I n f i n e o n ® L I T I X TM B a s i c TLD1312EL 3 Channel High Side Current Source Data Sheet Rev. 1.1, 2015-03-19 Automotive TLD1312EL 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 4.1 4.2 4.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5.1 5.2 5.3 5.3.1 5.3.2 EN Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EN Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal Supply Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EN Unused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EN - Pull Up to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EN - Direct Connection to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 10 11 12 12 12 6 6.1 6.2 6.3 PWMI Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PWM Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal PWM Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Internal Supply / EN / PWMI Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 14 15 7 7.1 7.2 7.3 IN_SET Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Current Adjustment via RSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics IN_SET Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 18 18 20 8 8.1 8.1.1 8.1.2 8.2 Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Over Load Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse Battery Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 21 21 21 22 9 9.1 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 10 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 11 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Data Sheet 2 8 8 9 9 Rev. 1.1, 2015-03-19 3 Channel High Side Current Source LITIXTM Basic 1 TLD1312EL Overview Features • • • • • • • • • • • • • 3 Channel device with integrated output stages (current sources), optimized to drive LEDs Output current up to 120mA per channel Low current consumption in sleep mode PWM-operation supported via VS- and EN-pin Integrated PWM dimming engine to provide two LED brightness levels without external logic (e.g. µC) Output current adjustable via external low power resistor and possibility to connect PTC resistor for LED protection during over temperature conditions Reverse polarity protection Overload protection Undervoltage detection Wide temperature range: -40 °C < Tj < 150 °C PG-SSOP14 package with exposed heatslug Green Product (RoHS compliant) AEC Qualified PG-SSOP14 Description The LITIXTM Basic TLD1312EL is a three channel high side driver IC with integrated output stages. It is designed to control LEDs with a current up to 120 mA. In typical automotive applications the device is capable to drive i.e. 3 red LEDs per chain (total 9 LEDs) with a current up to 60mA, which is limited by thermal cooling aspects. The output current is controlled practically independent of load and supply voltage changes. Table 1 Product Summary VS(nom) 5.5 V… 40 V VS(max) 40 V VOUTx(max) IOUTx(nom) 60 mA when using a supply voltage range of 8V Operating voltage Maximum voltage Nominal output (load) current - 18V (e.g. Automotive car battery). Currents up to IOUT(max) possible in applications with low thermal resistance RthJA IOUTx(max) Maximum output (load) current 120 mA; depending on thermal resistance RthJA Type Package Marking TLD1312EL PG-SSOP14 TLD1312EL Data Sheet 3 Rev. 1.1, 2015-03-19 TLD1312EL Overview Table 1 Product Summary Output current accuracy at RSET = 12 kΩ Current consumption in sleep mode kLT IS(sleep,typ) 750 ± 7% 0.1 µA Protective functions - ESD