IRF7748L1TRPbF DirectFET™ Power MOSFET Typical values (unless otherwise specified) Applications RoHS Compliant, Halogen Free Lead-Free (Qualified up to 260°C Reflow) Ideal for High Performance Isolated Converter Primary Switch Socket Optimized for Synchronous Rectification Low Conduction Losses High Cdv/dt Immunity Low Profile (<0.7mm) Dual Sided Cooling Compatible Compatible with existing Surface Mount Techniques Industrial Qualified VDSS VGS RDS(on) 60V min ±20V max 1.7m@ 10V Qgd Vgs(th) 40nC 2.9V Qg tot 146nC SC M2 S S S S S D G DirectFET™ ISOMETRIC Applicable DirectFET Outline and Substrate Outline SB S D L6 M4 L4 L6 L8 Description The IRF7748L1TRPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has a footprint smaller than a D2PAK and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems. The IRF7748L1TRPbF is optimized for high frequency switching and synchronous rectification applications. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance power converters. Ordering Information Base part number Package Type IRF7748L1TRPbF DirectFET Large Can Standard Pack Form Quantity Tape and Reel 4000 Orderable Part Number IRF7748L1TRPbF Absolute Maximum Ratings Parameter Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current 8 Units V A mJ A 3.0 ( DS(on) m I D = 89A 6 4 Typical R , Drain-to -Source On Resistance (m) R DS(on) VDS VGS ID @ TC = 25°C ID @ TC = 100°C ID @ TA = 25°C IDM EAS IAR Max. 60 ±20 148 104 28 592 129 89 T J = 125°C 2 T J = 25°C V GS = 6V 2.5 V GS = 7V 2.0 V GS = 10V 1.5 V GS = 12V 1.0 0 0 2 4 6 V GS, 8 10 12 14 16 18 20 Gate -to -Source Voltage (V) 25 50 75 100 125 150 175 200 I D , Drain Current (A) Fig 2. Typical On-Resistance vs. Drain Current Fig 1. Typical On-Resistance vs. Gate Voltage Notes Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. 1 www.irf.com © 2012 International Rectifier TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.033mH, RG = 50, IAS = 89A. February 18, 2013 IRF7748L1TRPbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. BVDSS Drain-to-Source Breakdown Voltage 60 ––– VDSS/TJ Breakdown Voltage Temp. Coefficient ––– RDS(on) Static Drain-to-Source On-Resistance ––– 1.7 VGS(th) Gate Threshold Voltage 2.0 VGS(th)/TJ Gate Threshold Voltage Temp. Coefficient IDSS Drain-to-Source Leakage Current Units ––– V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 2mA 2.2 m VGS = 10V, ID = 89A 2.9 4.0 V ––– ––– -9.9 ––– ––– 20 mV/°C ––– ––– 250 gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre– Vth Gate-to-Source Charge Post– Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Gate Resistance Turn-On Delay Time Rise Time ––– ––– 176 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 146 31 12 40 63 52 82 1.3 19 104 100 -100 ––– 220 ––– ––– ––– ––– ––– ––– ––– ––– ––– td(off) Turn-Off Delay Time ––– 54 ––– tf Ciss Coss Fall Time Input Capacitance Output Capacitance ––– ––– ––– 77 8075 1150 ––– ––– ––– Crss Reverse Transfer Capacitance ––– 540 ––– Coss Output Capacitance ––– 5390 ––– VGS=0V, VDS = 1.0V,ƒ =1.0MHz Coss Output Capacitance ––– 850 ––– VGS=0V, VDS = 48V,ƒ =1.0MHz Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Min. Typ. Max. ––– ––– 85 ––– ––– 592 VSD Diode Forward Voltage ––– ––– 1.3 V trr Qrr Reverse Recovery Time Reverse Recovery Charge ––– ––– 58 113 ––– ––– ns nC IGSS 0.022 ––– Conditions VDS = VGS, ID = 250µA µA nA S VDS =60 V, VGS = 0V VDS =60V,VGS = 0V,TJ =125°C VGS = 20V VGS = -20V VDS = 10V, ID =89A nC nC ns pF VDS = 30V VGS = 10V ID = 89A See Fig.9 VDS = 16V,VGS = 0V VDD = 30V, VGS = 10V ID = 89A RG= 1.8 VGS = 0V VDS = 50V ƒ = 1.0MHz Diode Characteristics IS ISM Units A Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C,IS = 89A,VGS = 0V TJ = 25°C ,IF = 89A,VDD = 30V di/dt = 100A/µs Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2% 2 www.irf.com © 2012 International Rectifier February 18, 2013 IRF7748L1TRPbF Absolute Maximum Ratings Symbol Parameter PD @TC = 25°C Power Dissipation PD @TC = 100°C Power Dissipation PD @TA = 25°C Power Dissipation Peak Soldering Temperature TP Operating Junction and TJ Storage Temperature Range TSTG Thermal Resistance Symbol Parameter Junction-to-Ambient RqJA Junction-to-Ambient RqJA Junction-to-Ambient RqJA Junction-to-Can RqJC Junction-to-PCB Mounted RqJA-PCB Max. 94 47 3.3 270 -55 to + 175 Typ. ––– 12.5 20 ––– ––– Units W °C Max. 45 ––– ––– 1.6 0.5 Units °C/W Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.20 0.10 0.1 0.05 0.02 0.01 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effec ve Transient Thermal Impedance, Junc on‐to‐Case Notes: Surface mounted on 1 in. square Cu board, steady state. TC measured with thermocouple incontact with top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Surface mounted on 1 in. square Cu board (still air). 3 www.irf.com Used double sided cooling, mounting pad with large heatsink. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. R is measured at TJ of approximately 90°C. Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) © 2012 International Rectifier February 18, 2013 IRF7748L1TRPbF 1000 1000 100 BOTTOM BOTTOM 100 10 4.25V 4.25V 60µs PULSE WIDTH 60µs PULSE WIDTH Tj = 175°C Tj = 25°C 1 10 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 100 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) VDS = 25V 60µs PULSE WIDTH ID, Drain-to-Source Current(A) 10 Fig 5. Typical Output Characteristics 1000 100 TJ = 175°C 10 TJ = 25°C 1 0.1 ID = 89A VGS = 10V 1.6 1.2 0.8 0.4 2 3 4 5 6 7 -60 VGS, Gate-to-Source Voltage (V) ID= 89A Coss = Cds + Cgd Ciss Coss 1000 60 100 140 180 14 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 10000 20 Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 100000 -20 TJ , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 1 VDS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Crss 100 VDS = 48V 12 VDS = 30V VDS= 12V 10 8 6 4 2 0 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs. Drain-to-Source Voltage 4 VGS 15V 10V 7.0V 6.0V 5.5V 5.0V 4.5V 4.25V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 7.0V 6.0V 5.5V 5.0V 4.5V 4.25V www.irf.com © 2012 International Rectifier 0 50 100 150 200 QG, Total Gate Charge (nC) Fig 9. Typical Gate Charge vs. Gate-to-Source Voltage February 18, 2013 IRF7748L1TRPbF 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 TJ = 175°C 100 10 TJ = 25°C 1 VGS = 0V 0.4 0.6 0.8 1.0 1.2 1000 100µsec 100 10 1msec 10msec 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1.4 1 10 100 VDS , Drain-to-Source Voltage (V) VSD , Source-to-Drain Voltage (V) Fig 11. Maximum Safe Operating Area Fig 10. Typical Source-Drain Diode Forward Voltage 4.5 VGS(th), Gate threshold Voltage (V) 160 ID, Drain Current (A) DC 0.1 0.1 0.2 OPERATION IN THIS AREA LIMITED BY RDS(on) 120 80 40 0 4.0 3.5 3.0 2.5 2.0 ID = 1.0A 1.5 ID = 10mA ID = 1.0mA ID = 250µA 1.0 0.5 25 50 75 100 125 150 175 -75 -50 -25 0 25 50 75 100 125 150 175 TC , Case Temperature (°C) TJ , Temperature ( °C ) Fig 12. Maximum Drain Current vs. Case Temperature Fig 13. Typical Threshold Voltage vs. Junction Temperature EAS , Single Pulse Avalanche Energy (mJ) 600 ID 11.4A 19.1A BOTTOM 89A TOP 500 400 300 200 100 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current 5 www.irf.com © 2012 International Rectifier February 18, 2013 IRF7748L1TRPbF 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150°C and Tstart =25°C (Single Pulse) 100 0.01 10 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs. Pulse width 140 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 89A EAR , Avalanche Energy (mJ) 120 100 80 60 40 20 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 ) 1.Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 19a, 19b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 3) PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC Iav = 2T/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 16. Maximum Avalanche Energy vs. Temperature Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs 6 www.irf.com © 2012 International Rectifier February 18, 2013 IRF7748L1TRPbF Id Vds Vgs Vgs(th) Qgs1 Qgs2 Fig 18a. Gate Charge Test Circuit V(BR)DSS tp DRIVER L D.U.T RG IAS 20V 7 tp Qgodr Fig 18b. Gate Charge Waveform 15V VDS Qgd + V - DD A 0.01 I AS Fig 19a. Unclamped Inductive Test Circuit Fig 19b. Unclamped Inductive Waveforms Fig 20a. Switching Time Test Circuit Fig 20b. Switching Time Waveforms www.irf.com © 2012 International Rectifier February 18, 2013 IRF7748L1TRPbF DirectFET™Board Footprint, L6 Outline (Large Size Can, 6-Source Pads). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D D D S S S S S S D G D D Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com © 2012 International Rectifier February 18, 2013 IRF7748L1TRPbF DirectFET® Outline Dimension, L6 Outline (Large Size Can, 6-Source Pads). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS CODE A B C D E F G H J K L L1 L2 M P R METRIC MIN MAX 9.05 9.15 6.85 7.10 5.90 6.00 0.55 0.65 0.58 0.62 1.18 1.22 0.98 1.02 0.73 0.77 0.38 0.42 1.35 1.45 2.55 2.65 3.95 4.05 5.35 5.45 0.68 0.74 0.09 0.17 0.02 0.08 IMPERIAL MIN MAX 0.356 0.360 0.270 0.280 0.232 0.236 0.022 0.026 0.023 0.024 0.046 0.048 0.039 0.040 0.029 0.030 0.015 0.017 0.053 0.057 0.100 0.104 0.155 0.159 0.210 0.214 0.027 0.029 0.003 0.007 0.001 0.003 Dimensions are shown in millimeters (inches) DirectFET® Part Marking GATE MARKING + LOGO PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 www.irf.com © 2012 International Rectifier February 18, 2013 IRF7748L1TRPbF DirectFET® Tape & Reel Dimension (Showing component orientation). LOADED TAPE FEED DIRECTION + NOTE: Controlling dimensions in mm Std reel quantity is 4000 parts. (ordered as IRF7748L1TRPBF). REEL DIMENSIONS STANDARD OPTION (QTY 4000) IMPERIAL METRIC MIN CODE MAX MIN MAX 12.992 A 330.00 N.C N.C 0.795 B 20.20 N.C N.C 0.504 C 12.80 0.520 13.20 D 0.059 1.50 N.C N.C E 3.900 99.00 100.00 3.940 F N.C N.C 0.880 22.40 G 0.650 16.40 0.720 18.40 H 0.630 15.90 0.760 19.40 NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MAX MIN MAX 4.69 0.476 11.90 12.10 0.154 0.161 3.90 4.10 0.623 0.642 15.90 16.30 0.291 0.299 7.40 7.60 0.283 0.291 7.20 7.40 0.390 0.398 9.90 10.10 0.059 N.C 1.50 N.C 0.059 0.063 1.50 1.60 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Qualification Information† Industrial†† * Qualification Level Moisture Sensitivity Level DirectFET Yes RoHS Compliant † †† ††† MSL1 (per JEDEC J-STD-020D†††) Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. * Industrial qualification standards except autoclave test conditions. Revision History Date 2/13/13 Comments TR1 option removed and Tape & Reel Info updated accordingly. Hyperlinks added throw-out the document IR WORLD HEADQUARTERS: 101N Sepulveda Blvd, El Segundo, California 90245, USA To contact Interna onal Rec fier, please visit h p://www.irf.com/whoto‐call/ 10 www.irf.com © 2012 International Rectifier February 18, 2013