FUJITSU SEMICONDUCTOR DATA SHEET DS04-71102-1E ASSP for Power Supply Applications Evaluation Board MB39A102 ■ DESCRIPTION The MB39A102 evaluation board is a surface mount circuit board with four channels of up conversion, down conversion and up/down conversion circuits. The internal structure consists of one channel of step-down type, two channels of transformer type, and one channel of Sepic type. A total of seven lines of output terminals are provided, supporting voltage settings from -7 V to +15 V and supplying a current Max 500 mA (Sepic type) at a power-supply voltage between +2.5 V and +6 V. The output circuit (ch1) can be changed to the Zata type by optional replacement of components. The board incorporates the protective functions that upon detection of a short circuit or activation of the under voltage lockout protection circuit, the short-circuit protection feature shuts off transistors to stop the output. Also, the short-circuit detection comparator can detect a short circuit through an external input (initial number P12). In addition, each channel can be controlled to be turned on and off and can be set for a soft-start. ■ EVALUATION BOARD SPECIFICATIONS Input voltage Oscillation frequency Output voltage Terminal Min Typ Max Unit VIN 2.5 3.6 6 V 400 500 600 kHz Vo-1 2.2 2.5 2.8 Vo-2-1 13 15 17 Vo-2-2 4.5 5 5.5 Vo-2-3 −8.3 −7.5 −6.7 Vo-3-1 13 15 17 Vo-3-2 4.5 5 5.5 Vo-4 2.9 3.3 3.7 V (Continued) MB39A102 (Continued) Terminal Min Typ Max Vo-1 250 Vo-2-1 10 Vo-2-2 50 Vo-2-3 −5 Vo-3-1 10 Vo-3-2 50 Vo-4 500 Short-circuit detection time 4.6 7 12.5 ms Soft-start time 7.6 10.3 15.8 ms Output current Unit mA ■ TERMINAL DESCRIPTION Symbol Function VIN Power-supply terminal VIN = 2.5 V to 6.0 V (Typ: 3.6 V) VoX DC/DC converter output terminal CTL Power-supply control terminal VCTL = 0 V to 0.8 V : Standby mode VCTL = 2.0 V to VIN : Operation mode GNDX DC/DC converter GND terminal ICGND MB39A102 GND terminal ■ SWITCH DESCRIPTION 2 SW NAME FUNCTION ON OFF 1 CS1 CH1 control Output ON Output OFF 2 CS2 CH2 control Output ON Output OFF 3 CS3 CH3 control Output ON Output OFF 4 CS4 CH4 control Output ON Output OFF 5 CTL Power supply control Operation mode Standby mode MB39A102 ■ SETUP AND CHECKUP (1) Setup • Connect the power-supply terminal side to VIN and GND. Connect the Vo side to the required loading device or measuring instrument. • Connect a startup power supply from 2.0 V to VIN to the CTL terminal. (This can be done by connection from VIN.) • Set SW5 (CTL) to OFF (Standby mode) and SW1 through SW4 (CS1 through CS4) to OFF (output off). (2) Checkup • Turn on VIN (power supply), set SW5 to ON (Operation mode) and SW1 through SW4 to ON (output on). The IC works normally with the following outputs: Vo1 = 2.5 V (Typ) , Vo2-1 = 15 V (Typ) , Vo2-2 = 5 V (Typ) , Vo2-3 = −7.5 V (Typ) , Vo3-1 = 15 V (Typ) , Vo3-2 = 5 V (Typ) , Vo4 = 3.3 V (Typ) 3 MB39A102 ■ COMPONENT LAYOUT • On-board Component Layout MB39A102 EV BOARD L2 C3 R4 P1 C5 V O1 Q1 C6 R3 GND1 C4 D1 C11 D4 R16 C21 R17 C7 R6 Q2 D3 C10 D2 R5 C8 P2 R18 C9 R26 R27 P7 R36 R35 R34 R32 P8 R33 C27 T2 1 C24 C26 GND2 R1 VO2-1 1 R13 P12 R31 R30 R28 M1 15 P9 P10 P11 C29 C28 R29 C25 R25 R24 R2 C30 R37 30 C22 C20 R23 R14 R15 R10 C12 D6 Q4 VIN C15 C13 P3 VO3-1 R9 C31 VO3-2 R22 P5 16 ICGND R19 C23 R21 P6 R20 VO2-2 1 T1 VO2-3 L1 D5 GND3 GND C14 SW1 1 Q5 2 C16 R12 OFF 3 ON V O4 D7 R11 C19 C17 L3 P4 L4 GND4 5 OFF 6 CTL 4 C18 ON REV. 2. 