11 BIN2_0 68 60 L8 171 - C4 BIN2_1 QPRC ch.2 AIN input pin QPRC ch.2 BIN input pin BIN2_2 116 - G10 ZIN2_0 69 61 K8 172 140 B3 117 - G9 ZIN2_1 QPRC ch.2 ZIN input pin ZIN2_2 USB0 USB1 48 CONFIDENTIAL Pin No LQFP-176 LQFP-144 BGA-192 UDM0 USB ch.0 function/host D – pin 174 142 A3 UDP0 USB ch.0 function/host D + pin 175 143 A2 UHCONX0 USB ch.0 USB external pull-up control pin 168 138 B5 UDM1 USB ch.1 function/host D – pin 130 106 D14 UDP1 USB ch.1 function/host D + pin 131 107 C14 UHCONX1 USB ch.1 USB external pull-up control pin 127 103 D13 MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Module RESET Pin name INITX Mode MD0 MD1 POWER VCC VCC VCC VCC VCC USBVCC0 USBVCC1 GND VCC VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS Function External Reset Input. A reset is valid when INITX="L". Mode 0 Pin. During normal operation, MD0="L" must be input. During serial programming to Flash memory, MD0="H" must be input. Mode 1 Pin. During serial programming to Flash memory, MD1="L" must be input. Power supply Pin Power supply Pin Power supply Pin Power supply Pin Power supply Pin 3.3V Power supply port for USB I/O Power supply Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin GND Pin February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Pin No LQFP-176 LQFP-144 BGA-192 57 49 N5 85 69 N12 84 68 N13 1 45 54 89 133 1 37 46 73 109 C1 N1 P4 M14 A13 173 141 A4 129 105 E14 156 27 44 53 88 109 132 157 176 - 126 25 36 45 72 93 108 127 144 - A9 J1 M1 P3 N14 F14 B14 A11 B1 E1 G1 P7 P11 L14 A8 A5 N7 M7 L7 K7 J7 G7 H7 H8 G8 49 D a t a S h e e t Module Pin name CLOCK X0 X0A X1 X1A CROUT_0 CROUT_1 AVCC Analog POWER Analog GND C pin 50 CONFIDENTIAL AVRH AVSS C Function Pin No. LQFP-176 LQFP-144 BGA-192 Main clock (oscillation) input pin Sub clock (oscillation) input pin Main clock (oscillation) I/O pin Sub clock (oscillation) I/O pin Built-in high-speed CR-osc clock output port A/D converter analog power pin A/D converter analog reference voltage input pin 86 55 87 56 127 152 106 70 47 71 48 103 122 90 P12 P5 P13 P6 D13 E8 J14 107 91 H14 A/D converter GND pin 108 92 G14 Power stabilization capacity pin 52 44 P2 MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t I/O Circuit Type Type Circuit Remarks A It is possible to select the main oscillation / GPIO function Pull-up resistor P-ch P-ch Digital output X1 N-ch Digital output R Pull-up resistor control Digital input Standby mode control When the main oscillation is selected. Oscillation feedback resistor : Approximately 1 MΩ With Standby mode control When the GPIO is selected. CMOS level output. CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ IOH= -4 mA, IOL= 4 mA Clock input Feedback resistor Standby mode control Digital input Standby mode control Pull-up resistor R P-ch P-ch Digital output N-ch Digital output X0 Pull-up resistor control CMOS level hysteresis input Pull-up resistor : Approximately 50 kΩ B Pull-up resistor Digital input February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 51 D a t a S h e e t Type Circuit Remarks Open drain output CMOS level hysteresis input C Digital input Control pin N-ch D It is possible to select the sub oscillation / GPIO function Pull-up When the sub oscillation is selected. Oscillation feedback resistor : Approximately 5 MΩ With Standby mode control resistor P-ch P-ch Digital output X1A N-ch Digital output R Pull-up resistor control Digital input Standby mode control When the GPIO is selected. CMOS level output. CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ IOH= -4 mA, IOL= 4 mA Clock input Feedback resistor Standby mode control Digital input Standby mode control Pull-up resistor R P-ch P-ch Digital output N-ch Digital output X0A Pull-up resistor control 52 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Type Circuit Remarks E P-ch P-ch N-ch Digital output Digital output R CMOS level output CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ IOH= -4 mA, IOL= 4 mA When this pin is used as an I2C pin, the digital output P-ch transistor is always off +B input is available Pull-up resistor control Digital input Standby mode control F P-ch P-ch N-ch R Digital output Digital output CMOS level output CMOS level hysteresis input With input control Analog input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ IOH= -4 mA, IOL= 4 mA When this pin is used as an I2C pin, the digital output P-ch transistor is always off +B input is available Pull-up resistor control Digital input Standby mode control Analog input Input control February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 53 D a t a S h e e t Type Circuit Remarks CMOS level output CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ IOH= -12 mA, IOL= 12 mA +B input is available G P-ch P-ch Digital output N-ch Digital output R Pull-up resistor control Digital input Standby mode control H It is possible to select the USB I/O / GPIO function. GPIO Digital output GPIO Digital input/output direction GPIO Digital input GPIO Digital input circuit control When the USB I/O is selected. Full-speed, Low-speed control UDP (+) output EBP USB Full-speed/Low-speed control UDP (+) input Differential EBM Differential input USB/GPIO select When the GPIO is selected. CMOS level output CMOS level hysteresis input With standby mode control IOH= -20.5 mA, IOL= 18.5 mA UDM (-) input UDM (-) output USB Digital input/output direction GPIO Digital output GPIO Digital input/output direction GPIO Digital input GPIO Digital input circuit control 54 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Type Circuit Remarks CMOS level output CMOS level hysteresis input 5 V tolerant With standby mode control IOH= -4 mA, IOL= 4 mA Available to control of PZR registers. When this pin is used as an I2C pin, the digital output P-ch transistor is always off I P-ch N-ch Digital output Digital output R Digital input Standby mode control J CMOS level hysteresis input Mode input February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 55 D a t a S h e e t Type Circuit Remarks K P-ch P-ch N-ch CMOS level output TTL level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ IOH= -4 mA, IOL= 4 mA Digital output Digital output R Pull-up resistor control Digital input Standby mode control L P-ch P-ch N-ch CMOS level output CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50 kΩ IOH= -8 mA, IOL= 8 mA ・ When this pin is used as an I2C pin, the digital output P-ch transistor is always off +B input is available Digital output Digital output R Pull-up resistor control Digital input Standby mode control 56 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Handling Precautions Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Spansion semiconductor devices. 1. Precautions for Product Design This section describes precautions when designing electronic equipment using semiconductor devices. ・ Absolute Maximum Ratings Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings. Recommended Operating Conditions Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges. Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand. Processing and Protection of Pins These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions. (1) Preventing Over-Voltage and Over-Current Conditions Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage. (2) Protection of Output Pins Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection. (3) Handling of Unused Input Pins Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin. Latch-up Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up. CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following: (1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc. (2) Be sure that abnormal current flows do not occur during the power-on sequence. Code: DS00-00004-3E February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 57 D a t a S h e e t Observance of Safety Regulations and Standards Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products. Fail-Safe Design Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. Precautions Related to Usage of Devices Spansion semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. 2. Precautions for Package Mounting Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Spansion's recommended conditions. For detailed information about mount conditions, contact your sales representative. Lead Insertion Type Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket. Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Spansion recommended mounting conditions. If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting. Surface Mount Type Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges. You must use appropriate mounting techniques. Spansion recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Spansion ranking of recommended conditions. 58 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Lead-Free Packaging CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use. Storage of Semiconductor Devices Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following: (1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight. (2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C. When you open Dry Package that recommends humidity 40% to 70% relative humidity. (3) When necessary, Spansion packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage. (4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust. Baking Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Spansion recommended conditions for baking. Condition: 125°C/24 h Static Electricity Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions: (1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity. (2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment. (3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended. (4) Ground all fixtures and instruments, or protect with anti-static measures. (5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies. February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 59 D a t a S h e e t 3. Precautions for Use Environment Reliability of semiconductor devices depends on ambient temperature and other conditions as described above. For reliable performance, do the following: (1) Humidity Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing. (2) Discharge of Static Electricity When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges. (3) Corrosive Gases, Dust, or Oil Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices. (4) Radiation, Including Cosmic Radiation Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate. (5) Smoke, Flame CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases. Customers considering the use of Spansion products in other special environmental conditions should consult with sales representatives. Please check the latest handling precautions at the following URL. http://www.spansion.com/fjdocuments/fj/datasheet/e-ds/DS00-00004.pdf 60 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Handling Devices Power supply pins In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Moreover, connect the current supply source with each Power supply pins and GND pins of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between each Power supply pins and GND pins, between AVCC pin and AVSS pin near this device. Stabilizing power supply voltage A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/μs when there is a momentary fluctuation on switching the power supply. Crystal oscillator circuit Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible. It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation. Evaluate oscillation of your using crystal oscillator by your mount board. Using an external clock When using an external clock, the clock signal should be input to the X0,X0A pin only and the X1,X1A pin should be kept open. Example of Using an External Clock Device X0(X0A) Open X1(X1A) Handling when using Multi function serial pin as I2C pin If it is using multi-function serial pin as I2C pins, P-ch transistor of digital output is always disable. However, I2C pins need to keep the electrical characteristic like other pins and not to connect to external I2C bus system with power OFF. February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 61 D a t a S h e e t C Pin This series contains the regulator. Be sure to connect a smoothing capacitor (C S) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor. However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor. A smoothing capacitor of about 4.7μF would be recommended for this series. C Device Cs VSS GND Mode pins (MD0) Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise. Notes on power-on Turn power on/off in the following order or at the same time. If not using the A/D converter, connect AVCC =VCC and AVSS = VSS. Turning on : VCC USBVCC0 VCC USBVCC1 VCC AVCC AVRH Turning off : USBVCC0 VCC USBVCC1 VCC AVRH AVCC VCC Serial Communication There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise. Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data. 62 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Differences in features among the products with different memory sizes and between Flash products and MASK products The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between Flash products and MASK products are different because chip layout and memory structures are different. If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics. Base Timer In the case of using ch.8 and ch.9 at I/O mode 1 (timer full mode), the TIOA09 pin cannot be used for external startup trigger input (TGIN). Be sure to use the pin with making ESG1 and ESG2 bits of the Timer Control Register (Ch.9-TMCR) in the Base Timer to be "0b00" in order to disable trigger input. February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 63 D a t a S h e e t Block Diagram MB9BF516/517/518 TRSTX,TCK, TDI,TMS TDO TRACED[3:0], TRACECLK SWJ-DP ETM TPIU ROM Table SRAM0 32/48/64Kbyte MPU NVIC Multi-layer AHB (Max 144MHz) Cortex-M3 Core I 144MHz(Max) D Sys AHB-APB Bridge: APB0(Max 72MHz) Dual-Timer Watchdog Timer (Software) Clock Reset Generator INITX Watchdog Timer (Hardware) On-chip Flash 512Kbyte/ 768Kbyte/ 1024Kbyte Flash I/F Security Trace Buffer (16Kbyte) SRAM1 32/48/64Kbyte USBVCC0 USB 2.0 (Host/ Func) PHY USB 2.0 (Host/ Func) PHY UDP0,UDM0 UHCONX0 USBVCC1 UDP1,UDM1 UHCONX1 CSV DMAC 8ch. CLK X1 X0A X1A CROUT AVCC, AVSS,AVRH Main Osc Sub Osc PLL Source Clock CR 4MHz AHB-AHB Bridge (Slave) X0 CR 100kHz CAN TX0, RX0 CAN TX1, RX1 12-bit A/D Converter Unit 0 AN[31:00] Unit 1 ADTG[8:0] Unit 2 MAD[24:00] Base Timer 16-bit 16ch./ 32-bit 8ch. AIN[2:0] BIN[2:0] QPRC 3ch. ZIN[2:0] A/D Activation Compare 3ch. IC0[3:0] IC1[3:0] IC2[3:0] FRCK[2:0] 16-bit Input Capture 4ch. 16-bit Free-run Timer 3ch. 16-bit Output Compare 6ch. DTTI[2:0]X RTO0[5:0] RTO1[5:0] RTO2[5:0] USB Clk Ctrl AHB-APB Bridge : APB2 (Max 72MHz) TIOB[15:00] AHB-APB Bridge : APB1 (Max 72MHz) TIOA[15:00] External Bus I/F CAN Prescaler LVD Ctrl MADATA[15:00] PLL Power On Reset MCSX[7:0], MOEX,MWEX, MNALE, MNCLE, MNWEX, MNREX, MDQM[1:0] MALE MRDY MCLKOUT LVD IRQ-Monitor Regulator C CRC Accelerator Watch Counter External Interrupt Controller 32-pin + NMI Waveform Generator 3ch. MODE-Ctrl 16-bit PPG 3ch. GPIO INT[31:00] NMIX MD[1:0] PIN-Function-Ctrl Multi-function Timer ×3 Multi-Function Serial I/F 8ch. (with FIFO ch.4 to ch.7) HW flow control(ch.4) P0x, P1x, . . . PFx SCK[7:0] SIN[7:0] SOT[7:0] CTS4 RTS4 Note: The following items vary depending on the package. A) Number of external bus interface pin B) Number of 12-bit A/D converter channel 64 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Memory Size See "Memory size" of "Product Lineup" to confirm the memory size. February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 65 D a t a S h e e t Memory Map Memory Map(1) Peripherals Area 0x41FF_FFFF Reserved 0xFFFF_FFFF Reserved 0xE010_0000 0xE000_0000 0x4006_4000 0x4006_3000 Cortex-M3 Private Peripherals 0x4006_2000 0x4006_1000 0x4006_0000 CAN ch.1 CAN ch.0 Reserved DMAC USB ch.1 0x4005_0000 Reserved USB ch.0 0x4004_0000 0x4003_F000 0x7000_0000 0x6000_0000 0x4200_0000 0x4000_0000 Reserved External Device Area 0x4003_B000 Reserved 0x4003_8000 0x4003_7000 32Mbyte Bit band alias 0x4003_6000 0x4003_5000 Peripherals 0x4003_4000 0x4003_3000 0x4400_0000 0x4003_A000 0x4003_9000 0x4003_2000 Reserved 0x4003_1000 0x4003_0000 32Mbyte Bit band alias 0x4002_F000 0x4002_E000 Reserved 0x4002_8000 0x2400_0000 0x2200_0000 0x2008_0000 0x2000_0000 0x1FFF_0000 0x0010_2000 See the next page “●Memory Map (2)” for the memory size details. 0x0010_0000 SRAM1 SRAM0 Reserved Security/CR Trim On-chip Flash EXT-bus I/F Watch Counter CRC MFS CAN Prescaler USB Clk Ctrl LVD Ctrl Reserved GPIO Reserved Int-Req.Read EXTI Reserved CR Trim Reserved 0x4002_0000 A/DC QPRC Base Timer PPG Reserved MFT unit2 MFT unit1 MFT unit0 0x4001_6000 0x4001_5000 Dual Timer 0x4002_7000 0x4002_6000 0x4002_5000 0x4002_4000 0x4002_3000 0x4002_2000 0x4002_1000 0x0000_0000 0x4001_3000 0x4001_2000 0x4001_1000 0x4001_0000 Reserved Reserved SW WDT HW WDT Clock/Reset Reserved 0x4000_1000 0x4000_0000 66 CONFIDENTIAL Flash I/F MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Memory Map(2) MB9BF518S/T MB9BF517S/T 0x2008_0000 MB9BF516S/T 0x2008_0000 0x2008_0000 Reserved Reserved 0x2001_0000 Reserved 0x2001_C000 SRAM1 64Kbyte 0x2000_8000 SRAM1 48Kbyte 0x2000_0000 SRAM1 32Kbyte 0x2000_0000 0x2000_0000 SRAM0 32Kbyte SRAM0 48Kbyte SRAM0 64Kbyte 0x1FFF_8000 0x1FFF_4000 Reserved 0x1FFF_0000 Reserved Reserved 0x0010_2000 0x0010_1000 0x0010_0000 0x0010_2000 CR trimming Security 0x0010_1000 0x0010_0000 0x0010_2000 CR trimming Security 0x0010_1000 0x0010_0000 CR trimming Security Reserved 0x000C_0000 Reserved SA10-19(64KBx10) 0x0000_0000 SA4-7(8KBx4) February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 0x0008_0000 SA10-15(64KBx6) SA8-9(48KBx2) 0x0000_0000 SA4-7(8KBx4) Flash 512Kbyte SA8-9(48KBx2) Flash 768Kbyte Flash 1Mbyte SA10-23(64KBx14) SA8-9(48KBx2) 0x0000_0000 SA4-7(8KBx4) 67 D a t a S h e e t Peripheral Address Map Start address End address Bus Peripherals 0x4000_0000 0x4000_0FFF 0x4000_1000 0x4000_FFFF 0x4001_0000 0x4001_0FFF Clock/Reset Control 0x4001_1000 0x4001_1FFF Hardware Watchdog timer 0x4001_2000 0x4001_2FFF 0x4001_3000 0x4001_4FFF AHB APB0 Flash memory I/F register Reserved Software Watchdog timer Reserved 0x4001_5000 0x4001_5FFF Dual-Timer 0x4001_6000 0x4001_FFFF Reserved 0x4002_0000 0x4002_0FFF Multi-function timer unit0 0x4002_1000 0x4002_1FFF Multi-function timer unit1 0x4002_2000 0x4002_3FFF Multi-function timer unit2 0x4002_4000 0x4002_4FFF PPG 0x4002_5000 0x4002_5FFF 0x4002_6000 0x4002_6FFF 0x4002_7000 0x4002_7FFF A/D Converter 0x4002_8000 0x4002_DFFF Reserved 0x4002_E000 0x4002_EFFF Internal CR trimming 0x4002_F000 0x4002_FFFF Reserved 0x4003_0000 0x4003_0FFF External Interrupt Controller 0x4003_1000 0x4003_1FFF Interrupt Request Batch-Read Function 0x4003_2000 0x4003_2FFF Reserved 0x4003_3000 0x4003_3FFF GPIO 0x4003_4000 0x4003_4FFF Reserved 0x4003_5000 0x4003_5FFF 0x4003_6000 0x4003_6FFF 0x4003_7000 0x4003_7FFF CAN Prescaler 0x4003_8000 0x4003_8FFF Multi-function serial Interface 0x4003_9000 0x4003_9FFF CRC 0x4003_A000 0x4003_AFFF Watch Counter 0x4003_B000 0x4003_EFFF Reserved 0x4003_F000 0x4003_FFFF External Memory interface 0x4004_0000 0x4004_FFFF USB ch.0 0x4005_0000 0x4005_FFFF USB ch.1 0x4006_0000 0x4006_0FFF DMAC register 0x4006_1000 0x4006_1FFF 0x4006_2000 0x4006_2FFF CAN ch.0 0x4006_3000 0x4006_3FFF CAN ch.1 0x4006_4000 0x41FF_FFFF Reserved 68 CONFIDENTIAL APB1 Base Timer Quadrature Position/Revolution Counter Low Voltage Detector APB2 AHB USB clock generator Reserved MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Pin Status in Each CPU State The terms used for pin status have the following meanings. INITX=0 This is the period when the INITX pin is the "L" level. INITX=1 This is the period when the INITX pin is the "H" level. SPL=0 This is the status that standby pin level setting bit (SPL) in standby mode control register (STB_CTL) is set to "0". SPL=1 This is the status that standby pin level setting bit (SPL) in standby mode control register (STB_CTL) is set to "1". Input enabled Indicates that the input function can be used. Internal input fixed at "0" This is the status that the input function cannot be used. Internal input is fixed at "L". Hi-Z Indicates that the output drive transistor is disabled and the pin is put in the Hi-Z state. Setting disabled Indicates that the setting is disabled. Maintain previous state Maintains the state that was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained. Analog input is enabled Indicates that the analog input is enabled. Trace output Indicates that the trace function can be used. February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 69 D a t a S h e e t List of Pin Status Pin status type A B Power-on reset Device Run mode or INITX input Timer mode or sleep mode or low voltage internal reset sleep mode state state detection state state state Power supply Function group Power