The following document contains information on Cypress products. FUJITSU MICROELECTRONICS DATA SHEET DS04-71105-1Ea ASSP for Power Supply Applications Evaluation Board MB39A104 ■ DESCRIPTION The MB39A104 evaluation board is a surface mount circuit board with 2 channels of down conversion circuit.Because output voltage set 5 V and 3.3 V, the current of Max 3 A is supplied from the power-supply voltage between 7 V to 19 V. MB39A104 has a circuit configuration with no sense resistor as it is provided with overcurrent protection, eliminating the need for an external sense resistor.The board incorporates the protective functions that upon detection of a short-circuit or activation of the under voltage lockout protection, the circuit protection feature shuts off transistors to stop the output.In addition, each channel can be controlled to be turned on and off and can be set for a soft-start. ■ EVALUATION BOARD SPECIFICATIONS Rating Typ Max 7 12 19 V 420 500 580 kHz (CH1) 4.90 5.0 5.09 (CH2) 3.24 3.3 3.36 (CH1) 1.0 ⎯ 3.0 (CH2) 1.0 ⎯ 3.0 (CH1) ⎯ ⎯ 50 (CH2) ⎯ ⎯ 33 (CH1) 7.8 12.4 23 (CH2) 7.8 12.4 23 0.43 0.73 1.43 (CH1) 5.54 5.75 5.88 (CH2) 5.60 5.78 5.90 Input voltage Oscillation frequency Output voltage Output current Output ripple voltage Soft-start time Short-circuit detection time Detection current of overcurrent protection* Unit Min * : These values are simulated at VIN = 12 V (Typ) and Ron = 50 mΩ. Copyright©2003-2008 FUJITSU MICROELECTRONICS LIMITED All rights reserved 2003.7 V A mV ms ms A MB39A104 ■ TERMINAL DESCRIPTION Symbol Function 1 VIN Source and IC driving power - supply terminal 2 GND Main GND terminal 3 CS1, CS2 4 GND 5 OUT1, OUT2 Output terminal 6 GND1, GND2 DC/DC converter GND terminal 7 VREF Reference voltage output terminal 8 SGND IC control side GND terminal 9 DTC1, DTC2 External duty control terminal 10 CTL Channel OFF terminal GND Power - supply control terminal ■ SWITCH DESCRIPTION SWITCH FUNCTION ON OFF SW1 power - supply control H(operation) L(Standby) SW2 CH1 control L(operation) H(Standby) SW3 CH2 control L(operation) H(Standby) ■ SETUP AND CHECKUP (1) Setup • Connect power supply terminal to VIN and GND.Connect OUT1 or OUT2 to the required loading device or measuring instrument. • Set SW1, SW2, SW3 to OFF. (2) Checkup Set SW1, SW2, SW3 to ON, and turn on VIN. The IC works normally with the following outputs: OUT1 = 5 V (Typ), OUT2 = 3.3 V(Typ). 