StrongIRFET™ IRF60DM206 DirectFET® N-Channel Power MOSFET Application Brushed motor drive applications BLDC motor drive applications Battery powered circuits Half-bridge and full-bridge topologies Synchronous rectifier applications Resonant mode power supplies OR-ing and redundant power switches DC/DC and AC/DC converters DC/AC inverters VDSS 60V RDS(on) typ. 2.2m max 2.9m ID 130A S Benefits Improved gate, avalanche and dynamic dv/dt ruggedness Fully characterized capacitance and avalanche SOA Enhanced body diode dv/dt and di/dt capability Lead-free, RoHS compliant Base part number S ® DirectFET ME DirectFET® ISOMETRIC ME Orderable Part Number Form Quantity Tape and Reel 4800 IRF60DM206 140 ID = 80A 7 120 6 100 ID, Drain Current (A) RDS(on), Drain-to -Source On Resistance (m ) S D G 8 5 T J = 125°C 4 3 T J = 25°C 2 80 60 40 20 0 1 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage 1 S Standard Pack Package Type IRF60DM206 S D www.irf.com © 2015 International Rectifier 25 50 75 100 125 150 T C , Case Temperature (°C) Fig 2. Maximum Drain Current vs. Case Temperature Submit Datasheet Feedback June 04, 2015 IRF60DM206 Absolute Maximum Ratings Symbol Parameter ID @ TC = 25°C Continuous Drain Current, VGS @ 10V ID @ TC = 100°C Continuous Drain Current, VGS @ 10V Pulsed Drain Current IDM PD @TC = 25°C Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage VGS Operating Junction and TJ Storage Temperature Range TSTG Avalanche Characteristics EAS (Thermally limited) Single Pulse Avalanche Energy EAS (Thermally limited) Single Pulse Avalanche Energy IAR Avalanche Current EAR Repetitive Avalanche Energy Thermal Resistance Symbol Parameter Junction-to-Ambient RJA Junction-to-Ambient RJA Junction-to-Ambient RJA Junction-to-Case RJC Junction-to-PCB Mounted RJ-PCB Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS Drain-to-Source Breakdown Voltage V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) IDSS Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance RG Notes: Mounted on minimum footprint full size board with metalized back and with small clip heatsink. Used double sided cooling , mounting pad with large heatsink. Surface mounted on 1 in. square Cu board (still air). 2 www.irf.com Units A W W/°C V °C 81 154 mJ See Fig 15, 15, 23a, 23b A mJ Typ. ––– 12.5 20 ––– 0.75 Max. 45 ––– ––– 1.3 ––– Units °C/W Min. Typ. Max. Units Conditions 60 ––– ––– V VGS = 0V, ID = 250µA ––– 38 ––– mV/°C Reference to 25°C, ID = 1.0mA ––– 2.2 2.9 m VGS = 10V, ID = 80A ––– 2.7 ––– m VGS = 6.0V, ID = 40A 2.1 3.0 3.7 V VDS = VGS, ID = 150µA ––– ––– 1.0 µA VDS = 60V, VGS = 0V ––– ––– 150 VDS = 60V, VGS = 0V, TJ = 125°C ––– ––– 100 nA VGS = 20V ––– ––– -100 VGS = -20V ––– 0.8 ––– TC measured with thermocouple mounted to top (Drain) of part. Mounted to a PCB with small clip heatsink (still air) © 2015 International Rectifier Max. 130 82 530 96 0.78 ± 20 -55 to + 150 Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) Submit Datasheet Feedback June 04, 2015 IRF60DM206 Dynamic @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units Conditions gfs Forward Transconductance 148 ––– ––– S VDS = 10V, ID = 80A Qg Total Gate Charge ––– 133 200 ID = 80A Qgs Gate-to-Source Charge ––– 33 ––– VDS =30V nC Qgd Gate-to-Drain ("Miller") Charge ––– 40 ––– VGS = 10V Qsync Total Gate Charge Sync. (Qg - Qgd) ––– 93 ––– td(on) Turn-On Delay Time ––– 17 ––– VDD = 30V tr Rise Time ––– 32 ––– ID = 30A ns td(off) Turn-Off Delay Time ––– 60 ––– RG = 2.7 tf Fall Time ––– 30 ––– VGS = 10V Ciss Input Capacitance ––– 6530 ––– VGS = 0V Coss Output Capacitance ––– 650 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 420 ––– pF ƒ = 1.0MHz Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– 670 ––– VGS = 0V, VDS = 0V to 48V Coss eff. (TR) Effective Output Capacitance (Time Related) ––– 840 ––– VGS = 0V, VDS = 0V to 48V Diode Characteristics Symbol Parameter IS Continuous