supply Power supply stable Power supply stable unstable stable INITX=0 INITX=1 INITX=1 INITX=1 SPL=0 SPL=1 GPIO selected Setting Setting Setting Maintain Maintain Hi-Z/ disabled disabled disabled previous previous Internal state state input fixed at "0" Input Input Input Input Input Input Main crystal enabled enabled enabled enabled enabled enabled oscillator input pin GPIO selected Setting Setting Setting Maintain Maintain Hi-Z/ disabled disabled disabled previous previous Internal state state input fixed at "0" Main crystal oscillator output pin Hi-Z/ Internal input fixed at "0"/ or Input enable Hi-Z/ Internal input fixed at "0" Hi-Z/ Internal input fixed at "0" Maintain previous state INITX input pin Pull-up/ Input enabled Input enabled Pull-up/ Input enabled Input enabled Pull-up/ Input enabled Setting disabled Pull-up/ Input enabled Input enabled Maintain previous state Maintain previous state/ Hi-Z at oscillation stop*1 Internal input fixed at "0" Pull-up/ Input enabled Input enabled Maintain previous state Maintain previous state Maintain previous state JTAG selected Hi-Z GPIO selected Setting disabled Pull-up/ Input enabled Input enabled Pull-up/ Input enabled Setting disabled Trace selected External interrupt enabled selected Setting disabled Setting disabled Setting disabled GPIO selected, or other than above resource selected Hi-Z Hi-Z/ Input enabled Hi-Z/ Input enabled C D E F 70 CONFIDENTIAL Mode input pin Maintain previous state/ Hi-Z at oscillation stop*1 Internal input fixed at "0" Pull-up/ Input enabled Input enabled Maintain previous state Hi-Z/ Internal input fixed at "0" Trace output Maintain previous state Hi-Z/ Internal input fixed at "0" MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Power-on reset Device Run mode or INITX input Timer mode or sleep mode or low voltage internal reset sleep mode state state detection state state state Pin Power supply status Function group Power supply Power supply stable Power supply stable unstable stable type INITX=0 INITX=1 INITX=1 INITX=1 SPL=0 SPL=1 Trace selected Setting Setting Setting Maintain Maintain Trace output disabled disabled disabled previous previous state state GPIO selected, Hi-Z Hi-Z/ Hi-Z/ Hi-Z/ G or other than Input Input Internal above resource enabled enabled input fixed selected at "0" External interrupt Setting Setting Setting Maintain Maintain Maintain enabled selected disabled disabled disabled previous previous previous state state state H GPIO selected, Hi-Z Hi-Z/ Hi-Z/ Hi-Z/ or other than Input Input Internal above resource enabled enabled input fixed selected at "0" GPIO selected, Hi-Z Hi-Z/ Hi-Z/ Maintain Maintain Hi-Z/ resource selected Input Input previous previous Internal I enabled enabled state state input fixed at "0" NMIX selected Setting Setting Setting Maintain Maintain Maintain disabled disabled disabled previous previous previous state state state J GPIO selected, Hi-Z Hi-Z/ Hi-Z/ Hi-Z/ or other than Input Input Internal above resource enabled enabled input fixed selected at "0" February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 71 D a t a S h e e t Power-on reset Device Run mode or INITX input Timer mode or sleep mode or low voltage internal reset sleep mode state state detection state state state Pin Power supply status Function group Power supply Power supply stable Power supply stable unstable stable type INITX=0 INITX=1 INITX=1 INITX=1 SPL=0 SPL=1 Analog input Hi-Z Hi-Z/ Hi-Z/ Hi-Z/ Hi-Z/ Hi-Z/ selected Internal Internal Internal Internal Internal input fixed input fixed input fixed input fixed input fixed at "0"/ at "0"/ at "0"/ at "0"/ at "0"/ Analog Analog Analog Analog Analog input input input input input K enabled enabled enabled enabled enabled GPIO selected, Setting Setting Setting Maintain Maintain Hi-Z/ or other than disabled disabled disabled previous previous Internal above resource state state input fixed selected at "0" External interrupt Setting Setting Setting Maintain Maintain Maintain enabled selected disabled disabled disabled previous previous previous state state state Analog input Hi-Z Hi-Z/ Hi-Z/ Hi-Z/ Hi-Z/ Hi-Z/ selected Internal Internal Internal Internal Internal input fixed input fixed input fixed input fixed input fixed at "0"/ at "0"/ at "0"/ at "0"/ at "0"/ L Analog Analog Analog Analog Analog input input input input input enabled enabled enabled enabled enabled GPIO selected, Setting Setting Setting Maintain Maintain Hi-Z/ or other than disabled disabled disabled previous previous Internal above resource state state input fixed selected at "0" GPIO selected Setting Setting Setting Maintain Maintain Hi-Z/ disabled disabled disabled previous previous Internal state state input fixed at "0" M Sub crystal oscillator input pin 72 CONFIDENTIAL Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Pin status type N Power-on reset Device Run mode INITX input Timer mode or sleep mode or low voltage internal reset or sleep state state detection state state mode state Power Function group Power supply Power supply stable supply Power supply stable unstable stable INITX=0 INITX=1 INITX=1 INITX=1 SPL=0 SPL=1 GPIO selected Setting Setting Setting Maintain Maintain Hi-Z/ disabled disabled disabled previous previous state Internal input state fixed at "0" Sub crystal oscillator output pin Hi-Z/ Internal input fixed at "0"/ or Input enable Hi-Z/ Internal input fixed at "0" Hi-Z/ Internal input fixed at "0" Maintain previous state Maintain previous state/ Hi-Z at oscillation stop*2/ Internal input fixed at "0" Maintain previous state Maintain previous state/ Hi-Z at oscillation stop*2/ Internal input fixed at "0" Hi-Z/ Internal input fixed at "0" GPIO selected Hi-Z Hi-Z/ Input enabled Hi-Z/ Input enabled Maintain previous state USB I/O pin Setting disabled Setting disabled Setting disabled Maintain previous state Hi-Z at transmission/ Input enabled/ Internal input fixed at "0" at reception Hi-Z at transmission/ Input enabled/ Internal input fixed at "0" at reception Mode input pin Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z/ Input enabled GPIO selected, resource selected Hi-Z Hi-Z/ Input enabled Hi-Z/ Input enabled Maintain previous state Maintain previous state Hi-Z/ Internal input fixed at "0" External interrupt enabled selected Setting disabled Setting disabled Setting disabled GPIO selected, or other than above resource selected Hi-Z Hi-Z/ Input enabled Hi-Z/ Input enabled O P Q R Maintain previous state Maintain previous state Maintain previous state Hi-Z/ Internal input fixed at "0" *1: Oscillation is stopped at Sub timer mode, Low speed CR timer mode, and STOP mode. *2: Oscillation is stopped at STOP mode. February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 73 D a t a S h e e t Electrical Characteristics 1. Absolute Maximum Ratings Parameter Symbol Power supply voltage*1,*2 Power supply voltage (for USB ch.0)*1,*3 Power supply voltage (for USB ch.1)*1,*3 Analog power supply voltage*1,*4 Analog reference voltage*1,*4 Vcc USBVcc0 USBVcc1 AVcc AVRH Rating Min Max Unit Remarks Vss + 6.5 V Vss + 6.5 V Vss + 6.5 V Vss + 6.5 V Vss + 6.5 V Except for USB Vcc + 0.5 Vss - 0.5 V (≤ 6.5V) pin USBVcc0 + 0.5 Vss - 0.5 V USB ch.0 pin (≤ 6.5V) Input voltage*1 VI USBVcc1 + 0.5 Vss - 0.5 V USB ch.1 pin (≤ 6.5V) Vss - 0.5 Vss + 6.5 V 5V tolerant AVcc + 0.5 1 Analog pin input voltage* VIA Vss - 0.5 V (≤ 6.5V) Vcc + 0.5 Output voltage*1 VO Vss - 0.5 V (≤ 6.5V) Clamp maximum current ICLAMP -2 +2 mA *8 Clamp total maximum current Σ[ICLAMP] +20 mA *8 10 mA 4 mA type 20 mA 8 mA type "L" level maximum output current*5 IOL 20 mA 12 mA type 39 mA P80,P81,P82,P83 4 mA 4 mA type 8 mA 8 mA type 6 "L" level average output current* IOLAV 12 mA 12 mA type 18.5 mA P80,P81,P82,P83 "L" level total maximum output current ∑IOL 100 mA "L" level total average output current*7 ∑IOLAV 50 mA - 10 mA 4 mA type - 20 mA 8 mA type 5 "H" level maximum output current* IOH - 20 mA 12 mA type - 39 mA P80,P81,P82,P83 -4 mA 4 mA type -8 mA 8 mA type "H" level average output current*6 IOHAV - 12 mA 12 mA type - 20.5 mA P80,P81,P82,P83 "H" level total maximum output current ∑IOH - 100 mA "H" level total average output current*7 ∑IOHAV - 50 mA Power consumption PD 1000 mW Storage temperature TSTG - 55 + 150 °C *1: These parameters are based on the condition that Vss = AVss = 0.0 V. *2: Vcc must not drop below Vss - 0.5 V. *3: USBVcc0 and USBVcc1 must not drop below Vss - 0.5 V. *4: Ensure that the voltage does not to exceed Vcc + 0.5 V, for example, when the power is turned on. *5: The maximum output current is the peak value for a single pin. *6: The average output is the average current for a single pin over a period of 100 ms. *7: The total average output current is the average current for all pins over a period of 100 ms. 74 CONFIDENTIAL Vss - 0.5 Vss - 0.5 Vss - 0.5 Vss - 0.5 Vss - 0.5 MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t *8: See "List of Pin Functions" and "I/O Circuit Type" about +B input available pin. Use within recommended operating conditions. Use at DC voltage (current) the +B input. The +B signal should always be applied a limiting resistance placed between the +B signal and the device. The value of the limiting resistance should be set so that when the +B signal is applied the input current to the device pin does not exceed rated values, either instantaneously or for prolonged periods. Note that when the device drive current is low, such as in the low-power consumpsion modes, the +B input potential may pass through the protective diode and increase the potential at the VCC and AVCC pin, and this may affect other devices. Note that if a +B signal is input when the device power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result. The following is a recommended circuit example (I/O equivalent circuit). Protection Diode VCC VCC Limiting resistor P-ch Digital output +B input (0V to 16V) N-ch Digital input R AVCC Analog input <WARNING> Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 75 D a t a S h e e t 2. Recommended Operating Conditions (Vss = AVss = 0.0V) Parameter Symbol Conditions Power supply voltage Vcc - Power supply voltage (3V power supply) for USB ch.0 USBVcc0 - Power supply voltage (3V power supply) for USB ch.1 USBVcc1 Analog power supply voltage Analog reference voltage Smoothing capacitor Value Min Max 2.7*6 AVcc AVRH - 2.7 2.7 5.5 3.6 (≤ Vcc) 5.5 (≤ Vcc) 3.6 (≤ Vcc) 5.5 (≤ Vcc) 5.5 AVcc CS - 1 10 3.0 2.7 3.0 2.7 Unit Remarks V V V AVcc = Vcc μF for built-in regulator *5 *1 V *2 *3 V *4 