FUJITSU MB39A102EVB

FUJITSU SEMICONDUCTOR
DATA SHEET
DS04-71102-1E
ASSP for Power Supply Applications
Evaluation Board
MB39A102
■ DESCRIPTION
The MB39A102 evaluation board is a surface mount circuit board with four channels of up conversion, down
conversion and up/down conversion circuits. The internal structure consists of one channel of step-down type,
two channels of transformer type, and one channel of Sepic type. A total of seven lines of output terminals are
provided, supporting voltage settings from -7 V to +15 V and supplying a current Max 500 mA (Sepic type) at a
power-supply voltage between +2.5 V and +6 V. The output circuit (ch1) can be changed to the Zata type by
optional replacement of components. The board incorporates the protective functions that upon detection of a
short circuit or activation of the under voltage lockout protection circuit, the short-circuit protection feature shuts
off transistors to stop the output. Also, the short-circuit detection comparator can detect a short circuit through
an external input (initial number P12). In addition, each channel can be controlled to be turned on and off and
can be set for a soft-start.
■ EVALUATION BOARD SPECIFICATIONS
Input voltage
Oscillation frequency
Output voltage
Terminal
Min
Typ
Max
Unit
VIN
2.5
3.6
6
V

400
500
600
kHz
Vo-1
2.2
2.5
2.8
Vo-2-1
13
15
17
Vo-2-2
4.5
5
5.5
Vo-2-3
−8.3
−7.5
−6.7
Vo-3-1
13
15
17
Vo-3-2
4.5
5
5.5
Vo-4
2.9
3.3
3.7
V
(Continued)
MB39A102
(Continued)
Terminal
Min
Typ
Max
Vo-1