0 Note : Only C1 and C2 parts are set on the rear surface. (Continued) 4 MB39A102 (Continued) Top side Inside GND (Layer3) Inside VIN & GND (Layer2) Bottom Side 5 MB39A102 ■ CONNECTION DIAGRAM A −INE1 R13 R14 R15 Offset voltage±10 mV 29 3.3 kΩ 12 kΩ 15 kΩ VREF CS1 12 µA 30 P5 R16 C20 a C21 2 kΩ FB1 0.1 µF 0.047 µF R17 0Ω B VREF R22 C23 2 kΩ FB2 C22 Error − Amp2 + + 0.047 µF R23 33 kΩ C R25 R26 P7 VIN (2.5 V to 6V) GND 15 0.1 µF C25 3.3 kΩ D R31 R32 3 kΩ 22 kΩ R33 P8 13 16 R34 C27 1 kΩ FB4 0.1 µF 0.1 µF 30 kΩ P9 L priority DTC4 −INS VREF SCP − Comp 20 Short-circuit detection signal (L : at short) Charge current CSCP 1 µA P3 D5 SB05-05CP C14 + H :UVLO release 11 C28 UVLO 0.01 µF OSC RT R37 24 kΩ 8 P10 VREF 0.9 V 0.4 V 9 2.0 V CT C29 100 pF Accuracy ±10% 1.5 MHz Correspondence P11 7 C30 0.1 µF VCC 5 10 C17 15 µF C19 10 µF CPH3206 GND4 C2 e CTL* * : H : ON (Power ON) L : OFF (At standby) VTH = 1.4 V SW1 OFF OFF OFF OFF ON a b c d e IC is operating, and all channels are ON state in above diagram. 6 Q5 0.1 µF IC GND ON CS1 OPEN ON CS2 OPEN ON CS3 OPEN ON CS4 OPEN OFF CTL C18 GND3 VO4 3.3 V IO4 = 500 mA 1 µF R2 0Ω GND Accuracy ±1% D L4 Power CTL VO3-2 5V IO3-2 = 50 mA 10 µH 4.7 µF D7 SBS004 C16 1 2 3 4 5 6 Note : Fixed value of not mounted parts is described by XXX. VREF T2 L3 R11 4700 PF VR1ON/OFF 6 Accuracy ±1% C15 2.2 µF P4 0Ω R12 180 Ω ErrorAmp Reference 1.24 V bias SB05-05CP OUT4 22 ErrorAmp Power Supply SCPComp Power Supply SCP 1V 2.2 µF D6 R10 0Ω C12 XXX 1 µF H at SCP VO3-1 15 V IO3-1 = 10 mA C R9 MCH3309 GND0 VO2-3 −7.5 V IO2-3 = −5 mA GND2 0Ω C13 Drive4 Nch IO2-2 = 50 mA 2.2 µF C11 Q4 21 100 kΩ C10 SB05-05CP 2.2 µF OUT3 23 IO = 130 mA at VCCO = 4 V 19 D4 Using same transformer 1.24 V R36 VO2-2 5V C9 2.2 µF SB05-05CP 0Ω CH4 PWM +Comp4 + − 18 18 kΩ R6 C8 GND1 SB05-05CP C7 XXX 1 µF 4.7 µF VO2-1 15 V IO2-1 = 10 mA D3 24 Drive3 Pch L priority Error − Amp4 + + CS4 12 µA R35 P12 VREF IO1 = 250 mA C6 D2 T1 OUT2 Offset voltage±10 mV 17 15 kΩ 0Ω IO = 130 mA at VCCO = 4 V DTC3 12 R30 20 kΩ −INE4 C26 d 1.24 V L priority FB3 0.047 µF 22 µH B CH3 PWM +Comp3 + − 0Ω P2 Q2 R5 MCH3309 Drive2 Pch L priority Error − Amp3 + + CS3 12 µA R28 R29 C31 XXX VREF L2 L1 D1 XXX SBS004 1 µF C3 XXX Offset voltage±10 mV 14 2 kΩ 0Ω V O1 2.5 V A C5 0Ω IO = 130 mA at VCCO = 4 V 15 kΩ C24 c PWM +Comp2 + − 3 20 kΩ MCH3309 1.24 V DTC2 4 R24 −INE3 24 kΩ 43 kΩ R27 L priority Q1 R3 OUT1 R4 CH2 L priority 1 0.1 µF 25 Offset voltage±10 mV 2 P6 Drive1 Pch P1 R1 0Ω 0.1 µF IO = 130 mA at VCCO = 4 V XXX 2.4 kΩ 43 kΩ C1 C4 28 −INE2 26 1.24 V R21 15 kΩ CS2 12 µA b PWM + Comp1 + − DTC1 27 R18 R20 R19 L priority