IRL40B215

StrongIRFET™
IRL40B215
HEXFET® Power MOSFET
Application
 Brushed Motor drive applications
 BLDC Motor drive applications
Battery powered circuits
 Half-bridge and full-bridge topologies
 Synchronous rectifier applications
 Resonant mode power supplies
 OR-ing and redundant power switches
 DC/DC and AC/DC converters
 DC/AC Inverters
G
S
Benefits
Optimized for Logic Level Drive
Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
Fully Characterized Capacitance and Avalanche SOA
Enhanced body diode dV/dt and dI/dt Capability
Lead-Free*
RoHS Compliant, Halogen-Free
IRL40B215
TO-220
G
Gate
120A
D
Drain
Standard Pack
Form
Quantity
Tube
50
12
S
Source
Orderable Part Number
IRL40B215
175
Limited By Package
ID = 98A
150
9
6
TJ = 125°C
3
125
100
75
50
25
TJ = 25°C
0
0
2
4
6
8
10
12
14
16
18
20
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
1
ID (Package Limited)
TO-220AB
IRL40B215
ID, Drain Current (A)
RDS(on), Drain-to -Source On Resistance (m)
Package Type
ID (Silicon Limited)
40V
2.2m
2.7m
164A
S
D
G






Base part number
VDSS
RDS(on) typ.
max
D
www.irf.com
© 2015 International Rectifier
25
50
75
100
125
150
175
TC , Case Temperature (°C)
Fig 2. Maximum Drain Current vs. Case Temperature
Submit Datasheet Feedback
April 27, 2015
IRL40B215
Absolute Maximum Rating
Symbol
ID @ TC = 25°C
ID @ TC = 100°C
ID @ TC = 25°C
IDM
PD @TC = 25°C
VGS
TJ
Parameter
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
Pulsed Drain Current 
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Operating Junction and
Max.
164
116
120
656
143
0.95
± 20
Units
A W
W/°C
V
-55 to + 175 Storage Temperature Range
Soldering Temperature, for 10 seconds (1.6mm from case)
300
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Avalanche Characteristics 161
EAS (Thermally limited)
Single Pulse Avalanche Energy 
386
EAS (Thermally limited)
Single Pulse Avalanche Energy 
IAR
Avalanche Current 
See Fig 15, 16, 23a, 23b
Repetitive Avalanche Energy 
EAR
Thermal Resistance Symbol
Parameter
Typ.
Max.
Junction-to-Case 
RJC
–––
1.05
Case-to-Sink, Flat Greased Surface
RCS
0.50
–––
Junction-to-Ambient 
RJA
–––
62
TSTG
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
Drain-to-Source Breakdown Voltage
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
IDSS
Drain-to-Source Leakage Current
IGSS
RG
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Gate Resistance
Min. Typ. Max.
40
––– –––
––– 0.033 –––
–––
2.2
2.7
–––
2.8
3.5
1.0 –––
2.4
––– –––
1.0
––– ––– 150
––– ––– 100
––– ––– -100
–––
2.0
–––
°C mJ
A
mJ
Units
°C/W Units
Conditions
V
VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 5mA 
VGS = 10V, ID = 98A 
m
VGS = 4.5V, ID = 49A 
V
VDS = VGS, ID = 100µA
VDS =40 V, VGS = 0V
µA
VDS =40V,VGS = 0V,TJ =125°C
VGS = 20V
nA
VGS = -20V

Notes:
Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that
Current imitations arising from heating of the device leads may occur with some lead mounting arrangements.
(Refer to AN-1140)
Repetitive rating; pulse width limited by max. junction temperature.
Limited by TJmax, starting TJ = 25°C, L = 0.033mH, RG = 50, IAS = 98A, VGS =10V.
ISD  98A, di/dt  1005A/µs, VDD  V(BR)DSS, TJ  175°C.
Pulse width  400µs; duty cycle  2%.
Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
 R is measured at TJ approximately 90°C.
 Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50, IAS = 28A, VGS =10V.
 Pulse drain current is limited at 480A by source bonding technology.
2
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
April 27, 2015
IRL40B215
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
Qsync
td(on)
tr
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain Charge
Total Gate Charge Sync. (Qg– Qgd)
Turn-On Delay Time
Rise Time
Min.
176
–––
–––
–––
–––
–––
–––
Typ.