250
Vo-2-1


10
Vo-2-2


50
Vo-2-3


−5
Vo-3-1


10
Vo-3-2


50
Vo-4


500
Short-circuit detection
time

4.6
7
12.5
ms
Soft-start time

7.6
10.3
15.8
ms
Output current
Unit
mA
■ TERMINAL DESCRIPTION
Symbol
Function
VIN
Power-supply terminal
VIN = 2.5 V to 6.0 V (Typ: 3.6 V)
VoX
DC/DC converter output terminal
CTL
Power-supply control terminal
VCTL = 0 V to 0.8 V : Standby mode
VCTL = 2.0 V to VIN : Operation mode
GNDX
DC/DC converter GND terminal
ICGND
MB39A102 GND terminal
■ SWITCH DESCRIPTION
2
SW
NAME
FUNCTION
ON
OFF
1
CS1
CH1 control
Output ON
Output OFF
2
CS2
CH2 control
Output ON
Output OFF
3
CS3
CH3 control
Output ON
Output OFF
4
CS4
CH4 control
Output ON
Output OFF
5
CTL
Power supply control
Operation mode
Standby mode
MB39A102
■ SETUP AND CHECKUP
(1) Setup
• Connect the power-supply terminal side to VIN and GND. Connect the Vo side to the required loading device
or measuring instrument.
• Connect a startup power supply from 2.0 V to VIN to the CTL terminal. (This can be done by connection from
VIN.)
• Set SW5 (CTL) to OFF (Standby mode) and SW1 through SW4 (CS1 through CS4) to OFF (output off).
(2) Checkup
• Turn on VIN (power supply), set SW5 to ON (Operation mode) and SW1 through SW4 to ON (output on).
The IC works normally with the following outputs:
Vo1 = 2.5 V (Typ) , Vo2-1 = 15 V (Typ) , Vo2-2 = 5 V (Typ) , Vo2-3 = −7.5 V (Typ) , Vo3-1 = 15 V (Typ) ,
Vo3-2 = 5 V (Typ) , Vo4 = 3.3 V (Typ)
3
MB39A102
■ COMPONENT LAYOUT
• On-board Component Layout
MB39A102 EV BOARD
L2
C3
R4
P1 C5
V O1
Q1
C6
R3
GND1
C4
D1
C11
D4
R16
C21
R17
C7
R6
Q2
D3
C10
D2
R5
C8 P2
R18
C9
R26
R27 P7
R36
R35
R34
R32
P8 R33
C27
T2
1
C24 C26
GND2
R1
VO2-1
1
R13
P12
R31
R30
R28
M1
15
P9 P10 P11
C29
C28
R29
C25
R25
R24
R2
C30
R37
30
C22 C20
R23
R14
R15
R10
C12
D6
Q4
VIN
C15
C13 P3
VO3-1
R9
C31
VO3-2
R22
P5
16
ICGND
R19
C23
R21
P6
R20
VO2-2
1
T1
VO2-3
L1
D5
GND3
GND
C14
SW1
1
Q5
2
C16
R12
OFF
3
ON
V O4
D7
R11
C19
C17 L3
P4
L4
GND4
5
OFF
6
CTL
4
C18
ON
REV. 2. 0
Note : Only C1 and C2 parts are set on the rear surface.
(Continued)
4
MB39A102
(Continued)
Top side
Inside GND (Layer3)
Inside VIN & GND (Layer2)
Bottom Side
5
MB39A102
■ CONNECTION DIAGRAM
A
−INE1
R13 R14
R15
Offset voltage±10 mV
29
3.3 kΩ 12 kΩ
15 kΩ
VREF
CS1 12 µA
30
P5
R16
C20
a
C21 2 kΩ
FB1
0.1 µF
0.047 µF
R17
0Ω
B
VREF
R22
C23 2 kΩ
FB2
C22
Error
− Amp2
+
+
0.047 µF
R23
33 kΩ
C
R25 R26
P7
VIN
(2.5 V to 6V)
GND
15
0.1 µF
C25
3.3 kΩ
D
R31 R32
3 kΩ 22 kΩ
R33
P8
13
16
R34
C27 1 kΩ
FB4
0.1 µF
0.1 µF
30 kΩ
P9
L priority
DTC4
−INS
VREF
SCP
− Comp
20
Short-circuit detection signal
(L : at short)
Charge current
CSCP
1 µA
P3
D5
SB05-05CP
C14
+
H :UVLO
release
11
C28
UVLO
0.01 µF
OSC
RT
R37
24 kΩ
8
P10
VREF
0.9 V
0.4 V
9
2.0 V
CT
C29
100 pF
Accuracy
±10%
1.5 MHz
Correspondence
P11
7
C30
0.1 µF
VCC
5
10
C17
15 µF
C19
10 µF
CPH3206
GND4
C2
e
CTL*
* : H : ON (Power ON)
L : OFF (At standby)
VTH = 1.4 V
SW1
OFF
OFF
OFF
OFF
ON
a
b
c
d
e
IC is operating, and all channels
are ON state in above diagram.
6
Q5
0.1 µF
IC GND
ON
CS1 OPEN
ON
CS2 OPEN
ON
CS3 OPEN
ON
CS4 OPEN
OFF
CTL
C18
GND3
VO4
3.3 V
IO4 = 500 mA
1 µF
R2
0Ω
GND
Accuracy
±1%
D
L4
Power
CTL
VO3-2
5V
IO3-2 = 50 mA
10 µH 4.7 µF D7
SBS004
C16
1 2 3 4 5 6
Note : Fixed value of not mounted parts is described
by XXX.
VREF
T2
L3
R11
4700 PF
VR1ON/OFF 6
Accuracy
±1%
C15
2.2 µF
P4
0Ω
R12
180 Ω
ErrorAmp Reference
1.24 V
bias
SB05-05CP
OUT4
22
ErrorAmp Power
Supply
SCPComp Power
Supply
SCP
1V
2.2 µF
D6
R10
0Ω
C12
XXX
1 µF
H
at SCP
VO3-1
15 V
IO3-1 = 10 mA
C
R9 MCH3309
GND0
VO2-3
−7.5 V
IO2-3 = −5 mA
GND2
0Ω
C13
Drive4
Nch
IO2-2 = 50 mA
2.2 µF
C11
Q4
21
100 kΩ
C10
SB05-05CP
2.2 µF
OUT3
23
IO = 130 mA
at VCCO = 4 V
19
D4
Using same
transformer
1.24 V
R36
VO2-2
5V
C9
2.2 µF
SB05-05CP
0Ω
CH4
PWM
+Comp4
+
−
18
18 kΩ
R6
C8
GND1
SB05-05CP
C7
XXX
1 µF
4.7 µF
VO2-1
15 V
IO2-1 = 10 mA
D3
24
Drive3
Pch
L priority
Error
− Amp4
+
+
CS4 12 µA
R35
P12
VREF
IO1 = 250 mA
C6
D2
T1
OUT2
Offset voltage±10 mV
17
15 kΩ
0Ω
IO = 130 mA
at VCCO = 4 V
DTC3
12
R30
20 kΩ
−INE4
C26
d
1.24 V
L priority
FB3
0.047 µF
22 µH
B
CH3
PWM
+Comp3
+
−
0Ω
P2
Q2
R5 MCH3309
Drive2
Pch
L priority
Error
− Amp3
+
+
CS3 12 µA
R28
R29
C31
XXX
VREF
L2
L1 D1
XXX SBS004
1 µF
C3
XXX
Offset voltage±10 mV
14
2 kΩ
0Ω
V O1
2.5 V
A
C5
0Ω
IO = 130 mA
at VCCO = 4 V
15 kΩ
C24
c
PWM
+Comp2
+
−
3
20 kΩ
MCH3309
1.24 V
DTC2
4
R24
−INE3
24 kΩ 43 kΩ
R27
L priority
Q1
R3
OUT1 R4
CH2
L priority
1
0.1 µF
25
Offset voltage±10 mV
2
P6
Drive1
Pch
P1
R1
0Ω
0.1 µF
IO = 130 mA
at VCCO = 4 V
XXX
2.4 kΩ 43 kΩ
C1
C4
28
−INE2
26
1.24 V
R21 15 kΩ CS2 12 µA
b
PWM
+ Comp1
+
−
DTC1 27
R18
R20
R19
L priority
VCCO
CH1
L priority
Error
− Amp1
+
+
MB39A102
■ PARTS LIST
No
Sym Part
bol name
Model
name
MB39A102
PFT
Specification
Rating
1
Rating
2
Rating
3



