StrongIRFET™ IRL40B215 HEXFET® Power MOSFET Application Brushed Motor drive applications BLDC Motor drive applications Battery powered circuits Half-bridge and full-bridge topologies Synchronous rectifier applications Resonant mode power supplies OR-ing and redundant power switches DC/DC and AC/DC converters DC/AC Inverters G S Benefits Optimized for Logic Level Drive Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dV/dt and dI/dt Capability Lead-Free* RoHS Compliant, Halogen-Free IRL40B215 TO-220 G Gate 120A D Drain Standard Pack Form Quantity Tube 50 12 S Source Orderable Part Number IRL40B215 175 Limited By Package ID = 98A 150 9 6 TJ = 125°C 3 125 100 75 50 25 TJ = 25°C 0 0 2 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage 1 ID (Package Limited) TO-220AB IRL40B215 ID, Drain Current (A) RDS(on), Drain-to -Source On Resistance (m) Package Type ID (Silicon Limited) 40V 2.2m 2.7m 164A S D G Base part number VDSS RDS(on) typ. max D www.irf.com © 2015 International Rectifier 25 50 75 100 125 150 175 TC , Case Temperature (°C) Fig 2. Maximum Drain Current vs. Case Temperature Submit Datasheet Feedback April 27, 2015 IRL40B215 Absolute Maximum Rating Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS TJ Parameter Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Wire Bond Limited) Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Operating Junction and Max. 164 116 120 656 143 0.95 ± 20 Units A W W/°C V -55 to + 175 Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) 300 Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Avalanche Characteristics 161 EAS (Thermally limited) Single Pulse Avalanche Energy 386 EAS (Thermally limited) Single Pulse Avalanche Energy IAR Avalanche Current See Fig 15, 16, 23a, 23b Repetitive Avalanche Energy EAR Thermal Resistance Symbol Parameter Typ. Max. Junction-to-Case RJC ––– 1.05 Case-to-Sink, Flat Greased Surface RCS 0.50 ––– Junction-to-Ambient RJA ––– 62 TSTG Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS Drain-to-Source Breakdown Voltage V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage IDSS Drain-to-Source Leakage Current IGSS RG Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Gate Resistance Min. Typ. Max. 40 ––– ––– ––– 0.033 ––– ––– 2.2 2.7 ––– 2.8 3.5 1.0 ––– 2.4 ––– ––– 1.0 ––– ––– 150 ––– ––– 100 ––– ––– -100 ––– 2.0 ––– °C mJ A mJ Units °C/W Units Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 5mA VGS = 10V, ID = 98A m VGS = 4.5V, ID = 49A V VDS = VGS, ID = 100µA VDS =40 V, VGS = 0V µA VDS =40V,VGS = 0V,TJ =125°C VGS = 20V nA VGS = -20V Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that Current imitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.033mH, RG = 50, IAS = 98A, VGS =10V. ISD 98A, di/dt 1005A/µs, VDD V(BR)DSS, TJ 175°C. Pulse width 400µs; duty cycle 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. R is measured at TJ approximately 90°C. Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50, IAS = 28A, VGS =10V. Pulse drain current is limited at 480A by source bonding technology. 2 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 27, 2015 IRL40B215 Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain Charge Total Gate Charge Sync. (Qg– Qgd) Turn-On Delay Time Rise Time Min. 176 ––– ––– ––– ––– ––– ––– Typ. ––– 56 15 30 26 21 110 Max. Units Conditions ––– S VDS = 10V, ID = 98A 84 ID = 98A VDS = 20V ––– nC VGS = 4.5V ––– ––– ––– VDD = 20V ––– ID = 30A ns ––– RG= 2.7 VGS = 4.5V ––– td(off) Turn-Off Delay Time ––– 63 tf Ciss Coss Fall Time Input Capacitance Output Capacitance ––– ––– ––– 62 5225 651 Crss Reverse Transfer Capacitance ––– 460 ––– Coss eff.(ER) Effective Output Capacitance (Energy Related) ––– 777 ––– VGS = 0V, VDS = 0V to 32V Coss eff.(TR) Output Capacitance (Time Related) ––– 963 ––– VGS = 0V, VDS = 0V to 32V Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Min. Typ. Max. Units ––– ––– 164 ––– ––– 656 Conditions MOSFET symbol showing the integral reverse p-n junction diode. VSD Diode Forward Voltage ––– 0.9 1.2 dv/dt Peak Diode Recovery dv/dt ––– 4.3 ––– trr Reverse Recovery Time ––– 27 ––– Qrr Reverse Recovery Charge IRRM Reverse Recovery Current ––– ––– ––– ––– 29 23 25 1.5 ––– ––– ––– ––– ––– ––– VGS = 0V VDS = 25V pF ƒ = 1.0MHz, See Fig.7 Diode Characteristics Symbol IS ISM 3 www.irf.com © 2015 International Rectifier A V D G S TJ = 25°C,IS = 98A,VGS = 0V V/ns TJ = 175°C,IS = 98A,VDS = 40V ns TJ = 25°C VDD = 34V TJ = 125°C IF = 98A, TJ = 25°C di/dt = 100A/µs nC TJ = 125°C A TJ = 25°C Submit Datasheet Feedback April 27, 2015 IRL40B215 1000 1000 BOTTOM 3.5V VGS 15V 10V 8.0V 6.0V 5.0V 4.5V 4.0V 3.5V 100 100 60µs PULSE WIDTH Tj = 25°C Tj = 175°C 10 1 10 10 100 0.1 VDS, Drain-to-Source Voltage (V) 100 RDS(on) , Drain-to-Source On Resistance (Normalized) 2.2 TJ = 175°C 100 TJ = 25°C 10 1 VDS = 10V 60µs PULSE WIDTH 0.1 0 2 4 6 8 ID = 98A VGS = 10V 1.8 1.4 1.0 0.6 10 -60 -20 100 140 180 14 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd VGS, Gate-to-Source Voltage (V) ID= 98A Coss = Cds + Cgd 10000 Ciss Coss 1000 60 Fig 6. Normalized On-Resistance vs. Temperature Fig 5. Typical Transfer Characteristics 100000 20 TJ , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 10 Fig 4. Typical Output Characteristics 1000 ID, Drain-to-Source Current(A) 1 VDS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics Crss 12 VDS = 32V VDS = 20V 10 VDS= 8V 8 6 4 2 0 100 0.1 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage 4 BOTTOM 3.5V 60µs PULSE WIDTH 0.1 VGS 15V 10V 8.0V 6.0V 5.0V 4.5V 4.0V 3.