2 MB39A104 ■ COMPONENT LAYOUT • On-board Component Layout L2 C8 D2 Q2 C9 OUT2 GND2 C19 R18 R13 R25 C20 R28 R14 R15 R16 DTC2 C17 C15 C14 R5 R26 R3 R7 Q4 R22 R21 C1 SW1 SW3 24 VREF 13 M1 3 C10 2 GND VIN 1 CTL 12 1 R1 C16 C13 R19 R8 Q3 R20 R6 C12 R4 R24 R2 C11 SGND SW2 C21 R27 R23 R10 R11 DTC1 R9 C18 R12 GND1 OUT1 Q1 D1 C4 C5 L1 (Continued) 3 MB39A104 (Continued) Board Layout Top Side Inside VIN (LAYER3) 4 Inside GND (LAYER2) Bottom Side MB39A104 ■ CONNECTION DIAGRAM VIN OUT2 L2 Q2 TPC8102 15 μH C6 R3 0Ω C7 + 10 μF R25 0Ω 10 μF GND C9 82 μF C8 82 μF D2 RB053L-30 R26 0Ω 68 kΩ SW1 R15 R16 100 kΩ 13 kΩ R18 20 kΩ C19 220 pF R28 SGND R7 0Ω DTC2 24 M1 23 22 21 C14 1000 pF 20 19 18 2 3 4 5 6 7 15 14 13 9 10 11 12 R2 0Ω Q1 TPC8102 10 μF R1 24 kΩ R24 0Ω VIN R20 200 kΩ R8 220 kΩ C16 0.1 μF C21 1000 pF R19 0Ω SW2 Q3 2N7002 Ch1 OFF SW2 C18 R12 220 pF 20 kΩ R9 68 kΩ R10 R11 150 kΩ 56 kΩ L1 10 μF C1 100 pF C15 C12 1000 pF R27 DTC1 C3 R21 0Ω C13 R6 0Ω + SW3 16 8 R4 2.7 kΩ C11 0.1 μF R23 0Ω 17 2N7002 Ch2 OFF SW3 C10 0.1 μF MB39A104 1 C17 0.1 μF R13 220 kΩ R5 2.7 kΩ VIN R22 200 kΩ Q4 C20 0.1 μF VREF C2 + GND2 R14 CTL + 3.3 V 15 μH C5 82 μF C4 82 μF D1 RB053L-30 + OUT1 5V + GND1 5 MB39A104 ■ PARTS LIST Part No. Part name Specification Manufacturer Package Part number M1 IC MB39A104 FUJITSU MICROELECTRONICS FPT-24P-M03 MB39A104PFV Q1, Q2 P-ch FET VDS = − 30 V, Qg = 43 nC (Typ) TOSHIBA SO-8 TPC8102 Q3, Q4 N-ch FET VDS = 60 V, ID = 0.24 A (Max) Siliconix TO-236 2N7002E D1, D2 Diode VF = 0.42 V (Max), at IF = 3 A ROHM PMDS RB053L-30 L1, L2 Inductor 15 μH SUMIDA SMD CDRH104R-150 C1 Ceramic condenser 100 pF (50 V) TDK 1608 type C1608CH1H101J C2, C6 OS-CONTM 10 μF (20 V) SANYO SMD 20SVP10M C3, C7 Ceramic condenser 10 μF (25 V) TDK 3225 type C3325JF1E106Z C4, C8 OS-CONTM 82 μF (6.3 V) SANYO SMD 6SVP82M C5, C9 OS-CONTM 82 μF (6.3 V) SANYO SMD 6SVP82M C10, C11, C20 Ceramic condenser 0.1 μF (50 V) TDK 1608 type C1608JB1H104K C12 Ceramic condenser 1000 pF (50 V) TDK 1608 type C1608JB1H102K Note Not mounted Not mounted C13, C15 C14 Ceramic condenser 1000 pF (50 V) TDK 1608 type C1608JB1H102K C16, C17 Ceramic condenser 0.1 μF (50 V) TDK 1608 type C1608JB1H104K C18 Ceramic condenser 220 pF (50 V) TDK 1608 type C1608JB1H221K Not mounted C19 Ceramic condenser 220 pF (50 V) TDK 1608 type C1608JB1H221K Not mounted C21 Ceramic condenser 1000 pF (50 V) TDK 1608 type C1608JB1H102K R1 Resistor 24 kΩ (0.5%) ssm 1608 type RR0816P243D R2, R3, R6, R7 Jumper 0Ω KOA 1608 type RK73Z1J-0D R4, R5 Resistor 2.7 kΩ (0.5%) ssm 1608 type RR0816P272D R8 Resistor 220 kΩ (0.5%) ssm 1608 type RR0816P224D (Continued) 6 MB39A104 (Continued) Part No. Part name Specification Manufacturer Package Part number R9 Resistor 68 kΩ (0.5%) ssm 1608 type RR0816P683D R10 Resistor 150 kΩ (0.5%) ssm 1608 type RR0816P154D R11 Resistor 56 kΩ (0.5%) ssm 1608 type RR0816P563D R12 Resistor 20 kΩ (0.5%) ssm 1608 type RR0816P203D R13 Resistor 220 kΩ (0.5%) ssm 