VCCO CH1 L priority Error − Amp1 + + MB39A102 ■ PARTS LIST No Sym Part bol name Model name MB39A102 PFT Specification Rating 1 Rating 2 Rating 3 Val- Deviaue tion Features Package Manufacturer FPTFUJITSU 30P-M04 VGSS = 10 V ID = 1.5 A SANYO PD = 0.9 W VGSS = 10 V ID = 1.5 A SANYO Pch FET MCH3309 PD = 0.9 W VGSS = 10 V ID = 1.5 A SANYO 5 Q5 NPN CPH3206 PC = 0.9 W VCEO = 15 V IC = 3.0 A SC-62 SANYO 6 D1 SBD SBS004 IF(AV) = 1.0 A VRRM = 15 V SOT-23 SANYO 7 D2 SBD SB0505CP IF(AV) = 0.5 A VRRM = 50 V SOT-23 SANYO 8 D3 SBD SB0505CP IF(AV) = 0.5 A VRRM = 50 V SOT-23 SANYO 9 D4 SBD SB0505CP IF(AV) = 0.5 A VRRM = 50 V SOT-23 SANYO 10 D5 SBD SB0505CP IF(AV) = 0.5 A VRRM = 50 V SOT-23 SANYO 11 D6 SBD SB0505CP IF(AV) = 0.5 A VRRM = 50 V SOT-23 SANYO 12 D7 SBD SBS004 IF(AV) = 1.0 A VRRM = 15 V SOT-23 SANYO 13 L1 Coil 14 L2 Coil RLF5018TIDC1 = 0.63 A IDC2 = 0.86 A 220MR63 22 µ ±20% RDC = 0.13 Ω TDK 15 L3 Coil RLF5018TIDC1 = 0.94 A IDC2 = 1.3 A 100MR94 10 µ ±20% RDC = 0.067 Ω TDK 16 L4 Coil RLF5018TIDC1 = 0.76 A IDC2 = 1.0 A 150MR76 15 µ ±20% RDC = 0.097 Ω TDK 17 T1 Transformer CLQ52 5388-T095 SUMIDA 18 T2 Transformer CLQ52 5388-T095 SUMIDA 19 C1 Ceramic C1608JB1 condensH104K er 50 V 0.1 µ ±10% Temperature characteristics B 1608 TDK 20 C2 Ceramic C1608JB1 condensH104K er 50 V 0.1 µ ±10% Temperature characteristics B 1608 TDK 21 C3 Ceramic condenser 22 C4 Ceramic C3216JB1 condensE105K er 25 V 1 µ ±10% Temperature characteristics B 3216 TDK 23 C5 Jumper 1/4 W 0Ω 3216 1 M1 IC 2 Q1 Pch FET MCH3309 PD = 0.9 W 3 Q2 Pch FET MCH3309 4 Q4 Max 50 mΩ Note Not mounted Not mounted (Continued) 7 MB39A102 Sym Part No bol name Model name Specification Rating 1 Rating 2 Rating 3 10 V 1µ 24 C6 Ceramic C3216JB1 condenser A475M 25 C7 Ceramic condenser 26 C8 Ceramic C3216JB1 condenser E105K 25 V 27 C9 Ceramic C3216JB1 condenser C225K 16 V 28 C10 Ceramic C3216JB1 condenser C225K 16 V 29 C11 Ceramic C3216JB1 condenser C225K 30 C12 Ceramic condenser 31 C13 Value Deviation Features Pack- Manuage facturer Note Temperature characteristics B 3216 TDK ±10% Temperature characteristics B 3216 TDK 2.2 µ ±10% Temperature characteristics B 3216 TDK 2.2 µ ±10% Temperature characteristics B 3216 TDK 16 V 2.2 µ ±10% Temperature characteristics B 3216 TDK Ceramic C3216JB1 condenser E105K 25 V 1µ ±10% Temperature characteristics B 3216 TDK 32 C14 Ceramic C3216JB1 condenser C225K 16 V 2.2 µ ±10% Temperature characteristics B 3216 TDK 33 C15 Ceramic C3216JB1 condenser C225K 16 V 2.2 µ ±10% Temperature characteristics B 3216 TDK 34 C16 Ceramic C1608JB1 condenser H472K 50 V 4700 P ±10% Temperature characteristics B 1608 TDK 35 C17 Ceramic C3216JB1 condenser E105K 25 V 1.0 µ ±10% Temperature characteristics B 3216 TDK 36 C18 Ceramic C3216JB1 condenser A475M 10 V 4.7 µ ±10% Temperature characteristics B 3216 TDK 37 C19 Ceramic C3216JB1 condenser A106M 6.3 V 10 µ ±10% Temperature characteristics B 3216 TDK 38 C20 Ceramic C1608JB1 condenser H104K 50 V 0.1 µ ±10% Temperature characteristics B 1608 TDK 39 C21 Ceramic C1608JB1 