Val- Deviaue
tion
Features
Package
Manufacturer
FPTFUJITSU
30P-M04



VGSS = 10 V ID = 1.5 A




SANYO
PD = 0.9 W
VGSS = 10 V ID = 1.5 A




SANYO
Pch FET MCH3309
PD = 0.9 W
VGSS = 10 V ID = 1.5 A




SANYO
5 Q5
NPN
CPH3206
PC = 0.9 W
VCEO = 15 V IC = 3.0 A



SC-62
SANYO
6 D1
SBD
SBS004
IF(AV) = 1.0 A VRRM = 15 V




SOT-23 SANYO
7 D2
SBD
SB0505CP
IF(AV) = 0.5 A VRRM = 50 V




SOT-23 SANYO
8 D3
SBD
SB0505CP
IF(AV) = 0.5 A VRRM = 50 V




SOT-23 SANYO
9 D4
SBD
SB0505CP
IF(AV) = 0.5 A VRRM = 50 V




SOT-23 SANYO
10 D5
SBD
SB0505CP
IF(AV) = 0.5 A VRRM = 50 V




SOT-23 SANYO
11 D6
SBD
SB0505CP
IF(AV) = 0.5 A VRRM = 50 V




SOT-23 SANYO
12 D7
SBD
SBS004
IF(AV) = 1.0 A VRRM = 15 V




SOT-23 SANYO
13 L1
Coil






14 L2
Coil
RLF5018TIDC1 = 0.63 A IDC2 = 0.86 A
220MR63

22 µ ±20%
RDC = 0.13 Ω

TDK
15 L3
Coil
RLF5018TIDC1 = 0.94 A IDC2 = 1.3 A
100MR94

10 µ ±20%
RDC = 0.067 Ω

TDK
16 L4
Coil
RLF5018TIDC1 = 0.76 A IDC2 = 1.0 A
150MR76

15 µ ±20%
RDC = 0.097 Ω

TDK
17 T1
Transformer
CLQ52
5388-T095







SUMIDA
18 T2
Transformer
CLQ52
5388-T095







SUMIDA
19 C1
Ceramic
C1608JB1
condensH104K
er
50 V


0.1 µ ±10%
Temperature
characteristics B
1608
TDK
20 C2
Ceramic
C1608JB1
condensH104K
er
50 V


0.1 µ ±10%
Temperature
characteristics B
1608
TDK
21 C3
Ceramic
condenser







22 C4
Ceramic
C3216JB1
condensE105K
er
25 V


1 µ ±10%
Temperature
characteristics B
3216
TDK
23 C5
Jumper
1/4 W


0Ω

3216

1 M1
IC
2 Q1
Pch FET MCH3309
PD = 0.9 W
3 Q2
Pch FET MCH3309
4 Q4






Max
50 mΩ
Note
Not
mounted
Not
mounted
(Continued)
7
MB39A102
Sym Part
No
bol name
Model
name
Specification
Rating
1
Rating
2
Rating
3
10 V






1µ
24 C6
Ceramic C3216JB1
condenser A475M
25 C7
Ceramic
condenser
26 C8
Ceramic C3216JB1
condenser E105K
25 V


27 C9
Ceramic C3216JB1
condenser C225K
16 V

28 C10
Ceramic C3216JB1
condenser C225K
16 V
29 C11
Ceramic C3216JB1
condenser C225K
30 C12
Ceramic
condenser
31 C13
Value
Deviation
Features
Pack- Manuage facturer Note
Temperature
characteristics B
3216
TDK




