SiI9573 and SiI9575 Port Processor Data Sheet SiI-DS-1089-F March 2016 SiI9573 and SiI9575 Port Processor Data Sheet Contents 1. General Description ...................................................................................................................................................... 7 1.1. HDMI Inputs and Outputs ..................................................................................................................................... 7 1.2. Performance Improvement Features .................................................................................................................... 8 1.3. Audio Inputs and Outputs ..................................................................................................................................... 8 1.4. Control Capability ................................................................................................................................................. 8 1.5. Packaging .............................................................................................................................................................. 8 2. Functional Description .................................................................................................................................................. 9 2.1. Always-on Section ................................................................................................................................................. 9 2.1.1. Serial Ports Block ......................................................................................................................................... 10 2.1.2. Static RAM Block ......................................................................................................................................... 10 2.1.3. NVRAM Block .............................................................................................................................................. 10 2.1.4. HDCP Registers Block .................................................................................................................................. 10 2.1.5. OTP ROM Block ........................................................................................................................................... 10 2.1.6. Booting Sequencer ...................................................................................................................................... 10 2.1.7. Configuration, Status, and Interrupt Control Block ..................................................................................... 11 2.1.8. Mobile HD Control Block ............................................................................................................................. 11 2.1.9. CEC Interface Controller .............................................................................................................................. 11 2.1.10. Power Block................................................................................................................................................. 11 2.2. Power-down Section ........................................................................................................................................... 11 2.2.1. TMDS Receiver Blocks ................................................................................................................................. 11 2.2.2. 6:1 Input Multiplexer Blocks A and B and 4:1 Input Multiplexer Blocks C and D ........................................ 11 2.2.3. HDMI, MHL, and InstaPort Receiver Blocks ................................................................................................ 12 2.2.4. Video/Audio Splitter Block .......................................................................................................................... 12 2.2.5. InstaPrevue Block ........................................................................................................................................ 12 2.2.6. Stream Mixer Block ..................................................................................................................................... 12 2.2.7. 2:1 Input Multiplexer Blocks E and F and Main and Subaudio Formatting Blocks ...................................... 12 2.2.8. Parallel Video Input Block ........................................................................................................................... 12 2.2.9. Video Pattern Generator Block ................................................................................................................... 13 2.2.10. Audio Sampling Rate Converter Block ......................................................................................................... 13 2.2.11. On-screen Display Controller ...................................................................................................................... 14 2.2.12. Audio Input Block ........................................................................................................................................ 14 2.2.13. Audio Output Block ..................................................................................................................................... 15 2.2.14. Audio Return Channel (ARC) Input and Output .......................................................................................... 15 2.2.15. TMDS Transmitter Block .............................................................................................................................. 16 3. Electrical Specifications............................................................................................................................................... 17 3.1. Absolute Maximum Conditions ........................................................................................................................... 17 3.2. Normal Operating Conditions ............................................................................................................................. 18 3.3. DC Specifications ................................................................................................................................................. 19 3.4. AC Specifications ................................................................................................................................................. 21 3.4.1. Control Signal Timing Specifications ........................................................................................................... 23 3.4.2. Audio Input Timing ..................................................................................................................................... 24 3.4.3. Audio Output Timing .................................................................................................................................. 