IRF60DM206

StrongIRFET™
IRF60DM206
DirectFET® N-Channel Power MOSFET 
Application
 Brushed motor drive applications
 BLDC motor drive applications
Battery powered circuits
 Half-bridge and full-bridge topologies
 Synchronous rectifier applications
 Resonant mode power supplies
 OR-ing and redundant power switches
 DC/DC and AC/DC converters
 DC/AC inverters
VDSS
60V
RDS(on) typ.
2.2m
max
2.9m
ID
130A
S
Benefits
 Improved gate, avalanche and dynamic dv/dt ruggedness
 Fully characterized capacitance and avalanche SOA
 Enhanced body diode dv/dt and di/dt capability
 Lead-free, RoHS compliant
Base part number
S
®
DirectFET ME
DirectFET®
ISOMETRIC
ME
Orderable Part Number
Form
Quantity
Tape and Reel
4800
IRF60DM206
140
ID = 80A
7
120
6
100
ID, Drain Current (A)
RDS(on), Drain-to -Source On Resistance (m )
S
D
G
8
5
T J = 125°C
4
3
T J = 25°C
2
80
60
40
20
0
1
4
6
8
10
12
14
16
18
20
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
1
S
Standard Pack
Package Type
IRF60DM206
S
D
www.irf.com
© 2015 International Rectifier
25
50
75
100
125
150
T C , Case Temperature (°C)
Fig 2. Maximum Drain Current vs. Case Temperature
Submit Datasheet Feedback
June 04, 2015
IRF60DM206
Absolute Maximum Ratings
Symbol
Parameter
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
IDM
PD @TC = 25°C Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
VGS
Operating Junction and
TJ
Storage Temperature Range
TSTG
Avalanche Characteristics
EAS (Thermally limited) Single Pulse Avalanche Energy 
EAS (Thermally limited) Single Pulse Avalanche Energy 
IAR
Avalanche Current 
EAR
Repetitive Avalanche Energy 
Thermal Resistance
Symbol
Parameter
Junction-to-Ambient 
RJA
Junction-to-Ambient 
RJA
Junction-to-Ambient 
RJA
Junction-to-Case 
RJC
Junction-to-PCB Mounted
RJ-PCB
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
Drain-to-Source Breakdown Voltage
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
IDSS
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Internal Gate Resistance
RG
Notes:
 Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
 Used double sided cooling , mounting pad with large heatsink.
 Surface mounted on 1 in. square Cu
board (still air).
2
www.irf.com
Units
A
W
W/°C
V
°C
81
154
mJ
See Fig 15, 15, 23a, 23b
A
mJ
Typ.
–––
12.5
20
–––
0.75
Max.
45
–––
–––
1.3
–––
Units
°C/W
Min. Typ. Max. Units
Conditions
60
––– –––
V
VGS = 0V, ID = 250µA
–––
38
––– mV/°C Reference to 25°C, ID = 1.0mA
––– 2.2
2.9
m VGS = 10V, ID = 80A 
––– 2.7 ––– m VGS = 6.0V, ID = 40A 
2.1
3.0 3.7
V
VDS = VGS, ID = 150µA
––– ––– 1.0
µA VDS = 60V, VGS = 0V
––– ––– 150
VDS = 60V, VGS = 0V, TJ = 125°C
––– ––– 100
nA VGS = 20V
––– ––– -100
VGS = -20V
––– 0.8 –––

 TC measured with thermocouple mounted to top (Drain) of part.
 Mounted to a PCB with small clip
heatsink (still air)
© 2015 International Rectifier
Max.
130
82
530
96
0.78
± 20
-55 to + 150
 Mounted on minimum footprint full size
board with metalized back and with
small clip heatsink (still air)
Submit Datasheet Feedback
June 04, 2015
IRF60DM206
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
Min. Typ. Max. Units
Conditions
gfs
Forward Transconductance
148 ––– –––
S VDS = 10V, ID = 80A
Qg
Total Gate Charge
––– 133 200
ID = 80A
Qgs
Gate-to-Source Charge
–––
33
–––
VDS =30V
nC
Qgd
Gate-to-Drain ("Miller") Charge
–––
40
–––
VGS = 10V 
Qsync
Total Gate Charge Sync. (Qg - Qgd)
–––
93
–––
td(on)
Turn-On Delay Time
–––
17
–––
VDD = 30V
tr
Rise Time
–––
32
–––
ID = 30A
ns
td(off)
Turn-Off Delay Time
–––
60
–––
RG = 2.7
tf
Fall Time
–––
30
–––
VGS = 10V 
Ciss
Input Capacitance
––– 6530 –––
VGS = 0V
Coss
Output Capacitance
––– 650 –––
VDS = 25V
Crss
Reverse Transfer Capacitance
––– 420 –––
pF ƒ = 1.0MHz
Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– 670 –––
VGS = 0V, VDS = 0V to 48V 
Coss eff. (TR) Effective Output Capacitance (Time Related)
––– 840 –––
VGS = 0V, VDS = 0V to 48V 
Diode Characteristics
Symbol
Parameter
IS
Continuous Source Current
(Body Diode)
ISM
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
VSD
Min. Typ. Max. Units
Conditions
––– –––
130
A MOSFET symbol
showing the
integral reverse
––– –––
530
p-n junction diode.