protection - Under voltage lock out - Over Load protection - Over Temperature protection - Reverse Polarity protection Applications Designed for exterior LED lighting applications such as tail/brake light, turn indicator, position light, side marker,... The device is also well suited for interior LED lighting applications such as ambient lighting, interior illumination and dash board lighting. Data Sheet 4 Rev. 1.1, 2015-03-19 TLD1312EL Block Diagram 2 Block Diagram VS Internal supply EN Thermal protection Output control PWMI OUT3 OUT2 OUT1 IN_SET Current adjust TLD1312EL Figure 1 Data Sheet GND Basic Block Diagram 5 Rev. 1.1, 2015-03-19 TLD1312EL Pin Configuration 3 Pin Configuration 3.1 Pin Assignment Figure 2 Data Sheet VS 1 VS 2 EN 3 NC 4 PWMI 14 NC 13 OUT3 12 OUT2 11 OUT1 5 10 NC IN_SET 6 9 GND NC 7 8 NC TLD1312EL EP Pin Configuration 6 Rev. 1.1, 2015-03-19 TLD1312EL Pin Configuration 3.2 Pin Definitions and Functions Pin Symbol Input/ Output Function 1, 2 VS – Supply Voltage; battery supply, connect a decoupling capacitor (100 nF 1 µF) to GND 3 EN I Enable pin 4 NC – Pin not connected 5 PWMI I/O PWM Input 6 IN_SET I/O Input / SET pin; Connect a low power resistor to adjust the output current 7 NC – Pin not connected 8 NC – Pin not connected 9 GND – 1) 10 NC – Pin not connected 11 OUT1 O Output 1 12 OUT2 O Output 2 13 OUT3 O Output 3 14 NC – Pin not connected – 1) Exposed Pad GND Ground Exposed Pad; connect to GND in application 1) Connect all GND-pins together. Data Sheet 7 Rev. 1.1, 2015-03-19 TLD1312EL General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Absolute Maximum Ratings 1) Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Conditions Min. Max. VS VEN VEN(VS) VEN VOUTx VOUTx VPS -16 40 V – -16 40 V – VS - 40 VS + 16 V – -16 40 V – -1 40 V – -16 40 V – VPWMI VIN_SET -0.3 6 V – -0.3 6 V – IIN_SET IOUTx – 2 mA – – 130 mA – Tj Tstg -40 150 °C – -55 150 °C – Voltages 4.1.1 Supply voltage 4.1.2 Input voltage EN 4.1.3 Input voltage EN related to VS 4.1.4 Input voltage EN related to VOUTx VEN - VOUTx 4.1.5 4.1.6 Output voltage Power stage voltage VPS = VS - VOUTx 4.1.7 Input voltage PWMI 4.1.8 IN_SET voltage Currents 4.1.9 IN_SET current 4.1.10 Output current Temperatures 4.1.11 Junction temperature 4.1.12 Storage temperature ESD Susceptibility 4.1.13 ESD resistivity to GND VESD -2 2 kV Human Body Model (100 pF via 1.5 kΩ)2) 4.1.14 ESD resistivity all pins to GND -500 500 V CDM3) 4.1.15 ESD resistivity corner pins to GND VESD VESD -750 750 V CDM3) 1) Not subject to production test, specified by design 2) ESD susceptibility, Human Body Model “HBM” according to ANSI/ESDA/JEDEC JS-001-2011 3) ESD susceptibility, Charged Device Model “CDM” according to JESD22-C101E Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet 8 Rev. 1.1, 2015-03-19 TLD1312EL General Product Characteristics 4.2 Pos. Functional Range Parameter Symbol Limit Values Min. Max. Unit Conditions 4.2.16 Supply voltage range for normal operation VS(nom) 5.5 40 V – 4.2.17 Power on reset threshold VS(POR) – 5 V VEN = VS RSET = 12 kΩ IOUTx = 80% IOUTx(nom) VOUTx = 2.5 V 4.2.18 Junction temperature Tj -40 150 °C – Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 4.3 Pos. Thermal Resistance Parameter 4.3.1 Junction to Case 4.3.2 Junction to Ambient 1s0p board Symbol RthJC RthJA1 Limit Values Min. Typ. Max. – 8 10 – – 4.3.3 Junction to Ambient 2s2p board 61 56 Unit Conditions K/W 1) 2) K/W 1) 3) Ta = 85 °C Ta = 135 °C – – RthJA2 K/W – – 45 43 – – 1) 4) Ta = 85 °C Ta = 135 °C 1) Not subject to production test, specified by design. Based on simulation results. 