Source Current (Body Diode) ISM Pulsed Source Current (Body Diode) Diode Forward Voltage VSD Min. Typ. Max. Units Conditions ––– ––– 130 A MOSFET symbol showing the integral reverse ––– ––– 530 p-n junction diode. ––– ––– 1.2 V TJ= 25°C,IS = 80A, VGS = 0V dv/dt Peak Diode Recovery ––– 8.5 ––– trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Reverse Recovery Current ––– ––– ––– ––– ––– 47.5 48 79 84 2.9 ––– ––– ––– ––– ––– D G S V/ns TJ =150°C,IS =80A, VDS = 60V ns TJ = 25° C VR = 51V, TJ = 125°C IF = 80A nC TJ = 25°C di/dt = 100A/µs TJ = 125°C A TJ = 25°C Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJ max, starting TJ = 25°C, L = 25µH RG = 50, IAS = 80A, VGS =10V. ISD ≤ 80A, di/dt ≤ 1410A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. 3 www.irf.com © 2015 International Rectifier Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. R is measured at TJ approximately 90°C. Limited by TJ max, starting TJ = 25°C, L= 1mH, RG = 50, IAS = 17.5A, VGS =10V. Submit Datasheet Feedback June 04, 2015 IRF60DM206 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 4.5V 10 60µs PULSE WIDTH BOTTOM 100 4.5V 60µs PULSE WIDTH Tj = 25°C Tj = 150°C 10 1 0.1 1 10 0.1 100 1000 100 RDS(on) , Drain-to-Source On Resistance (Normalized) 2.0 T J = 150°C 100 T J = 25°C 10 VDS = 25V 60µs PULSE WIDTH 1 ID = 80A VGS = 10V 1.5 1.0 0.5 3 4 5 6 7 -60 -40 -20 0 Fig 5. Typical Transfer Characteristics 100000 VGS, Gate-to-Source Voltage (V) ID= 80A Coss = Cds + Cgd Ciss Coss Crss 1000 Fig 6. Normalized On-Resistance vs. Temperature 14 VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = C gd 10000 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 10 Fig 4. Typical Output Characteristics Fig 3. Typical Output Characteristics ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) 12 VDS= 48V VDS= 30V 10 VDS= 12V 8 6 4 2 0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage 4 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V www.irf.com © 2015 International Rectifier 0 20 40 60 80 100 120 140 160 180 QG, Total Gate Charge (nC) Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage Submit Datasheet Feedback June 04, 2015 IRF60DM206 100 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 150°C T J = 25°C 10 1 100 10 1msec 10msec 1 DC 0.1 Tc = 25°C Tj = 150°C Single Pulse VGS = 0V 0.01 0.1 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1 10 100 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 1.2 70 Id = 1.0mA 68 1.0 66 0.8 Energy (µJ) V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 100µsec OPERATION IN THIS AREA LIMITED BY RDS(on) 64 0.6 62 0.4 60 0.2 0.0 58 -60 -40 -20 0 -10 20 40 60 80 100 120 140 160 T J , Temperature ( °C ) 10 20 30 40 50 60 VDS, Drain-to-Source Voltage (V) Fig 11. Drain-to-Source Breakdown Voltage RDS(on), Drain-to -Source On Resistance ( m ) 0 Fig 12. Typical Coss Stored Energy 10 VGS = 5.5V VGS = 6.0V VGS = 7.0V VGS = 8.0V VGS = 10V 9 8 7 6 5 4 3 2 1 0 20 40 60 80 100 120 140 160 180 200 ID, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current 5 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback June 04, 2015 IRF60DM206 Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.20 0.10 0.05 0.1 0.02 0.01 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case Avalanche Current (A) 1000 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 125°C and Tstart =25°C (Single Pulse) 100 10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 125°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 tav (sec) Fig 15. Avalanche Current vs. Pulse Width EAR , Avalanche Energy (mJ) 100 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 80A 80 60 40 20 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature 6 www.irf.com © 2015 International Rectifier Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1.Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figure 14) PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC Iav = 2T/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Submit Datasheet Feedback June 04, 2015 IRF60DM206 20 3.5 IF = 53A V R = 51V TJ = 25°C 15 TJ = 125°C 3.0 ID ID ID ID 2.5 2.0 IRRM (A) VGS(th) , Gate threshold Voltage (V) 4.0 = 150µA = 250µA = 1.0mA = 1.0A 10 5 0 1.5 -75 -50 -25 0 25 50 0 75 100 125 150 200 600 800 1000 diF /dt (A/µs) T J , Temperature ( °C ) Fig 17. Threshold Voltage vs. Temperature Fig 18. Typical Recovery Current vs. dif/dt 300 20 IF = 80A V R = 51V IF = 53A V R = 51V TJ = 25°C 250 TJ = 25°C TJ = 125°C TJ = 125°C QRR (nC) 15 IRRM (A) 400 10 5 200 150 100 50 0 0 200 400 600 800 0 1000 200 400 600 800 1000 diF /dt (A/µs) diF /dt (A/µs) Fig 20. Typical Stored Charge vs. dif/dt Fig 19. Typical Recovery Current vs. dif/dt 300 IF = 80A V R = 51V QRR (nC) 250 TJ = 25°C TJ = 125°C 200 150 100 50 0 200 400 600 800 1000 diF /dt (A/µs) Fig 21. Typical Stored Charge vs. dif/dt 7 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback June 04, 2015 IRF60DM206 Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS tp 15V DRIVER L VDS D.U.T RG + V - DD IAS 20V tp A I AS 0.01 Fig 23a. Unclamped Inductive Test Circuit Fig 23b. Unclamped Inductive Waveforms Fig 24a. Switching Time Test Circuit Fig 24b. Switching Time Waveforms Id Vds Vgs VDD Vgs(th) Qgs1 Qgs2 Fig 25a. Gate Charge Test Circuit 8 www.irf.com © 2015 International Rectifier Qgd Qgodr Fig 25b. Gate Charge Waveform Submit Datasheet Feedback June 04, 2015 IRF60DM206 DirectFET® Board Footprint, ME Outline (Medium Size Can, E-Designation) Please see DirectFET® application note AN-1035 for all details regarding the assembly of DirectFET® This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D D G S S S S S D D Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback June 04, 2015 IRF60DM206 DirectFET® Outline Dimension, ME Outline (Medium Size Can, E-Designation) Please see DirectFET® application note AN-1035 for all details regarding the assembly of DirectFET®. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC IMPERIAL MAX MIN CODE MIN MAX 6.25 6.35 0.250 0.246 A 4.80 5.05 0.189 0.199 B 0.152 0.156 3.85 3.95 C 0.014 D 0.35 0.45 0.018 0.023 0.58 0.62 0.024 E 0.043 1.08 1.12 0.044 F 0.93 0.97 0.037 0.038 G H 1.28 1.32 0.050 0.052 0.015 J 0.38 0.42 0.017 J1 0.58 0.62 0.023 0.024 0.835 0.965 0.033 0.038 K 2.035 2.165 0.080 0.085 L 3.585 3.715 0.141 0.146 L1 M 0.59 0.70 0.023 0.028 N 0.02 0.08 0.0008 0.003 0.08 0.17 0.003 0.007 P Dimensions are shown in millimeters (inches) DirectFET® Part Marking LOGO GATE MARKING PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback June 04, 2015 IRF60DM206 DirectFET® Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts, ordered as IRF60DM206 REEL DIMENSIONS CODE A B C D E F G H METRIC MIN MAX 330.0 N.C 20.2 N.C 12.8 13.2 1.5 N.C 100.0 N.C N.C 18.4 12.4 14.4 11.9 15.4 IMPERIAL MIN MAX 12.992 N.C 0.795 N.C 0.504 0.520 0.059 N.C 3.937 N.C N.C 0.724 0.488 0.567 0.469 0.606 LOADED TAPE FEED DIRECTION NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MAX MIN MAX 0.311 0.319 7.90 8.10 0.154 0.161 3.90 4.10 0.469 0.484 11.90 12.30 0.215 0.219 5.45 5.55 0.201 0.209 5.10 5.30 0.256 0.264 6.50 6.70 0.059 N.C 1.50 N.C 0.059 0.063 1.50 1.60 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 11 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback June 04, 2015 IRF60DM206 Qualification Information† Industrial (per JEDEC JESD47F†† guidelines) Qualification Level Moisture Sensitivity Level DFET 1.5 †† (per JEDEC J-STD-020D††) Yes RoHS Compliant † MSL1 Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Applicable version of JEDEC standard at the time of product release. * Industrial qualification standards except autoclave test conditions. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 12 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback June 04, 2015