AOT260L/AOB260L 60V N-Channel MOSFET General Description Product Summary The AOT(B)260L uses Trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Power losses are minimized due to an extremely low combination of RDS(ON) and Crss.In addition, switching behavior is well controlled with a “Schottky style” soft recovery body diode.This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting. VDS ID (at VGS=10V) RDS(ON) (at VGS=10V) RDS(ON) (at VGS =6V) 100% UIS Tested 100% Rg Tested TO220 Top View 60V 140A < 2.5mΩ < 2.9mΩ Bottom View Top View TO-263 D2PAK Bottom View D D D D D D G AOT260L S S D G G S G Gate-Source Voltage VGS TC=25°C Pulsed Drain Current C Avalanche Current C Avalanche energy L=0.1mH C TC=25°C Power Dissipation B TA=25°C Power Dissipation A Junction and Storage Temperature Range Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A D Maximum Junction-to-Case Rev 1 : Jul 2011 Steady-State Steady-State A IAS, IAR 128 A EAS, EAR 819 mJ 330 W 165 1.9 RθJA RθJC www.aosmd.com W 1.2 TJ, TSTG Symbol t ≤ 10s A 16 PDSM TA=70°C V 20 PD TC=100°C ±20 500 IDSM TA=70°C Units V 110 IDM TA=25°C Continuous Drain Current Maximum 60 140 ID TC=100°C S S AOB260L Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Continuous Drain Current G G -55 to 175 Typ 12 54 0.35 °C Max 15 65 0.45 Units °C/W °C/W °C/W Page 1 of 6 AOT260L/AOB260L Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage Min Conditions ID=250µA, VGS=0V IGSS Gate-Body leakage current VDS=0V, VGS= ±20V VGS(th) Gate Threshold Voltage On state drain current VDS=VGS ID=250µA 2.2 VGS=10V, VDS=5V 500 TJ=55°C 100 nA 2.7 3.2 V 2 2.5 3.1 3.9 VGS=6V, ID=20A TO220 2.2 2.9 mΩ VGS=10V, ID=20A TO263 1.7 2.2 mΩ 1.9 68 2.5 mΩ S 0.65 1 V 140 A TO220 gFS Forward Transconductance VGS=6V, ID=20A TO263 VDS=5V, ID=20A VSD Diode Forward Voltage IS=1A,VGS=0V IS TJ=125°C A G Maximum Body-Diode Continuous Current DYNAMIC PARAMETERS Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance µA 5 VGS=10V, ID=20A Static Drain-Source On-Resistance Units V 1 Zero Gate Voltage Drain Current RDS(ON) Max 60 VDS=60V, VGS=0V IDSS ID(ON) Typ mΩ 9400 11800 14200 pF VGS=0V, VDS=30V, f=1MHz 1090 1360 1770 pF 32 40 68 pF VGS=0V, VDS=0V, f=1MHz 0.5 1 1.5 Ω 120 150 180 nC SWITCHING PARAMETERS Qg(10V) Total Gate Charge VGS=10V, VDS=30V, ID=20A Qgs Gate Source Charge Qgd Gate Drain Charge tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime tf Turn-Off Fall Time trr Qrr IF=20A, dI/dt=500A/µs Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs 28 40 52 nC 9 15 25 nC VGS=10V, VDS=30V, RL=1.5Ω, RGEN=3Ω 30 ns 27 ns 74 ns 12 22 140 32 200 ns 42 260 ns nC A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allow s it. B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedence from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse ratin g. G. The maximum current rating is package limited. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev 1 : Jul 2011 www.aosmd.com Page 2 of 6 AOT260L/AOB260L TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 100 10V VDS=5V 6V 80 80 4V 60 ID(A) ID (A) 60 40 40 20 20 25°C 125°C Vgs=3.5V 0 0 0 1 2 3 4 2 5 6 4 VGS=6V 2 VGS=10V 0 3.5 4 4.5 5 2 VGS=10V ID=20A 1.8 17 5 2 10 1.6 VGS=6V ID=20A 1.4 1.2 1 0.8 0 5 10 15 20 25 30 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 5 0 25 50 75 100 125 150 175 200 0 Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature 18 (Note E) 1.0E+02 ID=20A 1.0E+01 125°C 4 40 IS (A) 1.0E+00 RDS(ON) (mΩ ) 3 2.2 Normalized On-Resistance RDS(ON) (mΩ ) 2.5 VGS(Volts) Figure 2: Transfer Characteristics (Note E) VDS (Volts) Fig 1: On-Region Characteristics (Note E) 3 2 125°C 1.0E-01 25°C 1.0E-02 1.0E-03 1 25°C 1.0E-04 0.0 0 2 4 6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) Rev 1 : Jul 2011 www.aosmd.com 0.2 0.4 0.6 0.8 1.0 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AOT260L/AOB260L TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10 15000 12000 Capacitance (pF) VGS (Volts) Ciss VDS=30V ID=20A 8 6 4 2 9000 6000 0 Crss 0 0 40 80 120 Qg (nC) Figure 7: Gate-Charge Characteristics 160 0 5 10 15 20 25 VDS (Volts) Figure 8: Capacitance Characteristics 30 1000 1000.0 10µs 10µs RDS(ON) limited 10.0 1ms 10ms DC 900 100µs 1.0 TJ(Max)=175°C TC=25°C 0.1 TJ(Max)=175°C TC=25°C 800 Power (W) 100.0 ID (Amps) Coss 3000 700 17 5 2 10 600 500 400 300 0.0 200 0.01 0.1 1 VDS (Volts) 10 100 0.0001 0.001 0.01 0.1 1 0 10 Pulse Width (s) 18 Figure 10: Single Pulse Power Rating Junction-toCase (Note F) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) Zθ JC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJC=0.45°C/W 1 PD 0.1 Ton Single Pulse T 0.01 0.00001 0.0001 0.001 0.01 0.1 1 10 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Rev 1 : Jul 2011 www.aosmd.com Page 4 of 6 AOT260L/AOB260L TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 400 TA=25°C Power Dissipation (W) IAR (A) Peak Avalanche Current 1000 TA=100°C 100 TA=150°C 300 200 100 TA=125°C 10 0 1 10 100 1000 Time in avalanche, tA (µ µs) Figure 12: Single Pulse Avalanche capability (Note C) 0 150 25 50 75 100 125 150 TCASE (°C) Figure 13: Power De-rating (Note F) 1000 TA=25°C Power (W) 120 Current rating ID(A) 175 90 60 100 17 5 2 10 10 30 0 0 25 50 75 100 125 150 TCASE (°C) Figure 14: Current De-rating (Note F) 175 1 0.001 0 10 1000 Pulse Width (s) 18 Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H) 0.1 Zθ JA Normalized Transient Thermal Resistance 10 1 D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA RθJA=65°C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 0.1 PD 0.01 Single Pulse Ton T 0.001 0.01 0.1 1 10 100 1000 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H) Rev 1 : Jul 2011 www.aosmd.com Page 5 of 6 AOT260L/AOB260L Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC - DUT Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds 90% + Vdd DUT Vgs VDC - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 E AR = 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vds Isd Vgs Ig Rev 1 : Jul 2011 Vgs L Isd + Vdd t rr dI/dt I RM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6