2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed Pad are fixed to ambient temperature). Ta = 85°C, Total power dissipation 1.5 W. 3) The RthJA values are according to Jedec JESD51-3 at natural convection on 1s0p FR4 board. The product (chip + package) was simulated on a 76.2 x 114.3 x 1.5 mm3 board with 70µm Cu, 300 mm2 cooling area. Total power dissipation 1.5 W distributed statically and homogenously over all power stages. 4) The RthJA values are according to Jedec JESD51-5,-7 at natural convection on 2s2p FR4 board. The product (chip + package) was simulated on a 76.2 x 114.3 x 1.5 mm3 board with 2 inner copper layers (outside 2 x 70 µm Cu, inner 2 x 35µm Cu). Where applicable, a thermal via array under the exposed pad contacted the first inner copper layer. Total power dissipation 1.5 W distributed statically and homogenously over all power stages. Data Sheet 9 Rev. 1.1, 2015-03-19 TLD1312EL EN Pin 5 EN Pin The EN pin is a dual function pin: Internal Supply Output Control EN V EN Figure 3 Block Diagram EN pin Note: The current consumption at the EN-pin IEN needs to be added to the total device current consumption. The total current consumption is the sum of the currents at the VS-pin IS and the EN-pin IEN. 5.1 EN Function If the voltage at the pin EN is below a threshold of VEN(off) the LITIXTM Basic IC will enter Sleep mode. In this state all internal functions are switched off, the current consumption is reduced to IS(sleep). A voltage above VEN(on) at this pin enables the device after the Power on reset time tPOR. VS V EN IOU T t t tPOR 100% 80% t Figure 4 Data Sheet Power on reset 10 Rev. 1.1, 2015-03-19 TLD1312EL EN Pin 5.2 Internal Supply Pin The EN pin can be used to supply the internal logic. There are two typical application conditions, where this feature can be used: 1) In “DC/DC control Buck” configurations, where the voltage Vs can be below 5.5V. 2) In configurations, where a PWM signal is applied at the Vbatt pin of a light module. The buffer capacitor CBUF is used to supply the LITIXTM Basic IC during Vbatt low (Vs low) periods. This feature can be used to minimize the turn-on time to the values specified in Pos. 8.2.13. Otherwise, the power-on reset delay time tPOR (Pos. 6.3.5) has to be considered. The capacitor can be calculated using the following formula: I EN ( LS ) C BUF = tLOW ( max ) ⋅ -------------------------------------------------V S – V D1 – V S ( POR ) (1) See also a typical application drawing in Chapter 9. VBATT VS D1 EN CBUF Internal supply Thermal protection Output control OUT3 OUT2 OUT1 IN_SET RSET Current adjust TM LITIX Basic LEDBasic Driver GND GND Figure 5 Data Sheet External circuit when applying a fast PWM signal on VBATT 11 Rev. 1.1, 2015-03-19 TLD1312EL EN Pin V EN t V BATT IOU T t tON (VS) 100% 80% Switch off behavior depends on V BATT and load characteristics 20% t Figure 6 Typical waveforms when applying a fast PWM signal on VBATT The parameter tON(VS) is defined at Pos. 8.2.13. The parameter tOFF(VS) depends on the load and supply voltage VBATT characteristics. 5.3 EN Unused In case of an unused EN pin, there are two different ways to connect it: 5.3.1 EN - Pull Up to VS The EN pin can be connected with a pull up resistor (e.g. 10 kΩ) to Vs potential. In this configuration the LITIXTM Basic IC is always enabled. 