––– ––– 1.2
V TJ= 25°C,IS = 80A, VGS = 0V
dv/dt
Peak Diode Recovery 
–––
8.5
–––
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Reverse Recovery Current
–––
–––
–––
–––
–––
47.5
48
79
84
2.9
–––
–––
–––
–––
–––
D
G
S
V/ns TJ =150°C,IS =80A, VDS = 60V
ns
TJ = 25° C VR = 51V,
TJ = 125°C IF = 80A
nC TJ = 25°C di/dt = 100A/µs 
TJ = 125°C
A TJ = 25°C
Notes:
Repetitive rating; pulse width limited by max. junction
temperature.
 Limited by TJ max, starting TJ = 25°C, L = 25µH
RG = 50, IAS = 80A, VGS =10V.
 ISD ≤ 80A, di/dt ≤ 1410A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C.
Pulse width ≤ 400µs; duty cycle ≤ 2%.
Coss eff. (TR) is a fixed capacitance that gives the
same charging time as Coss while VDS is rising from 0
to 80% VDSS.
3
www.irf.com
© 2015 International Rectifier

Coss eff. (ER) is a fixed capacitance that gives the
same energy as Coss while VDS is rising from 0 to
80% VDSS.

When mounted on 1" square PCB (FR-4 or G-10
Material). For recommended footprint and soldering
techniques refer to application note #AN-994.
 R is measured at TJ approximately 90°C.
 Limited by TJ max, starting TJ = 25°C, L= 1mH, RG = 50,
IAS = 17.5A, VGS =10V.
Submit Datasheet Feedback
June 04, 2015
IRF60DM206
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
4.5V
10
 60µs PULSE WIDTH
BOTTOM
100
4.5V
 60µs PULSE WIDTH
Tj = 25°C
Tj = 150°C
10
1
0.1
1
10
0.1
100
1000
100
RDS(on) , Drain-to-Source On Resistance
(Normalized)
2.0
T J = 150°C
100
T J = 25°C
10
VDS = 25V
 60µs PULSE WIDTH
1
ID = 80A
VGS = 10V
1.5
1.0
0.5
3
4
5
6
7
-60 -40 -20 0
Fig 5. Typical Transfer Characteristics
100000
VGS, Gate-to-Source Voltage (V)
ID= 80A
Coss = Cds + Cgd
Ciss
Coss
Crss
1000
Fig 6. Normalized On-Resistance vs. Temperature
14
VGS = 0V,
f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = C gd
10000
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
10
Fig 4. Typical Output Characteristics
Fig 3. Typical Output Characteristics
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
12
VDS= 48V
VDS= 30V
10
VDS= 12V
8
6
4
2
0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
4
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
www.irf.com
© 2015 International Rectifier
0
20
40
60
80 100 120 140 160 180
QG, Total Gate Charge (nC)
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage
Submit Datasheet Feedback
June 04, 2015
IRF60DM206
100
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 150°C
T J = 25°C
10
1
100
10
1msec
10msec
1
DC
0.1
Tc = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0.01
0.1
0.1
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
1
10
100
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 10. Maximum Safe Operating Area
Fig 9. Typical Source-Drain Diode Forward Voltage
1.2
70
Id = 1.0mA
68
1.0
66
0.8
Energy (µJ)
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
100µsec
OPERATION IN
THIS AREA
LIMITED BY
RDS(on)
64
0.6
62
0.4
60
0.2
0.0
58
-60 -40 -20 0
-10
20 40 60 80 100 120 140 160
T J , Temperature ( °C )
10
20
30
40
50
60
VDS, Drain-to-Source Voltage (V)
Fig 11. Drain-to-Source Breakdown Voltage
RDS(on), Drain-to -Source On Resistance ( m )
0
Fig 12. Typical Coss Stored Energy
10
VGS = 5.5V
VGS = 6.0V
VGS = 7.0V
VGS = 8.0V
VGS = 10V
9
8
7
6
5
4
3
2
1
0
20 40 60 80 100 120 140 160 180 200
ID, Drain Current (A)
Fig 13. Typical On-Resistance vs. Drain Current
5
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
June 04, 2015
IRF60DM206
Thermal Response ( Z thJC ) °C/W
10
1
D = 0.50
0.20
0.10
0.05
0.1
0.02
0.01
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Avalanche Current (A)
1000
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 125°C and
Tstart =25°C (Single Pulse)
100
10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming j = 25°C and
Tstart = 125°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
tav (sec)
Fig 15. Avalanche Current vs. Pulse Width
EAR , Avalanche Energy (mJ)
100
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 80A
80
60
40
20
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy vs. Temperature
6
www.irf.com
© 2015 International Rectifier
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1.Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for every
part type.
2. Safe operation in Avalanche is allowed as long as Tjmax is not
exceeded.