±10%
Temperature
characteristics B
3216
TDK

2.2 µ ±10%
Temperature
characteristics B
3216
TDK


2.2 µ ±10%
Temperature
characteristics B
3216
TDK
16 V


2.2 µ ±10%
Temperature
characteristics B
3216
TDK








Ceramic C3216JB1
condenser E105K
25 V


1µ
±10%
Temperature
characteristics B
3216
TDK
32 C14
Ceramic C3216JB1
condenser C225K
16 V


2.2 µ ±10%
Temperature
characteristics B
3216
TDK
33 C15
Ceramic C3216JB1
condenser C225K
16 V


2.2 µ ±10%
Temperature
characteristics B
3216
TDK
34 C16
Ceramic C1608JB1
condenser H472K
50 V


4700 P ±10%
Temperature
characteristics B
1608
TDK
35 C17
Ceramic C3216JB1
condenser E105K
25 V


1.0 µ ±10%
Temperature
characteristics B
3216
TDK
36 C18
Ceramic C3216JB1
condenser A475M
10 V


4.7 µ ±10%
Temperature
characteristics B
3216
TDK
37 C19
Ceramic C3216JB1
condenser A106M
6.3 V


10 µ ±10%
Temperature
characteristics B
3216
TDK
38 C20
Ceramic C1608JB1
condenser H104K
50 V


0.1 µ ±10%
Temperature
characteristics B
1608
TDK
39 C21
Ceramic C1608JB1
condenser H473K
50 V


0.047 µ ±10%
Temperature
characteristics B
1608
TDK
40 C22
Ceramic C1608JB1
condenser H104K
50 V


0.1 µ ±10%
Temperature
characteristics B
1608
TDK
41 C23
Ceramic C1608JB1
condenser H473K
50 V


0.047 µ ±10%
Temperature
characteristics B
1608
TDK
42 C24
Ceramic C1608JB1
condenser H104K
50 V


0.1 µ ±10%
Temperature
characteristics B
1608
TDK
43 C25
Ceramic C1608JB1
condenser H473K
50 V


0.047 µ ±10%
Temperature
characteristics B
1608
TDK
44 C26
Ceramic C1608JB1
condenser H104K
50 V


0.1 µ ±10%
Temperature
characteristics B
1608
TDK
45 C27
Ceramic C1608JB1
condenser H104K
50 V


0.1 µ ±10%
Temperature
characteristics B
1608
TDK


4.7 µ ±10%
Not
mounted
Not
mounted
(Continued)
8
MB39A102
Sym Part
No
bol name
Model
name
Specification
ManuPackage facturer
Note
Rating
1
Rating
2
Rating
3
Value Deviation
Features
Temperature
characteristics B
1608
TDK
Temperature
characteristics B
1608
TDK
Temperature
characteristics B
1608
TDK
46 C28
Ceramic C1608JB1
condenser H103K
50 V


0.01 µ ±10%
47 C29
Ceramic C1608CH1
condenser H101J
50 V


100 p
48 C30
Ceramic C1608JB1
condenser H104K
50 V


0.1 µ ±10%
49 C31
Ceramic
condenser









50 R1
Jumper

1/16 W


0Ω
Max
50 mΩ

1608

51 R2
Jumper

1/16 W


0Ω
Max
50 mΩ

1608

52 R3
Jumper

1/4 W


0Ω
Max
50 mΩ

3216

53 R4
Jumper

1/16 W


0Ω
Max
50 mΩ

1608

54 R5
Jumper

1/4 W


0Ω
Max
50 mΩ

3216

55 R6
Jumper

1/16 W


0Ω
Max
50 mΩ

1608

56 R9
Jumper

1/4 W


0Ω
Max
50 mΩ

3216

57 R10 Jumper

1/16 W


0Ω
Max
50 mΩ

1608

58 R11 Jumper

1/4 W


0Ω
Max
50 mΩ

3216

59 R12 Resistor
RR0816P181-D
1/16 W


180 Ω ±0.5% ±25 ppm/ °C
1608
ssm
60 R13 Resistor
RR0816P332-D
1/16 W


3.3 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
61 R14 Resistor
RR0816P123-D
1/16 W


12 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
62 R15 Resistor
RR0816P153-D
1/16 W


15 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
63 R16 Resistor
RR0816P202-D
1/16 W


2.0 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
64 R17 Jumper

1/16 W


0Ω
Max
50 mΩ

1608

65 R18 Resistor









66 R19 Resistor
RR0816P242-D
1/16 W


1608
ssm
±5%
2.4 kΩ ±0.5% ±25 ppm/ °C
Not
mounted
Not
mounted
(Continued)
9
MB39A102
(Continued)
No
Sym Part
bol name
Specification
Rating
1
Rating
2
Rating
3
Value Deviation
Features
ManuPackage facturer
Note
67 R20 Resistor
RR0816P433-D
1/16 W