5.3.2 EN - Direct Connection to VS The EN pin can be connected directly to the VS pin (IC always enabled). This configuration has the advantage (compared to the configuration described in Chapter 5.3.1) that no additional external component is required. Data Sheet 12 Rev. 1.1, 2015-03-19 TLD1312EL PWMI Pin 6 PWMI Pin The PWMI pin is designed as a dual function pin. IPWMI(L) Output Control PWMI VPWMI Figure 7 Block Diagram PWMI pin The pin can be used for PWM-dimming via a push-pull stage of a micro controller, which is connecting the PWMIpin to a low or high potential. Note: The micro controller’s push-pull stage has to able to sink currents according to Pos. 6.3.15 to activate the device. Furthermore, the device offers also an internal PWM unit by connecting an external-RC network according to Figure 10. 6.1 PWM Dimming A PWM signal can be applied at the PWMI pin for LED brightness regulation of all 3 output stages. The dimming frequency can be adjusted in a very wide range (e.g. 400 Hz). The PWMI pin is low active. Turn on/off thresholds VPWMI(L) and VPWMI(H) are specified in parameters Pos. 6.3.12 and Pos. 6.3.13. V PWMI IOU T tON (PWMI ) tOFF(PWMI ) t 100% 80% 20% t Figure 8 Data Sheet Turn on and Turn off time for PWMI pin usage 13 Rev. 1.1, 2015-03-19 TLD1312EL PWMI Pin 6.2 Internal PWM Unit Connecting a resistor and a capacitor in parallel on the PWMI pin enables the internal pulse width modulation unit. The following figure shows the charging and discharging defined by the RC-network according to Figure 10 and the internal PWM unit. VPWMI Outputs OFF VPWMI(H) Internal PWM VPWMI(L) Outputs ON t OUTON Figure 9 OUT - OFF OUTON OUT - OFF OUTON OUT - OFF OUTON OUT - OFF PWMI operating voltages The PWM Duty cycle (DC) and the PWM frequency can be adjusted using the formulas below. Please use only typical values of VPWMI(L), VPWMI(H) and IPWMI(on) for the calculation of tPWMI(on) and tPWMI(off) (as described in Pos. 6.3.12 to Pos. 6.3.15). ⎛ V PWMI ( H ) – I PWMI ( on ) ⋅ R PWMI⎞ -⎟ t PWMI ( on ) = –R PWMI ⋅ C PWMI ⋅ LN ⎜ ------------------------------------------------------------------------------⎝ V PWMI ( L ) – I PWMI ( on ) ⋅ R PWMI ⎠ (2) ⎛ V PWMI ( H )⎞ -⎟ t PWMI ( off ) = R PWMI ⋅ C PWMI ⋅ LN ⎜ ------------------------⎝ V PWMI ( L ) ⎠ (3) 1 f PWMI = --------------------------------------------------------t PWMI ( on ) + tPWMI ( off ) (4) DC = tPWMI ( on ) ⋅ f PWMI (5) Out of this equations the required CPWMI and RPWMI can be calculated: t t ⎞ PWMI ( off ) PWMI ( on ) ------------------------ ⎛ V PWMI ( L ) – I PWMI ( on ) ⋅ t PWMI ( off ) ⋅ ⎜ --------------------------⎟ ⎝ V PWMI ( H )⎠ –1 C PWMI = ------------------------------------------------------------------------------------------------------------------------------------------------------------------tPWMI ( on ) -----------------------⎛ V PWMI ( L ) ⎞ ⎛ V PWMI ( L ) ⎞ t PWMI ( off ) LN ⎜ --------------------------⎟ ⋅ V PWMI ( L ) ⋅ ⎜ --------------------------⎟ – V PWMI ( H ) ⎝ V PWMI ( H )⎠ ⎝ V PWMI ( H )⎠ t PWMI ( off ) RPWMI = --------------------------------------------------------------⎛ V PWMI ( H )⎞ -⎟ C PWMI ⋅ LN ⎜ ------------------------⎝ V PWMI ( L ) ⎠ Data Sheet (6) (7) 14 Rev. 1.1, 2015-03-19 TLD1312EL PWMI Pin See Figure 10 for a typical external circuitry. Note: In case of junction temperatures above Tj(CRT) (Pos. 8.2.14) the device provides a temperature dependent current reduction feature as descirbed in Chapter 8.1.1. In case of output current reduction IIN_SET is reduced