The following document contains information on Cypress products. FUJITSU MICROELECTRONICS DATA SHEET DS04-71109-1Ea ASSP for Power Supply Applications Evaluation Board MB39A112 ■ DESCRIPTION The MB39A112 evaluation board is a surface mount circuit board with 3 channels of down conversion circuit. This evaluation board outputs voltage of 1.2 V, 3.3 V and 5.0 V from the output terminals of 3 systems, and supplying a current of Max 1.5 A. More ever, when the under voltage lockout protection circuit do operation or the short-circuit protection is detected by the protection function, the FET is turned off and the output is stopped. In addition, each channel can be controlled to be turned on and off, and can be set for a soft-start. ■ EVALUATION BOARD SPECIFICATIONS Parameter Terminal Input voltage Ripple voltage Output current Soft-start time Value Min Typ Max Unit VIN 7 12 20 V ⎯ 2115 2350 2585 kHz CH1 VO1 1.14 1.2 1.26 V CH2 VO2 3.13 3.3 3.47 V CH3 VO3 4.75 5.0 5.25 V CH1 VO1 6 12 24 mV CH2 VO2 16 33 64 mV CH3 VO3 25 50 100 mV CH1 VO1 800 1200 1500 mA CH2 VO2 150 500 1000 mA CH3 VO3 150 200 300 mA CH1 ⎯ 6.3 10 18.6 ms CH2 ⎯ 7.8 12 22.8 ms CH3 ⎯ 7.8 12 22.8 ms ⎯ 430 720 1420 μs Oscillation frequency Output voltage (Ta = + 25 °C) Short-circuit detection time Copyright©2004-2008 FUJITSU MICROELECTRONICS LIMITED All rights reserved 2004.5 MB39A112 ■ TERMINAL DESCRIPTION Symbol Description VIN Power supply terminal VIN = 7 V to 25 V (Typ 12 V) VOX DC/DC converter output terminal GND GND terminal GNDX DC/DC converter GND terminal ICGND MB39A112 GND terminal ■ SWITCH DESCRIPTION SW Name Function OPEN L 1 CS1 CH1 control Output ON Output OFF 2 CS2 CH2 control Output ON Output OFF 3 CS3 CH3 control Output ON Output OFF ■ SETUP AND CHECKUP (1) Setup • Connect power-supply terminals side to the VIN and GND, and connect the VO side to required loading device or measuring instrument. • Set SW1 to SW3 (CS1 to CS3) to OFF (output OFF) . (2) Checkup • Turn on VIN (power supply) , set SW1 to SW3 to ON (output ON) . The IC works normally with the following outputs : VO1 = 1.2 V (Typ) , VO2 = 3.3 V (Typ) , VO3 = 5 V (Typ) 2 MB39A112 ■ COMPONENT LAYOUT • On-board Component Layout GND VIN Q1 VD1 VO1 CTL1 R6 Q4 R1 R8 R10 C10 C11 R21 Q6 20 R2 Q2 VD2 3 VH FB2 10 R14 VO2 1 C4 11 R12 R13 C17 OUT2 C16 VCC C13 R20 M1 1 C9 CS2 R18 FB3 D2 L2 CSCP C3 C15 OUT3 C14 R16 R3 R15 CS3 C12 R11 R17 SGND 2 3 4 CS L GND2 6 4 Q3 VD3 VO3 3 1 GND1 6 4 VCCO FB1 C8 CTL3 L1 R4 R9 C2 C1 CTL2 Q5 1 D1 R5 R7 CS1 C7 R19 3 OUT1 C6 D3 C5 2 L3 GND3 1 SW1 NC CS3 CS2 CS1 CS OPEN (Continued) 3 MB39A112 (Continued) Board Layout Top Side Inside VIN (Layer3) 4 Inside GND (Layer2) Bottom Side MB39A112 ■ CONNECTION DIAGRAM R6 R7 2.2 kΩ 18 kΩ A Q4 * CTL1 R19 −INE1 2 R8 100 kΩ C7 0.1 μF VREF 10 μA CS1 1 R9 820 Ω FB1 − + + L priority Error Amp1 + − R1 C1 2.2 μF + − Drive2 Pch 18 OUT2 R2 0Ω D2 SBE001 C3 2.2 μF Io = 150 mA CH3 + − VO2 