–––
56
15
30
26
21
110
Max. Units
Conditions
–––
S VDS = 10V, ID = 98A
84
ID = 98A
VDS = 20V
–––
nC VGS = 4.5V
–––
–––
–––
VDD = 20V
–––
ID = 30A
ns
–––
RG= 2.7
VGS = 4.5V
–––
td(off)
Turn-Off Delay Time
–––
63
tf
Ciss
Coss
Fall Time
Input Capacitance
Output Capacitance
–––
–––
–––
62
5225
651
Crss
Reverse Transfer Capacitance
–––
460
–––
Coss eff.(ER) Effective Output Capacitance (Energy Related)
–––
777
–––
VGS = 0V, VDS = 0V to 32V
Coss eff.(TR) Output Capacitance (Time Related)
–––
963
–––
VGS = 0V, VDS = 0V to 32V
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Min.
Typ.
Max. Units
–––
–––
164
–––
–––
656
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
VSD
Diode Forward Voltage
–––
0.9
1.2
dv/dt
Peak Diode Recovery dv/dt 
–––
4.3
–––
trr
Reverse Recovery Time
–––
27
–––
Qrr
Reverse Recovery Charge
IRRM
Reverse Recovery Current
–––
–––
–––
–––
29
23
25
1.5
–––
–––
–––
–––
–––
–––
VGS = 0V
VDS = 25V
pF ƒ = 1.0MHz, See Fig.7
Diode Characteristics Symbol
IS
ISM
3
www.irf.com
© 2015 International Rectifier
A
V
D
G
S
TJ = 25°C,IS = 98A,VGS = 0V 
V/ns TJ = 175°C,IS = 98A,VDS = 40V
ns
TJ = 25°C
VDD = 34V
TJ = 125°C
IF = 98A,
TJ = 25°C di/dt = 100A/µs 
nC
TJ = 125°C
A TJ = 25°C 
Submit Datasheet Feedback
April 27, 2015
IRL40B215
1000
1000
BOTTOM
3.5V
VGS
15V
10V
8.0V
6.0V
5.0V
4.5V
4.0V
3.5V
100
100
60µs PULSE WIDTH
Tj = 25°C
Tj = 175°C
10
1
10
10
100
0.1
VDS, Drain-to-Source Voltage (V)
100
RDS(on) , Drain-to-Source On Resistance
(Normalized)
2.2
TJ = 175°C
100
TJ = 25°C
10
1
VDS = 10V
60µs PULSE WIDTH
0.1
0
2
4
6
8
ID = 98A
VGS = 10V
1.8
1.4
1.0
0.6
10
-60
-20
100
140
180
14
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
VGS, Gate-to-Source Voltage (V)
ID= 98A
Coss = Cds + Cgd
10000
Ciss
Coss
1000
60
Fig 6. Normalized On-Resistance vs. Temperature
Fig 5. Typical Transfer Characteristics
100000
20
TJ , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
10
Fig 4. Typical Output Characteristics
1000
ID, Drain-to-Source Current(A)
1
VDS, Drain-to-Source Voltage (V)
Fig 3. Typical Output Characteristics
Crss
12
VDS = 32V
VDS = 20V
10
VDS= 8V
8
6
4
2
0
100
0.1
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
4
BOTTOM
3.5V
60µs PULSE WIDTH
0.1
VGS
15V
10V
8.0V
6.0V
5.0V
4.5V
4.0V
3.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
www.irf.com
© 2015 International Rectifier
0
20
40
60
80
100
120
140
QG, Total Gate Charge (nC)
Fig 8. Typical Gate Charge vs.