24 3.5. Serial Flash SPI Interface AC Specifications ......................................................................................................... 25 4. Timing Diagrams ......................................................................................................................................................... 26 4.1. Video Input Timing Diagrams ............................................................................................................................. 26 4.2. Reset Timing Diagrams ....................................................................................................................................... 27 2 4.3. I C Timing Diagrams ............................................................................................................................................ 28 4.4. Digital Audio Input Timing .................................................................................................................................. 28 4.5. Digital Audio Output Timing ............................................................................................................................... 29 5. Pin Diagram and Pin Descriptions ............................................................................................................................... 31 5.1. Pin Diagram ......................................................................................................................................................... 31 © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 2 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet 5.2. Pin Descriptions .................................................................................................................................................. 32 5.2.1. HDMI Receiver and MHL Port Pins .............................................................................................................. 32 5.2.2. HDMI Receiver and MHL Port Pins (continued) .......................................................................................... 33 5.2.3. HDMI Transmitter Port Pins ........................................................................................................................ 33 5.2.4. Audio Return Channel Pins ......................................................................................................................... 33 5.2.5. Audio Pins ................................................................................................................................................... 34 5.2.6. Crystal Pins .................................................................................................................................................. 34 5.2.7. SPI Interface Pins ........................................................................................................................................ 35 5.2.8. Parallel Video Bus ....................................................................................................................................... 35 2 5.2.9. DDC I C Pins ................................................................................................................................................ 36 5.2.10. Control Pins ................................................................................................................................................. 37 5.2.11. System Switching Pins ................................................................................................................................. 37 5.2.12. Configuration Pins ....................................................................................................................................... 38 5.2.13. CEC Pins....................................................................................................................................................... 38 5.2.14. Power and Ground Pins .............................................................................................................................. 39 5.2.15. Reserved Pin ............................................................................................................................................... 39 6. Feature Information .................................................................................................................................................... 40 6.1. Standby and HDMI Port Power Supplies ............................................................................................................. 40 6.2. InstaPort.............................................................................................................................................................. 41 6.3. InstaPrevue ......................................................................................................................................................... 41 6.4. Support for UltraHD resolution at 50P/60P frames per second .......................................................................... 42 6.5. ViaPort Matrix Switch ......................................................................................................................................... 42 6.6. MHL Receiver ...................................................................................................................................................... 42 6.7. 3D Video Formats on Main Display .................................................................................................................... 43 6.8. VS Insertion ......................................................................................................................................................... 43 6.9. 3D L/R and Active Space Indicators Output on GPIO Pins................................................................................... 44 6.10. Parallel Video Input Data Bus Mapping .......................................................................................................... 45 6.10.1. Common Video Input Formats ................................................................................................................... 45 6.10.2. RGB and YCbCr 4:4:4 Formats Dual Clock Edge .......................................................................................... 46 6.10.3. YC 4:2:2 Separate Sync Formats .................................................................................................................. 48 6.10.4. YC 4:2:2 Embedded Syncs Formats ............................................................................................................. 49 6.10.5. YC Mux 4:2:2 Separate Sync Formats Single Clock Edge ............................................................................. 