3.3 V lo2 = 0.15 A to 1 A C4 4.7 μF GND2 VO3 5.0 V lo3 = 0.15 A to 0.3 A 10 μH Drive3 Pch 17 OUT3 Io = 150 mA VCCO − 5 V R3 0Ω C5 2.2 μF D3 SBS005 C6 4.7 μF GND3 C16 0.1 μF 16 VH Bias Voltage VH Error Amp power supply SCPComp. power supply 15 GNDO VCC Power VR ON/OFF CTL C9 0.1μF OPEN L SW1 CS1 a CS2 b 3 0Ω 2 VREF R5 4 Error Amp reference (1.0 V/1.23 V) 1 bias 3.5 V UVLO c CS3 NC 4 GND 6 GND1 Step-down VD3 C Q3 L3 MCH3308 PWM Comp.3 H:UVLO release 5 C2 4.7 μF Step-down 3.3 μH 14 RT R10 5.1 kΩ D1 SBE001 VD2 B Q2 L2 MCH3312 CH2 H: at SCP OSC VO1 1.2 V lo1 = 0.8 A to 1.5 A 2 μH PWM Comp.2 SCP 2.0 V 0Ω Io = 150 mA 2.7 V 2.5 V Step-down VD1 A Q1 L1 MCH3312 R4 0Ω 1.0 V + − CSCP Drive1 Pch C17 0.1 μF OUT1 19 PWM Comp.1 C8 * 3 0.022 μF CH1 ON/OFF signal a (L:ON, H:OFF) R11 R12 4.7 kΩ 56 kΩ −INE2 B 9 VREF Error R13 10 μA 36 kΩ − Amp2 Q5 CS2 + 10 + CTL2 R14 * C12 820 Ω L 0.1 μF 1.23 V R20 priority FB2 C11 * 8 0.01 μF CH2 ON/OFF signal b (L:ON, H:OFF) R15 R16 680 Ω 30 kΩ −INE3 12 C VIN VREF Error R17 (12 V) 10 μA 10 kΩ − Amp3 Q6 CS3 + 11 + CTL3 R18 * C13 1 kΩ L 0.1 μF 1.23 V R21 priority GND FB3 C14 * 13 0.01 μF CH3 ON/OFF signal H priority c (L:ON, H:OFF) SCP + Comp. + Charge current 1 A C15 1000 pF CH1 VCCO 20 7 CT GND C10 100 pF ICGND All channels are ON state in above diagram <20 Pin> * : Not mounted 5 MB39A112 ■ PARTS LIST Symbol Specification No. (Circuit Part name diagram mark) Model name Rating Rating Rating 1 2 3 Value Deviation Features ⎯ ⎯ ⎯ Package Manufacturer Remarks FUJITSU MICROELECTRONICS 1 M1 IC MB39A 112PFT 2 Q1 Pch FET MCH3312 PD = 1W VGSS ID = = 20 V 2.0 A ⎯ ⎯ ⎯ MCPH3 SANYO 3 Q2 Pch FET MCH3312 PD = 1W VGSS ID = = 20 V 2.0 A ⎯ ⎯ ⎯ MCPH3 SANYO 4 Q3 Pch FET MCH3308 PD = VGSS ID = 0.8 W = 20 V 1.0 A ⎯ ⎯ ⎯ MCPH3 SANYO 5 Q4 Nch FET ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ Not mounted 6 Q5 Nch FET ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ Not mounted 7 Q6 Nch FET ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ Not mounted 8 D1 SBD SBE001 IF (AV) VRRM = 2 A = 30 V ⎯ ⎯ ⎯ ⎯ CPH6 SANYO 9 D2 SBD SBE001 IF (AV) VRRM = 2 A = 30 V ⎯ ⎯ ⎯ ⎯ CPH6 SANYO 10 D3 SBD SBS005 IF (AV) VRRM = 1 A = 30 V ⎯ ⎯ ⎯ ⎯ CPH3 SANYO 11 L1 Coil A916CY2R0M IDC1 = IDC2 = 3A 3.31A ⎯ 2μ ±20% RDC = 16 mΩ ⎯ TOKO 12 L2 Coil A916CY3R3M IDC1 = IDC2 = 2.57 A 2.81 A ⎯ 3.3 μ ±20% RDC = 21.4 mΩ ⎯ TOKO 13 L3 Coil A916CY100M IDC1 = IDC2 = 1.49 A 1.97 A ⎯ 10 μ ±20% RDC = 41.2 mΩ ⎯ TOKO 14 C1 Ceramic C3216JB condenser 1E225K 25 V ⎯ 2.2 μ ±10% characteristics 3216 TDK Ceramic C3216JB condenser 1C475M 16 V 3216 TDK Ceramic C3216JB condenser 1E225K 25 V 3216 TDK Ceramic C3216JB condenser 1C475M 16 V 3216 TDK Ceramic C3216JB condenser 1E225K 25 V 3216 TDK Ceramic C3216JB condenser 1C475M 16 V 3216 TDK 15 C2 16 C3 17 C4 18 C5 19 C6 ⎯ ⎯ ⎯ ⎯ FPT-20PM06 Temperature B ⎯ ⎯ 4.7 μ Temperature ±20% characteristics B ⎯ ⎯ 2.2 μ Temperature ±10% characteristics B ⎯ ⎯ 4.7 μ Temperature ±20% characteristics B ⎯ ⎯ 2.2 μ Temperature ±10% characteristics B ⎯ ⎯ 4.7 μ Temperature ±20% characteristics B (Continued) 6 MB39A112 Symbol No. Specification (Circuit Part name diagram mark) Model name Rating Rating Rating 1 2 3 Value Deviation ⎯ 0.1 μ ±10% characteristics 50V Ceramic C1608JB condenser 1H223K 50V Ceramic C1608JB condenser 1H104K 50V Ceramic C1608CH condenser 1H101J 50V Ceramic C1608JB condenser 1H103K 50V Ceramic C1608JB condenser 1H104K 50V Ceramic C1608JB condenser 1H104K 50V Ceramic C1608JB condenser 1H103K 50V Ceramic C1608JB condenser 1H102K 50V Ceramic C1608JB condenser 1H104K 50V Ceramic C1608JB condenser 1H104K 50V 31 R1 Jumper RK73Z1J 1A ⎯ ⎯ 0Ω Max 50 mΩ 32 R2 Jumper RK73Z1J 1A ⎯ ⎯ 0Ω 33 R3 Jumper RK73Z1J 1A ⎯ ⎯ 34 R4 Jumper RK73Z1J 1A ⎯ 35 R5 Jumper RK73Z1J 1A ⎯ 21 C8 22 C9 23 C10 24 C11 25 C12 26 C13 27 C14 28 C15 29 C16 30 C17 Package Manufacturer Remarks Temperature Ceramic C1608JB condenser 1H104K 20 C7 Features ⎯ 1608 TDK 1608 TDK 1608 TDK 1608 TDK 1608 TDK 1608 TDK 1608 TDK 1608 TDK 1608 TDK 1608 TDK 1608 TDK ⎯ 1608 KOA Max 50 mΩ ⎯ 1608 KOA 0Ω Max 50 mΩ ⎯ 1608 KOA ⎯ 0Ω Max 50 mΩ ⎯ 1608 KOA ⎯ 0Ω Max 50 mΩ ⎯ 1608 KOA B Temperature ⎯ ⎯ 0.022 μ ±10% characteristics B Temperature ⎯ ⎯ 0.1 μ ±10% characteristics B ⎯ ⎯ Temperature 100 p ±5% characteristics CH Temperature ⎯ ⎯ 0.01 μ ±10% characteristics B Temperature ⎯ ⎯ 0.1 μ ±10% characteristics B Temperature ⎯ ⎯ 0.1 μ ±10% characteristics B Temperature ⎯ ⎯ 0.01 μ ±10% characteristics B Temperature ⎯ ⎯ 1000 p ±10% characteristics B Temperature ⎯ ⎯ 0.1 μ ±10% characteristics B Temperature ⎯ ⎯ 0.1 μ ±10% characteristics B (Continued) 7 MB39A112 (Continued) Symbol No. (Circuit Part name diagram mark) Rating Rating Rating 1 2 3 Value Deviation Features Package Manufacturer Remarks 36 R6 Resistor PR0816P1/16 W 222-D ⎯ ⎯ 2.2 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 37 R7 Resistor PR0816P1/16 W 183-D ⎯ ⎯ 18 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 38 R8 Resistor PR0816P1/16 W 104-D ⎯ ⎯ 100 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 39 R9 Resistor PR0816P1/16 W 821-D ⎯ ⎯ 820 Ω ±0.5% ±25 ppm/ °C 1608 ssm 40 R10 Resistor PR0816P1/16 W 512-D ⎯ ⎯ 5.1 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 41 R11 Resistor PR0816P1/16 W 472-D ⎯ ⎯ 4.7 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 42 R12 Resistor PR0816P1/16 W 563-D ⎯ ⎯ 56 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 43 R13 Resistor PR0816P1/16 W 363-D ⎯ ⎯ 36 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 44 R14 Resistor PR0816P1/16 W 821-D ⎯ ⎯ 820 Ω ±0.5% ±25 ppm/ °C 1608 ssm 45 R15 Resistor PR0816P1/16 W 681-D ⎯ ⎯ 680 Ω ±0.5% ±25 ppm/ °C 1608 ssm 46 R16 Resistor PR0816P1/16 W 303-D ⎯ ⎯ 30 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 47 R17 Resistor PR0816P1/16 W 103-D ⎯ ⎯ 10 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 48 R18 Resistor PR0816P1/16 W 102-D ⎯ ⎯ 1 