43 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
68 R21 Resistor
RR0816P153-D
1/16 W


15 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
69 R22 Resistor
RR0816P202-D
1/16 W


2.0 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
70 R23 Resistor
RR0816P333-D
1/16 W


33 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
71 R24 Resistor
RR0816P203-D
1/16 W


20 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
72 R25 Resistor
RR0816P242-D
1/16 W


2.4 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
73 R26 Resistor
RR0816P433-D
1/16 W


43 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
74 R27 Resistor
RR0816P153-D
1/16 W


15 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
75 R28 Resistor
RR0816P202-D
1/16 W


2.0 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
76 R29 Resistor
RR0816P333-D
1/16 W


33 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
77 R30 Resistor
RR0816P203-D
1/16 W


20 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
78 R31 Resistor
RR0816P302-D
1/16 W


3.0 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
79 R32 Resistor
RR0816P223-D
1/16 W


22 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
80 R33 Resistor
RR0816P153-D
1/16 W


15 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
81 R34 Resistor
RR0816P102-D
1/16 W


1.0 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
82 R35 Resistor
RR0816P303-D
1/16 W


30 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
83 R36 Resistor
RR0816P183-D
1/16 W


18 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
84 R37 Resistor
RR0816P243-D
1/16 W


24 kΩ ±0.5% ±25 ppm/ °C
1608
ssm
85 SW1 Switch
DMS-6H







MATSUKYU







MacEight
86 PIN
Terminal
WT-2-1
pins
SANYO
TDK
SUMIDA
ssm
MATSUKYU
MacEight
10
Model
name
:
:
:
:
:
:
SANYO Electric Co., Ltd.
TDK Corporation
Sumida Corporation
SUSUMU CO., LTD.
Matsukyu Co., Ltd.
MacEight Co., Ltd.
MB39A102
■ INITIAL SETTINGS
(1) Output voltage
CH1 : Vol (V) = 1.24/R15× (R13+R14+R15) =: 2.5 (V)
CH2 : Vo2-2 (V) = 1.24/R21× (R19+R20+R21) =: 5.0 (V)
CH3 : Vo3-2 (V) = 1.24/R27× (R25+R26+R27) =: 5.0 (V)
CH4 : Vo4 (V) = 1.24/R33× (R31+R32+R33) =: 3.3 (V)
(2) Oscillation frequency
fosc (kHz) = 1200000/ (C29 (pF) × R37 (kΩ) ) =: 500 (kHz)
(3) Soft-start time
CH1 : ts (s) = 0.103×C20 (µF) =: 10.3 (ms)
CH2 : ts (s) = 0.103×C22 (µF) =: 10.3 (ms)
CH3 : ts (s) = 0.103×C24 (µF) =: 10.3 (ms)
CH4 : ts (s) = 0.103×C26 (µF) =: 10.3 (ms)
(4) Short-circuit detection time
tscp (s) = 0.70×C28 (µF) =: 7.0 (ms)
11
MB39A102
■ REFERENCE DATA
• Conversion efficiency  Input voltage
• TOTAL efficiency
100
TOTAL efficiency η (%
%)
95
90
At VIN =: 2.59 V
CH1 stops by short-circuit detection operation
85
80
VO1 = 2.5 V,
IO1 = 250 mA
VO2-1 = 15 V, IO2-1 = 10 mA
VO2-2 = 5 V,
IO2-2 = 50 mA
VO2-3 = −7.5 V, IO2-3 = −5 mA
VO3-1 = 15 V, IO3-1 = 10 mA
VO3-2 = 5 V,
IO3-2 = 50 mA
VO4 = 3.3 V,
IO4 = 500 mA
fOSC = 500 kHz
75
70
65
60
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
Input voltage VIN (V)
• Each CH Efficiency
100
Each CH efficiency η (%
%)
95
90
CH1
85
CH4
80
75
CH2
CH3
Notes: Only concerned CH is ON
Include external SW Tr
operating current
CH2 and CH3 are discontinuous mode.
70
65
60
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Input voltage VIN (V)
12
5.5
6.0
6.5
7.0
MB39A102
• Load Reguration (VIN = 3.6 V)
• CH1
DC/DC converter output voltage (V)
5
4
3
Setting VO1 = 2.5 V
2
1
0
0
50
100
150
200
250
300
Load current IO (mA)
• CH2, CH3
DC/DC converter output voltage (V)
7
6
Setting VO3-2 = 5 V
5
Setting VO2-2 = 5 V
4
Note : CH of using transformer only
uses feedback control output.
VO2-1, VO3-1 : IO = 10 mA Fix