52 6.10.6. YC Mux 4:2:2 Embedded Sync Formats Single Clock Edge .......................................................................... 56 6.10.7. YC Mux 4:2:2 Separate Sync Formats Dual Clock Edge ............................................................................... 59 6.10.8. YC Mux 4:2:2 Embedded Sync Formats Dual Clock Edge ............................................................................ 64 7. Design Recommendations .......................................................................................................................................... 69 7.1. Power Supply Decoupling ................................................................................................................................... 69 7.2. Power Supply Control Timing and Sequencing ................................................................................................... 69 8. Package Information ................................................................................................................................................... 70 8.1. ePad Requirements ............................................................................................................................................. 70 8.2. Package Dimensions ........................................................................................................................................... 71 8.3. Marking Specification ......................................................................................................................................... 72 8.4. Ordering Information .......................................................................................................................................... 72 References .......................................................................................................................................................................... 73 Standards Documents ..................................................................................................................................................... 73 Standards Groups ........................................................................................................................................................... 73 Lattice Semiconductor Documents ................................................................................................................................. 73 Technical Support ........................................................................................................................................................... 73 Revision History .................................................................................................................................................................. 74 © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 3 SiI9573 and SiI9575 Port Processor Data Sheet Figures Figure 1.1. Port Processor Application ............................................................................................................................ 7 Figure 2.1. Functional Block Diagram ............................................................................................................................. 9 2 Figure 2.2. I C Control Configuration ............................................................................................................................ 10 Figure 3.1. Test Point SBVCC5TP for SBVCC5 Measurement ......................................................................................... 18 Figure 3.2. Audio Crystal Schematic ............................................................................................................................. 23 Figure 4.1. IDCK Clock Duty Cycle ................................................................................................................................. 26 Figure 4.2. Control and Data Single-Edge Setup and Hold Times—EDGE = 1 ............................................................... 26 Figure 4.3. Control and Data Single-Edge Setup and Hold Times—EDGE = 0 ............................................................... 26 Figure 4.4. Control and Data Dual-Edge Setup and Hold Times ....................................................................................27 Figure 4.5. Conditions for Use of RESET# .......................................................................................................................27 Figure 4.6. RESET# Minimum Timing .............................................................................................................................27 2 Figure 4.7. I C Data Valid Delay (Driving Read Cycle Data) ........................................................................................... 28 2 Figure 4.8. I C Data Setup Time .................................................................................................................................... 28 2 Figure 4.9. I S Input Timing .......................................................................................................................................... 28 Figure 4.10. S/PDIF Input Timing .................................................................................................................................. 28 2 Figure 4.11. I S Output Timing ...................................................................................................................................... 29 Figure 4.12. S/PDIF Output Timing ............................................................................................................................... 29 Figure 4.13. MCLK Timing ............................................................................................................................................. 29 Figure 4.14. SPI Flash Memory Timing ......................................................................................................................... 30 Figure 5.1. Pin Diagram (Top View)............................................................................................................................... 31 Figure 6.1. Standby Power Supply Diagram .................................................................................................................. 40 Figure 6.2. VS Insertion in Active Space ........................................................................................................................ 44 Figure 6.3. L/R and Active Space Indicators Output on GPIO Pins ................................................................................ 45 Figure 6.4. 8-bit Color Depth RGB/YCbCr 4:4:4 Dual Edge Timing (DRA = 0) .................................................................47 Figure 6.5. 8-bit Color Depth RGB/YCbCr 4:4:4 Dual Edge Timing (DRA = 1) .................................................................47 Figure 6.6. 