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 49 R19 Resistor ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ Not mounted 50 R20 Resistor ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ Not mounted 51 R21 Resistor ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ Not mounted 52 SW1 Switch DMS-4H ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ MATSUKYU Terminal pin WT-2-1 ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ MacEight 53 ⎯ SANYO TOKO TDK KOA ssm MATSUKYU MacEight 8 Specification Model name SANYO Electric Co., Ltd. TOKO, Inc. TDK Corporation KOA Corporation SUSUMU CO., LTD. Matsukyu Co., Ltd. MacEight Co., Ltd. MB39A112 ■ INITIAL SETTINGS (1) Output voltage R6 + R7 + R8 × 1.0 =: 1.2 V R8 R11 + R12 + R13 CH2 : VO2 (V) = × 1.23 =: 3.3 V R13 R15 + R16 + R17 CH3 : VO3 (V) = × 1.23 =: 5 V R17 CH1 : VO1 (V) = (2) Oscillation frequency fOSC (kHz) = 1200000 =: 2350 (kHz) C10 (pF) × R10 (kΩ) (3) Soft-start time CH1 : ts1 (s) = 1.0 × C7 (μF) =: 10 (ms) CH2 : ts2 (s) = 0.123 × C12 (μF) =: 12 (ms) CH3 : ts3 (s) = 0.123 × C13 (μF) =: 12 (ms) (4) Short-circuit detection time tscp (s) = 0.72 × C15 (μF) =: 720 (μs) 9 MB39A112 ■ REFERENCE DATA 1. Conversion efficiency vs. Input voltage • CH1 Conversion Efficiency vs. Load Current (CH1) Conversion efficiency η (%) 100 90 80 70 60 50 VIN = 12 V Setting VO1 = 1.2 V SW1 = ON SW2 = OFF SW3 = OFF 40 30 20 10 100 1000 10000 Load current Io1 (mA) • CH2 Conversion Efficiency vs. Load Current (CH2) Conversion efficiency η (%) 100 90 80 70 60 50 VIN = 12 V Setting VO2 = 3.3 V SW1 = OFF SW2 = ON SW3 = OFF 40 30 20 10 100 1000 10000 Load current Io2 (mA) • CH3 Conversion Efficiency vs. Load Current (CH3) Conversion efficiency η (%) 100 90 80 70 60 50 VIN = 12 V Setting VO3 = 5.0 V SW1 = OFF SW2 = OFF SW3 = ON 40 30 20 10 100 Load current Io3 (mA) 10 1000 MB39A112 2. Load Reguration (VIN = 12 V) • CH1 Output Voltage vs. Load Current (CH1) Output voltage Vo1 (V) 1.5 VIN = 12 V Setting VO1 = 1.2 V SW1 = ON SW2 = OFF SW3 = OFF 1.4 1.3 1.2 1.1 1 10 100 1000 10000 Load current Io1 (A) • CH2 Output Voltage vs. Load Current (CH2) Output voltage Vo2 (V) 3.5 3.4 3.3 3.2 VIN = 12 V Setting VO2 = 3.3 V SW1 = OFF SW2 = ON SW3 = OFF 3.1 3 10 1000 100 10000 Load current Io2 (A) • CH3 Output Voltage vs. Load Current (CH3) Output voltage Vo3 (V) 5.3 VIN = 12 V Setting VO3 = 5.0 V SW1 = OFF SW2 = OFF SW3 = ON 5.2 5.1 5 4.9 4.8 10 100 1000 Load current Io3 (A) 11 MB39A112 3. Line regulation • CH1 Output Voltage vs. Input Voltage (CH1) Output voltage Vo1 (V) 1.5 VIN = 12 V Setting VO1 = 1.2 V SW1 = ON SW2 = OFF SW3 = OFF 1.4 1.3 1.2 1.1 1 6 8 10 12 14 16 18 20 22 Input voltage VIN (V) • CH2 Output Voltage vs. Input Voltage (CH2) Output voltage Vo2 (V) 3.5 VIN = 12 V Setting VO2 = 3.3 V SW1 = OFF SW2 = ON SW3 = OFF 3.4 3.3 3.2 3.1 3 6 8 10 12 14 16 18 20 22 Input voltage VIN (V) • CH3 Output Voltage vs. Input Voltage (CH3) Output