Datasheet

AOD254
150V N-Channel MOSFET
General Description
Product Summary
The AOD254 uses trench MOSFET technology that is
uniquely optimized to provide the most efficient high
frequency switching performance.Power losses are
minimized due to an extremely low combination of
RDS(ON) and Crss.In addition,switching behavior is well
controlled with a soft recovery body diode.This device is
ideal for boost converters and synchronous rectifiers for
consumer, telecom, industrial power supplies and LED
backlighting.
VDS
150V
30A
ID (at VGS=10V)
RDS(ON) (at VGS=10V)
< 46mΩ
RDS(ON) (at VGS =4.5V)
< 53mΩ
100% UIS Tested
100% Rg Tested
TO252
DPAK
D
Top View
Bottom View
D
D
S
G
G
S
S
G
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
Symbol
Drain-Source Voltage
VDS
Gate-Source Voltage
VGS
TC=25°C
Continuous Drain
Current
Pulsed Drain Current C
Avalanche Current
C
Avalanche energy L=0.1mH C
TC=25°C
Power Dissipation B
TA=25°C
Power Dissipation
A
Junction and Storage Temperature Range
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient A
Maximum Junction-to-Ambient A D
Maximum Junction-to-Case
Rev.1.0: April 2014
4.5
12
A
EAS
7
mJ
115
Steady-State
Steady-State
W
57.5
2.5
RθJA
RθJC
W
1.6
TJ, TSTG
Symbol
t ≤ 10s
A
IAS
PDSM
TA=70°C
A
3.6
PD
TC=100°C
V
60
IDSM
TA=70°C
±20
22
IDM
TA=25°C
Continuous Drain
Current
Units
V
30
ID
TC=100°C
Maximum
150
-55 to 175
Typ
15
41
1
www.aosmd.com
°C
Max
20
50
1.3
Units
°C/W
°C/W
°C/W
Page 1 of 6
AOD254
Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
Conditions
Min
ID=250µA, VGS=0V
150
1
Zero Gate Voltage Drain Current
IGSS
Gate-Body leakage current
VDS=0V, VGS=±20V
VGS(th)
Gate Threshold Voltage
VDS=VGS,ID=250µA
1.7
ID(ON)
On state drain current
VGS=10V, VDS=5V
60
TJ=55°C
nA
2.7
V
37
46
74
90
VGS=4.5V, ID=20A
40
53
mΩ
1
V
46
A
TJ=125°C
A
gFS
Forward Transconductance
VDS=5V, ID=20A
55
VSD
Diode Forward Voltage
IS=1A,VGS=0V
0.7
IS
Maximum Body-Diode Continuous Current G
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
µA
5
±100
Static Drain-Source On-Resistance
Output Capacitance
2150
pF
VGS=0V, VDS=75V, f=1MHz
110
pF
4
pF
VGS=0V, VDS=0V, f=1MHz
2.3
Ω
27
40
Qg(4.5V)
Total Gate Charge
12
17
Qgs
Gate Source Charge
Qgd
Gate Drain Charge
tD(on)
Turn-On DelayTime
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
mΩ
S
SWITCHING PARAMETERS
Qg(10V)
Total Gate Charge
tr
Units
2.2
VGS=10V, ID=20A
Coss
Max
V
VDS=150V, VGS=0V
IDSS
RDS(ON)
Typ
VGS=10V, VDS=75V, ID=20A
nC
nC
7
nC
3
nC
9
ns
VGS=10V, VDS=75V, RL=3.75Ω,
RGEN=3Ω
10
ns
29
ns
tf
Turn-Off Fall Time
4
ns
trr
Body Diode Reverse Recovery Time
IF=20A, dI/dt=500A/µs
51
Qrr
Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs
434
ns
nC
A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The
Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends
on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.
B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep
initial TJ =25°C.
D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming
a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating.
G. The maximum current rating is package limited.
H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C.