1608 type RR0816P224D R14 Resistor 68 kΩ (0.5%) ssm 1608 type RR0816P683D R15 Resistor 100 kΩ (0.5%) ssm 1608 type RR0816P104D R16 Resistor 13 kΩ (0.5%) ssm 1608 type RR0816P133D R18 Resistor 20 kΩ (0.5%) ssm 1608 type RR0816P203D R19, R21 Jumper 0Ω KOA 1608 type RK73Z1J-0D R20, R22 Resistor 200 kΩ (0.5%) ssm 1608 type RR0816P204D R23, R24, R25, R26 Jumper 0Ω KOA 1608 type RK73Z1J-0D Note Not mounted Not mounted Not mounted R27, R28 SW1, SW2, SW3 DIP switch 4 pole MATSUKYU DMS-4H Pin Terminal pins WT-2-1 MacEight WT-2-1 Note : OS-CON is a trademark of SANYO Electric Co., Ltd. TOSHIBA Siliconix ROHM SUMIDA SANYO TDK ssm KOA MATSUKYU MacEight TOSHIBA CORPORATION Semiconductor Company VISHAY Intertechnology, Inc ROHM Co., Ltd. Sumida Corporation SANYO Electric Co., Ltd. TDK Corporation SUSUMU CO., LTD. KOA Corporation Matsukyu Co., Ltd. MacEight Co., Ltd. 7 MB39A104 ■ INITIAL SETTINGS (1) Output voltage CH1 VO1 (V) = 1.24 / R9 × (R9 + R10 + R11) =: 5.0 (V) CH2 VO2 (V) = 1.24 / R14 × (R14 + R15 + R16) =: 3.3 (V) (2) Oscillation frequency fOSC (kHz) = 1200000 / (C1 (pF) × R1 (kΩ) ) =: 500 (kHz) (3) Soft-start time CH1 ts (s) = 0.124 × C16 (μF) =: 12.4 (ms) CH2 ts (s) = 0.124 × C17 (μF) =: 12.4 (ms) (4) Short-circuit detection time tscp (s) = 0.73 × C21 (μF) =: 0.73 (ms) (5) Detection current of overcurrent protection CH1 (ILIM = 110 μA, RON = 50.0 mΩ, VIN = 12 V, VO1 = 5.0 V) IOCP (A) = ILIM × R4 / RON − ( (VIN − VO1) × VO1) / (2 × VIN × fOSC × L1) =: 5.75 (A) CH2 (ILIM = 110 μA, RON = 50.0 mΩ, VIN = 12 V, VO2 = 3.3 V) IOCP (A) = ILIM × R5 / RON − ( (VIN − VO2) × VO2) / (2 × VIN × fOSC × L2) =: 5.78 (A) 8 MB39A104 ■ REFERENCE DATA (1) Conversion efficiency vs. load current characteristics (VIN = 12 V) ch1 ch2 95 90 85 80 75 70 VIN = 12 V Setting Vo1 = 5 V SW1 = ON SW2 = OFF SW3 = OFF 65 60 55 50 10 m 100 m 1 10 Conversion efficiency-Load current (ch2) Conversion efficiency η (%) Conversion efficiency η (%) Conversion efficiency-Load current (ch1) 100 100 95 90 85 80 75 70 VIN = 12 V Setting Vo2 = 3.3 V SW1 = ON SW2 = OFF SW3 = OFF 65 60 55 50 10 m 100 m Load current IO1 (A) 1 10 Load current IO2 (A) (2) Load Reguration (VIN = 12 V) ch1 ch2 Output voltage-Load current (ch1) VIN = 12 V Setting Vo1 = 5 V SW1 = ON SW2 = OFF SW3 = OFF 5.02 5.01 5.00 4.99 4.98 4.97 4.96 4.95 10 m 100 m 1 Load current IO1 (A) 10 3.34 Output voltage VO2 (V) Output voltage VO1 (V) 5.03 Output voltage-Load current (ch2) VIN = 12 V Setting Vo2 = 3.3 V SW1 = ON SW2 = OFF SW3 = OFF 3.33 3.32 3.31 3.30 3.29 3.28 3.27 3.26 10 m 100 m 1 10 Load current IO2 (A) 9 MB39A104 (3) Line regulation ch1 ch2 Output voltage-Input voltage (ch2) 3.34 5.01 3.33 Output voltage