condenser H473K 50 V 0.047 µ ±10% Temperature characteristics B 1608 TDK 40 C22 Ceramic C1608JB1 condenser H104K 50 V 0.1 µ ±10% Temperature characteristics B 1608 TDK 41 C23 Ceramic C1608JB1 condenser H473K 50 V 0.047 µ ±10% Temperature characteristics B 1608 TDK 42 C24 Ceramic C1608JB1 condenser H104K 50 V 0.1 µ ±10% Temperature characteristics B 1608 TDK 43 C25 Ceramic C1608JB1 condenser H473K 50 V 0.047 µ ±10% Temperature characteristics B 1608 TDK 44 C26 Ceramic C1608JB1 condenser H104K 50 V 0.1 µ ±10% Temperature characteristics B 1608 TDK 45 C27 Ceramic C1608JB1 condenser H104K 50 V 0.1 µ ±10% Temperature characteristics B 1608 TDK 4.7 µ ±10% Not mounted Not mounted (Continued) 8 MB39A102 Sym Part No bol name Model name Specification ManuPackage facturer Note Rating 1 Rating 2 Rating 3 Value Deviation Features Temperature characteristics B 1608 TDK Temperature characteristics B 1608 TDK Temperature characteristics B 1608 TDK 46 C28 Ceramic C1608JB1 condenser H103K 50 V 0.01 µ ±10% 47 C29 Ceramic C1608CH1 condenser H101J 50 V 100 p 48 C30 Ceramic C1608JB1 condenser H104K 50 V 0.1 µ ±10% 49 C31 Ceramic condenser 50 R1 Jumper 1/16 W 0Ω Max 50 mΩ 1608 51 R2 Jumper 1/16 W 0Ω Max 50 mΩ 1608 52 R3 Jumper 1/4 W 0Ω Max 50 mΩ 3216 53 R4 Jumper 1/16 W 0Ω Max 50 mΩ 1608 54 R5 Jumper 1/4 W 0Ω Max 50 mΩ 3216 55 R6 Jumper 1/16 W 0Ω Max 50 mΩ 1608 56 R9 Jumper 1/4 W 0Ω Max 50 mΩ 3216 57 R10 Jumper 1/16 W 0Ω Max 50 mΩ 1608 58 R11 Jumper 1/4 W 0Ω Max 50 mΩ 3216 59 R12 Resistor RR0816P181-D 1/16 W 180 Ω ±0.5% ±25 ppm/ °C 1608 ssm 60 R13 Resistor RR0816P332-D 1/16 W 3.3 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 61 R14 Resistor RR0816P123-D 1/16 W 12 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 62 R15 Resistor RR0816P153-D 1/16 W 15 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 63 R16 Resistor RR0816P202-D 1/16 W 2.0 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 64 R17 Jumper 1/16 W 0Ω Max 50 mΩ 1608 65 R18 Resistor 66 R19 Resistor RR0816P242-D 1/16 W 1608 ssm ±5% 2.4 kΩ ±0.5% ±25 ppm/ °C Not mounted Not mounted (Continued) 9 MB39A102 (Continued) No Sym Part bol name Specification Rating 1 Rating 2 Rating 3 Value Deviation Features ManuPackage facturer Note 67 R20 Resistor RR0816P433-D 1/16 W 43 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 68 R21 Resistor RR0816P153-D 1/16 W 15 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 69 R22 Resistor RR0816P202-D 1/16 W 2.0 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 70 R23 Resistor RR0816P333-D 1/16 W 33 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 71 R24 Resistor RR0816P203-D 1/16 W 20 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 72 R25 Resistor RR0816P242-D 1/16 W 2.4 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 73 R26 Resistor RR0816P433-D 1/16 W 43 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 74 R27 Resistor RR0816P153-D 1/16 W 15 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 75 R28 Resistor RR0816P202-D 1/16 W 2.0 