Gate-to-Source Voltage
Submit Datasheet Feedback
April 27, 2015
IRL40B215
1000
OPERATION IN THIS AREA
LIMITED BY R DS (on)
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
TJ = 175°C
TJ = 25°C
10
1
100µsec
100
Limited By Package
10msec
1
VGS = 0V
0.5
1.0
1.5
2.0
2.5
3.0
0.1
3.5
1
10
VDS , Drain-toSource Voltage (V)
VSD , Source-to-Drain Voltage (V)
Fig 10. Maximum Safe Operating Area
Fig 9. Typical Source-Drain Diode Forward Voltage
52
0.60
Id = 5.0mA
50
0.50
48
0.40
Energy (µJ)
V(BR)DSS, Drain-to-Source Breakdown Voltage (V)
DC
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
0.1
0.0
1msec
10
46
0.30
44
0.20
42
0.10
40
0.00
-60
-20
20
60
100
140
180
-5
TJ , Temperature ( °C )
5
10 15 20 25 30 35 40 45
VDS, Drain-to-Source Voltage (V)
Fig 11. Drain-to-Source Breakdown Voltage
RDS (on), Drain-to -Source On Resistance (m)
0
Fig 12. Typical Coss Stored Energy
9
VGS = 3.5V
VGS = 4.0V
VGS = 4.5V
VGS = 8.0V
VGS = 10V
7
5
3
1
0
50
100
150
200
ID, Drain Current (A)
Fig 13. Typical On-Resistance vs. Drain Current
5
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
April 27, 2015
IRL40B215
Thermal Response ( Z thJC ) °C/W
10
1
D = 0.50
0.20
0.10
0.05
0.02
0.01
0.1
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
0.0001
1E-006
1E-005
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Avalanche Current (A)
1000
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart = 25°C (Single Pulse)
100
10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming  j = 25°C and
Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Avalanche Current vs. Pulse Width
180
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 98A
EAR , Avalanche Energy (mJ)
160
140
120
100
80
60
40
20
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy vs. Temperature
6
www.irf.com
© 2015 International Rectifier
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1.Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for every
part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not
exceeded.
3. Equation below based on circuit and waveforms shown in Figures
23a, 23b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage
increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed Tjmax
(assumed as 25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 14)
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC
Iav = 2T/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav Submit Datasheet Feedback
April 27, 2015
IRL40B215
7
2.0
IRRM (A)
VGS(th), Gate threshold Voltage (V)
2.5
1.5
ID = 100µA
ID = 250µA
ID = 1.0mA
ID = 1.0A
1.0
6
IF = 66A
VR = 34V
5
TJ = 25°C
TJ = 125°C
4
3
2
1
0.5
0
-75
-25
25
75
125
175
0
200
TJ , Temperature ( °C )
600
800
diF /dt (A/µs)
Fig 18. Typical Recovery Current vs. dif/dt
Fig 17. Threshold Voltage vs. Temperature
7
120
6
IF = 98A
VR = 34V
5
TJ = 25°C
TJ = 125°C
IF = 66A
VR = 34V
100
TJ = 25°C
TJ = 125°C
80
QRR (nC)
IRRM (A)
400
4
3
60
40
2
20
1
0
0
0
200
400
600
800
0
200
diF /dt (A/µs)
400
600
800
diF /dt (A/µs)
Fig 19. Typical Recovery Current vs. dif/dt
Fig 20. Typical Stored Charge vs. dif/dt
100
IF = 98A
VR = 34V
QRR (nC)
80
TJ = 25°C
TJ = 125°C
60
40
20
0
0
200
400
600
800
diF /dt (A/µs)
Fig 21. Typical Stored Charge vs. dif/dt
7
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
April 27, 2015
IRL40B215
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
tp
15V
DRIVER
L
VDS
D.U.T
RG
IAS
20V
tp
+
V
- DD
A
I AS
0.01
Fig 23a. Unclamped Inductive Test Circuit
Fig 23b. Unclamped Inductive Waveforms
Fig 24a. Switching Time Test Circuit
Fig 24b. Switching Time Waveforms
Id
Vds
Vgs
VDD Vgs(th)
Qgs1 Qgs2
Fig 25a. Gate Charge Test Circuit
8
www.irf.com
© 2015 International Rectifier
Qgd
Qgodr
Fig 25b. Gate Charge Waveform
Submit Datasheet Feedback
April 27, 2015
IRL40B215
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
EXAM PLE:
T H IS IS A N IR F 1 0 1 0
LO T C O D E 1789
ASSEM BLED O N W W 19, 2000
IN T H E A S S E M B L Y L IN E "C "
N o t e : "P " in a s s e m b ly lin e p o s it io n
in d ic a t e s "L e a d - F r e e "
IN T E R N A T IO N A L
R E C T IF IE R
LO G O
ASSEM BLY
LO T C O D E
PART NUM BER
D ATE C O D E
YEA R 0 = 2000
W EEK 19
L IN E C
TO-220AB packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
9
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
April 27, 2015
IRL40B215
Qualification Information† Industrial
(per JEDEC JESD47F) ††
Qualification Level Moisture Sensitivity Level
TO-220
N/A
Yes
RoHS Compliant
†
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/
††
Applicable version of JEDEC standard at the time of product release.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
10
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
April 27, 2015