StrongIRFET™ IRL40B209 HEXFET® Power MOSFET Application Brushed Motor drive applications BLDC Motor drive applications Battery powered circuits Half-bridge and full-bridge topologies Synchronous rectifier applications Resonant mode power supplies OR-ing and redundant power switches DC/DC and AC/DC converters DC/AC Inverters D G S Benefits Optimized for Logic Level Drive Improved Gate, Avalanche and Dynamic dV/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dV/dt and dI/dt Capability Lead-Free RoHS Compliant, Halogen-Free IRL40B209 TO-220 G Gate 414A ID (Package Limited) 195A D Drain Standard Pack Form Quantity Tube 50 6 S Source Orderable Part Number IRL40B209 450 ID = 100A 400 5 Limited By Package 350 4 3 T J = 125°C 2 300 250 200 150 100 1 T J = 25°C 50 0 2 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage 1 ID (Silicon Limited) TO-220AB IRL40B209 ID, Drain Current (A) RDS(on), Drain-to -Source On Resistance (m ) Package Type 40V 1.0m 1.25m S D G Base part number VDSS RDS(on) typ. max www.irf.com © 2015 International Rectifier 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) Fig 2. Maximum Drain Current vs. Case Temperature Submit Datasheet Feedback May 18, 2015 IRL40B209 Absolute Maximum Rating Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS TJ Parameter Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Wire Bond Limited) Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Operating Junction and Max. 414 293 195 1707 375 2.5 ± 20 Units A W W/°C V -55 to + 175 Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) 300 Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Avalanche Characteristics EAS (Thermally limited) 730 Single Pulse Avalanche Energy 1420 EAS (Thermally limited) Single Pulse Avalanche Energy IAR Avalanche Current See Fig 15, 16, 23a, 23b Repetitive Avalanche Energy EAR Thermal Resistance Symbol Parameter Typ. Max. Junction-to-Case RJC ––– 0.4 Case-to-Sink, Flat Greased Surface RCS 0.50 ––– Junction-to-Ambient RJA ––– 62 TSTG Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS Drain-to-Source Breakdown Voltage V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage IDSS Drain-to-Source Leakage Current IGSS RG Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Gate Resistance Min. Typ. Max. 40 ––– ––– ––– 0.031 ––– ––– 1.0 1.25 ––– 1.2 1.6 1.0 ––– 2.4 ––– ––– 1.0 ––– ––– 150 ––– ––– 100 ––– ––– -100 ––– 2.1 ––– °C mJ A mJ Units °C/W Units Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 5mA VGS = 10V, ID = 100A m VGS = 4.5V, ID = 50A V VDS = VGS, ID = 250µA VDS =40 V, VGS = 0V µA VDS =40V,VGS = 0V,TJ =125°C VGS = 20V nA VGS = -20V Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.15mH,RG = 50, IAS = 100A, VGS =10V. ISD 100A, di/dt 930A/µs, VDD V(BR)DSS, TJ 175°C. Pulse width 400µs; duty cycle 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS R is measured at TJ approximately 90°C. Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50, IAS = 53A, VGS =10V. Pulse drain current is limited at 780A by source bonding technology. 2 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback May 18, 2015 IRL40B209 Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain Charge Total Gate Charge Sync. (Qg – Qgd) Turn-On Delay Time Rise Time Min. 270 ––– ––– ––– ––– ––– ––– Typ. ––– 180 51 88 92 56 198 Max. Units Conditions ––– S VDS = 10V, ID =100A 270 ID = 100A VDS = 20V ––– nC VGS = 4.5V ––– ––– ––– VDD = 20V ––– ID = 30A ns ––– RG= 2.7 VGS = 4.5V ––– td(off) Turn-Off Delay Time ––– 188 tf Ciss Coss Fall Time Input Capacitance Output Capacitance ––– ––– ––– 150 15140 1990 Crss Reverse Transfer Capacitance ––– 1370 ––– Coss eff.(ER) Effective Output Capacitance ––– 2340 ––– VGS = 0V, VDS = 0V to 32V Coss eff.(TR) Output Capacitance (Time Related) ––– 2900 ––– VGS = 0V, VDS = 0V to 32V Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Min. Typ. Max. Units ––– ––– 414 ––– ––– 1707 Conditions MOSFET symbol showing the integral reverse p-n junction diode. VSD Diode Forward Voltage ––– ––– 1.2 dv/dt Peak Diode Recovery dv/dt ––– 2.4 ––– trr Reverse Recovery Time ––– 41 ––– Qrr Reverse Recovery Charge IRRM Reverse Recovery Current ––– ––– ––– ––– 42 46 50 2.0 ––– ––– ––– ––– ––– ––– pF VGS = 0V VDS = 25V ƒ = 1.0MHz, See Fig.7 Diode Characteristics Symbol IS ISM 3 www.irf.com © 2015 International Rectifier A V D G S TJ = 25°C,IS = 100A,VGS = 0V V/ns TJ = 175°C,IS = 100A,VDS = 40V ns TJ = 25°C VDD = 34V TJ = 125°C IF = 100A, TJ = 25°C di/dt = 100A/µs nC TJ = 125°C A TJ = 25°C Submit Datasheet Feedback May 18, 2015 IRL40B209 1000 1000 BOTTOM TOP 100 3.5V 60µs PULSE WIDTH ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 6.0V 5.0V 4.5V 4.0V 3.5V 100 60µs PULSE WIDTH Tj = 175°C Tj = 25°C 10 10 0.1 1 10 0.1 100 10 100 Fig 4. Typical Output Characteristics Fig 3. Typical Output Characteristics 1000 2.0 T J = 175°C RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) T J = 25°C 100 VDS = 10V 60µs PULSE WIDTH 10 ID = 100A VGS = 10V 1.8 1.6 1.4 1.2 1.0 0.8 0.6 1 2 3 4 5 6 7 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 5. Typical Transfer Characteristics Fig 6. Normalized On-Resistance vs. Temperature 14 100000 ID = 100A VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd C, Capacitance (pF) BOTTOM 3.5V VGS 15V 10V 8.0V 6.0V 5.0V 4.5V 4.0V 3.5V Ciss 10000 Coss Crss 12 VDS= 32V VDS= 20V VDS= 8V 10 8 6 4 2 0 1000 1 10 100 VDS, Drain-to-Source Voltage (V) 0 50 100 150 200 250 300 350 400 450 QG, Total Gate Charge (nC) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage 4 Submit Datasheet Feedback www.irf.com © 2015 International Rectifier May 18, 2015 IRL40B209 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 175°C T J = 25°C 100 OPERATION IN THIS AREA LIMITED BY RDS(on) 1000 100µsec 1msec 100 Limited by Package 10 10msec 1 VGS = 0V 10 0.1 0 0.5 1.0 1.5 2.0 0.1 2.5 1 10 100 VDS, Drain-toSource Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 1.8 50 Id = 5.0mA 1.6 48 1.4 1.2 46 Energy (µJ) V(BR)DSS , Drain-to-Source Breakdown Voltage (V) DC Tc = 25°C Tj = 175°C Single Pulse 44 1.0 0.8 0.6 0.4 42 0.2 0.0 40 -60 -40 -20 0 -5 20 40 60 80 100 120 140 160 T J , Temperature ( °C ) 0 5 10 15 20 25 30 35 40 VDS, Drain-to-Source Voltage (V) RDS(on), Drain-to -Source On Resistance ( m) Fig 11. Drain-to-Source Breakdown Voltage Fig 12. Typical Coss Stored Energy 4.0 VGS = 3.5V VGS = 4.5V VGS = 6.0V VGS = 8.0V VGS = 10V 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 0 20 40 60 80 100 120 140 160 180 200 ID, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current 5 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback May 18, 2015 IRL40B209 Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 0.01 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150°C and Tstart =25°C (Single Pulse) 100 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 tav (sec) Fig 15. Avalanche Current vs. Pulse Width 800 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 100A EAR , Avalanche Energy (mJ) 700 600 500 400 300 200 100 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature 6 www.irf.com © 2015 International Rectifier Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1.Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figures14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figure 14) PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC Iav = 2T/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Submit Datasheet Feedback May 18, 2015 IRL40B209 12 2.0 1.5 IRRM (A) VGS(th) , Gate threshold Voltage (V) 2.5 ID = 250µA ID = 1.0mA 1.0 10 IF = 60A V R = 34V TJ = 25°C 8 TJ = 125°C 6 4 ID = 1.0A 0.5 2 0 0 -75 -50 -25 0 0 25 50 75 100 125 150 175 200 600 800 1000 diF /dt (A/µs) T J , Temperature ( °C ) Fig 18. Typical Recovery Current vs. dif/dt Fig 17. Threshold Voltage vs. Temperature 400 12 IF = 100A V R = 34V 10 320 IF = 60A V R = 34V TJ = 25°C 280 TJ = 125°C 360 TJ = 25°C TJ = 125°C QRR (nC) 8 IRRM (A) 400 6 240 200 160 4 120 2 80 40 0 0 200 400 600 800 0 1000 200 400 600 800 1000 diF /dt (A/µs) diF /dt (A/µs) Fig 19. Typical Recovery Current vs. dif/dt Fig 20. Typical Stored Charge vs. dif/dt QRR (nC) 280 240 IF = 100A V R = 34V TJ = 25°C 200 TJ = 125°C 160 120 80 40 0 200 400 600 800 1000 diF /dt (A/µs) Fig 21. Typical Stored Charge vs. dif/dt 7 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback May 18, 2015 IRL40B209 Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS tp 15V DRIVER L VDS D.U.T RG IAS 20V tp + V - DD A I AS 0.01 Fig 23a. Unclamped Inductive Test Circuit Fig 23b. Unclamped Inductive Waveforms Fig 24a. Switching Time Test Circuit Fig 24b. Switching Time Waveforms Id Vds Vgs VDD Vgs(th) Qgs1 Qgs2 Fig 25a. Gate Charge Test Circuit 8 www.irf.com © 2015 International Rectifier Qgd Qgodr Fig 25b. Gate Charge Waveform Submit Datasheet Feedback May 18, 2015 IRL40B209 TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information EXAM PLE: T H IS IS A N IR F 1 0 1 0 LO T C O D E 1789 ASSEM BLED O N W W 19, 2000 IN T H E A S S E M B L Y L IN E "C " N o t e : "P " in a s s e m b ly lin e p o s it io n in d ic a t e s "L e a d - F r e e " IN T E R N A T IO N A L R E C T IF IE R LO G O ASSEM BLY LO T C O D E PART NUM BER D ATE C O D E YEA R 0 = 2000 W EEK 19 L IN E C TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback May 18, 2015 IRL40B209 Qualification Information† Industrial (per JEDEC JESD47F) †† Qualification Level Moisture Sensitivity Level TO-220 N/A Yes RoHS Compliant † Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/ †† Applicable version of JEDEC standard at the time of product release. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 10 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback May 18, 2015