as well, which leads to increased turn on-times tPWMI(on), because the CPWMI is charged slower. The turn offtime tPWMI(off) remains the same. VBATT VS 10kΩ Internal supply EN Output control Thermal protection OUT3 PWMI OUT2 OUT1 IN_SET RPWMI CPWMI RSET Current adjust CPWMI Basic LED Driver GND GND Figure 10 Typical circuit using internal PWM unit 6.3 Electrical Characteristics Internal Supply / EN / PWMI Pin Electrical Characteristics Internal Supply / EN / PWMI pin Unless otherwise specified: VS = 5.5 V to 40 V, Tj = -40 °C to +150 °C, RSET = 12 kΩ all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol 6.3.1 Current consumption, sleep mode IS(sleep) 6.3.2 Current consumption, active mode IS(on) Limit Values Min. Typ. Max. – 0.1 2 Unit Conditions µA 1) mA – – – – – – 1.4 0.75 1.5 VEN = 0.5 V Tj < 85 °C VS = 18 V VOUTx = 3.6 V 2) VPWMI= 0.5 V IIN_SET = 0 µA Tj < 105 °C VS = 18 V VOUTx = 3.6V VEN = 5.5 V VEN = 18 V 1) REN = 10 kΩ between VS and EN-pin Data Sheet 15 Rev. 1.1, 2015-03-19 TLD1312EL PWMI Pin Electrical Characteristics Internal Supply / EN / PWMI pin (cont’d) Unless otherwise specified: VS = 5.5 V to 40 V, Tj = -40 °C to +150 °C, RSET = 12 kΩ all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol 6.3.3 Current consumption, IS(dis,IN_SET) device disabled via IN_SET Limit Values Min. – – – 6.3.4 Current consumption, device disabled via PWMI Typ. – – – Unit Conditions mA 2) Max. Tj < 105 °C VIN_SET = 5 V VEN = 5.5 V VEN = 18 V 1) REN = 10 kΩ between 1.4 0.7 1.4 IS(dis,PWMI) mA – – – – – – 1.6 0.75 1.6 VS and EN-pin 2) VS = 18 V Tj < 105 °C VPWMI= 3.4 V VEN = 5.5 V VEN = 18 V 1) REN = 10 kΩ between VS and EN-pin VS = VEN = 0 → 13.5 V VOUTx(nom) = 3.6 ± 0.3V IOUTx = 80% IOUTx(nom) VEN = 5.5 V VOUTx = 3 V IOUTx = 50% IOUTx(nom) VEN = 5.5 V VOUTx = 3.6 V IOUTx ≥ 90% IOUTx(nom) 6.3.5 Power-on reset delay time 3) tPOR – – 25 µs 6.3.6 Required supply voltage for VS(on) output activation – – 4 V 6.3.7 Required supply voltage for VS(CC) current control – – 5.2 V 6.3.8 VEN(on) EN turn off threshold VEN(off) EN input current during low IEN(LS) – – 2.5 V – 0.8 – – V – – – 1.8 mA 1) 6.3.9 6.3.10 EN turn on threshold supply voltage 6.3.11 EN high input current IEN(H) mA – – – – – – – – VS = 18 V 0.1 0.1 1.65 0.45 1) VS = 4.5 V Tj < 105 °C VEN = 5.5 V Tj < 105 °C VS = 13.5 V, VEN = 5.5 V VS = 18 V, VEN = 5.5 V VS = VEN = 18 V 1) VS = 18 V, REN = 10 kΩ between VS and EN-pin 6.3.12 PWMI (active low) Switching low threshold (outputs on) VPWMI(L) 1.5 1.85 2.3 V 1)4) 6.3.13 PWMI(active low) Switching high threshold (outputs off) VPWMI(H) 2.45 2.85 3.2 V 1)4)5) Data Sheet 16 VS = 8...18 V VS = 8...18 V Rev. 1.1, 2015-03-19 TLD1312EL PWMI Pin Electrical Characteristics Internal Supply / EN / PWMI pin (cont’d) Unless otherwise specified: VS = 5.5 V to 40 V, Tj = -40 °C to +150 °C, RSET = 12 kΩ all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter 6.3.14 PWMI ΔVPWMI Switching threshold difference VPWMI(H) - VPWMI(L) 6.3.15 PWMI (active low) Low input current with active channels (voltage <VPWMI(L)) IPWMI(on) PWMI(active low) High input current IPWMI(off) 6.3.16 1) 2) 3) 4) 5) Symbol Limit Values Min. Typ. Max. 0.75 1 1.10 IIN_SET IIN_SET *4 IIN_SET *3.1 -5 Unit Conditions V 1)4)5) µA 1) *4.9 – 5 µA VS = 8...18 V Tj = 25...115 °C IIN_SET = 100 µA VPWMI= 1.7 V VEN = 5.5 V VS = 8...18 V VPWMI= 5 V VEN = 5.5 V VS = 8...18 V Not subject to production test, specified by design The total device current consumption is the sum of