8-bit Color Depth YC 4:2:2 Timing (YCSWAP = 0) ........................................................................................ 48 Figure 6.7. 8-bit Color Depth YC 4:2:2 Timing (YCSWAP = 1) ........................................................................................ 49 Figure 6.8. 10-bit Color Depth YC 4:2:2 Timing (YCSWAP = 0) ...................................................................................... 49 Figure 6.9. 10-bit Color Depth YC 4:2:2 Timing (YCSWAP = 1) ...................................................................................... 49 Figure 6.10. 8-bit Color Depth YC 4:2:2 Embedded Sync Timing (YCSWAP = 0) ........................................................... 50 Figure 6.11. 8-bit Color Depth YC 4:2:2 Embedded Sync Timing (YCSWAP = 1) ........................................................... 51 Figure 6.12. 10-bit Color Depth YC 4:2:2 Embedded Sync Timing (YCSWAP = 0) ......................................................... 51 Figure 6.13. 10-bit Color Depth YC 4:2:2 Embedded Sync Timing (YCSWAP = 1) ......................................................... 51 Figure 6.14. 8-bit Color Depth YC Mux 4:2:2 Timing (DRA = 0) .................................................................................... 52 Figure 6.15. 8-bit Color Depth YC Mux 4:2:2 Timing (DRA = 1) .................................................................................... 53 Figure 6.16. 10-bit Color Depth YC Mux 4:2:2 Timing (DRA = 0) .................................................................................. 54 Figure 6.17. 10-bit Color Depth YC Mux 4:2:2 Timing (DRA = 1) .................................................................................. 54 Figure 6.18. 12-bit Color Depth YC Mux 4:2:2 Timing (DRA = 0) .................................................................................. 55 Figure 6.19. 12-bit Color Depth YC Mux 4:2:2 Timing (DRA = 1) .................................................................................. 56 Figure 6.20. 8-bit Color Depth YC Mux 4:2:2 Embedded Sync Timing (DRA = 0) ...........................................................57 Figure 6.21. 8-bit Color Depth YC Mux 4:2:2 Embedded Sync Timing (DRA = 1) ...........................................................57 Figure 6.22. 10-bit Color Depth YC Mux 4:2:2 Embedded Sync Timing (DRA = 0) ........................................................ 58 Figure 6.23. 10-bit Color Depth YC Mux 4:2:2 Embedded Sync Timing (DRA = 1) ........................................................ 58 Figure 6.24. 12-bit Color Depth YC Mux 4:2:2 Embedded Sync Timing (DRA = 0) ........................................................ 59 Figure 6.25. 12-bit Color Depth YC Mux 4:2:2 Embedded Sync Timing (DRA = 1) ........................................................ 59 Figure 6.26. 8-bit Color Depth YC Mux 4:2:2 Dual Edge Timing (DRA = 0, YCSWAP = 0) .............................................. 60 Figure 6.27. 8-bit Color Depth YC Mux 4:2:2 Dual Edge Timing (DRA = 1, YCSWAP = 1) .............................................. 61 Figure 6.28. 10-bit Color Depth YC Mux 4:2:2 Dual Edge Timing (DRA = 0, YCSWAP = 0) ............................................ 62 Figure 6.29. 10-bit Color Depth YC Mux 4:2:2 Dual Edge Timing (DRA = 1, YCSWAP = 0) ............................................ 62 Figure 6.30. 12-bit Color Depth YC Mux 4:2:2 Dual Edge Timing (DRA = 0, YCSWAP = 0) ............................................ 63 Figure 6.31. 12-bit Color Depth YC Mux 4:2:2 Dual Edge Timing (DRA = 1, YCSWAP = 0) ............................................ 64 Figure 6.32. 8-bit Color Depth YC Mux 4:2:2 Embedded Sync Dual Edge Timing (DRA = 0, YCSWAP = 0) .................... 65 © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 4 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet Figure 6.33. 8-bit Color Depth YC Mux 4:2:2 Embedded Sync Dual Edge Timing (DRA = 1, YCSWAP = 1) .....................65 Figure 6.34. 10-bit Color Depth YC Mux 4:2:2 Embedded Sync Dual Edge Timing (DRA = 0, YCSWAP = 0) ...................66 Figure 6.35. 10-bit Color Depth YC Mux 4:2:2 Embedded Sync Dual Edge Timing (DRA = 1, YCSWAP = 0) ...................67 Figure 6.36. 12-bit Color Depth YC Mux 4:2:2 Embedded Sync Dual Edge Timing (DRA = 0, YCSWAP = 0) ...................68 Figure 6.37. 12-bit Color Depth YC Mux 4:2:2 Embedded Sync Dual Edge Timing (DRA = 1, YCSWAP = 0) ...................68 Figure 7.1. Decoupling and Bypass Schematic ...............................................................................................................69 Figure 7.2. Decoupling and Bypass Capacitor Placement ..............................................................................................69 Figure 8.1. Package Diagram..........................................................................................................................................71 Figure 8.2. Marking Diagram ......................................................................................................................................... 72 © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 5 SiI9573 and SiI9575 Port Processor Data Sheet Tables Table 2.1. Pixel Clock Source and Frequency ................................................................................................................ 13 Table 3.1. Absolute Maximum Conditions .................................................................................................................... 17 Table 3.2. Normal Operating Conditions ....................................................................................................................... 18 Table 3.3. Digital I/O DC Specifications ......................................................................................................................... 19 Table 3.4. TMDS Input DC Specifications – HDMI Mode ............................................................................................... 19 Table 3.5. TMDS Input DC Specifications – MHL Mode................................................................................................. 19 Table 3.6. TMDS Output DC Specifications ................................................................................................................... 20 Table 3.7. Single Mode Audio Return Channel DC Specifications ................................................................................. 20 Table 3.8. S/PDIF Input Port DC Specifications.............................................................................................................. 20 Table 3.9. CEC DC Specifications ................................................................................................................................... 