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP www.irf.com © 2015 International Rectifier 0 20 40 60 80 100 120 140 QG, Total Gate Charge (nC) Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage Submit Datasheet Feedback April 27, 2015 IRL40B215 1000 OPERATION IN THIS AREA LIMITED BY R DS (on) 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 TJ = 175°C TJ = 25°C 10 1 100µsec 100 Limited By Package 10msec 1 VGS = 0V 0.5 1.0 1.5 2.0 2.5 3.0 0.1 3.5 1 10 VDS , Drain-toSource Voltage (V) VSD , Source-to-Drain Voltage (V) Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 52 0.60 Id = 5.0mA 50 0.50 48 0.40 Energy (µJ) V(BR)DSS, Drain-to-Source Breakdown Voltage (V) DC Tc = 25°C Tj = 175°C Single Pulse 0.1 0.1 0.0 1msec 10 46 0.30 44 0.20 42 0.10 40 0.00 -60 -20 20 60 100 140 180 -5 TJ , Temperature ( °C ) 5 10 15 20 25 30 35 40 45 VDS, Drain-to-Source Voltage (V) Fig 11. Drain-to-Source Breakdown Voltage RDS (on), Drain-to -Source On Resistance (m) 0 Fig 12. Typical Coss Stored Energy 9 VGS = 3.5V VGS = 4.0V VGS = 4.5V VGS = 8.0V VGS = 10V 7 5 3 1 0 50 100 150 200 ID, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current 5 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 27, 2015 IRL40B215 Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.20 0.10 0.05 0.02 0.01 0.1 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 0.0001 1E-006 1E-005 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case Avalanche Current (A) 1000 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150°C and Tstart = 25°C (Single Pulse) 100 10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Avalanche Current vs. Pulse Width 180 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 98A EAR , Avalanche Energy (mJ) 160 140 120 100 80 60 40 20 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature 6 www.irf.com © 2015 International Rectifier Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1.Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 14) PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC Iav = 2T/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Submit Datasheet Feedback April 27, 2015 IRL40B215 7 2.0 IRRM (A) VGS(th), Gate threshold Voltage (V) 2.5 1.5 ID = 100µA ID = 250µA ID = 1.0mA ID = 1.0A 1.0 6 IF = 66A VR = 34V 5 TJ = 25°C TJ = 125°C 4 3 2 1 0.5 0 -75 -25 25 75 125 175 0 200 TJ , Temperature ( °C ) 600 800 diF /dt (A/µs) Fig 18. Typical Recovery Current vs. dif/dt Fig 17. Threshold Voltage vs. Temperature 7 120 6 IF = 98A VR = 34V 5 TJ = 25°C TJ = 125°C IF = 66A VR = 34V 100 TJ = 25°C TJ = 125°C 80 QRR (nC) IRRM (A) 400 4 3 60 40 2 20 1 0 0 0 200 400 600 800 0 200 diF /dt (A/µs) 400 600 800 diF /dt (A/µs) Fig 19. Typical Recovery Current vs. dif/dt Fig 20. Typical Stored Charge vs. dif/dt 100 IF = 98A VR = 34V QRR (nC) 80 TJ = 25°C TJ = 125°C 60 40 20 0 0 200 400 600 800 diF /dt (A/µs) Fig 21. Typical Stored Charge vs. dif/dt 7 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 27, 2015 IRL40B215 Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS tp 15V DRIVER L VDS D.U.T RG IAS 20V tp + V - DD A I AS 0.01 Fig 23a. Unclamped Inductive Test Circuit Fig 23b. Unclamped Inductive Waveforms Fig 24a. Switching Time Test Circuit Fig 24b. Switching Time Waveforms Id Vds Vgs VDD Vgs(th) Qgs1 Qgs2 Fig 25a. Gate Charge Test Circuit 8 www.irf.com © 2015 International Rectifier Qgd Qgodr Fig 25b. Gate Charge Waveform Submit Datasheet Feedback April 27, 2015 IRL40B215 TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information EXAM PLE: T H IS IS A N IR F 1 0 1 0 LO T C O D E 1789 ASSEM BLED O N W W 19, 2000 IN T H E A S S E M B L Y L IN E "C " N o t e : "P " in a s s e m b ly lin e p o s it io n in d ic a t e s "L e a d - F r e e " IN T E R N A T IO N A L R E C T IF IE R LO G O ASSEM BLY LO T C O D E PART NUM BER D ATE C O D E YEA R 0 = 2000 W EEK 19 L IN E C TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 27, 2015 IRL40B215 Qualification Information† Industrial (per JEDEC JESD47F) †† Qualification Level Moisture Sensitivity Level TO-220 N/A Yes RoHS Compliant † Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/ †† Applicable version of JEDEC standard at the time of product release. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 10 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback April 27, 2015