voltage Vo3 (V) 5.3 VIN = 12 V Setting VO3 = 5.0 V SW1 = OFF SW2 = OFF SW3 = ON 5.2 5.1 5 4.9 4.8 6 8 10 12 14 16 18 Input voltage VIN (V) 12 20 22 MB39A112 4. Soft-start operation waveforms • CH1 2.0 VO1 [V] 1.5 1.0 0.5 0 3 CS1 [V] 2 =: 10.6 ms 1 0 0 5 VIN = 12 V setting VO1 = 1.2 V 10 15 20 25 30 35 40 45 50 (ms) • CH2 4 VO2 [V] 3 2 1 0 3 CS2 [V] 2 =: 12.7 ms VIN = 12 V setting VO2 = 3.3 V 1 0 0 5 10 15 20 25 30 35 40 45 50 (ms) • CH3 VO3 [V] 6 4 2 0 3 CS3 [V] 2 =: 13.2 ms VIN = 12 V setting VO3 = 5.0 V 1 0 0 5 10 15 20 25 30 35 40 45 50 (ms) 13 MB39A112 ■ COMPONENT SELECTION METHODS CH1 FET Flyback diode GND VIN Q1 CTL1 VO1 D1 R5 R7 104 183 CS1 C7 R8 3 M1 C10 C11 C17 OUT2 R2 C16 0 Q2 VD2 3 VH FB3 3R3 D2 1 303 103 R17 4 D3 C5 1 2 3 Inductor Output smoothing condenser GND2 Flyback diode Q3 VD3 VO3 100 SD 8 L3 3 CS L CH2 6 4 JH 681 C15 OUT3 C14 R16 R3 0 R15 3 2 C4 L2 CSCP C3 CS3 SGND 1 VO2 11 R18 102 472 CS2 C12 R11 R12 363 563 821 FET SA 1 J4 FB2 10 R14 4 JM 512 MB39A112 ES0309 M00 VCC GND1 6 0 20 1 R10 R13 VCCO FB1 C9 Q6 R4 C13 R20 821 C8 CTL3 C2 L1 C1 0 R9 2R0 1 OUT1 SA 1 J4 R19 R1 222 Q5 JM R6 CTL2 R21 VD1 0 Q4 Output smoothing condenser Inductor 2 C6 L3 GND3 1 4 SW1 OFF MCC NC CS3 CS2 CS1 FET CS OPEN Inductor Flyback diode CH3 Board Photograph 14 Output smoothing condenser MB39A112 1. CH1 1.2 V output VIN = 12 V (Typ) , Vo1 = 1.2 V, Io = 1.5 A, fOSC = 2300 kHz a) P-ch MOS FET (MCH3312 (SANYO product) ) VDS = −30 V, VGS = ±20 V, ID = −2 A, RDS (ON) = 205 mΩ (Typ) , Qg = 5.5 nC (Typ) Drain current : Peak value The peak drain current of this FET must be within its rated current. If the FET’s peak drain current is ID, it is obtained by the following formula. ID ≥ IO + VIN − Vo1 2L tON 12 − 1.2 2 × 2 × 10−6 ≥ 1.5 + × 1 × 0.1 2300 × 103 ≥ 1.62 A b) Inductor (A916CY-2R0M : TOKO product) 2.0 μH (tolerance ±20%) , rated current = 3.0 A The L value for all load current conditions It is set so that the peak to peak value of the ripple current is 1/2 of the load current or less. L≥ ≥ 2 (VIN − Vo1) tON IO 2 × (12 − 1.2) × 1.5 1 2300 × 103 × 0.1 ≥ 0.63 μH The load current satisfying the continuous current condition IO ≥ Vo1 2L tOFF ≥ 1.2 2 × 2.0 × 10−6 ≥ 0.12 A × 1 2300 × 103 × (1 − 0.1) 15 MB39A112 Ripple current : Peak value The peak ripple current must be within the rated current of the inductor. If the peak ripple current is IL, it is obtained by the following formula. VIN − Vo1 tON 2L IL ≥ IO + ≥ 1.5 + 12 − 1.2 2 × 2.0 × 10−6 × 1 × 0.1 2300 × 103 ≥ 1.62 A Ripple current : peak-to-peak value If the peak-to-peak ripple current is ΔIL, it is obtained by the following formula. ΔIL = = VIN − Vo1 tON L 12 − 1.2 2.0 × 10−6 × 1 × 0.1 2300 × 103 =: 0.23 A c) Flyback diode (SBE001 : SANYO product) VR (DC reverse voltage) = 30 V, average output current = 2.0 A, peak surge current = 20 A VF (forward voltage) = 0.55 V, at IF = 2.0 A VR : The value enough to satisfy the input