When mounted on Ta - 40 + 85 °C four-layer PCB *1: When P81/UDP0 and P80/UDM0 pin are used as USB (UDP0, UDM0). *2: When P81/UDP0 and P80/UDM0 pin are used as GPIO (P81, P80). *3: When P83/UDP1 and P82/UDM1 pin are used as USB (UDP1, UDM1). *4: When P83/UDP1 and P82/UDM1 pin are used as GPIO (P83, P82). *5: See "●C pin" in "Handling Devices" for the connection of the smoothing capacitor. *6: In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage or more, instruction execution and low voltage detection function by built-in High-speed CR(including Main PLL is used) or built-in Low-speed CR is possible to operate only. Operating temperature FPT-144P-M08, FPT-176P-M07, BGA-192P-M06 <WARNING> The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand. 76 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t 3. DC Characteristics (1) Current Rating (Vcc = AVcc = USBVcc0 = USBVcc1 = 2.7V to 5.5V, Vss = AVss = 0V, Ta = - 40°C to + 85°C) Parameter Symbol Pin name Conditions PLL RUN mode RUN mode current Icc High-speed CR RUN mode VCC Sub RUN mode Low-speed CR RUN mode SLEEP mode current Iccs PLL SLEEP mode High-speed CR SLEEP mode Sub SLEEP mode Low-speed CR SLEEP mode CPU : 144MHz, Peripheral : 72MHz, Flash 2Wait, TraceBuffer : ON, FRWTR.RWT = 10, FSYNDN.SD = 000, FBFCR.BE = 1 CPU : 72MHz, Peripheral : 72MHz, Flash 0Wait, TraceBuffer : OFF, FRWTR.RWT = 00, FSYNDN.SD = 000, FBFCR.BE = 0 CPU/ Peripheral : 4MHz*2, Flash 0Wait, FRWTR.RWT = 00, FSYNDN.SD = 000 CPU/ Peripheral : 32kHz, Flash 0Wait, FRWTR.RWT = 00, FSYNDN.SD = 000 CPU/ Peripheral : 100kHz, Flash 0Wait, FRWTR.RWT = 00, FSYNDN.SD = 000 Value Unit Remarks Typ*3 Max*4 100 180 mA *1, *5 65 135 mA *1, *5 6 57.8 mA *1 1.3 51.7 mA *1, *6 1.3 51.7 mA *1 Peripheral : 72MHz 30 89 Peripheral : 4MHz*2 4.5 55.9 mA *1 Peripheral : 32kHz 1.2 51.6 mA *1, *6 Peripheral : 100kHz 1.2 51.6 mA *1 mA *1, *5 *1: When all ports are fixed. *2: When setting it to 4MHz by trimming. *3: Ta=+25°C, VCC=5.5 V *4: Ta=+85°C, VCC=5.5 V *5: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit) *6: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit) February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 77 D a t a S h e e t (Vcc = AVcc = USBVcc0 = USBVcc1 = 2.7V to 5.5V, Vss = AVss = 0V, Ta = - 40°C to + 85°C) Pin name Parameter Symbol TIMER mode current Main TIMER mode ICCT VCC STOP mode current ICCH Value Unit Remarks Typ*2 Max*2 Conditions Sub TIMER mode STOP mode Ta = + 25°C, When LVD is off Ta = + 85°C, When LVD is off Ta = + 25°C, When LVD is off Ta = + 85°C, When LVD is off Ta = + 25°C, When LVD is off Ta = + 85°C, When LVD is off 4 10 mA *1, *3 - 55 mA *1, *3 1.1 5 mA *1, *4 - 50 mA *1, *4 1 5 mA *1 - 50 mA *1 *1: When all ports are fixed. *2: VCC=5.5 V *3: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit) *4: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit) · Low-Voltage Detection Current (VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 85°C) Parameter Symbol Pin name Conditions Low-voltage detection circuit (LVD) power supply current ICCLVD VCC At operation for interrupt Value Typ Max 4 7 Unit μA Remarks At not detect · Flash Memory Current (VCC = 2.7V to 5.5V, VSS = 0V, Ta = - 40°C to + 85°C) Parameter Symbol Pin name Conditions Flash memory write/erase current ICCFLASH VCC At Write/Erase Value Typ Max 12 14 Unit Remarks mA · A/D Converter Current (VCC = AVCC = 2.7V to 5.5V, VSS = AVSS = AVRL = 0V, Ta = - 40°C to + 85°C) Parameter Power supply current Reference power supply current 78 CONFIDENTIAL Symbol ICCAD ICCAVRH Pin name AVCC AVRH Value Typ Max Unit At 1unit operation 0.57 0.72 mA At stop 0.06 35 μA At 1unit operation AVRH=5.5 V 1.1 1.96 mA At stop 0.06 4 μA Conditions Remarks MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t (2) Pin Characteristics (Vcc = USBVcc0 = USBVcc1 = AVcc = 2.7V to 5.5V, Vss = AVss = 0V, Ta = - 40°C to + 85°C) Parameter Symbol Pin name "H" level input voltage (hysteresis input) "L" level input voltage (hysteresis input) "H" level output voltage VIHS VILS VOH CMOS hysteresis input pin, MD0, MD1 5 V tolerant input pin TTL Schmitt input pin CMOS hysteresis input pin, MD0, MD1 5V tolerant input pin TTL Schmitt input pin Min Value Typ Max Unit Remarks - Vcc × 0.8 - Vcc + 0.3 V - Vcc × 0.8 - Vss + 5.5 V - 2.0 - Vcc + 0.3 V - Vss - 0.3 - Vcc × 0.2 V - Vss - 0.3 - Vcc × 0.2 V - Vss - 0.3 - 0.8 V Vcc - 0.5 - Vcc - 0.5 - Vcc - 0.5 USBVcc 0.4 Vcc ≥ 4.5 V, IOH = - 4 mA 4mA type Vcc < 4.5 V, IOH = - 2 mA Vcc ≥ 4.5 V, IOH = - 8 mA 8mA type Vcc < 4.5 V, IOH = - 4 mA Vcc ≥ 4.5 V, IOH = - 12 mA 12mA type Vcc < 4.5 V, IOH = - 8 mA USBVcc ≥ 4.5 V, P80, P81, IOH = - 20.5 mA P82, P83 USBVcc < 4.5 V, IOH = - 13.0 mA February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Conditions Vcc *1 *1 V *1 Vcc V *1 - Vcc V - USBVcc V *2 79 D a t a S h e e t Parameter "L" level output voltage Input leak current Pull-up resistance value Symbol VOL Pin name Min Value Typ Max Vss - 0.4 V Vss - 0.4 V Vss - 0.4 V Vss - 0.4 V - -5 - +5 μA Vcc ≥ 4.5 V 25 50 100 Vcc < 4.5 V 30 80 200 - 5 15 Conditions Vcc ≥ 4.5 V, IOL = 4 mA 4 mA type Vcc < 4.5 V, IOL = 2 mA Vcc ≥ 4.5 V, IOL = 8 mA 8 mA type Vcc < 4.5 V, IOL = 4 mA Vcc ≥ 4.5 V, IOL = 12 mA 12 mA type Vcc < 4.5 V, IOL = 8 mA USBVcc ≥ 4.5 V, IOL = 18.5 mA P80, P81, P82, P83 USBVcc < 4.5 V, IOL = 10.5 mA IIL - RPU Pull-up pin Other than VCC, USBVCC0, Input USBVCC1, CIN capacitance VSS, AVCC, AVSS, AVRH *: USBVcc0 and USBVcc1 are described as USBVcc. 80 CONFIDENTIAL Unit Remarks * kΩ pF MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t 4. AC Characteristics (1) Main Clock Input Characteristics (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Symbol Pin name Conditions Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V PWH/tCYLH, PWL/tCYLH Value Min Max 4 4 4 4 20 50 50 20 50 20 250 250 Unit Remarks When crystal oscillator is connected Input frequency FCH When using external MHz clock X0, When using external Input clock cycle tCYLH ns X1 clock Input clock pulse When using external 45 55 % width clock Input clock rise tCF, When using external 5 ns time and fall time tCR clock FCM 144 MHz Master clock Base clock FCC 144 MHz (HCLK/FCLK) Internal operating clock*1 frequency FCP0 72 MHz APB0 bus clock*2 FCP1 72 MHz APB1 bus clock*2 FCP2 72 MHz APB2 bus clock*2 Base clock tCYCC 6.94 ns (HCLK/FCLK) Internal operating tCYCP0 13.8 ns APB0 bus clock*2 1 clock* cycle time tCYCP1 13.8 ns APB1 bus clock*2 tCYCP2 13.8 ns APB2 bus clock*2 *1: For more information about each internal operating clock, see "CHAPTER 2-1: Clock" in "FM3 Family PERIPHERAL MANUAL". *2: For about each APB bus which each peripheral is connected to, see "Block Diagram" in this data sheet. MHz X0 February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 81 D a t a S h e e t (2) Sub Clock Input Characteristics (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Input frequency Symbol Min Value Typ Max - - 32.768 - kHz - 32 - 100 kHz Pin Conditions name Unit 1/tCYLL X0A, X1A Input clock cycle tCYLL - 10 - 31.25 μs Input clock pulse width - PWH/tCYLL, PWL/tCYLL 45 - 55 % Remarks When crystal oscillator is connected When using external clock When using external clock When using external clock X0A (3) Internal CR Oscillation Characteristics High-speed Internal CR (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Symbol Conditions Ta = + 25°C Clock frequency FCRH Ta = 0°C to + 70°C Ta = - 40°C to + 85°C Ta = - 40°C to + 85°C Min Value Typ Max 3.96 4 4.04 3.84 4 4.16 Unit Remarks When trimming* MHz 3.8 4 4.2 3 4 5 When not trimming Frequency tCRWT 90 μs *2 stability time *1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming. *2: Frequency stable time is time to stable of the frequency of the High-speed CR. clock after the trim value is set. After setting the trim value, the period when the frequency stability time passes can use the High-speed CR clock as a source clock. Low-speed Internal CR (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Clock frequency 82 CONFIDENTIAL Symbol Conditions FCRL - Min Value Typ Max 50 100 150 Unit Remarks kHz MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t (4-1) Operating Conditions of Main and USB PLL (In the case of using main clock for input of PLL) (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Symbol Value Unit Min Typ Max PLL oscillation stabilization wait time*1 (LOCK UP time) PLL input clock frequency PLL multiple rate PLL macro oscillation clock frequency Main PLL clock frequency*2 tLOCK 100 - FPLLI FPLLO FCLKPLL 4 13 200 - - 16 MHz 75 multiple 300 MHz 144 MHz USB clock frequency*3 FCLKSPLL - - 48 - Remarks μs MHz After the M frequency division *1: Time from when the PLL starts operating until the oscillation stabilizes. *2: For more information about Main PLL clock (CLKPLL), see "CHAPTER 2-1: Clock" in "FM3 Family PERIPHERAL MANUAL". *3: For more information about USB clock, see "CHAPTER 2-2: USB clock Generation" in "FM3 Family PERIPHERAL MANUAL Communication Macro Part". (4-2) Operating Conditions of Main PLL (In the case of using high-speed internal CR) (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Symbol Value Min Typ Max Unit Remarks PLL oscillation stabilization wait time*1 tLOCK 100 μs (LOCK UP time) PLL input clock frequency FPLLI 3.8 4 4.2 MHz PLL multiple rate 50 71 multiple PLL macro oscillation clock frequency FPLLO 190 300 MHz Main PLL clock frequency*2 FCLKPLL 144 MHz *1: Time from when the PLL starts operating until the oscillation stabilizes. *2: For more information about Main PLL clock (CLKPLL), see "CHAPTER 2-1: Clock" in "FM3 Family PERIPHERAL MANUAL". Note: Make sure to input to the main PLL source clock, the high-speed CR clock (CLKHC) that the frequency has been trimmed. Main PLL connection Main clock (CLKMO) High-speed CR clock (CLKHC) PLL input clock K divider Main PLL PLL macro oscillation clock M divider Main PLL clock (CLKPLL) N divider USB PLL connection Main clock (CLKMO) K divider PLL input clock USB PLL PLL macro oscillation clock M divider USB clock N divider February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 83 D a t a S h e e t (5) Reset Input Characteristics (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Symbol Reset input time tINITX Value Pin Conditions name Min Max INITX 500 - - Unit Remarks ns (6) Power-on Reset Timing (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Power supply rising time Power supply shut down time Time until releasing Power-on reset Symbol Pin name Value Max 0 - ms 1 - ms 0.46 0.76 ms Tr Toff VCC