the currents IS and IEN(H), please refer to Pos. 6.3.11 See also Figure 4 Parameter valid if an external PWM signal is applied If TTL level compatibility is required, use µC open drain output with pull up resistor Data Sheet 17 Rev. 1.1, 2015-03-19 TLD1312EL IN_SET Pin 7 IN_SET Pin The IN_SET pin is a multiple function pin for output current definition and input: IN_SET IIN_SET VIN_SET GND Figure 11 Block Diagram IN_SET pin 7.1 Output Current Adjustment via RSET The output current for all three channels can only be adjusted simultaneously. The current adjustment can be done by placing a low power resistor (RSET) at the IN_SET pin to ground. The dimensioning of the resistor can be done using the formula below: kR SET = ---------I OUT (8) The gain factor k (RSET * output current) is specified in Pos. 8.2.4 and Pos. 8.2.5. The current through the RSET is defined by the resistor itself and the reference voltage VIN_SET(ref), which is applied to the IN_SET during supplied device. 7.2 Input Pin The IN_SET pin can be connected via RSET to the open-drain output of a µC or to an external NMOS transistor as described in Figure 12. This signal can be used to turn off the output stages of the IC. A minimum IN_SET current of IIN_SET(act) is required to turn on the output stages. This feature is implemented to prevent glimming of LEDs caused by leakage currents on the IN_SET pin, see Figure 14 for details. Microcontroller (e.g. XC866) OUT RSET IN_SET Current adjust TM LITIX Basic LEDBasic Driver GND VDDP = 5 V Figure 12 Schematics IN_SET interface to µC The resulting switching times are shown in Figure 13: Data Sheet 18 Rev. 1.1, 2015-03-19 TLD1312EL IN_SET Pin IIN_ SET tON (IN_ SET ) IOU T t tOFF(IN _ SET) 100% 80% 20% t Figure 13 Switching times via IN_SET IOUT [mA] k = IOUTx * VIN_SET(ref) / IIN_SETx IOUTx IIN_SET(ACT) Figure 14 Data Sheet IIN_SETx IIN_SET [µA] IOUT versus IINSET 19 Rev. 1.1, 2015-03-19 TLD1312EL IN_SET Pin 7.3 Electrical Characteristics IN_SET Pin Electrical Characteristics IN_SET pin Unless otherwise specified: VS = 5.5 V to 40 V, Tj = -40 °C to +150 °C, RSET = 12 kΩ, all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol VIN_SET(ref) 7.3.1 IN_SET reference voltage 7.3.2 IN_SET activation IIN_SET(act) current without turn on of output stages Limit Values Unit Conditions Min. Typ. Max. 1.19 1.23 1.27 V 1) 2 – 15 µA See Figure 14 VOUTx = 3.6 V Tj = 25...115 °C 1) Not subject to production test, specified by design Data Sheet 20 Rev. 1.1, 2015-03-19 TLD1312EL Power Stage 8 Power Stage The output stages are realized as high side current sources with a current of 120 mA. During off state the leakage current at the output stage is minimized in order to prevent a slightly glowing LED. The maximum current of each channel is limited by the power dissipation and used PCB cooling areas (which results in the applications RthJA). For an operating current control loop the supply and output voltages according to the following parameters have to be considered: • • • Required supply voltage for current control VS(CC), Pos. 6.3.7 Voltage drop over output stage during current control VPS(CC), Pos. 8.2.6 Required output voltage for current control VOUTx(CC), Pos. 8.2.7 8.1 Protection The device provides embedded protective functions, which are designed to prevent IC destruction under fault conditions described in this data sheet. Fault conditions are considered as “outside” normal operating range. Protective functions are neither designed for continuous nor for repetitive operation. 