AOD254 150V N-Channel MOSFET General Description Product Summary The AOD254 uses trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance.Power losses are minimized due to an extremely low combination of RDS(ON) and Crss.In addition,switching behavior is well controlled with a soft recovery body diode.This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting. VDS 150V 30A ID (at VGS=10V) RDS(ON) (at VGS=10V) < 46mΩ RDS(ON) (at VGS =4.5V) < 53mΩ 100% UIS Tested 100% Rg Tested TO252 DPAK D Top View Bottom View D D S G G S S G Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Symbol Drain-Source Voltage VDS Gate-Source Voltage VGS TC=25°C Continuous Drain Current Pulsed Drain Current C Avalanche Current C Avalanche energy L=0.1mH C TC=25°C Power Dissipation B TA=25°C Power Dissipation A Junction and Storage Temperature Range Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A D Maximum Junction-to-Case Rev.1.0: April 2014 4.5 12 A EAS 7 mJ 115 Steady-State Steady-State W 57.5 2.5 RθJA RθJC W 1.6 TJ, TSTG Symbol t ≤ 10s A IAS PDSM TA=70°C A 3.6 PD TC=100°C V 60 IDSM TA=70°C ±20 22 IDM TA=25°C Continuous Drain Current Units V 30 ID TC=100°C Maximum 150 -55 to 175 Typ 15 41 1 www.aosmd.com °C Max 20 50 1.3 Units °C/W °C/W °C/W Page 1 of 6 AOD254 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage Conditions Min ID=250µA, VGS=0V 150 1 Zero Gate Voltage Drain Current IGSS Gate-Body leakage current VDS=0V, VGS=±20V VGS(th) Gate Threshold Voltage VDS=VGS,ID=250µA 1.7 ID(ON) On state drain current VGS=10V, VDS=5V 60 TJ=55°C nA 2.7 V 37 46 74 90 VGS=4.5V, ID=20A 40 53 mΩ 1 V 46 A TJ=125°C A gFS Forward Transconductance VDS=5V, ID=20A 55 VSD Diode Forward Voltage IS=1A,VGS=0V 0.7 IS Maximum Body-Diode Continuous Current G DYNAMIC PARAMETERS Ciss Input Capacitance Crss Reverse Transfer Capacitance Rg Gate resistance µA 5 ±100 Static Drain-Source On-Resistance Output Capacitance 2150 pF VGS=0V, VDS=75V, f=1MHz 110 pF 4 pF VGS=0V, VDS=0V, f=1MHz 2.3 Ω 27 40 Qg(4.5V) Total Gate Charge 12 17 Qgs Gate Source Charge Qgd Gate Drain Charge tD(on) Turn-On DelayTime Turn-On Rise Time tD(off) Turn-Off DelayTime mΩ S SWITCHING PARAMETERS Qg(10V) Total Gate Charge tr Units 2.2 VGS=10V, ID=20A Coss Max V VDS=150V, VGS=0V IDSS RDS(ON) Typ VGS=10V, VDS=75V, ID=20A nC nC 7 nC 3 nC 9 ns VGS=10V, VDS=75V, RL=3.75Ω, RGEN=3Ω 10 ns 29 ns tf Turn-Off Fall Time 4 ns trr Body Diode Reverse Recovery Time IF=20A, dI/dt=500A/µs 51 Qrr Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs 434 ns nC A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it. B. The power dissipation PD is based on TJ(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=175°C. Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The RθJA is the sum of the thermal impedance from junction to case RθJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=175°C. The SOA curve provides a single pulse rating. G. The maximum current rating is package limited. H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev.1.0: April 2014 www.aosmd.com Page 2 of 6 AOD254 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 60 30 10V VDS=5V 6V 50 25 5V 4.5V 40 20 ID(A) ID (A) 4V 30 15 125°C 10 20 25°C VGS=3.5V 5 10 0 0 0 1 2 3 4 0 5 60 2 3 4 5 6 Normalized On-Resistance 2.8 VGS=4.5V 50 RDS(ON) (mΩ) 1 VGS(Volts) Figure 2: Transfer Characteristics (Note E) VDS (Volts) Fig 1: On-Region Characteristics (Note E) 40 30 VGS=10V 20 2.4 VGS=10V ID=20A 2 17 5 2 VGS=4.5V 10 1.6 ID=20A 1.2 0.8 10 0 5 10 15 20 25 0 30 25 50 75 100 125 150 175 200 Temperature (°C) 0 Figure 4: On-Resistance vs. Junction 18Temperature (Note E) ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 100 1.0E+02 ID=20A 1.0E+01 40 125°C 1.0E+00 125°C IS (A) RDS(ON) (mΩ) 80 60 1.0E-01 1.0E-02 25°C 1.0E-03 40 25°C 1.0E-04 20 1.0E-05 2 4 6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) Rev.1.0: April 2014 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) Page 3 of 6 AOD254 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10 2400 VDS=75V ID=20A 2000 Capacitance (pF) VGS (Volts) 8 6 4 2 Ciss 1600 1200 800 Coss 400 0 Crss 0 0 5 10 15 20 25 30 0 Qg (nC) Figure 7: Gate-Charge Characteristics 25 50 75 125 150 1000 100.0 TJ(Max)=175°C TC=25°C 10µs 800 100µs Power (W) 10µs RDS(ON) limited 10.0 ID (Amps) 100 VDS (Volts) Figure 8: Capacitance Characteristics 1ms 10ms DC 1.0 0.1 TJ(Max)=175°C TC=25°C 0.0 0.01 0.1 1 17 5 2 10 600 400 200 10 100 1000 VDS (Volts) 0 0.0001 0.001 0.01 0.1 1 0 10 100 Pulse Width (s) 18 Figure 10: Single Pulse Power Rating Junction-toCase (Note F) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) ZθJC Normalized Transient Thermal Resistance 10 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC 40 RθJC=1.3°C/W 1 PD 0.1 Ton T Single Pulse 0.01 1E-05 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Rev.1.0: April 2014 www.aosmd.com Page 4 of 6 AOD254 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 120 TA=25°C TA=100°C Power Dissipation (W) IAR (A) Peak Avalanche Current 100 TA=150°C 10 TA=125°C 100 80 60 40 20 1 0 1 10 100 1000 0 25 Time in avalanche, tA (µs) Figure 12: Single Pulse Avalanche capability (Note C) 50 75 100 150 175 10000 40 35 TA=25°C 1000 30 Power (W) Current rating ID(A) 125 TCASE (°C) Figure 13: Power De-rating (Note F) 25 20 17 5 2 10 100 15 10 10 5 1 1E-05 0 0 25 50 75 100 125 150 0.001 0.1 10 175 1000 0 18 TCASE (°C) Figure 14: Current De-rating (Note F) Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H) ZθJA Normalized Transient Thermal Resistance 10 D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA 1 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 40 RθJA=50°C/W 0.1 PD 0.01 0.001 1E-05 Single Pulse 0.0001 0.001 Ton 0.01 0.1 1 10 T 100 1000 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H) Rev.1.0: April 2014 www.aosmd.com Page 5 of 6 AOD254 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC - DUT Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds 90% + Vdd DUT Vgs VDC - Rg 10% Vgs Vgs t d(on) tr t d(off) t on tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 E AR = 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vds - Isd Vgs Ig Rev.1.0: April 2014 Vgs L Isd + Vdd t rr dI/dt I RM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6