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev.1.0: April 2014
www.aosmd.com
Page 2 of 6
AOD254
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
60
30
10V
VDS=5V
6V
50
25
5V
4.5V
40
20
ID(A)
ID (A)
4V
30
15
125°C
10
20
25°C
VGS=3.5V
5
10
0
0
0
1
2
3
4
0
5
60
2
3
4
5
6
Normalized On-Resistance
2.8
VGS=4.5V
50
RDS(ON) (mΩ)
1
VGS(Volts)
Figure 2: Transfer Characteristics (Note E)
VDS (Volts)
Fig 1: On-Region Characteristics (Note E)
40
30
VGS=10V
20
2.4
VGS=10V
ID=20A
2
17
5
2
VGS=4.5V
10
1.6
ID=20A
1.2
0.8
10
0
5
10
15
20
25
0
30
25
50
75
100
125
150
175
200
Temperature (°C) 0
Figure 4: On-Resistance vs. Junction
18Temperature
(Note E)
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage (Note E)
100
1.0E+02
ID=20A
1.0E+01
40
125°C
1.0E+00
125°C
IS (A)
RDS(ON) (mΩ)
80
60
1.0E-01
1.0E-02
25°C
1.0E-03
40
25°C
1.0E-04
20
1.0E-05
2
4
6
8
10
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)
Rev.1.0: April 2014
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
1.2
VSD (Volts)
Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 6
AOD254
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
10
2400
VDS=75V
ID=20A
2000
Capacitance (pF)
VGS (Volts)
8
6
4
2
Ciss
1600
1200
800
Coss
400
0
Crss
0
0
5
10
15
20
25
30
0
Qg (nC)
Figure 7: Gate-Charge Characteristics
25
50
75
125
150
1000
100.0
TJ(Max)=175°C
TC=25°C
10µs
800
100µs
Power (W)
10µs
RDS(ON)
limited
10.0
ID (Amps)
100
VDS (Volts)
Figure 8: Capacitance Characteristics
1ms
10ms
DC
1.0
0.1
TJ(Max)=175°C
TC=25°C
0.0
0.01
0.1
1
17
5
2
10
600
400
200
10
100
1000
VDS (Volts)
0
0.0001 0.001
0.01
0.1
1
0
10
100
Pulse Width (s)
18
Figure 10: Single Pulse Power Rating Junction-toCase (Note F)
Figure 9: Maximum Forward Biased Safe
Operating Area (Note F)
ZθJC Normalized Transient
Thermal Resistance
10
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
40
RθJC=1.3°C/W
1
PD
0.1
Ton
T
Single Pulse
0.01
1E-05
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Rev.1.0: April 2014
www.aosmd.com
Page 4 of 6
AOD254
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
120
TA=25°C
TA=100°C
Power Dissipation (W)
IAR (A) Peak Avalanche Current
100
TA=150°C
10
TA=125°C
100
80
60
40
20
1
0
1
10
100
1000
0
25
Time in avalanche, tA (µs)
Figure 12: Single Pulse Avalanche capability
(Note C)
50
75
100
150
175
10000
40
35
TA=25°C
1000
30
Power (W)
Current rating ID(A)
125
TCASE (°C)
Figure 13: Power De-rating (Note F)
25
20
17
5
2
10
100
15
10
10
5
1
1E-05
0
0
25
50
75
100
125
150
0.001
0.1
10
175
1000
0
18
TCASE (°C)
Figure 14: Current De-rating (Note F)
Pulse Width (s)
Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
ZθJA Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
1
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
40
RθJA=50°C/W
0.1
PD
0.01
0.001
1E-05
Single Pulse
0.0001
0.001
Ton
0.01
0.1
1
10
T
100
1000
Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Rev.1.0: April 2014
www.aosmd.com
Page 5 of 6
AOD254
Gate Charge Test Circuit & Waveform
Vgs
Qg
10V
+
+ Vds
VDC
-
Qgs
Qgd
VDC
-
DUT
Vgs
Ig
Charge
Resistive Switching Test Circuit & Waveforms
RL
Vds
Vds
90%
+ Vdd
DUT
Vgs
VDC
-
Rg
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf
toff
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
L
2
E AR = 1/2 LIAR
Vds
BVDSS
Vds
Id
+ Vdd
Vgs
Vgs
I AR
VDC
-
Rg
Id
DUT
Vgs
Vgs
Diode Recovery Test Circuit & Waveforms
Q rr = - Idt
Vds +
DUT
Vds -
Isd
Vgs
Ig
Rev.1.0: April 2014
Vgs
L
Isd
+ Vdd
t rr
dI/dt
I RM
Vdd
VDC
-
IF
Vds
www.aosmd.com
Page 6 of 6