voltage → 30 V On time of the diode is assumed to be tD (Max) , the diode mean current IDi is obtained by the following formula. IDi ≥ Io × (1 − Vo1 ) = 1.5 × (1 − 0.1) =: 1.35 A VIN On time of the diode is assumed to be tD (Max) , the diode peak current IDip is obtained by the following formula. IDip ≥ 16 (Io + Vo1 tOFF) =: 1.62 A 2L MB39A112 2. CH2 3.3 V output VIN = 12 V (Typ) , Vo2 = 3.3 V, Io = 1.0 A, fOSC = 2300 kHz a) P-ch MOS FET (MCH3312 (SANYO product) ) VDS = −30 V, VGS = ±20 V, ID = −2 A, RDS (ON) = 205 mΩ (Typ) , Qg = 5.5 nC (Typ) Drain current : Peak value The peak drain current of this FET must be within its rated current. If the FET’s peak drain current is ID, it is obtained by the following formula. ID ≥ IO + VIN − Vo2 2L tON 12 − 3.3 2 × 3.3 × 10−6 ≥ 1.0 + × 1 × 0.275 2300 × 103 ≥ 1.16 A b) Inductor (A916CY-3R3M : TOKO product) 3.3 μH (tolerance ±20%) , rated current = 2.57 A The L value for all load current conditions It is set so that the peak to peak value of the ripple current is 1/2 of the load current or less. L≥ ≥ 2 (VIN − Vo2) tON IO 2 × (12 − 3.3) × 1.0 1 2300 × 103 × 0.275 ≥ 2.08 μH The load current satisfying the continuous current condition IO ≥ Vo2 2L tOFF ≥ 3.3 2 × 3.3 × 10−6 ≥ 0.16 A × 1 (1 − 0.275) 2300 × 103 × 17 MB39A112 Ripple current : Peak value The peak ripple current must be within the rated current of the inductor. If the peak ripple current is IL, it is obtained by the following formula. VIN − Vo2 tON 2L IL ≥ IO + ≥ 1.0 + 12 − 3.3 2 × 3.3 × 10−6 × 1 × 0.275 2300 × 103 ≥ 1.16 A Ripple current : peak-to-peak value If the peak-to-peak ripple current is ΔIL, it is obtained by the following formula. ΔIL = = VIN − Vo2 tON L 12 − 3.3 3.3 × 10−6 × 1 × 0.275 2300 × 103 =: 0.315 A c) Flyback diode (SBE001 : SANYO product) VR (DC reverse voltage) = 30 V, average output current = 2.0 A, peak surge current = 20 A VF (forward voltage) = 0.55 V, at IF = 2.0 A VR : The value enough to satisfy the input voltage → 30 V On time of the diode is assumed to be tD (Max) , the diode mean current IDi is obtained by the following formula. IDi ≥ Io × (1 − Vo2 ) = 1.0 × (1 − 0.275) =: 0.725 A VIN On time of the diode is assumed to be tD (Max) , the diode peak current IDip is obtained by the following formula. IDip ≥ 18 (Io + Vo2 tOFF) =: 1.16 A 2L MB39A112 3. CH3 5 V output VIN = 12 V (Typ) , Vo3 = 5 V, Io = 0.3 A, fOSC = 2300 kHz a) P-ch MOS FET (MCH3308 (SANYO product) ) VDS = −30 V, VGS = ±20 V, ID = −1 A, RDS (ON) = 720 mΩ (Typ) , Qg = 2.6 nC (Typ) Drain current : Peak value The peak drain current of this FET must be within its rated current. If the FET’s peak drain current is ID, it is obtained by the following formula. ID ≥ IO + ≥ 0.3 + VIN − Vo3 2L tON 12 − 5 2 × 10 × 10−6 × 1 × 0.417 2300 × 103 ≥ 0.36 A b) Inductor (A916CY-100M : TOKO product) 10 μH (tolerance ±20%) , rated current = 1.49 A The L value for all load current conditions It is set