Tprt Unit Min Remarks VCC_minimum VCC VDH_minimum 0.2V 0.2V 0.2V Tr Tprt Internal RST CPU Operation RST Active Toff Release start Glossary VCC_minimum : Minimum VCC of recommended operating conditions VDH_minimum : Minimum release voltage of Low-Voltage detection reset. See "7. Low-Voltage Detection Characteristics" 84 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t (7) External Bus Timing External bus clock output characteristics (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Output frequency Symbol Pin name Conditions tCYCLE MCLKOUT*1 Vcc ≥ 4.5 V Vcc < 4.5 V Value Min Max Unit 50*2 32*3 MHz MHz - *1: External bus clock (MCLKOUT) is divided clock of HCLK. For more information about setting of clock divider, see "CHAPTER 12: External Bus Interface" in "FM3 Family PERIPHERAL MANUAL". When external bus clock is not output, this characteristic does not give any effect on external bus operation. *2: When AHB bus clock frequency is more than 100MHz, the divider setting for MCLKOUT must be more than 4. *3: When AHB bus clock frequency is more than 64MHz, the divider setting for MCLKOUT must be more than 4. MCLKOUT External bus signal input/output characteristics (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Signal input characteristics Signal output characteristics Symbol VIH VIL VOH - VOL Input signal VIH VIL VIH VIL Output signal VOH VOL VOH VOL February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Conditions Value Unit 0.8 × VCC V 0.2 × VCC V 0.8 × VCC V 0.2 × VCC V Remarks 85 D a t a S h e e t Separate Bus Access Asynchronous SRAM Mode (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Symbol Pin name Conditions Value Min MOEX Vcc ≥ 4.5 V tOEW MOEX MCLK×n-3 Min pulse width Vcc < 4.5 V -9 Vcc ≥ 4.5 V MCSX ↓ → Address MCSX[7:0], tCSL – AV output delay time MAD[24:0] Vcc < 4.5 V -12 MOEX ↑ → MOEX, Vcc ≥ 4.5 V tOEH - AX 0 Address hold time MAD[24:0] Vcc < 4.5 V MCLK×m-9 MCSX ↓ → Vcc ≥ 4.5 V tCSL - OEL MOEX ↓ delay time Vcc < 4.5 V MCLK×m-12 MOEX, MCSX[7:0] MOEX ↑ → Vcc ≥ 4.5 V tOEH - CSH 0 MCSX ↑ time Vcc < 4.5 V MCLK×m-9 MCSX ↓ → MCSX, Vcc ≥ 4.5 V tCSL - RDQML MDQM ↓ delay time MDQM[1:0] Vcc < 4.5 V MCLK×m-12 20 Data set up → MOEX, Vcc ≥ 4.5 V tDS - OE MOEX ↑ time MADATA[15:0] Vcc < 4.5 V 38 MOEX ↑ → MOEX, Vcc ≥ 4.5 V tDH - OE 0 Data hold time MADATA[15:0] Vcc < 4.5 V Vcc ≥ 4.5 V MWEX tWEW MWEX MCLK×n-3 Min pulse width Vcc < 4.5 V MWEX ↑ → Address MWEX, Vcc ≥ 4.5 V tWEH - AX 0 output delay time MAD[24:0] Vcc < 4.5 V MCLK×n-9 Vcc ≥ 4.5 V MCSX ↓ → tCSL - WEL MWEX ↓ delay time Vcc < 4.5 V MCLK×n-12 MWEX, MCSX[7:0] MWEX ↑ → Vcc ≥ 4.5 V tWEH - CSH 0 MCSX ↑ delay time Vcc < 4.5 V MCLK×n-9 MCSX ↓ → MCSX, Vcc ≥ 4.5 V tCSL-WDQML MDQM ↓ delay time MDQM[1:0] Vcc < 4.5 V MCLK×n-12 MCLK-9 MCSX ↓ → MCSX, Vcc ≥ 4.5 V tCSL - DV Data output time MADATA[15:0] Vcc < 4.5 V MCLK-12 MWEX ↑ → MWEX, Vcc ≥ 4.5 V tWEH - DX 0 Data hold time MADATA[15:0] Vcc < 4.5 V Note: When the external load capacitance = 30 pF. (m = 0 to 15, n = 1 to 16) 86 CONFIDENTIAL Max +9 +12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 - Unit ns ns ns ns ns ns ns - ns - ns MCLK×m+9 MCLK×m+12 MCLK×n+9 MCLK×n+12 MCLK×m+9 MCLK×m+12 MCLK×n+9 MCLK×n+12 MCLK+9 MCLK+12 MCLK×m+9 MCLK×m+12 ns ns ns ns ns ns MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t tCYCLE MCLK tOEH-CSH tWEH-CSH MCSX[7:0] tCSL-AV MAD[24:0] tOEH-AX Address tWEH-AX tCSL-AV Address tCSL-OEL MOEX tOEW tCSL-WDQML tCSL-RDQML MDQM[1:0] tCSL-WEL tWEW MWEX tDS-OE MADATA[15:0] tDH-OE RD tWEH-DX WD Invalid tCSL-DV February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 87 D a t a S h e e t Separate Bus Access Synchronous SRAM Mode (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Address delay time Symbol Pin name Conditions tAV MCLK, MAD[24:0] Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V tCSL MCLK, MCSX[7:0] MCSX delay time tCSH tREL MCLK, MOEX MOEX delay time tREH Data set up → MCLK ↑ time MCLK ↑ → Data hold time MCLK, MADATA[15:0] MCLK, MADATA[15:0] tDS tDH tWEL MCLK, MWEX MWEX delay time tWEH MDQM[1:0] delay time tDQML MCLK, MDQM[1:0] tDQMH MCLK ↑ → MCLK, tOD Data output time MADATA[15:0] MCLK ↑ → MCLK, tOD Data hold time MADATA[15:0] Note: When the external load capacitance = 30 pF. Value Min 1 1 1 1 1 Max 9 12 9 12 9 12 9 12 9 12 Unit ns ns ns ns ns 19 37 - ns 0 - ns 1 1 1 1 MCLK+1 1 9 12 9 12 9 12 9 12 MCLK+18 MCLK+24 18 24 ns ns ns ns ns ns tCYCLE MCLK tCSL tCSH MCSX[7:0] tAV tAV Address MAD[24:0] Address tREL tREH tDQML tDQMH MOEX tDQML tDQMH tWEL tWEH MDQM[1:0] MWEX MADATA[15:0] tDS tDH RD tOD WD Invalid tODS 88 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Multiplexed Bus Access Asynchronous SRAM Mode (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Symbol Pin name Conditions Value Min Multiplexed Vcc ≥ 4.5 V tALE-CHMADV 0 address delay time Vcc < 4.5 V MALE, MADATA[15:0] Vcc ≥ 4.5 V MCLK×n+0 Multiplexed tCHMADH address hold time Vcc < 4.5 V MCLK×n+0 Note: When the external load capacitance = 30 pF. (m = 0 to 15, n = 1 to 16) Max 10 20 MCLK×n+10 MCLK×n+20 Unit ns ns MCLK MCSX[7:0] MALE MAD [24:0] MOEX MDQM [1:0] MWEX MADATA[15:0] February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 89 D a t a S h e e t Multiplexed Bus Access Synchronous SRAM Mode (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Symbol tCHAL MALE delay time tCHAH Pin name Conditions MCLK, ALE Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V MCLK ↑ → Multiplexed tCHMADV Address delay time MCLK, MADATA[15:0] MCLK ↑ → Multiplexed tCHMADX Data output time Note: When the external load capacitance = 30 pF. Vcc ≥ 4.5 V Min Value Max Unit Remarks 9 12 9 12 ns ns ns ns 1 tOD ns 1 tOD ns 1 1 Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V MCLK MCSX[7:0] MALE MAD [24:0] MOEX MDQM [1:0] MWEX MADATA[15:0] 90 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t NAND Flash Mode (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Symbol Pin name Conditions Vcc ≥ 4.5 V MNREX tNREW MNREX Min pulse width Vcc < 4.5 V Vcc ≥ 4.5 V Data setup → MNREX, tDS – NRE MNREX↑time MADATA[15:0] Vcc < 4.5 V Vcc ≥ 4.5 V MNREX↑→ MNREX, tDH – NRE Data hold time MADATA[15:0] Vcc < 4.5 V Vcc ≥ 4.5 V MNALE↑→ MNALE, tALEH - NWEL MNWEX delay time MNWEX Vcc < 4.5 V Vcc ≥ 4.5 V MNALE↓→ MNALE, tALEL - NWEL MNWEX delay time MNWEX Vcc < 4.5 V Vcc ≥ 4.5 V MNCLE↑→ MNCLE, tCLEH - NWEL MNWEX delay time MNWEX Vcc < 4.5 V Vcc ≥ 4.5 V MNWEX↑→ MNCLE, tNWEH - CLEL MNCLE delay time MNWEX Vcc < 4.5 V Vcc ≥ 4.5 V MNWEX tNWEW MNWEX Min pulse width Vcc < 4.5 V Vcc ≥ 4.5 V MNWEX↓→ MNWEX, tNWEL – DV Data output time MADATA[15:0] Vcc < 4.5 V Vcc ≥ 4.5 V MNWEX↑→ MNWEX, tNWEH – DX Data hold time MADATA[15:0] Vcc < 4.5 V Note: When the external load capacitance = 30 pF. (m=0 to 15, n=1 to 16) Value Unit Min Max MCLK×n-3 - ns 20 38 - ns 0 - ns MCLK×m-9 MCLK×m-12 MCLK×m-9 MCLK×m-12 MCLK×m-9 MCLK×m-12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 MCLK×m+9 MCLK×m+12 0 MCLK×n-3 - -9 -12 +9 +12 MCLK×m+9 MCLK×m+12 0 ns ns ns ns ns ns ns NAND Flash Read MCLK MNREX MADATA[15:0] February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Read 91 D a t a S h e e t NAND Flash Address Write MCLK MNALE MNCLE MNWEX MADATA[15:0] Write NAND Flash Command Write MCLK MNALE MNCLE MNWEX MADATA[15:0] 92 CONFIDENTIAL Write MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t External Ready Input Timing (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter MCLK ↑ MRDY input setup time Symbol tRDYI Pin name Conditions MCLK, MRDY Value Min Vcc ≥ 4.5 V 19 Vcc < 4.5 V 37 Max - Unit Remarks ns When RDY is input ··· MCLK Over 2cycles Original MOEX MWEX tRDYI MRDY When RDY is released MCLK ··· ··· 2 cycles Extended MOEX MWEX tRDYI 0.5×VCC MRDY February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 93 D a t a S h e e t (8) Base Timer Input Timing Timer input timing (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Input pulse width Symbol Pin name Conditions tTIWH, tTIWL TIOAn/TIOBn (when using as ECK, TIN) - tTIWH Value Min Max 2tCYCP - Unit Remarks ns tTIWL ECK TIN VIHS VIHS VILS VILS Trigger input timing (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Input pulse width Symbol Pin name Conditions tTRGH, tTRGL TIOAn/TIOBn (when using as TGIN) - tTRGH TGIN VIHS Value Min Max 2tCYCP - Unit Remarks ns tTRGL VIHS VILS VILS Note: tCYCP indicates the APB bus clock cycle time. About the APB bus number which Base Timer is connected to, see "Block Diagram" in this data sheet. 94 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t (9) CSIO/UART Timing CSIO (SPI = 0, SCINV = 0) (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Pin Symbol Conditions name Serial clock cycle time tSCYC SCK ↓ → SOT delay time tSLOVI SIN → SCK ↑ setup time tIVSHI SCK ↑ → SIN hold time tSHIXI Serial clock "L" pulse width tSLSH SCKx Serial clock "H" pulse width tSHSL SCKx SCK ↓ → SOT delay time tSLOVE SIN → SCK ↑ setup time tIVSHE SCK ↑ → SIN hold time tSHIXE SCK fall time SCK rise time tF tR SCKx SCKx, SOTx SCKx, Master mode SINx SCKx, SINx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx Vcc < 4.5V Min Max Vcc ≥ 4.5V Min Max Unit 4tCYCP - 4tCYCP - ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns - ns - ns 2tCYCP 10 tCYCP + 10 - 2tCYCP 10 tCYCP + 10 - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Slave mode Notes: The above characteristics apply to CLK synchronous mode. tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function Serial is connected to, see "Block Diagram" in this data sheet. These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. When the external load capacitance = 30 pF. February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 95 D a t a S h e e t tSCYC VOH SCK VOL VOL tSLOVI VOH VOL SOT tIVSHI tSHIXI VIH VIL VIH VIL SIN Master mode tSLSH SCK VIH tF SOT SIN VIL tSHSL VIL VIH VIH tR tSLOVE VOH VOL tIVSHE VIH VIL tSHIXE VIH VIL Slave mode 96 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t CSIO (SPI = 0, SCINV = 1) (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Symbol Vcc < 4.5V Min Max SCKx SCKx, SOTx SCKx, Master mode SINx SCKx, SINx 4tCYCP - 4tCYCP - ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns - ns - ns Serial clock cycle time tSCYC SCK ↑ → SOT delay time tSHOVI SIN → SCK ↓ setup time tIVSLI SCK ↓ → SIN hold time tSLIXI Serial clock "L" pulse width tSLSH SCKx Serial clock "H" pulse width tSHSL SCKx SCK ↑ → SOT delay time tSHOVE SIN → SCK ↓ setup time tIVSLE SCK ↓ → SIN hold time tSLIXE SCK fall time SCK rise time tF tR Vcc ≥ 4.5V Min Max Pin Conditions name SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx 2tCYCP 10 tCYCP + 10 - 2tCYCP 10 tCYCP + 10 Unit - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Slave mode Notes: The above characteristics apply to CLK synchronous mode. tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function Serial is connected to, see "Block Diagram" in this data sheet. These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. When the external load capacitance = 30 pF. February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 97 D a t a S h e e t tSCYC VOH SCK VOH VOL tSHOVI VOH VOL SOT tIVSLI VIH VIL SIN tSLIXI VIH VIL Master mode tSHSL SCK VIH SIN VIH VIL tR SOT tSLSH VIL VIL tF tSHOVE VOH VOL tIVSLE VIH VIL tSLIXE VIH VIL Slave mode 98 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t CSIO (SPI = 1, SCINV = 0) (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Symbol Vcc < 4.5 V Min Max SCKx SCKx, SOTx SCKx, SINx Master mode SCKx, SINx SCKx, SOTx 4tCYCP - 4tCYCP - ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns - ns - ns - ns Serial clock cycle time tSCYC SCK ↑ → SOT delay time tSHOVI SIN → SCK ↓ setup time tIVSLI SCK ↓ → SIN hold time tSLIXI SOT → SCK ↓ delay time tSOVLI Serial clock "L" pulse width tSLSH SCKx Serial clock "H" pulse width tSHSL SCKx SCK ↑ → SOT delay time tSHOVE SIN → SCK ↓ setup time tIVSLE SCK ↓ → SIN hold time tSLIXE SCK fall time SCK rise time tF tR Vcc ≥ 4.5 V Min Max Pin Conditions name SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx 2tCYCP 30 2tCYCP 10 tCYCP + 10 - 2tCYCP 30 2tCYCP 10 tCYCP + 10 Unit - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Slave mode Notes: The above characteristics apply to CLK synchronous mode. tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function Serial is connected to, see "Block Diagram" in this data sheet. These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. When the external load capacitance = 30 pF. February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 99 D a t a S h e e t tSCYC VOH VOL SCK SOT VOH VOL VOH VOL tIVSLI tSLIXI VIH VIL SIN VOL tSHOVI tSOVLI VIH VIL Master mode tSLSH SCK VIH tR VIH tSHOVE VOH VOL VOH VOL tIVSLE SIN VIH VIL tF * SOT VIL tSHSL tSLIXE VIH VIL VIH VIL Slave mode *: Changes when writing to TDR register 100 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t CSIO (SPI = 1, SCINV = 1) (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Symbol Pin Conditions name Vcc < 4.5 V Min Max Vcc ≥ 4.5 V Min Max Unit Serial clock cycle time tSCYC SCKx 4tCYCP - 4tCYCP - ns SCK ↓ → SOT delay time tSLOVI SCKx, SOTx - 30 + 30 - 20 + 20 ns SIN → SCK ↑ setup time tIVSHI 50 - 30 - ns SCK ↑ → SIN hold time tSHIXI 0 - 0 - ns SOT → SCK ↑ delay time tSOVHI - ns Serial clock "L" pulse width tSLSH SCKx - ns Serial clock "H" pulse width tSHSL SCKx - ns SCK ↓ → SOT delay time tSLOVE SIN → SCK ↑ setup time tIVSHE SCK ↑ → SIN hold time tSHIXE SCK fall time SCK rise time tF tR SCKx, SINx Master mode SCKx, SINx SCKx, SOTx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx 2tCYCP 30 2tCYCP 10 tCYCP + 10 - 2tCYCP 30 2tCYCP 10 tCYCP + 10 - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Slave mode Notes: The above characteristics apply to CLK synchronous mode. tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function Serial is connected to, see "Block Diagram" in this data sheet. These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. When the external load capacitance = 30 pF. February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 101 D a t a S h e e t tSCYC VOH SCK VOH VOL tSOVHI tSLOVI VOH VOL SOT VOH VOL tSHIXI tIVSHI VIH VIL SIN VIH VIL Master mode tSHSL tR SCK VIL tSLSH VIH VIH tF VIL VIL VIH tSLOVE VOH VOL SOT VOH VOL tIVSHE tSHIXE VIH VIL SIN VIH VIL Slave mode UART external clock input (EXT = 1) (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Serial clock "L" pulse width Serial clock "H" pulse width SCK fall time SCK rise time tSLSH tSHSL tF tR CL = 30 pF tR SCK VIL 102 CONFIDENTIAL Value Symbol Conditions Min Max tCYCP + 10 tCYCP + 10 - 5 5 tSHSL VIH VIL ns ns ns ns tF tSLSH VIH Unit Remarks VIL VIH MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t (10) External Input Timing (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Symbol Pin name Conditions Value Unit Min Max ADTG FRCKx - 2tCYCP* - ns - 2tCYCP* - ns ICxx Input pulse width tINH, tINL DTTIxX Remarks A/D converter trigger input Free-run timer input clock Input capture Wave form generator Except Timer mode, 2tCYCP + 100* ns INTxx, External interrupt Stop mode NMIX NMI Timer mode, 500 ns Stop mode *: tCYCP indicates the APB bus clock cycle time. About the APB bus number which the A/D converter, Multi-function Timer, External interrupt are connected to, see "Block Diagram" in this data sheet. February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 103 D a t a S h e e t (11) Quadrature Position/Revolution Counter timing (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Symbol Value Conditions Min Max AIN pin "H" width tAHL AIN pin "L" width tALL BIN pin "H" width tBHL BIN pin "L" width tBLL BIN rise time from PC_Mode2 or tAUBU AIN pin "H" level PC_Mode3 AIN fall time from PC_Mode2 or tBUAD BIN pin "H" level PC_Mode3 BIN fall time from PC_Mode2 or tADBD AIN pin "L" level PC_Mode3 AIN rise time from PC_Mode2 or tBDAU BIN pin "L" level PC_Mode3 AIN rise time from PC_Mode2 or 2tCYCP* tBUAU BIN pin "H" level PC_Mode3 BIN fall time from PC_Mode2 or tAUBD AIN pin "H" level PC_Mode3 AIN fall time from PC_Mode2 or tBDAD BIN pin "L" level PC_Mode3 BIN rise time from PC_Mode2 or tADBU AIN pin "L" level PC_Mode3 ZIN pin "H" width tZHL QCR:CGSC="0" ZIN pin "L" width tZLL QCR:CGSC="0" AIN/BIN rise and fall time tZABE QCR:CGSC="1" from determined ZIN level Determined ZIN level from tABEZ QCR:CGSC="1" AIN/BIN rise and fall time *: tCYCP indicates the APB bus clock cycle time. About the APB bus number which Quadrature Position/Revolution Counter is connected to, see "Block Diagram" in this data sheet. Unit ns tALL tAHL AIN tAUBU tADBD tBUAD tBDAU BIN tBHL 104 CONFIDENTIAL tBLL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t tBLL tBHL BIN tBUAU tBDAD tAUBD tADBU AIN tAHL tALL ZIN ZIN AIN/BIN February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 105 D a t a S h e e t 2 (12) I C Timing (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter SCL clock frequency (Repeated) START condition hold time SDA ↓ → SCL ↓ SCLclock "L" width SCLclock "H" width (Repeated) START setup time SCL ↑ → SDA ↓ Data hold time SCL ↓ → SDA ↓ ↑ Data setup time SDA ↓ ↑ → SCL ↑ STOP condition setup time SCL ↑ → SDA ↑ Bus free time between "STOP condition" and "START condition" Symbol Conditions Standard-mode Fast-mode Unit Remarks Min Max Min Max FSCL 0 100 0 400 kHz tHDSTA 4.0 - 0.6 - μs tLOW tHIGH 4.7 4.0 - 1.3 0.6 - μs μs 4.7 - 0.6 - μs 0 3.45*2 0 0.9*3 μs tSUDAT 250 - 100 - ns tSUSTO 4.0 - 0.6 - μs tBUF 4.7 - 1.3 - μs tSUSTA tHDDAT CL = 30 pF, R = (Vp/IOL)*1 8 MHz ≤ 2 tCYCP*4 2 tCYCP*4 ns *5 tCYCP ≤ 40 MHz 40 MHz < Noise filter tSP 3 tCYCP*4 3 tCYCP*4 ns *5 tCYCP ≤ 60 MHz 60 MHz < 4 tCYCP*4 4 tCYCP*4 ns *5 tCYCP ≤ 72 MHz *1: R and C represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current. *2: The maximum tHDDAT must satisfy that it does not extend at least "L" period (tLOW) of device's SCL signal. *3: A Fast-mode I2C bus device can be used on a Standard-mode I2C bus system as long as the device satisfies the requirement of "tSUDAT ≥ 250 ns". *4: tCYCP is the APB bus clock cycle time. About the APB bus number which I2C is connected to, see "Block Diagram" in this data sheet. To use Standard-mode, set the APB bus clock at 2 MHz or more. To use Fast-mode, set the APB bus clock at 8 MHz or more. *5: The number of steps of the noise filter can be changed with register settings. Change the number of the noise filter steps according to APB2 bus clock frequency. SDA SCL 106 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t (13) ETM Timing (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Data hold TRACECLK frequency Pin name Conditions tETMH TRACECLK, TRACED[3:0] Vcc ≥ 4.5 V 2 9 Vcc < 4.5 V 2 15 Vcc ≥ 4.5 V - 50 MHz Vcc < 4.5 V - 32 MHz Vcc ≥ 4.5 V 20 - ns Vcc < 4.5 V 31.25 - ns 1/ tTRACE TRACECLK TRACECLK cycle time Value Unit Min Max Symbol tTRACE Remarks ns Note: When the external load capacitance = 30 pF. HCLK TRACECLK TRACED[3:0] February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 107 D a t a S h e e t (14) JTAG Timing (Vcc = 2.7V to 5.5V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Symbol TMS, TDI setup time tJTAGS TMS, TDI hold time tJTAGH TDO delay time tJTAGD Pin name Conditions TCK, TMS, TDI TCK, TMS, TDI Vcc ≥ 4.5 V Vcc < 4.5 V Vcc ≥ 4.5 V Vcc < 4.5 V TCK, TDO Value Min Max Unit 15 - ns 15 - ns Vcc ≥ 4.5 V - 25 Vcc < 4.5 V - 45 Remarks ns Note: When the external load capacitance = 30 pF. TCK TMS/TDI TDO 108 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t 5. 12-bit A/D Converter Electrical characteristics for the A/D converter (Vcc = AVcc = 2.7V to 5.5V, Vss = AVss = 0V, Ta = - 40°C to + 85°C) Parameter Symbol Pin name Min Resolution Integral Nonlinearity Differential Nonlinearity Zero transition voltage Full-scale transition voltage VZT ANxx - VFST ANxx - - - Ts - Compare clock cycle*3 Tcck State transition time to operation permission Value Typ - Max Unit 12 ± 4.5 ± 2.5 ± 15 bit LSB LSB AVRH = 2.7 V to mV 5.5 V AVRH ± 15 mV 1.0*1 1.2*1 *2 *2 - - μs - 50 - 2000 ns Tstt - - - 1.0 μs Analog input capacity CAIN - - - 12.9 pF Analog input resistance RAIN - - - Conversion time Sampling time Remarks 2 3.8 4 ns kΩ AVcc ≥ 4.5 V AVcc < 4.5 V AVcc ≥ 4.5 V AVcc < 4.5 V AVcc ≥ 4.5 V AVcc < 4.5 V Interchannel disparity LSB Analog port input ANxx 5 μA current Analog input voltage ANxx AVSS AVRH V Reference voltage AVRH 2.7 AVCC V *1: The Conversion time is the value of sampling time (Ts) + compare time (Tc). The condition of the minimum conversion time is the following. AVcc ≥ 4.5 V, HCLK=120 MHz sampling time: 300 ns compare time: 700 ns AVcc < 4.5 V, HCLK=120 MHz sampling time: 500 ns compare time: 700 ns Ensure that it satisfies the value of the sampling time (Ts) and compare clock cycle (Tcck). For setting of the sampling time and compare clock cycle, see "CHAPTER 1-1: A/D Converter" in "FM3 Family PERIPHERAL MANUAL Analog Macro Part". The registers setting of the A/D Converter are reflected in the operation according to the APB bus clock timing. The sampling clock and compare clock is generated from the Base clock (HCLK). About the APB bus