AON7290 100V N-Channel MOSFET General Description Product Summary The AON7290 uses trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of RDS(ON), Ciss and Coss. This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting. VDS 100V 50A ID (at VGS=10V) RDS(ON) (at VGS=10V) < 12.6mΩ RDS(ON) (at VGS=6V) < 18mΩ 100% UIS Tested 100% Rg Tested DFN 3.3x3.3 EP Bottom View Top View D Top View 1 8 2 7 3 6 4 5 G S Pin 1 Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Gate-Source Voltage VGS TC=25°C Continuous Drain Current G Pulsed Drain Current C Avalanche Current C Avalanche energy L=0.1mH C TC=25°C Power Dissipation B TA=25°C Power Dissipation A Junction and Storage Temperature Range Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A D Maximum Junction-to-Case Rev 0: Sep. 2012 IAS 30 A EAS 45 mJ 83 Steady-State Steady-State W 33 6.25 RθJA RθJC www.aosmd.com W 4 TJ, TSTG Symbol t ≤ 10s A 12 PDSM TA=70°C A 15 PD TC=100°C V 125 IDSM TA=70°C ±20 35 IDM TA=25°C Continuous Drain Current Units V 50 ID TC=100°C Maximum 100 -55 to 150 Typ 16 45 1 °C Max 20 55 1.5 Units °C/W °C/W °C/W Page 1 of 6 AON7290 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage Conditions Min ID=250µA, VGS=0V 100 1 Zero Gate Voltage Drain Current IGSS Gate-Body leakage current VDS=0V, VGS=±20V VGS(th) Gate Threshold Voltage VDS=VGS, ID=250µA 2.2 ID(ON) On state drain current VGS=10V, VDS=5V 125 TJ=55°C ±100 nA 2.85 3.4 V 10.5 12.6 19.7 23.8 VGS=6V, ID=12A 13.5 18 Static Drain-Source On-Resistance TJ=125°C A gFS Forward Transconductance VDS=5V, ID=15A 28 VSD Diode Forward Voltage IS=1A,VGS=0V 0.7 IS Maximum Body-Diode Continuous Current G DYNAMIC PARAMETERS Ciss Input Capacitance Output Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance Units µA 5 VGS=10V, ID=15A Coss Max V VDS=100V, VGS=0V IDSS RDS(ON) Typ VGS=0V, VDS=50V, f=1MHz 0.7 mΩ S 1 V 55 A 2075 pF 175 pF 9.5 VGS=0V, VDS=0V, f=1MHz mΩ 1.4 pF 2.1 Ω SWITCHING PARAMETERS Qg(10V) Total Gate Charge 26.5 38 nC Qg(4.5V) Total Gate Charge 9 15 nC Qgs Gate Source Charge Qgd Gate Drain Charge tD(on) Turn-On DelayTime tr Turn-On Rise Time tD(off) Turn-Off DelayTime VGS=10V, VDS=50V, ID=15A VGS=10V, VDS=50V, RL=3.3Ω, RGEN=3Ω 8.5 nC 4 nC 10 ns 3.5 ns 22.5 ns tf Turn-Off Fall Time 3 ns trr Body Diode Reverse Recovery Time IF=15A, dI/dt=500A/µs 35 Qrr Body Diode Reverse Recovery Charge IF=15A, dI/dt=500A/µs 185 ns nC A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA t ≤ 10s value and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 150°C may be used if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating. G. The maximum current rating is package limited. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev 0: Sep. 2012 www.aosmd.com Page 2 of 6 AON7290 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 100 7V 10V VDS=5V 80 80 6V 60 ID(A) ID (A) 60 40 5V 20 4.5V 40 125°C 25°C 20 VGS=4V 0 0 0 1 2 3 4 2 5 20 4 5 6 7 2.4 Normalized On-Resistance RDS(ON) (mΩ Ω) 3 VGS(Volts) Figure 2: Transfer Characteristics (Note E) VDS (Volts) Fig 1: On-Region Characteristics (Note E) VGS=6V 15 10 VGS=10V 2.2 VGS=10V ID=15A 2 1.8 17 5 2 10 =6V 1.6 1.4 VGS ID=12A 1.2 1 0.8 5 0 5 0 10 15 20 25 30 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 25 50 75 100 125 150 175 0 Temperature (°C) Figure 4: On-Resistance vs. Junction 18Temperature (Note E) 28 1.0E+02 ID=15A 1.0E+01 24 125°C 40 20 IS (A) RDS(ON) (mΩ Ω) 1.0E+00 16 125°C 1.0E-01 1.0E-02 25°C 1.0E-03 12 25°C 1.0E-04 1.0E-05 8 2 6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) Rev 0: Sep. 2012 4 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AON7290 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10 2400 VDS=50V ID=15A 2000 Capacitance (pF) VGS (Volts) 8 6 4 2 Ciss 1600 1200 Coss 800 400 Crss 0 0 0 5 10 15 20 25 Qg (nC) Figure 7: Gate-Charge Characteristics 30 0 40 60 80 VDS (Volts) Figure 8: Capacitance Characteristics 100 200 1000.0 RDS(ON) 10.0 100µs 1ms 10ms 1.0 DC TJ(Max)=150°C TC=25°C 0.1 TJ(Max)=150°C TC=25°C 160 Power (W) 10µs 10µs 100.0 ID (Amps) 20 17 5 2 10 120 80 40 0.0 0 0.01 0.1 1 10 VDS (Volts) 100 1000 0.001 0.01 0.1 1 10 0 100 Pulse Width (s) 18 Figure 10: Single Pulse Power Rating Junction-to-Case (Note F) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) Zθ JC Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJC=1.5°C/W 1 0.1 PD Single Pulse Ton T 0.01 1E-05 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Rev 0: Sep. 2012 www.aosmd.com Page 4 of 6 AON7290 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 TA=25°C 100 Power Dissipation (W) IAR (A) Peak Avalanche Current 1000 TA=100°C TA=150°C 10 TA=125°C 1 80 60 40 20 0 1 10 100 Time in avalanche, tA (µ µs) Figure 12: Single Pulse Avalanche capability (Note C) 1000 0 25 50 75 100 125 TCASE (°C) Figure 13: Power De-rating (Note F) 150 10000 60 TA=25°C 1000 40 Power (W) Current rating ID(A) 50 30 17 5 2 10 100 20 10 10 1 0 0 25 50 75 100 125 TCASE (°C) Figure 14: Current De-rating (Note F) 0.1 100 1000 Pulse Width (s) 18 Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H) 1E-05 150 0.001 Zθ JA Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA 1 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJA=55°C/W 0.1 PD 0.01 Single Pulse Ton T 0.001 0.0001 0.001 0.01 0.1 1 10 100 1000 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H) Rev 0: Sep. 2012 www.aosmd.com Page 5 of 6 AON7290 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC - DUT Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds 90% + Vdd DUT Vgs VDC - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 E AR = 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vds Isd Vgs Ig Rev 0: Sep. 2012 Vgs L Isd + Vdd t rr dI/dt I RM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6