VO2 (V) Output voltage VO1 (V) Output voltage-Input voltage (ch1) 5.02 5.00 4.99 4.98 4.97 Io = 1.5 A Setting Vo1 = 5 V SW1 = ON SW2 = OFF SW3 = OFF 4.96 4.95 4.94 Io = 1.5 A Setting Vo2 = 3.3 V SW1 = ON SW2 = OFF SW3 = OFF 3.32 3.31 3.30 3.29 3.28 3.27 3.26 7 9 11 13 15 17 19 21 7 9 Input voltage VIN (V) 11 13 VIN = 12 V Setting Vo1 = 2 Ω Vo2 = 2 Ω SW1 = ON SW2 = OFF SW3 = OFF 4 2 0 Vo2 (V) 2 Vo1 Vo2 0 CTL (V) 5 CTL 0 0 10 10 17 Input voltage VIN (V) (4) Soft - start/discharge operation waveforms Vo1 (V) 15 20 30 40 50 60 70 80 90 100 (ms) 19 21 MB39A104 (5) Output ripple waveforms (VIN = 12 V) ch1 Vo1 (mV) 20 IO = 0.5 A 0 −20 PchFET Drain (V) 10 5 0 0 1 2 3 4 5 6 7 Vo1 (mV) 20 8 9 10 (μs) IO = 1.5 A 0 −20 PchFET Drain (V) 10 5 0 0 1 2 3 4 5 6 7 Vo1 (mV) 20 8 9 10 (μs) IO = 3 A 0 −20 PchFET Drain (V) 10 5 0 0 1 2 3 4 5 6 7 8 9 10 (μs) 11 MB39A104 ch2 Vo2 (mV) 20 IO = 0.5 A 0 −20 PchFET Drain (V) 10 5 0 0 1 2 3 4 5 6 7 Vo2 (mV) 20 8 9 10 (μs) IO = 1.5 A 0 −20 PchFET Drain (V) 10 5 0 0 1 2 3 4 5 6 7 Vo2 (mV) 20 8 9 10 (μs) IO = 3 A 0 −20 PchFET Drain (V) 10 5 0 0 12 1 2 3 4 5 6 7 8 9 10 (μs) MB39A104 (6) Output waveform at load sudden change (VIN = 12 V) ch1 ch2 SW1 = ON SW2 = OFF SW3 = OFF Vo1 (mV) 50 0 0 −50 −50 lo1 (A) lo1 (A) 4 4 2 2 0 0 0 1 2 SW1 = ON SW2 = OFF SW3 = OFF Vo1 (mV) 50 3 4 5 6 7 8 9 10 (ms) 0 1 2 3 4 5 6 7 8 9 10 (ms) (7) Overcurrent protection characteristics (VIN = 12 V) ch2 6 SW1 = ON SW2 = OFF SW3 = OFF RLIM1 = R4 5 4 3 2 1 0 0 500 1000 1500 RLIM1 (Ω) 2000 2500 3000 OCP detection current Iocp (A) OCP detection current Iocp (A) ch1 6 SW1 = ON SW2 = OFF SW3 = OFF RLIM2 = R5 5 4 3 2 1 0 0 500 1000 1500 2000 2500 3000 RLIM2 (Ω) 13 MB39A104 ■ COMPONENT SELECTION METHODS 1. Board view CH2 Flyback diode Output smoothing condenser FET Inductor MB39A104 EV Board L2 C8 TPC8102 . ˚ 9D 56 12 C7 C9 OUT2 207 82 6 D2 150 N26 225 10 20 GND2 R13 C19 R18 683 104 224 R15 0 R25 C20 R28 R14 133 R16 204 R22 0 Q4 7EPTH R5 C17 R26 0 0 R7 C15 272 R3 R21 C14 0 DTC2 SW1 C1 39A104 ES0209 M00 2 C10 1 CTL 12 1 M1 VIN 3 13 VREF GND 4 SW3 24 R1 OFF MKK C6 Q2 3 2 1 243 R19 204 0 R20 0 0 272 0 Q3 7EPTH C16 C13 R6 C12 R4 R2 R24 C11 SGND SW2 R8 C21 R27 R23 R10 R11 683 154 563 C18 R12 0 DTC1 R9 TPC8102 ° 9D 56 12 Q1 D1 C3 207 82 6 225 10 20 GND1 150 N26 C2 224 OUT1 C5 C4 L1 R e v. 1 . 