3. Equation below based on circuit and waveforms shown in Figures
23a, 23b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage
increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed Tjmax
(assumed as 25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figure 14)
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC
Iav = 2T/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav Submit Datasheet Feedback
June 04, 2015
IRF60DM206
20
3.5
IF = 53A
V R = 51V
TJ = 25°C
15
TJ = 125°C
3.0
ID
ID
ID
ID
2.5
2.0
IRRM (A)
VGS(th) , Gate threshold Voltage (V)
4.0
= 150µA
= 250µA
= 1.0mA
= 1.0A
10
5
0
1.5
-75 -50 -25
0
25
50
0
75 100 125 150
200
600
800
1000
diF /dt (A/µs)
T J , Temperature ( °C )
Fig 17. Threshold Voltage vs. Temperature
Fig 18. Typical Recovery Current vs. dif/dt
300
20
IF = 80A
V R = 51V
IF = 53A
V R = 51V
TJ = 25°C
250
TJ = 25°C
TJ = 125°C
TJ = 125°C
QRR (nC)
15
IRRM (A)
400
10
5
200
150
100
50
0
0
200
400
600
800
0
1000
200
400
600
800
1000
diF /dt (A/µs)
diF /dt (A/µs)
Fig 20. Typical Stored Charge vs. dif/dt
Fig 19. Typical Recovery Current vs. dif/dt
300
IF = 80A
V R = 51V
QRR (nC)
250
TJ = 25°C
TJ = 125°C
200
150
100
50
0
200
400
600
800
1000
diF /dt (A/µs)
Fig 21. Typical Stored Charge vs. dif/dt
7
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
June 04, 2015
IRF60DM206
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
tp
15V
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
tp
A
I AS
0.01
Fig 23a. Unclamped Inductive Test Circuit
Fig 23b. Unclamped Inductive Waveforms
Fig 24a. Switching Time Test Circuit
Fig 24b. Switching Time Waveforms
Id
Vds
Vgs
VDD Vgs(th)
Qgs1 Qgs2
Fig 25a. Gate Charge Test Circuit
8
www.irf.com
© 2015 International Rectifier
Qgd
Qgodr
Fig 25b. Gate Charge Waveform
Submit Datasheet Feedback
June 04, 2015
IRF60DM206
DirectFET® Board Footprint, ME Outline
(Medium Size Can, E-Designation)
Please see DirectFET® application note AN-1035 for all details regarding the assembly of DirectFET®
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
D
G
S
S
S
S
S
D
D
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
9
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
June 04, 2015
IRF60DM206
DirectFET® Outline Dimension, ME Outline
(Medium Size Can, E-Designation)
Please see DirectFET® application note AN-1035 for all details regarding the assembly of DirectFET®. This includes
all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
IMPERIAL
MAX
MIN
CODE MIN MAX
6.25 6.35
0.250
0.246
A
4.80 5.05
0.189
0.199
B
0.152
0.156
3.85 3.95
C
0.014
D
0.35 0.45
0.018
0.023
0.58 0.62
0.024
E
0.043
1.08 1.12
0.044
F
0.93 0.97
0.037
0.038
G
H
1.28 1.32
0.050
0.052
0.015
J
0.38 0.42
0.017
J1
0.58 0.62
0.023
0.024
0.835 0.965 0.033
0.038
K
2.035 2.165 0.080
0.085
L
3.585 3.715 0.141
0.146
L1
M
0.59 0.70
0.023
0.028
N
0.02 0.08 0.0008 0.003
0.08 0.17
0.003
0.007
P
Dimensions are shown in
millimeters (inches)
DirectFET® Part Marking
LOGO
GATE MARKING
PART NUMBER
BATCH NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
June 04, 2015
IRF60DM206
DirectFET® Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts, ordered as IRF60DM206
REEL DIMENSIONS
CODE
A
B
C
D
E
F
G
H
METRIC
MIN
MAX
330.0
N.C
20.2
N.C
12.8
13.2
1.5
N.C
100.0
N.C
N.C
18.4
12.4
14.4
11.9
15.4
IMPERIAL
MIN
MAX
12.992
N.C
0.795
N.C
0.504
0.520
0.059
N.C
3.937
N.C
N.C
0.724
0.488
0.567
0.469
0.606
LOADED TAPE FEED DIRECTION
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MAX
MIN
MAX
0.311
0.319
7.90
8.10
0.154
0.161
3.90
4.10
0.469
0.484
11.90
12.30
0.215
0.219
5.45
5.55
0.201
0.209
5.10
5.30
0.256
0.264
6.50
6.70
0.059
N.C
1.50
N.C
0.059
0.063
1.50
1.60
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
11
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
June 04, 2015
IRF60DM206
Qualification Information† Industrial
(per JEDEC JESD47F†† guidelines)
Qualification Level Moisture Sensitivity Level
DFET 1.5
††
(per JEDEC J-STD-020D††)
Yes
RoHS Compliant
†
MSL1
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
Applicable version of JEDEC standard at the time of product release.
* Industrial qualification standards except autoclave test conditions.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
12
www.irf.com
© 2015 International Rectifier
Submit Datasheet Feedback
June 04, 2015