VO2-3
: IO = −5 mA Fix
3
2
0
10
20
30
40
50
Load current IO (mA)
13
MB39A102
• CH4
DC/DC converter output voltage (V)
5
4
Setting VO4 = 3.3 V
3
2
1
0
0
100
200
300
Load current IO (mA)
14
400
500
MB39A102
• Line Regulation
• Output is a feedback control.
DC/DC converter output voltage (V)
6
Setting VO2-2 = 5 V
5
Setting VO3-2 = 5 V
4
Setting VO4 = 3.3 V
3
Setting VO1 = 2.5 V
2
1
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
Input voltage VIN (V)
• Output is a feedback control none.
DC/DC converter output voltage (V)
17
16
Setting VO3-1 = 15 V
Setting VO2-1 = 15 V
15
14
13
12
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
Input voltage VIN (V)
(Continued)
15
MB39A102
(Continued)
• Output is a feedback control none.
DC/DC converter output voltage (V)
−5
−6
Setting VO2-3 = −7.5 V
−7
−8
−9
−10
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Input voltage VIN (V)
16
5.5
6.0
6.5
7.0
MB39A102
■ COMPONENT SELECTION METHODS
1. Board view
Schottky Barrier
Diode
Inductor (L2)
P-ch MOS FET
Output smoothing
condenser
MB39A102 EV BOARD
Transformer
L2
P1 C5
Q1
220
0
000
000
Vo1
C3
R4
CH1
C6
R3
GND1
C4
D1
1
Vo2-3
L1
CH2
C11
T1
R21
R14
123
433
R20
R15
153
202
R22
R16
202
333
R23
R17
0
203
R24
M1
333
R37
C25
R30
202
R28
R25
242
433
R26
153
R27
C24
P7
C10
D2
R5
C8
P2
R18
R1
C26
P8
R36
183
R35
303
R34
102
R32
223
R33
153
C9
0
GND2
P9
243
203
C28
D3
0
000
C21
C27
P12
302
T2
D6
R10
0
Vo3-2
P10
C29
R6
R13
1
R2
C30
R29
C20
30
C22
332
R31
P11
P5
MB39A102
0140 401
ES
0
P6
Vo2-1
ES1
16
242
C23
15
ICGND
R19
Q2
Vo2-2
D4
C7
Q4
VIN
C12
Output smoothing
condenser
Schottky Barrier
Diode
CH3
C15
000
C13
Vo3-1
R9
C31
D5
P3
GND3
GND
C14
Output smoothing
condenser
1
2
Q5
C16
5
CH4
D7
R11
6
6
5
ON
C17
C19
L3
Transformer
P4
150
L4
R E V. 2 . 0
NPN Tr
Inductor (L3)
Inductor (L4)
GND4
3
4
000
OFF
C18
100
3
4
181
Vo4
R12
OFF
MKK
CTL
1
OFF
ON
2
SW1
Output smoothing
condenser
Schottky Barrier
Diode
Board Photograph
17
MB39A102
The following subsections show the component selection methods with the following common parametric values.
2. CH1 : Output 2.5 V (Downconversion Type)
VIN (Max) = 6.0 V, Io = 250 mA, fosc = 500 kHz
(1) P-ch MOS FET (MCH3309 (SANYO product) )
VDS = −20 V, VGS = ±10 V, ID = −1.5 A, RDS (ON) = 340 mΩ (Max) , Qg = 3.2 nC
• Drain current: Peak value
The peak drain current of this FET must be within its rated current.
If the FET’s peak drain current is ID, it is obtained by the following formula.
VO = VIN × tON
t
V
O
= 1 × VO
tON = t ×
VIN
fOSC
VIN
V
IN (Max) −VO
ID ≥ IO +
× tON
2L
6−2.5
1
≥ 0.25 +
×
× 0.417
500×103
2×22×10−6
≥ 0.316 A
• Drain-source voltage / Gate-source voltage
The source-drain and gate-source voltages of the FET should be in the rated voltage value of FET.
The FET source-drain voltage (VDS) and gate-source voltage (VGS) are obtained by the following formula.
VDS ≤ −VIN (Max)
≤ −6 V
VGS ≥ VIN (Max)
≥ 6V
(2) Schottky Barrier Diode (SBS004 (SANYO product) )
VF (forward voltage) = 0.35 V (Max) : at IF = 1 A, VRRM (repeated peak reverse voltage) = 15 V
IF (mean output current) = 1 A, IFSM (surge forward current) = 10 A
• Diode current: Peak value
The peak diode current must be within its rated current.
If the peak diode current is IFSM, it is obtained by the following formula.
IFSM ≥ IO + VO × tOFF
2L
2.5
1
≥ 0.25 +
×
× (1−0.417)
500×103
2×22×10−6
≥ 0.316 A
18
MB39A102
• Diode current: Average value
The mean value of diode current must be within its rated current.
If the mean value of diode current is IF, it is obtained by the following formula.
IF
≥ IO × tOFF
t
≥ 0.25 × 0.583
≥ 0.146A
• Repeated peak reverse voltage