number which the A/D Converter is connected to, see "Block Diagram" in this data sheet. *2: A necessary sampling time changes by external impedance. Ensure that it set the sampling time to satisfy (Equation 1). *3: Compare time (Tc) is the value of (Equation 2). February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 109 D a t a S h e e t Rext ANxx Analog input pin Analog signal source Comparator RAIN CAIN (Equation 1) Ts ≥ ( RAIN + Rext ) × CAIN × 9 Ts : Sampling time RAIN : input resistance of A/D = 2 kΩ at 4.5 ≤ AVCC ≤ 5.5 input resistance of A/D = 3.8 kΩ at 2.7 ≤ AVCC < 4.5 CAIN : input capacity of A/D = 12.9 pF at 2.7 ≤ AVCC ≤ 5.5 Rext : Output impedance of external circuit (Equation 2) Tc = Tcck × 14 Tc : Compare time Tcck : Compare clock cycle 110 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Definition of 12-bit A/D Converter Terms Resolution Integral Nonlinearity Differential Nonlinearity : Analog variation that is recognized by an A/D converter. : Deviation of the line between the zero-transition point (0b000000000000←→0b000000000001) and the full-scale transition point (0b111111111110←→0b111111111111) from the actual conversion characteristics. : Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB. Integral Nonlinearity Differential Nonlinearity 0xFFF Actual conversion characteristics 0xFFE Actual conversion characteristics 0x(N+1) {1 LSB(N-1) + VZT} VFST VNT 0x004 (Actuallymeasured value) (Actually-measured value) 0x003 Digital output Digital output 0xFFD 0xN Ideal characteristics V(N+1)T 0x(N-1) (Actually-measured value) Actual conversion characteristics Ideal characteristics 0x002 VNT (Actually-measured value) 0x(N-2) 0x001 VZT (Actually-measured value) AVss Actual conversion characteristics AVRH AVss Analog input Integral Nonlinearity of digital output N = VNT - {1LSB × (N - 1) + VZT} 1LSB Differential Nonlinearity of digital output N = 1LSB = N: VZT: VFST: VNT: V(N + 1) T - VNT 1LSB [LSB] - 1 [LSB] VFST - VZT 4094 A/D converter digital output value. Voltage at which the digital output changes from 0x000 to 0x001. Voltage at which the digital output changes from 0xFFE to 0xFFF. Voltage at which the digital output changes from 0x(N − 1) to 0xN. February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL AVRH Analog input 111 D a t a S h e e t 6. USB characteristics The USB characteristics of ch.0 and those of ch.1 are the same. USBVcc0 and USBVcc1 are described as USBVcc below. (Vcc = 2.7V to 5.5V, USBVcc = 3.0V to 3.6V, Vss = 0V, Ta = - 40°C to + 85°C) Parameter Symbol Input "H" level voltage Input "L" level voltage Input charact- Differential input eristics sensitivity Different common mode range Pin Conditions name Min Value Max Unit Remarks VIH - 2.0 VIL - Vss - 0.3 USBVcc + 0.3 V 0.8 V *1 *1 VDI - 0.2 - V *2 VCM - 0.8 2.5 V *2 Minimum differential input sensitivity [V] External pull-down Output "H" level voltage VOH 2.8 3.6 V *3 resistance= 15kΩ UDP0, External UDM0 pull-up Output "L" level voltage VOL 0.0 0.3 V *3 resistance= Output 1.5kΩ charact- Crossover voltage VCRS 1.3 2.0 V *4 eristics Rise time tFR Full-Speed 4 20 ns *5 Fall time tFF Full-Speed 4 20 ns *5 Rise/ fall time matching tFRFM Full-Speed 90 111.11 % *5 Output impedance ZDRV Full-Speed 28 44 Ω *6 Rise time tLR Low-Speed 75 300 ns *7 Fall time tLF Low-Speed 75 300 ns *7 Rise/ fall time matching tLRFM Low-Speed 80 125 % *7 *1: The switching threshold voltage of Single-End-Receiver of USB I/O buffer is set as within VIL (Max) = 0.8V, VIH (Min) = 2.0 V (TTL input standard). There are some hysteresis to lower noise sensitivity. *2: Use differential-Receiver to receive USB differential data signal. Differential-Receiver has 200 mV of differential input sensitivity when the differential data input is within 0.8 V to 2.5 V to the local ground reference level. Above voltage range is the common mode input voltage range. Common mode input voltage [V] 112 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t *3: The output drive capability of the driver is below 0.3 V at Low-State (VOL) (to 3.6 V and 1.5 kΩ load), and 2.8 V or above (to ground and 1.5 kΩ load) at High-State (VOH). *4: The cross voltage of the external differential output signal (D + /D − ) of USB I/O buffer is within 1.3 V to 2.0 V. VCRS specified range *5: They indicate rise time (Trise) and fall time (Tfall) of the full-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. For full-speed buffer, Tr/Tf ratio is regulated as within ± 10% to minimize RFI emission. Rising time February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Falling time 113 D a t a S h e e t *6: USB Full-speed connection is performed via twist pair cable shield with 90Ω ± 15% characteristic impedance (Differential Mode). USB standard defines that output impedance of USB driver must be in range from 28 Ω to 44 Ω. So, discrete series resistor (Rs) addition is defined in order to satisfy the above definition and keep balance. When using this USB I/O, use it with 25 Ω to 30 Ω (recommendation value 27 Ω)series resistor Rs. 28Ω to 44Ω Equiv. Imped. 28Ω to 44Ω Equiv. Imped. Mount it as external resistance. Rs series resistor 25Ω to 30Ω Series resistor of 27Ω (recommendation value) must be added. And, use "resistance with an uncertainty of 5% by E24 sequence". *7: They indicate rise time (Trise) and fall time (Tfall) of the low-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. Rising time Falling time See Figure " Low-Speed Load (Compliance Load)" for conditions of external load. 114 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Low-Speed Load (Upstream Port Load) - Reference 1 CL = 50pF to 150pF CL = 50pF to 150pF Low-Speed Load (Downstream Port Load) - Reference 2 CL =200pF to 600pF CL =200pF to 600pF Low-Speed Load (Compliance Load) CL = 200pF to 450pF CL = 200pF to 450pF February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 115 D a t a S h e e t 7. Low-Voltage Detection Characteristics (1) Low-Voltage Detection Reset (Ta = - 40°C to + 85°C) Parameter Detected voltage Released voltage Symbol Conditions VDL VDH - Min Value Typ Max 2.25 2.30 2.45 2.50 2.65 2.70 Unit V V Remarks When voltage drops When voltage rises (2) Interrupt of Low-Voltage Detection (Ta = - 40°C to + 85°C) Parameter Symbol Conditions Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH LVD stabilization wait time TLVDW SVHI = 0000 SVHI = 0001 SVHI = 0010 SVHI = 0011 SVHI = 0100 SVHI = 0111 SVHI = 1000 SVHI = 1001 - Min Value Typ Max Unit 2.58 2.67 2.76 2.85 2.94 3.04 3.31 3.40 3.40 3.50 3.68 3.77 3.77 3.86 3.86 3.96 2.8 2.9 3.0 3.1 3.2 3.3 3.6 3.7 3.7 3.8 4.0 4.1 4.1 4.2 4.2 4.3 3.02 3.13 3.24 3.34 3.45 3.56 3.88 3.99 3.99 4.10 4.32 4.42 4.42 4.53 4.53 4.64 V V V V V V V V V V V V V V V V - - 4032 × tCYCP* μs Remarks When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises *: tCYCP indicates the APB2 bus clock cycle time. 116 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t 8. Flash Memory Write/Erase Characteristics (1) Write / Erase time (Vcc = 2.7V to 5.5V, Ta = - 40°C to + 85°C) Parameter Sector erase time Large Sector Value Typ* Max* 0.7 3.7 Unit s Small Sector Half word (16-bit) write time 0.3 1.1 Remarks Includes write time prior to internal erase Not including system-level overhead time. Includes write time prior to internal Chip erase time 13.6 68 s erase *: The typical value is immediately after shipment, the maximam value is guarantee value under 100,000 cycle of erase/write. 12 384 μs (2) Write cycles and data hold time Erase/write cycles (cycle) Data hold time (year) 1,000 20* 10,000 100,000 *: At average + 85°C February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Remarks 10* 5* 117 D a t a S h e e t 9. Return Time from Low-Power Consumption Mode (1) Return Factor: Interrupt The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the program operation. Return Count Time (VCC = 2.7V to 5.5V, Ta = - 40°C to + 85°C) Parameter Symbol SLEEP mode High-speed CR TIMER mode, Main TIMER mode, PLL TIMER mode Value Typ Max* tCYCC Unit ns 40 80 μs 453 737 μs Sub TIMER mode 453 737 μs STOP mode 453 737 μs Low-speed CR TIMER mode Ticnt Remarks *: The maximum value depends on the accuracy of built-in CR. Operation example of return from Low-Power consumption mode (by external interrupt*) Ext.INT Interrupt factor accept Active Ticnt CPU Operation Interrupt factor clear by CPU Start *: External interrupt is set to detecting fall edge. 118 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Operation example of return from Low-Power consumption mode (by internal resource interrupt*) Internal Resource INT Interrupt factor accept Active Ticnt CPU Operation Interrupt factor clear by CPU Start *: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode. Notes: The return factor is different in each Low-Power consumption modes. See "CHAPTER 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3 Family PERIPHERAL MANUAL about the return factor from Low-Power consumption mode. When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See "CHAPTER 6: Low Power Consumption Mode" in "FM3 Family PERIPHERAL MANUAL". February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 119 D a t a S h e e t (2) Return Factor: Reset The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program operation. Return Count Time (VCC = 2.7V to 5.5V, Ta = - 40°C to + 85°C) Parameter Symbol Value Unit Typ Max* 321 461 μs 321 461 μs 441 701 μs Sub TIMER mode 441 701 μs STOP mode 441 701 μs SLEEP mode High-speed CR TIMER mode, Main TIMER mode, PLL TIMER mode Low-speed CR TIMER mode Trcnt Remarks *: The maximum value depends on the accuracy of built-in CR. Operation example of return from Low-Power consumption mode (by INITX) INITX Internal RST RST Active Release Trcnt CPU Operation 120 CONFIDENTIAL Start MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Operation example of return from low power consumption mode (by internal resource reset*) Internal Resource RST Internal RST RST Active Release Trcnt CPU Operation * : Internal resource reset Notes: Start is not included in return factor by the kind of Low-Power consumption mode. The return factor is different in each Low-Power consumption modes. See "CHAPTER 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3 Family PERIPHERAL MANUAL. When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See "CHAPTER 6: Low Power Consumption Mode" in "FM3 Family PERIPHERAL MANUAL". The time during the power-on reset/low-voltage detection reset is excluded. See "(6) Power-on Reset Timing in 4. AC Characteristics in ■Electrical Characteristics" for the detail on the time during the power-on reset/low -voltage detection reset. When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time or the main PLL clock stabilization wait time. The internal resource reset means the watchdog reset and the CSV reset. February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 121 D a t a S h e e t Ordering Information On-chip Flash memory On-chip SRAM MB9BF516SPMC-GE1 512 Kbyte 64 Kbyte MB9BF517SPMC-GE1 768 Kbyte 96 Kbyte MB9BF518SPMC-GE1 1 Mbyte 128 Kbyte MB9BF516TPMC-GE1 512 Kbyte 64 Kbyte MB9BF517TPMC-GE1 768 Kbyte 96 Kbyte MB9BF518TPMC-GE1 1 Mbyte 128 Kbyte MB9BF516TBGL-GE1 512 Kbyte 64 Kbyte MB9BF517TBGL-GE1 768 Kbyte 96 Kbyte MB9BF518TBGL-GE1 1 Mbyte 128 Kbyte Part number 122 CONFIDENTIAL Package Packing 144-pin plastic LQFP (0.5 mm pitch), (FPT-144P-M08) 176-pin plastic LQFP (0.5 mm pitch) , (FPT-176P-M07) Tray 192-ball plastic FBGA (0.8 mm pitch), (BGA-192P-M06) MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t PACKAGE DIMENSIONS 176-pin plastic LQFP Lead pitch 0.50 mm Package width × package length 24.0 × 24.0 mm Lead shape Gullwing Sealing method Plastic mold Mounting height 1.70 mm MAX Code (Reference) P-LQFP-0176-2424-0.5 0 (FPT-176P-M07) 176-pin plastic LQFP (FPT-176P-M07) Note 1) * : Values do not include resin protrusion. Resin protrusion is +0.25(.010)Max(each side). Note 2) Pins width and pins thickness include plating thickness Note 3) Pins width do not include tie bar cutting remainder. 