AOT260L/AOB260L 60V N-Channel MOSFET General Description Product Summary The AOT(B)260L uses Trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Power losses are minimized due to an extremely low combination of RDS(ON) and Crss.In addition, switching behavior is well controlled with a “Schottky style” soft recovery body diode.This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting. VDS ID (at VGS=10V) RDS(ON) (at VGS=10V) RDS(ON) (at VGS =6V) 100% UIS Tested 100% Rg Tested TO-263 D2PAK TO220 Top View 60V 140A < 2.5mW < 2.9mW Bottom View Top View Bottom View D D D D D D S G AOT260L S D G G S G Gate-Source Voltage VGS TC=25°C Pulsed Drain Current C Avalanche Current C C Avalanche energy L=0.1mH TC=25°C Power Dissipation B TA=25°C Power Dissipation A Junction and Storage Temperature Range Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A D Maximum Junction-to-Case Rev.2.0 : November 2013 Steady-State Steady-State A IAS, IAR 128 A EAS, EAR 819 mJ 330 W 165 1.9 RqJA RqJC W 1.2 TJ, TSTG Symbol t ≤ 10s A 16 PDSM TA=70°C V 20 PD TC=100°C ±20 500 IDSM TA=70°C Units V 110 IDM TA=25°C Continuous Drain Current Maximum 60 140 ID TC=100°C S S AOB260L Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Continuous Drain Current G G -55 to 175 Typ 12 54 0.35 www.aosmd.com °C Max 15 65 0.45 Units °C/W °C/W °C/W Page 1 of 6 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage Conditions Min ID=250mA, VGS=0V IGSS VGS(th) Gate-Body leakage current VDS=0V, VGS= ±20V Gate Threshold Voltage On state drain current VDS=VGS ID=250mA 2.2 VGS=10V, VDS=5V 500 V TJ=55°C 5 mA 100 nA 2.7 3.2 V 2 2.5 3.1 3.9 VGS=6V, ID=20A TO220 2.2 2.9 mW VGS=10V, ID=20A TO263 1.7 2.2 mW 1.9 68 2.5 mW S VGS=10V, ID=20A TO220 Static Drain-Source On-Resistance Units 1 Zero Gate Voltage Drain Current RDS(ON) Max 60 VDS=60V, VGS=0V IDSS ID(ON) Typ TJ=125°C A mW gFS Forward Transconductance VGS=6V, ID=20A TO263 VDS=5V, ID=20A VSD Diode Forward Voltage IS=1A,VGS=0V 0.65 1 V VSD Diode Forward Voltage IS=75A,VGS=0V 0.85 1.3 V IS Maximum Body-Diode Continuous CurrentG 140 A DYNAMIC PARAMETERS Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance VGS=0V, VDS=30V, f=1MHz f=1MHz SWITCHING PARAMETERS Qg(10V) Total Gate Charge Qgs Gate Source Charge Qgd Gate Drain Charge tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime tf trr Qrr Turn-Off Fall Time VGS=10V, VDS=30V, ID=20A 9400 11800 14200 pF 1090 1360 1770 pF 32 40 68 pF 0.5 1 1.5 W 120 150 180 nC 28 40 52 nC 9 15 25 nC VGS=10V, VDS=30V, RL=1.5W, RGEN=3W 30 ns 27 ns 74 ns 12 IF=20A, dI/dt=500A/ms Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/ms 22 140 32 200 ns 42 260 ns nC A. The value of RqJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The Power dissipation PDSM is based on R qJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature T J(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RqJA is the sum of the thermal impedence from junction to case R qJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300ms pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T J(MAX)=175°C. The SOA curve provides a single pulse rating. G. The maximum current rating is package limited. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev.2.0 : November 2013 www.aosmd.com Page 2 of 6 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 100 10V VDS=5V 6V 80 80 4V 60 ID(A) ID (A) 60 40 40 20 20 25°C 125°C Vgs=3.5V 0 0 0 1 2 3 4 2 5 6 3.5 4 4.5 5 Normalized On-Resistance 2.2 4 VGS=6V 2 VGS=10V 2 VGS=10V ID=20A 1.8 17 5 2 10 1.6 VGS=6V ID=20A 1.4 1.2 1 0.8 0 0 5 0 10 15 20 25 30 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 5 25 50 75 100 125 150 175 200 Temperature (°C) 0 Figure 4: On-Resistance vs. Junction 18Temperature (Note E) 1.0E+02 ID=20A 1.0E+01 125°C 4 40 1.0E+00 3 IS (A) RDS(ON) (mW) 3 VGS(Volts) Figure 2: Transfer Characteristics (Note E) VDS (Volts) Fig 1: On-Region Characteristics (Note E) RDS(ON) (mW) 2.5 125°C 1.0E-01 25°C 2 1.0E-02 1.0E-03 1 25°C 1.0E-04 0.0 0 2 4 6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) Rev.2.0 : November 2013 www.aosmd.com 0.2 0.4 0.6 0.8 1.0 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10 15000 12000 Capacitance (pF) VGS (Volts) Ciss VDS=30V ID=20A 8 6 4 2 9000 6000 0 Crss 0 0 40 80 120 Qg (nC) Figure 7: Gate-Charge Characteristics 160 0 5 10 15 20 25 VDS (Volts) Figure 8: Capacitance Characteristics 30 1000 1000.0 10ms 10ms RDS(ON) 10.0 1ms 10ms DC 900 100ms 1.0 Power (W) 100.0 ID (Amps) Coss 3000 TJ(Max)=175°C 0.1 800 TJ(Max)=175°C TC=25°C 700 17 5 2 10 600 500 400 300 0.0 0.01 0.1 1 10 200 0.0001 100 0.001 0.01 0.1 1 10 0 Pulse Width (s) 18Junction-toFigure 10: Single Pulse Power Rating VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) Case (Note F) ZqJC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZqJC.RqJC In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RqJC=0.45°C/W 1 PD 0.1 Ton Single Pulse 0.01 0.00001 0.0001 0.001 0.01 T 0.1 1 10 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Rev.2.0 : November 2013 www.aosmd.com Page 4 of 6 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 400 TA=25°C Power Dissipation (W) IAR (A) Peak Avalanche Current 1000 TA=100°C 100 TA=150°C 300 200 100 TA=125°C 0 10 0 1 10 100 1000 Time in avalanche, tA (ms) Figure 12: Single Pulse Avalanche capability (Note C) 25 50 75 100 150 175 1000 150 TA=25°C Power (W) 120 Current rating ID(A) 125 TCASE (°C) Figure 13: Power De-rating (Note F) 90 60 100 17 5 2 10 10 30 0 0 25 50 75 100 125 150 175 1 0.001 ZqJA Normalized Transient Thermal Resistance 10 1 0.1 10 0 1000 18 Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H) TCASE (°C) Figure 14: Current De-rating (Note F) D=Ton/T TJ,PK=TA+PDM.ZqJA.RqJA In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse RqJA=65°C/W 40 0.1 PD 0.01 Single Pulse 0.001 0.01 0.1 1 Ton 10 T 100 1000 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H) Rev.2.0 : November 2013 www.aosmd.com Page 5 of 6 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC - DUT Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds Vgs 90% + Vdd DUT VDC - Rg 10% Vgs Vgs td(on) tr td(off) ton tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 EAR= 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vgs Vds - Isd Vgs Ig Rev.2.0 : November 2013 L Isd + Vdd t rr dI/dt I RM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6