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 76 R29 Resistor RR0816P333-D 1/16 W 33 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 77 R30 Resistor RR0816P203-D 1/16 W 20 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 78 R31 Resistor RR0816P302-D 1/16 W 3.0 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 79 R32 Resistor RR0816P223-D 1/16 W 22 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 80 R33 Resistor RR0816P153-D 1/16 W 15 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 81 R34 Resistor RR0816P102-D 1/16 W 1.0 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 82 R35 Resistor RR0816P303-D 1/16 W 30 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 83 R36 Resistor RR0816P183-D 1/16 W 18 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 84 R37 Resistor RR0816P243-D 1/16 W 24 kΩ ±0.5% ±25 ppm/ °C 1608 ssm 85 SW1 Switch DMS-6H MATSUKYU MacEight 86 PIN Terminal WT-2-1 pins SANYO TDK SUMIDA ssm MATSUKYU MacEight 10 Model name : : : : : : SANYO Electric Co., Ltd. TDK Corporation Sumida Corporation SUSUMU CO., LTD. Matsukyu Co., Ltd. MacEight Co., Ltd. MB39A102 ■ INITIAL SETTINGS (1) Output voltage CH1 : Vol (V) = 1.24/R15× (R13+R14+R15) =: 2.5 (V) CH2 : Vo2-2 (V) = 1.24/R21× (R19+R20+R21) =: 5.0 (V) CH3 : Vo3-2 (V) = 1.24/R27× (R25+R26+R27) =: 5.0 (V) CH4 : Vo4 (V) = 1.24/R33× (R31+R32+R33) =: 3.3 (V) (2) Oscillation frequency fosc (kHz) = 1200000/ (C29 (pF) × R37 (kΩ) ) =: 500 (kHz) (3) Soft-start time CH1 : ts (s) = 0.103×C20 (µF) =: 10.3 (ms) CH2 : ts (s) = 0.103×C22 (µF) =: 10.3 (ms) CH3 : ts (s) = 0.103×C24 (µF) =: 10.3 (ms) CH4 : ts (s) = 0.103×C26 (µF) =: 10.3 (ms) (4) Short-circuit detection time tscp (s) = 0.70×C28 (µF) =: 7.0 (ms) 11 MB39A102 ■ REFERENCE DATA • Conversion efficiency Input voltage • TOTAL efficiency 100 TOTAL efficiency η (% %) 95 90 At VIN =: 2.59 V CH1 stops by short-circuit detection operation 85 80 VO1 = 2.5 V, IO1 = 250 mA VO2-1 = 15 V, IO2-1 = 10 mA VO2-2 = 5 V, IO2-2 = 50 mA VO2-3 = −7.5 V, IO2-3 = −5 mA VO3-1 = 15 V, IO3-1 = 10 mA VO3-2 = 5 V, IO3-2 = 50 mA VO4 = 3.3 V, IO4 = 500 mA fOSC = 500 kHz 75 70 65 60 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Input voltage VIN (V) • Each CH Efficiency 100 Each CH efficiency η (% %) 95 90 CH1 85 CH4 80 75 CH2 CH3 Notes: Only concerned CH is ON Include external SW Tr operating current CH2 and CH3 are discontinuous mode. 70 65 60 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Input voltage VIN (V) 12 5.5 6.0 6.5 7.0 MB39A102 • Load Reguration (VIN = 3.6 V) • CH1 DC/DC converter output voltage (V) 5 4 3 Setting VO1 = 2.5 V 2 1 0 0 50 100 150 200 250 300 Load current IO (mA) • CH2, CH3 DC/DC converter output voltage (V) 7 6 Setting VO3-2 = 5 V 5 Setting VO2-2 = 5 V 4 Note : CH of using transformer only uses feedback control output. VO2-1, VO3-1 : IO = 10 mA Fix VO2-3 : IO = −5 mA Fix 3 2 0 10 20 30 40 50 Load current IO (mA) 13 MB39A102 • CH4 DC/DC converter output voltage (V) 5 4 Setting VO4 = 3.3 V 3 2 1 0 0 100 200 300 Load current IO (mA) 14 400 500 