0 Inductor FET Flyback diode CH1 Board Photograph 14 Output smoothing condenser MB39A104 The following subsections show the component selection methods with the following common parametric values. VIN = 19 V (Max) , Vo1 = 5.0 V, Vo2 = 3.3 V, Io = 3.0 A, fOSC = 500 kHz 2. P - ch MOSFET(TPC8102(TOSHIBA product)) VDS = − 30 V, VGS = ± 20 V, ID = 6 A, RDS (on) = 34 mΩ (Typ) , Qg = 43 nC (Typ) Drain current:peak value The peak drain current of this FET must be within its rated current. If the FET’s peak drain current is ID, it is obtained by the following formula. ch1 side VIN − Vo1 ton ID ≥ IO + 2L ≥ 3+ 19 − 5 1 × × 0.263 2 × 15 × 10 − 6 500 × 103 ≥ 3.25 A ch2 side ID ≥ IO + ≥ 3+ VIN − Vo2 ton 2L 19 − 3.3 1 × × 0.174 2 × 15 × 10 − 6 500 × 103 ≥ 3.18 A 15 MB39A104 3. Inductor (CDRH104R - 150:SUMIDAproduct) 15 μH (tolerance ± 30%), rated current = 3.6 A L value at entire road current condition: Set the peak-to-peak ripple current to less than half road current ch1 side 2 (VIN − Vo1) L≥ ton IO ≥ 2 × (19 − 5) 3 × 1 × 0.263 500 × 103 ≥ 4.91 μH ch2 side L≥ ≥ 2 (VIN − Vo2) ton IO 1 2 × (19 − 3.3) × × 0.174 3 500 × 103 ≥ 3.64 μH The load current satisfying the continuous current condition ch1 side Vo1 IO ≥ toff 2L ≥ 5 1 × × (1 − 0.263) 2 × 15 × 10 − 6 500 × 103 ≥ 245.7 mA ch2 side IO ≥ ≥ Vo2 toff 2L 3.3 1 × × (1 − 0.174) 2 × 15 × 10 − 6 500 × 103 ≥ 181.7 mA 16 MB39A104 Ripple current: Peak value The peak ripple current must be within the rated current of the inductor If the peak ripple current is IL, it is obtained by the following formula. ch1 side VIN − Vo1 IL ≥ IO + ton 2L ≥ 3+ 19 − 5 1 × × 0.263 2 × 15 × 10 − 6 500 × 103 ≥ 3.25 A ch2 side IL ≥ IO + ≥ 3+ VIN − Vo2 ton 2L 19 − 3.3 1 × × 0.174 2 × 15 × 10 − 6 500 × 103 ≥ 3.18 A Ripple current:Peak - to - peak value If the peak - to - peak ripple current is ΔIL, it is obtained by the following formula. ch1 side VIN − Vo1 ton ΔIL = L = 19 − 5 15 × 10 − 6 × 1 × 0.263 500 × 103 =: 0.491 A ch2 side ΔIL = = VIN − Vo2 ton L 19 − 3.3 15 × 10 − 6 × 1 × 0.174 500 × 103 =: 0.364 A 17 MB39A104 4. Output smoothing condenser 82 μF, rated voltage = 6.3 V, ESR = 50 mΩ, maximum allowable ripple current = 1570 mArms The output ripple voltage is ΔVO, output smoothing condenser is CL, ripple current is ICLrms, and series resistance is ESR. ESR, CL, ICLrms values of single using are obtained by the following formula. Series resistance ch1 side ΔVo ESR ≤ − ΔIL ≤ 0.050 − 0.491 1 2πfCL 1 2π × 500 × 103 × 82 × 10 − 6 ≤ 98.0 mΩ Resistance of the above condenser is 50 mΩ and acceptable. ch2 side ESR ≤ ≤ ΔVo − ΔIL 1 2πfCL 0.033 1 − 0.364 2π × 500 × 103 × 82 × 10 − 6 ≤ 86.8 mΩ Resistance of the above condenser is 50 mΩ and acceptable. Condenser ch1 side CL ≥ ≥ ΔIL 2πf (ΔVo − ΔIL × ESR) 0.491 2π × 500 × 103 × (0.050 − 0.491 × 0.05) ≥ 6.14 μF Capacitance of the above condenser is 82 μF (Typ) and acceptable. ch2 side CL ≥ ≥ ΔIL 2πf (ΔVo − ΔIL × ESR) 0.364 2π × 500 × 103 × (0.033 − 0.364 × 0.05) ≥ 7.83 μF Capacitance of the above condenser is 82 μF (Typ) and acceptable. 