8.1.1 Over Load Behavior An over load detection circuit is integrated in the LITIXTM Basic IC. It is realized by a temperature monitoring of the output stages (OUTx). As soon as the junction temperature exceeds the current reduction temperature threshold Tj(CRT) the output current will be reduced by the device by reducing the IN_SET reference voltage VIN_SET(ref). This feature avoids LED’s flickering during static output overload conditions. Furthermore, it protects LEDs against over temperature, which are mounted thermally close to the device. If the device temperature still increases, the three output currents decrease close to 0 A. As soon as the device cools down the output currents rise again. IOU T V IN_ SET Tj (C R T) Figure 15 Tj Output current reduction at high temperature Note: This high temperature output current reduction is realized by reducing the IN_SET reference voltage voltage (Pos. 7.3.1). In case of very high power loss applied to the device and very high junction temperature the output current may drop down to IOUTx = 0 mA, after a slight cooling down the current increases again. 8.1.2 Reverse Battery Protection The TLD1312EL has an integrated reverse battery protection feature. This feature protects the driver IC itself, but also connected LEDs. The output reverse current is limited to IOUTx(rev) by the reverse battery protection. Data Sheet 21 Rev. 1.1, 2015-03-19 TLD1312EL Power Stage Note: Due to the reverse battery protection a reverse protection diode for the light module may be obsolete. In case of high ISO-pulse requirements and only minor protecting components like capacitors a reverse protection diode may be reasonable. The external protection circuit needs to be verified in the application. 8.2 Electrical Characteristics Power Stage Electrical Characteristics Power Stage Unless otherwise specified: VS = 5.5 V to 18 V, Tj = -40 °C to +150 °C, VOUTx = 3.6 V, all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. 8.2.1 Output leakage current Typ. Unit Conditions µA VEN = 5.5 V IIN_SET = 0 µA VOUTx = 2.5 V Tj = 150 °C 1) Tj = 85 °C 1) VEN = 5.5 V IIN_SET = 0 µA VOUTx = VS = 40 V 1) VS = -16 V Max. IOUTx(leak) – – – – 7 3 8.2.2 Output leakage current in boost over battery setup – IOUTx(leak,B2B) – 50 µA 8.2.3 Reverse output current -IOUTx(rev) – 1 µA – Output load: LED with break down voltage < - 0.6 V 8.2.4 8.2.5 Output current accuracy limited temperature range Output current accuracy over temperature 1) kLT 697 645 750 750 803 855 697 645 750 750 803 855 kALL 8.2.6 Voltage drop over power VPS(CC) stage during current control VPS(CC) = VS - VOUTx 0.75 – – V 8.2.7 Required output voltage for VOUTx(CC) current control 2.3 – – V 8.2.8 Maximum output current 120 – – mA IOUT(max) Tj = 25...115 °C VS = 8...18 V VPS = 2 V RSET = 6...12 kΩ RSET = 30 kΩ 1) Tj = -40...115 °C VS = 8...18 V VPS = 2 V RSET = 6...12 kΩ RSET = 30 kΩ 1) VS = 13.5 V RSET = 12 kΩ IOUTx ≥ 90% of (kLT(typ)/RSET) 1) VS = 13.5 V RSET = 12 kΩ IOUTx ≥ 90% of (kLT(typ)/RSET) RSET = 4.7 kΩ The maximum output current is limited by the thermal conditions. Please refer to Pos. 4.3.1 - Pos. 4.3.3 Data Sheet 22 Rev. 1.1, 2015-03-19 TLD1312EL Power Stage Electrical Characteristics Power Stage (cont’d) Unless otherwise specified: VS = 5.5 V to 18 V, Tj = -40 °C to +150 °C, VOUTx = 3.6 V, all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol 8.2.9 PWMI turn on time tON(PWMI) Limit