MB39A102 • Line Regulation • Output is a feedback control. DC/DC converter output voltage (V) 6 Setting VO2-2 = 5 V 5 Setting VO3-2 = 5 V 4 Setting VO4 = 3.3 V 3 Setting VO1 = 2.5 V 2 1 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Input voltage VIN (V) • Output is a feedback control none. DC/DC converter output voltage (V) 17 16 Setting VO3-1 = 15 V Setting VO2-1 = 15 V 15 14 13 12 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Input voltage VIN (V) (Continued) 15 MB39A102 (Continued) • Output is a feedback control none. DC/DC converter output voltage (V) −5 −6 Setting VO2-3 = −7.5 V −7 −8 −9 −10 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Input voltage VIN (V) 16 5.5 6.0 6.5 7.0 MB39A102 ■ COMPONENT SELECTION METHODS 1. Board view Schottky Barrier Diode Inductor (L2) P-ch MOS FET Output smoothing condenser MB39A102 EV BOARD Transformer L2 P1 C5 Q1 220 0 000 000 Vo1 C3 R4 CH1 C6 R3 GND1 C4 D1 1 Vo2-3 L1 CH2 C11 T1 R21 R14 123 433 R20 R15 153 202 R22 R16 202 333 R23 R17 0 203 R24 M1 333 R37 C25 R30 202 R28 R25 242 433 R26 153 R27 C24 P7 C10 D2 R5 C8 P2 R18 R1 C26 P8 R36 183 R35 303 R34 102 R32 223 R33 153 C9 0 GND2 P9 243 203 C28 D3 0 000 C21 C27 P12 302 T2 D6 R10 0 Vo3-2 P10 C29 R6 R13 1 R2 C30 R29 C20 30 C22 332 R31 P11 P5 MB39A102 0140 401 ES 0 P6 Vo2-1 ES1 16 242 C23 15 ICGND R19 Q2 Vo2-2 D4 C7 Q4 VIN C12 Output smoothing condenser Schottky Barrier Diode CH3 C15 000 C13 Vo3-1 R9 C31 D5 P3 GND3 GND C14 Output smoothing condenser 1 2 Q5 C16 5 CH4 D7 R11 6 6 5 ON C17 C19 L3 Transformer P4 150 L4 R E V. 2 . 0 NPN Tr Inductor (L3) Inductor (L4) GND4 3 4 000 OFF C18 100 3 4 181 Vo4 R12 OFF MKK CTL 1 OFF ON 2 SW1 Output smoothing condenser Schottky Barrier Diode Board Photograph 17 MB39A102 The following subsections show the component selection methods with the following common parametric values. 2. CH1 : Output 2.5 V (Downconversion Type) VIN (Max) = 6.0 V, Io = 250 mA, fosc = 500 kHz (1) P-ch MOS FET (MCH3309 (SANYO product) ) VDS = −20 V, VGS = ±10 V, ID = −1.5 A, RDS (ON) = 340 mΩ (Max) , Qg = 3.2 nC • Drain current: Peak value The peak drain current of this FET must be within its rated current. If the FET’s peak drain current is ID, it is obtained by the following formula. VO = VIN × tON t V O = 1 × VO tON = t × VIN fOSC VIN V IN (Max) −VO ID ≥ IO + × tON 2L 6−2.5 1 ≥ 0.25 + × × 0.417 500×103 2×22×10−6 ≥ 0.316 A • Drain-source voltage / Gate-source voltage The source-drain and gate-source voltages of the FET should be in the rated voltage value of FET. The FET source-drain voltage (VDS) and gate-source voltage (VGS) are obtained by the following formula. VDS ≤ −VIN (Max) ≤ −6 V VGS ≥ VIN (Max) ≥ 6V (2) Schottky Barrier Diode (SBS004 (SANYO product) ) VF (forward voltage) = 0.35 V (Max) : at IF = 1 A, VRRM (repeated peak reverse voltage) = 15 V IF (mean output current) = 1 A, IFSM (surge forward current) = 10 A • Diode current: Peak value The peak diode current must be within its rated current. If the peak diode current is IFSM, it is obtained