26.00±0.20(1.024±.008)SQ *24.00±0.10(.945±.004)SQ 132 0.145±0.055 (.006±.002) 89 133 88 0.08(.003) Details of "A" part +0.20 1.50 –0.10 +.008 (Mounting height) .059 –.004 0°~8° 0.10±0.10 (.004±.004) (Stand off) INDEX 176 LEAD No. 45 1 44 0.50(.020) C 0.22±0.05 (.009±.002) 2004-2010 FUJITSU SEMICONDUCTOR LIMITED F176013S-c-1-3 February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 0.08(.003) "A" 0.50±0.20 (.020±.008) 0.60±0.15 (.024±.006) 0.25(.010) M Dimensions in mm (inches). Note: The values in parentheses are reference values. 123 D a t a S h e e t 144-pin plastic LQFP (FPT-144P-M08) 144-pin plastic LQFP (FPT-144P-M08) 0.50 mm Package width × package length 20.0 × 20.0 mm Lead shape Gullwing Sealing method Plastic mold Mounting height 1.70 mm MAX Weight 1.20 g Code (Reference) P-LFQFP144-20×20-0.50 Note 1) *:Values do not include resin protrusion. Resin protrusion is +0.25(.010)Max(each side). Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder. 22.00±0.20(.866±.008)SQ * 20.00±0.10(.787±.004)SQ 108 Lead pitch 0.145±0.055 (.006±.002) 73 109 72 0.08(.003) Details of "A" part +0.20 1.50 –0.10 +.008 (Mounting height) .059 –.004 0°~8° INDEX 144 37 "A" LEAD No. 1 36 0.50(.020) C 0.22±0.05 (.009±.002) 2003-2010 FUJITSU SEMICONDUCTOR LIMITED F144019S-c-4-8 124 CONFIDENTIAL 0.08(.003) 0.50±0.20 (.020±.008) 0.60±0.15 (.024±.006) 0.10±0.10 (.004±.004) (Stand off) 0.25(.010) M Dimensions in mm (inches). Note: The values in parentheses are reference values. MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t 192-ball plastic FBGA Ball pitch 0.80 mm Package width × package length 12.00 mm × 12.00 mm Lead shape Ball Sealing method Plastic mold Mounting height 1.45 mm Max. Weight 0.34 g (BGA-192P-M06) 192-ball plastic FBGA (BGA-192P-M06) 10.40(.409)REF 12.00±0.10(.472±.004) 0.20(.008) S B B 0.80(.031) REF 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0.80(.031) REF A 12.00±0.10 (.472±.004) (INDEX AREA) 10.40(.409) REF 0.20(.008) S A 0.35±0.10 (.014±.004) (Stand off) 1.25±0.20 (.049±.008) (Seated height) P N M L K J H G F E D C B A INDEX 192-ø0.45±0.10 (192-ø.018±.004) ø0.08(.003) M S A B S 0.10(.004) S C 2008-2010 FUJITSU SEMICONDUCTOR LIMITED B192006S-c-1-3 February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Dimensions in mm (inches). Note: The values in parentheses are reference values. 125 D a t a S h e e t Major Changes Page Section Revision 1.0 3 - - FEATURES • Multi-function Serial Interface Change Results Initial release Preliminary → Data Sheet Revised the following description. "4 channels with 16-byte FIFO" →"4 channels with 16steps×9-bit FIFO" (Max 8channels) 7 9 to 11 54 62, 63 64 PRODUCT LINEUP Multi-function Serial Interface (UART/CSIO/LIN/I2C) PIN ASSIGNMENT I/O CIRCUIT TYPE Added the description of "Note". HANDLING DEVICES BLOCK DIAGRAM ELECTRICAL CHARACTERISTICS 75 2. Recommended Operating Conditions 77 3. DC Characteristics (1) Current Rating 78, 79 80 82 (2) Pin Characteristics 4. AC Characteristics (1) Main Clock Input Characteristics (4-1) Operating Conditions of Main and USB PLL (In the case of using main clock for input of PLL) (4-2) Operating Conditions of Main PLL (In the case of using high-speed internal CR) 5. 12-bit A/D Converter • Electrical characteristics for the A/D converter 109 116 117 Revision 1.1 Revision 2.0 2 2 126 CONFIDENTIAL Added the following description. "ch.4 to ch.7: FIFO (16steps × 9-bit) ch.0 to ch.3: No FIFO" 7. Low-voltage Detection Characteristics (2) Interrupt of Low-voltage Detection 8. Flash Memory Write/Erase Characteristics Added the following description to "Type H". IOH = -20.5mA, IOL = 18.5mA • Revised the description of "•C pin". • Added the description of "•Base Timer". Corrected the figure. • TIOA: input → input/output • TIOB: output → input • Corrected the value of "Analog reference voltage (AVRH)". Min: AVSS → 2.7V • Added the "Smoothing capacitor (CS)". • Added the footnote. • Revised the value of "TBD". • Revised the unit. • Deleted "and estimated values." Deleted the footnote "*1". • Revised the value of Input frequency (FCH) at "Vcc ≥ 4.5V". Max: 50 → 48 • Added "Internal operating clock frequency (FCM): Master clock". • Added "Main PLL clock frequency (FCLKPLL)". • Added "USB/Ethernet clock frequency (FCLKSPLL)". • Deleted "(Preliminary value)". • Added the Symbol. • Revised the value of "TBD". • Corrected the parameter and value as follows. Full transition voltage → Full-scale transition voltage Min : - 20 → AVRH - 20 Max : + 20 → AVRH + 20 • Revised the maximum value of "Power supply current (analog + digital)": A/D 1unit operation: Typ: 0.47 → 0.57 / Max: 0.62 → 0.72 When A/D stops: Typ: 0.01 → 0.06 • Revised the value of "Reference power supply current (between AVRH to AVSS)" When A/D stops: Typ: 0.01 → 0.06 / Max: 1.6 → 4 • Deleted the following Pin name. - "Sampling time" - "Compare clock cycle" - "State transition time to operation permission" - "Analog input capacity" - "Analog input resistance" • Corrected the value of "Compare clock cycle (Tcck)". Max: 10000 → 2000 Corrected the value of "LVD stabilization wait time (TLVDW)". Max: 2240×tcyc → 4032×tCYCP Deleted "(targeted value)". Erase/write cycles and data hold time Features External Bus Interface Features USB Interface Company name and layout design change Added the description of Maximum area size Added the description of PLL for USB MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t Page Section 9, 10 Features USB Interface Pin Assignment 51 to 56 I/O Circuit Type 2 61 Handling Devices 61 Handling Devices Crystal oscillator circuit 62 64 66 67 74, 75 76 77, 78 82 84 86 to 88 95 to 102 109 118 to 121 122 Handling Devices C Pin Block Diagram Memory Map · Memory map(1) Memory Map · Memory map(2) Electrical Characteristics 1. Absolute Maximum Ratings Electrical Characteristics 2. Recommended Operation Conditions Electrical Characteristics 3. DC Characteristics (1) Current rating Electrical Characteristics 4. AC Characteristics (3) Built-in CR Oscillation Characteristics Electrical Characteristics 4. AC Characteristics (6) Power-on Reset Timing Electrical Characteristics 4. AC Characteristics (7) External Bus Timing Electrical Characteristics 4. AC Characteristics (9) CSIO/UART Timing Electrical Characteristics 5. 12bit A/D Converter Electrical Characteristics 9. Return Time from Low-Power Consumption Mode Ordering Information February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL Change Results Added the size of each EndPoint Added SWCLK and SWDIO and SWO · Added the description of I2C to the type of E, F, I, L · Added about +B input Added "Stabilizing power supply voltage" Added the following description "Evaluate oscillation of your using crystal oscillator by your mount board." Changed the description Modified the block diagram Modified the area of "Extarnal Device Area" Added the summary of Flash memory sector and the note · Added the Clamp maximum current · Added the output current of P80, P81, P82, P83 · Added about +B input · Modified the minimum value of Analog reference voltage · Added Smoothing capacitor · Added the note about less than the minimum power supply voltage · Changed the table format · Added Main TIMER mode current · Added Flash Memory Current · Moved A/D Converter Current Added Frequency stability time at Built-in high-speed CR · Added Time until releasing Power-on reset · Changed the figure of timing Modified Data output time · Modified from UART Timing to CSIO/UART Timing · Changed from Internal shift clock operation to Master mode · Changed from External shift clock operation to Slave mode · Added the typical value of Integral Nonlinearity, Differential Nonlinearity, Zero transition voltage and Full-scale transition voltage · Added Conversion time at AVcc < 4.5 V · Modified Stage transition time to operation permission · Modified the minimum value of Reference voltage Added Return Time from Low-Power Consumption Mode Change to full part number 127 D a t a S h e e t 128 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015 D a t a S h e e t February 10, 2015, MB9B510T-DS706-00019-2v0-E CONFIDENTIAL 129 D a t a S h e e t Colophon The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the respective government entity will be required for export of those products. Trademarks and Notice The contents of this document are subject to change without notice. This document may contain information on a Spansion product under development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any damages of any kind arising out of the use of the information in this document. Copyright © 2011-2015 Spansion All rights reserved. Spansion®, the Spansion logo, MirrorBit®, MirrorBit® EclipseTM, ORNANDTM , Easy DesignSimTM, TraveoTM and combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and other countries. Other names used are for informational purposes only and may be trademarks of their respective owners. 130 CONFIDENTIAL MB9B510T-DS706-00019-2v0-E, February 10, 2015