Values Min. Typ. Max. – – 15 Unit Conditions µs 2) VS = 13.5 V RSET = 12 kΩ PWMI → L 8.2.10 PWMI turn off time tOFF(PWMI) – – 10 µs IOUTx = 80% of (kLT(typ)/RSET) 2) VS = 13.5 V RSET = 12 kΩ PWMI → H 8.2.11 IN_SET turn on time tON(IN_SET) – – 15 µs 8.2.12 IN_SET turn off time tOFF(IN_SET) – – 10 µs 8.2.13 VS turn on time tON(VS) – – 20 µs 8.2.14 Current reduction temperature threshold Tj(CRT) – 140 – °C 8.2.15 Output current during current reduction at high temperature IOUT(CRT) 85% of – (kLT(typ)/ RSET) – A IOUTx = 20% of (kLT(typ)/RSET) VS = 13.5 V IIN_SET = 0 → 100 µA IOUTx = 80% of (kLT(typ)/RSET) VS = 13.5 V IIN_SET = 100 → 0 µA IOUTx = 20% of (kLT(typ)/RSET) 1) 3) VEN = 5.5 V RSET = 12 kΩ VS = 0 → 13.5 V IOUTx = 80% of (kLT(typ)/RSET) 1) IOUTx = 95% of (kLT(typ)/RSET) 1) RSET = 12 kΩ Tj = 150 °C 1) Not subject to production test, specified by design 2) see also Figure 8 3) see also Figure 6 Data Sheet 23 Rev. 1.1, 2015-03-19 TLD1312EL Application Information 9 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. Vbat BCM PROFET VBB channel 1 load current sense internal power supply logic multi step load current limitation open load detection IN1 IS1 clamp for inductive load gate control & charge pump ESD protection OUT1 temperature sensor SEN channel 2 control and protection circuit equivalent to channel 1 IN2 IS2 OUT2 R GND GND TAIL Rear Light assembly Cmod =2.2µF CVS =4.7nF CVS=4.7nF ISO -Pulse protection circuit depending on requirements Internal supply EN Thermal protection Output control PWMI 4.7nF** BRAKE 4.7nF** VS 10kΩ CVS =4.7nF VS 10kΩ 4.7nF** Internal supply EN Thermal protection OUT3 PWMI OUT2 RPWMI CPWMI RSET GND Figure 16 GND 4.7nF** 4.7nF** 4.7nF** Thermal protection OUT3 PWMI OUT2 RSET GND 4.7nF** 4.7nF** 4.7nF** OUT3 OUT1 IN_SET Current adjust Basic LITIXTMLED Basic Driver Output control OUT2 OUT1 IN_SET Current adjust Basic LITIXTMLED Basic Driver Internal supply EN Output control OUT1 IN_SET VS 10kΩ RSET Current adjust Basic LITIXTMLED Basic Driver GND ** For EMI improvement, if required. System Diagram internal PWM generation Note: This is a very simplified example of an application circuit. In case of high ISO-pulse requirements a reverse protection diode may be used for LED protection. The function must be verified in the real application. 9.1 • Further Application Information For further information you may contact http://www.infineon.com/ Data Sheet 24 Rev. 1.1, 2015-03-19 TLD1312EL Package Outlines 10 Package Outlines 0.19 +0.06 0.08 C 0.15 M C A-B D 14x 0.64 ±0.25 1 8 1 7 0.2 M D 8x Bottom View 3 ±0.2 A 14 6 ±0.2 D Exposed Diepad B 0.1 C A-B 2x 14 7 8 2.65 ±0.2 0.25 ±0.05 2) 0.1 C D 8˚ MAX. C 0.65 3.9 ±0.11) 1.7 MAX. Stand Off (1.45) 0 ... 0.1 0.35 x 45˚ 4.9 ±0.11) Index Marking 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Does not include dambar protrusion Dimensions in mm PG-SSOP-14-1,-2,-3-PO V02 Figure 17 PG-SSOP14 Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). For further information on alternative packages, please visit our website: http://www.infineon.com/packages. Data Sheet 25 Rev. 1.1, 2015-03-19 TLD1312EL Revision History 11 Revision History Revision Date Changes 1.0 2013-08-08 Inital revision of data sheet 1.1 2015-03-19 Updated parameters KLT and KALL in the chapter Power Stage. Data Sheet 26 Rev. 1.1, 2015-03-19 Edition 2015-03-19 Published by Infineon Technologies AG 81726 Munich, Germany © 2015 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.