by the following formula. IFSM ≥ IO + VO × tOFF 2L 2.5 1 ≥ 0.25 + × × (1−0.417) 500×103 2×22×10−6 ≥ 0.316 A 18 MB39A102 • Diode current: Average value The mean value of diode current must be within its rated current. If the mean value of diode current is IF, it is obtained by the following formula. IF ≥ IO × tOFF t ≥ 0.25 × 0.583 ≥ 0.146A • Repeated peak reverse voltage The repeated peak reverse voltage must be within its rated voltage. If the repeated peak reverse voltage is VRRM, it is obtained by the following formula. VRRM ≥ VIN (Max) ≥ 6V (3) Inductor (SLF12565T-220M3R5 : TDK product) 22 µH (tolerance ± 20%) , rated current = 0.63 A The condition for L to be a continuous current within the operating voltge range is obtained by the following formula. L ≥ VIN (Max) −VO × tON 2IO 6−2.5 1 ≥ × × 0.42 2×0.25 500×103 ≥ 5.88 µH The load current satisfying the continuous current condition is obtained by the following formula. IO ≥ VO × tOFF 2L 2.5 1 ≥ × × (1−0.42) 500×103 2×22×10−6 ≥ 66 mA • Ripple current: Peak value The peak ripple current must be within the rated current of the inductor. If the peak ripple current is IL, it is obtained by the following formula. IL ≥ IO + VIN (Max) −VO × tON 2L 6−2.5 1 ≥ 0.25 + × × 0.417 500×103 2×22×10−6 ≥ 0.316 A • Ripple current: Peak-to-peak value If the peak-to-peak ripple current is ∆IL, it is obtained by the following formula. VIN (Max) −VO ∆IL = × tON L 6−2.5 1 = × × 0.42 500×103 22×10−6 =: 0.134 A 19 MB39A102 3. CH2, CH3 : (Transformer Conversion Type) VIN (Max) = 6 V VIN (Min) = 2.5 V VO2-1, VO3-1 = 15 V VO2-2, VO3-2 = 5 V VO2-3 = −7.5 V IO2-1, IO3-1 = 10 mA IO2-2, IO3-2 = 50 mA IO2-3 = −5 mA (1) P-ch MOS FET (MCH3309 (SANYO product) ) VDS = −20 V, VGS = ±10 V, ID = −1.5 A, RDS (ON) = 340 mΩ (Max) , Qg = 3.2 nC The FET’s rated drain current must be at least 0.7 A. The FET’s rated drain-source and gate-source voltages must be at least 9 V. (2) Schottky Barrier Diode (SB05-05CP (SANYO product) ) VRRM (repeated peak reverse voltage) = 50 V, IF (average output current) = 500 mA, IFSM (surge forward current) = 5 A The each diode rated parameter must be at least VRRM (repeated peak reverse voltage) = 49 V, IF (mean output current) = 50 mA, IFSM (surge forward current) = 0.3 A. 4. CH4 : 3.3 V output (Sepic Type) VIN (Min) = 2.5 V, IO = 500 mA, fOSC = 500 kHz (1) NPN Tr (CPH3206 (SANYO product) ) VCEO = 15 V, VCBO = 15 V, IC = 3 A, hFE = 200 (Min) • Collector current: Peak value The peak collector current of this Tr must be within its rated current. If the Tr’s peak collector current is IC, it is obtained by the following formula. tON VO = VIN × tOFF VO tON = t × VIN+VO 1 VO = × fOSC VIN+VO VO+VIN (Min) 1 + 1 IC ≥ × IO + 1 × VIN (Min) × tON VIN (Min) 2 L3 L4 1 1 3.3+2.5 1 1 + ≥ × 0.5 + × 2.5 × × 0.69 2.5 2 10×10−6 15×10−6 500×103 ( ( ) ) ≥ 1.397 A Collector-emitter voltage / Collector-base voltage The collector-emitter and collector-base voltages of the Tr should be in the rated voltage value of Tr. The Tr’s collector-emitter voltage (VCEO) and collector-base voltage (VCBO) are obtained by the following formula. VCEO = VCBO ≥ VIN (Max) + VO ≥ 6+3.3 ≥ 9.3 V 20 MB39A102 (2) Schottky Barrier Diode (SBS004 (SANYO product) ) VF (forward voltage) = 0.35 V (Max) : at IF = 1 A, VRRM (repeated peak reverse voltage) = 15 V IFSM (surge forward current) = 10 A, IF (mean output current) = 1 A • Diode current: Peak value The peak current of this diode must be within its rated current. If the diode’s peak current is IFSM, it is obtained by the following formula. 1 + 1 × VO × tOFF IFSM ≥ VO+VIN (Min) × IO + 1 VIN (Min) 2 L3 L4 1 1 3.3+2.5 1 1 + ≥ × 0.5 + × 3.3 × × (1−0.569) 2.5 2 10×10−6 15×10−6 500×103 ( ( ) ) ≥ 1.397 A • Diode current: Average value The mean value of diode current must be within its rated current. If the mean value of diode current is IF, it is obtained by the following formula. IF ≥ IO ≥ 0.5 A • Repeated peak reverse voltage The repeated peak reverse voltage of this diode must be within its rated voltage. If the diode’s repeated peak reverse voltage is VRRM, it is obtained by the following formula. VRRM ≥ VIN (Max) +VO ≥ 6+3.3 ≥ 9.3 V (3) Inductor (L3 : RLF5018T-100MR94, TDK product) 10 µH (tolerance ± 20%) , rated current = 0.94 A The condition for L to be a continuous current within the operating voltge range is obtained by the following formula. 2 L ≥ VIN (Max) × tON 2IOVO 62 1 ≥ × × 0.355 2×0.5×3.3 500×103 ≥ 7.7µH The load current satisfying the continuous current condition is obtained by the following formula. 2 IO ≥ VIN (Max) × tON 2LVO 62 1 ≥ × × 0.355 2×10×10−6×3.3 500×103 ≥ 0.387 A Note : The continuous current condition becomes a large current value compared with the current value obtained by L4. 21 MB39A102 • IL current: Peak value The peak IL current of this inductor must be within its rated current. IL current is obtained by the following formula. VO × IO + VIN (Min) × tON IL ≥ VIN (Min) 2L 3.3 2.5 1 ≥ × 0.5 + × × 0.57 500×103 2.5 2×10×10−6 ≥ 0.802 A (4) Inductor (L4 : RLF5018T-150MR76, TDK product) 15 µH (tolerance ± 20%) , rated current = 0.76 A The condition for L to be a continuous current within the operating voltge range is obtained by the following formula. L ≥ VIN (Max) × tON 2IO 6 1 ≥ × × 0.355 2×0.5 500×103 ≥ 4.3µH The load current satisfying the continuous current condition is obtained by the following formula. IO ≥ VIN (Max) × tON 2L 6 1 ≥ × × 0.355 500×103 2×15×10−6 ≥ 0.142 A Note : The continuous current condition becomes a large current value compared with the current value obtained by L3. • IL current: Peak value The peak IL current of this inductor must be within its rated current. IL current is obtained by the following formula. IL ≥ IO + VIN (Max) × tON 2L 6 1 ≥ 0.5 + × × 0.355 500×103 2×15×10−6 ≥ 0.642 A 22 MB39A102 ■ ORDERING INFORMATION EV board part No. EVboard version No. Note MB39A102EVB MB39A102EV Board Rev. 2.0 IC Package TSSOP 23 MB39A102 FUJITSU LIMITED All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan. F0301 FUJITSU LIMITED Printed in Japan