The repeated peak reverse voltage must be within its rated voltage.
If the repeated peak reverse voltage is VRRM, it is obtained by the following formula.
VRRM ≥ VIN (Max)
≥ 6V
(3) Inductor (SLF12565T-220M3R5 : TDK product)
22 µH (tolerance ± 20%) , rated current = 0.63 A
The condition for L to be a continuous current within the operating voltge range is obtained by the following
formula.
L ≥ VIN (Max) −VO × tON
2IO
6−2.5
1
≥
×
× 0.42
2×0.25
500×103
≥ 5.88 µH
The load current satisfying the continuous current condition is obtained by the following formula.
IO ≥ VO × tOFF
2L
2.5
1
≥
×
× (1−0.42)
500×103
2×22×10−6
≥ 66 mA
• Ripple current: Peak value
The peak ripple current must be within the rated current of the inductor.
If the peak ripple current is IL, it is obtained by the following formula.
IL ≥ IO + VIN (Max) −VO × tON
2L
6−2.5
1
≥ 0.25 +
×
× 0.417
500×103
2×22×10−6
≥ 0.316 A
• Ripple current: Peak-to-peak value
If the peak-to-peak ripple current is ∆IL, it is obtained by the following formula.
VIN (Max) −VO
∆IL =
× tON
L
6−2.5
1
=
×
× 0.42
500×103
22×10−6
=: 0.134 A
19
MB39A102
3. CH2, CH3 : (Transformer Conversion Type)
VIN (Max) = 6 V
VIN (Min) = 2.5 V
VO2-1, VO3-1 = 15 V
VO2-2, VO3-2 = 5 V
VO2-3 = −7.5 V
IO2-1, IO3-1 = 10 mA
IO2-2, IO3-2 = 50 mA
IO2-3 = −5 mA
(1) P-ch MOS FET (MCH3309 (SANYO product) )
VDS = −20 V, VGS = ±10 V, ID = −1.5 A, RDS (ON) = 340 mΩ (Max) , Qg = 3.2 nC
The FET’s rated drain current must be at least 0.7 A.
The FET’s rated drain-source and gate-source voltages must be at least 9 V.
(2) Schottky Barrier Diode (SB05-05CP (SANYO product) )
VRRM (repeated peak reverse voltage) = 50 V,
IF (average output current) = 500 mA, IFSM (surge forward current) = 5 A
The each diode rated parameter must be at least VRRM (repeated peak reverse voltage) = 49 V,
IF (mean output current) = 50 mA, IFSM (surge forward current) = 0.3 A.
4. CH4 : 3.3 V output (Sepic Type)
VIN (Min) = 2.5 V, IO = 500 mA, fOSC = 500 kHz
(1) NPN Tr (CPH3206 (SANYO product) )
VCEO = 15 V, VCBO = 15 V, IC = 3 A, hFE = 200 (Min)
• Collector current: Peak value
The peak collector current of this Tr must be within its rated current.
If the Tr’s peak collector current is IC, it is obtained by the following formula.
tON
VO = VIN ×
tOFF
VO
tON = t ×
VIN+VO
1
VO
=
×
fOSC
VIN+VO
VO+VIN (Min)
1 + 1
IC ≥
× IO + 1
× VIN (Min) × tON
VIN (Min)
2
L3
L4
1
1
3.3+2.5
1
1
+
≥
× 0.5 +
× 2.5 ×
× 0.69
2.5
2
10×10−6
15×10−6
500×103
(
(
)
)
≥ 1.397 A
Collector-emitter voltage / Collector-base voltage
The collector-emitter and collector-base voltages of the Tr should be in the rated voltage value of Tr.
The Tr’s collector-emitter voltage (VCEO) and collector-base voltage (VCBO) are obtained by the following formula.
VCEO = VCBO ≥ VIN (Max) + VO
≥ 6+3.3
≥ 9.3 V
20
MB39A102
(2) Schottky Barrier Diode (SBS004 (SANYO product) )
VF (forward voltage) = 0.35 V (Max) : at IF = 1 A, VRRM (repeated peak reverse voltage) = 15 V
IFSM (surge forward current) = 10 A, IF (mean output current) = 1 A
• Diode current: Peak value
The peak current of this diode must be within its rated current.
If the diode’s peak current is IFSM, it is obtained by the following formula.
1 + 1
× VO × tOFF
IFSM ≥ VO+VIN (Min) × IO + 1
VIN (Min)
2
L3
L4
1
1
3.3+2.5
1
1
+
≥
× 0.5 +
× 3.3 ×
× (1−0.569)
2.5
2
10×10−6
15×10−6
500×103
(
(
)
)
≥ 1.397 A
• Diode current: Average value
The mean value of diode current must be within its rated current.
If the mean value of diode current is IF, it is obtained by the following formula.
IF
≥ IO
≥ 0.5 A
• Repeated peak reverse voltage
The repeated peak reverse voltage of this diode must be within its rated voltage.