18 MB39A104 Ripple current ch1 side (VIN − Vo1) ton ICLrms ≥ 2√3L ≥ (19 − 5) × 0.263 2√3 × 15 × 10−6 × 500 × 103 ≥ 141.7 mArms Maximum allowable ripple current of the above condenser is 1570 mArms and acceptable. ch2 side (VIN − Vo2) ton ICLrms ≥ 2√3L ≥ (19 − 3.3) × 0.174 2√3 × 15 × 10−6 × 500 × 103 ≥ 105.1 mArms Maximum allowable ripple current of the above condenser is 1570 mArms and acceptable. 19 MB39A104 5. Flyback diode(RB053L - 30:ROHM product) VR (reverse DC voltage) = 30 V, average output current = 3.0 A, peak current = 10 A VF (forward voltage) = 0.42V, at IF = 3.0 A VR : value enough to satisfy the input voltage→30 V On time of the diode is assumed to be tD(Max), the diode average current IDi is obtained by the following formula. ch1 side Vo1 ) = 3 × (1 − 0.263) =: 2.21 A IDi ≥ IO × (1 − VIN ch2 side IDi ≥ IO × (1 − Vo2 ) = 3 × (1−0.174) =: 2.48 A VIN On time of the diode is assumed to be tD(Max), the diode peak current IDip is obtained by the following formula. ch1 side Vo1 IDip ≥ (IO + toff) =: 3.24 A 2L ch2 side IDip ≥ (IO + 20 Vo2 toff) =: 3.18 A 2L MB39A104 ■ ORDERING INFORMATION EV board part No. MB39A104EVB EVboard version No. Remarks MB39A104 EV Board Rev.1.0 21 MB39A104 MEMO 22 MB39A104 MEMO 23 FUJITSU MICROELECTRONICS LIMITED Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3387 http://jp.fujitsu.com/fml/en/ For further information please contact: North and South America FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://www.fma.fujitsu.com/ Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE LTD. 151 Lorong Chuan, #05-08 New Tech Park, Singapore 556741 Tel: +65-6281-0770 Fax: +65-6281-0220 http://www.fujitsu.com/sg/services/micro/semiconductor/ Europe FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/microelectronics/ FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm.3102, Bund Center, No.222 Yan An Road(E), Shanghai 200002, China Tel: +86-21-6335-1560 Fax: +86-21-6335-1605 http://cn.fujitsu.com/fmc/ Korea FUJITSU MICROELECTRONICS KOREA LTD. 206 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://www.fmk.fujitsu.com/ FUJITSU MICROELECTRONICS PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road Tsimshatsui, Kowloon Hong Kong Tel: +852-2377-0226 Fax: +852-2376-3269 http://cn.fujitsu.com/fmc/tw All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with sales representatives before ordering. The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information. Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws. The company names and brand names herein are the trademarks or registered trademarks of their respective owners. Edited Strategic Business Development Dept.