so that the peak to peak value of the ripple current is 1/2 of the load current or less. L≥ ≥ 2 (VIN − Vo3) tON IO 2 × (12 − 5) 0.3 1 2300 × 103 × × 0.417 ≥ 8.46 μH The load current satisfying the continuous current condition IO ≥ ≥ Vo3 2L tOFF 5 2 × 10 × 10−6 × 1 2300 × 103 × (1 − 0.417) ≥ 63.4 mA 19 MB39A112 Ripple current : Peak value The peak ripple current must be within the rated current of the inductor. If the peak ripple current is IL, it is obtained by the following formula. VIN − Vo3 tON 2L IL ≥ IO + ≥ 0.3 + 12 − 5 2 × 10 × 10−6 × 1 × 0.417 2300 × 103 ≥ 0.36 A Ripple current:Peak-to-peak value If the peak-to-peak ripple current is ΔIL, it is obtained by the following formula. ΔIL = VIN − Vo3 tON L = 12 − 5 10 × 10−6 × 1 × 0.417 2300 × 103 =: 0.127 A c) Flyback diode (SBS005 : SANYO product) VR (DC reverse voltage) = 30 V, average output current = 1.0 A, peak surge current = 10 A VF (forward voltage) = 0.35 V, at IF = 0.5 A VR : The value enough to satisfy the input voltage → 30 V On time of the diode is assumed to be tD (Max) , the diode mean current IDi is obtained by the following formula. IDi ≥ Io × (1 − Vo3 ) = 0.3 × (1 − 0.417) =: 0.175 A VIN On time of the diode is assumed to be tD (Max) , the diode peak current IDip is obtained by the following formula. IDip ≥ 20 (Io + Vo2 tOFF) =: 0.36 A 2L MB39A112 ■ ORDERING INFORMATION EV board part No. MB39A112EVB-01 EV board version No. Remarks MB39A112EV Board Rev 1.0 21 MB39A112 MEMO 22 MB39A112 MEMO 23 FUJITSU MICROELECTRONICS LIMITED Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3387 http://jp.fujitsu.com/fml/en/ For further information please contact: North and South America FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://www.fma.fujitsu.com/ Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE LTD. 151 Lorong Chuan, #05-08 New Tech Park, Singapore 556741 Tel: +65-6281-0770 Fax: +65-6281-0220 http://www.fujitsu.com/sg/services/micro/semiconductor/ Europe FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/microelectronics/ FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm.3102, Bund Center, No.222 Yan An Road(E), Shanghai 200002, China Tel: +86-21-6335-1560 Fax: +86-21-6335-1605 http://cn.fujitsu.com/fmc/ Korea FUJITSU MICROELECTRONICS KOREA LTD. 206 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://www.fmk.fujitsu.com/ FUJITSU MICROELECTRONICS PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road Tsimshatsui, Kowloon Hong Kong Tel: +852-2377-0226 Fax: +852-2376-3269 http://cn.fujitsu.com/fmc/tw All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with sales representatives before ordering. The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information. Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws. The company names and brand names herein are the trademarks or registered trademarks of their respective owners. Edited Strategic Business Development Dept.