If the diode’s repeated peak reverse voltage is VRRM, it is obtained by the following formula.
VRRM
≥ VIN (Max) +VO
≥ 6+3.3
≥ 9.3 V
(3) Inductor (L3 : RLF5018T-100MR94, TDK product)
10 µH (tolerance ± 20%) , rated current = 0.94 A
The condition for L to be a continuous current within the operating voltge range is obtained by the following
formula.
2
L ≥ VIN (Max)
× tON
2IOVO
62
1
≥
×
× 0.355
2×0.5×3.3
500×103
≥ 7.7µH
The load current satisfying the continuous current condition is obtained by the following formula.
2
IO ≥ VIN (Max) × tON
2LVO
62
1
≥
×
× 0.355
2×10×10−6×3.3
500×103
≥ 0.387 A
Note : The continuous current condition becomes a large current value compared with the
current value obtained by L4.
21
MB39A102
• IL current: Peak value
The peak IL current of this inductor must be within its rated current.
IL current is obtained by the following formula.
VO
× IO + VIN (Min) × tON
IL ≥
VIN (Min)
2L
3.3
2.5
1
≥
× 0.5 +
×
× 0.57
500×103
2.5
2×10×10−6
≥ 0.802 A
(4) Inductor (L4 : RLF5018T-150MR76, TDK product)
15 µH (tolerance ± 20%) , rated current = 0.76 A
The condition for L to be a continuous current within the operating voltge range is obtained by the following
formula.
L ≥ VIN (Max) × tON
2IO
6
1
≥
×
× 0.355
2×0.5
500×103
≥ 4.3µH
The load current satisfying the continuous current condition is obtained by the following formula.
IO ≥ VIN (Max) × tON
2L
6
1
≥
×
× 0.355
500×103
2×15×10−6
≥ 0.142 A
Note : The continuous current condition becomes a large current value compared with the
current value obtained by L3.
• IL current: Peak value
The peak IL current of this inductor must be within its rated current.
IL current is obtained by the following formula.
IL ≥ IO + VIN (Max) × tON
2L
6
1
≥ 0.5 +
×
× 0.355
500×103
2×15×10−6
≥ 0.642 A
22
MB39A102
■ ORDERING INFORMATION
EV board part No.
EVboard version No.
Note
MB39A102EVB
MB39A102EV Board Rev. 2.0
IC Package TSSOP
23
MB39A102
FUJITSU LIMITED
All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document are
presented as examples of semiconductor device applications, and
are not intended to be incorporated in devices for actual use. Also,
FUJITSU is unable to assume responsibility for infringement of
any patent rights or other rights of third parties arising from the use
of this information or circuit diagrams.
The products described in this document are designed, developed
and manufactured as contemplated for general use, including
without limitation, ordinary industrial use, general office use,
personal use, and household use, but are not designed, developed
and manufactured as contemplated (1) for use accompanying fatal
risks or dangers that, unless extremely high safety is secured, could
have a serious effect to the public, and could lead directly to death,
personal injury, severe physical damage or other loss (i.e., nuclear
reaction control in nuclear facility, aircraft flight control, air traffic
control, mass transport control, medical life support system, missile
launch control in weapon system), or (2) for use requiring
extremely high reliability (i.e., submersible repeater and artificial
satellite).
Please note that Fujitsu will not be liable against you and/or any
third party for any claims or damages arising in connection with
above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You
must protect against injury, damage or loss from such failures by
incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of
over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Law of Japan, the prior
authorization by Japanese government will be required for export
of those products from Japan.
F0301
 FUJITSU LIMITED Printed in Japan