20 Table 3.10. CBUS DC Specifications ............................................................................................................................... 20 Table 3.11. Power.......................................................................................................................................................... 21 Table 3.12. TMDS Input Timing AC Specifications – HDMI Mode ................................................................................. 21 Table 3.13. TMDS Input Timing AC Specifications – MHL Mode ................................................................................... 21 Table 3.14. TMDS Output Timing AC Specifications...................................................................................................... 21 Table 3.15. Single Mode Audio Return Channel AC Specifications ............................................................................... 22 Table 3.16. CEC AC Specifications ................................................................................................................................. 22 Table 3.17. CBUS AC Specifications ............................................................................................................................... 22 Table 3.18. Video Input Timing AC Specifications ........................................................................................................ 22 Table 3.19. Control Signal Timing Specifications .......................................................................................................... 23 Table 3.20. Audio Crystal Frequency ............................................................................................................................. 23 Table 3.21. S/PDIF Input Port AC Specifications ............................................................................................................ 24 2 Table 3.22. I S Input Port AC Specifications .................................................................................................................. 24 2 Table 3.23. I S Output Port AC Specifications ............................................................................................................... 24 Table 3.24. S/PDIF Output Port AC Specifications ......................................................................................................... 24 Table 3.25. Serial Flash AC Specifications ..................................................................................................................... 25 Table 6.1. Description of Power Modes ........................................................................................................................ 40 Table 6.2. Supported InstaPrevue Window Formats .................................................................................................... 42 Table 6.3. Supported 3D Video Formats ....................................................................................................................... 43 Table 6.4. L/R and Active Space Indicator Mapping to GPIO Pins ................................................................................. 44 Table 6.5. Video Input Formats ..................................................................................................................................... 45 Table 6.6. RGB/YCbCr 4:4:4 Separate Sync Dual Clock Edge Data Mapping .................................................................. 46 Table 6.7. YC 4:2:2 Separate Sync Data Mapping .......................................................................................................... 48 Table 6.8. YC 4:2:2 Embedded Sync Data Mapping ....................................................................................................... 50 Table 6.9. YC Mux 4:2:2 8-bit Color Depth Separate Sync Data Mapping ..................................................................... 52 Table 6.10. YC Mux 4:2:2 10-bit Color Depth Separate Sync Data Mapping ................................................................. 53 Table 6.11. YC Mux 4:2:2 12-bit Color Depth Separate Sync Data Mapping ................................................................. 55 Table 6.12. YC Mux 4:2:2 8-bit Color Depth Embedded Sync Data Mapping ................................................................ 56 Table 6.13. YC Mux 4:2:2 10-bit Color Depth Embedded Sync Data Mapping ...............................................................57 Table 6.14. YC Mux 4:2:2 12-bit Color Depth Embedded Sync Data Mapping .............................................................. 58 Table 6.15. YC Mux 4:2:2 8-bit Color Depth Separate Sync Dual Clock Edge Data Mapping ......................................... 60 Table 6.16. YC Mux 4:2:2 10-bit Color Depth Separate Sync Dual Clock Edge Data Mapping ....................................... 61 Table 6.17. YC Mux 4:2:2 12-bit Color Depth Separate Sync Dual Clock Edge Data Mapping ....................................... 63 Table 6.18. YC Mux 4:2:2 8-bit Color Depth Embedded Sync Dual Clock Edge Data Mapping...................................... 64 Table 6.19. YC Mux 4:2:2 10-bit Color Depth Embedded Sync Dual Clock Edge Data Mapping.................................... 66 Table 6.20. YC Mux 4:2:2 12-bit Color Depth Embedded Sync Dual Clock Edge Data Mapping.................................... 67 © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 6 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet 1. General Description The Lattice Semiconductor SiI9573 and SiI9575 Port Processor is the latest generation HDMI® port processor targeted at audio video receivers (AVR), Home Theater in a Box (HTiB), and Digital TVs (DTVs). The port processor has many innovative features such as InstaPort®, InstaPrevue, Mobile High-Definition Link (MHL®), ViaPort Matrix Switch (the SiI9575 device only), and Audio Return Channel (ARC) technology. The two devices are the same except where noted. SiI957n is used throughout this document to refer to both devices. The SiI957n port processor offers an extensive set of audio features including audio extraction and insertion. Audio from the active HDMI input is sent to the main or subaudio output port. High-Bitrate (HBR) audio is supported on the main audio output port. Additionally, 2 a 2-channel I S or an S/PDIF input receives PCM or bit stream audio from an audio DSP or a DTV SoC, and output to either the main or sub-HDMI output, or both. The SiI957n port processor supports two independent ARC transceivers. Each ARC transceiver is configurable as an ARC receiver or transmitter. As an ARC receiver in an AVR or HTiB design, either the Tx0 or Tx1 HDMI output can receive an ARC signal from a DTV. As an ARC transmitter in a DTV design, the ARC signal can be transmitted out of the two of the six Rx HDMI inputs, which are designated as ARC-capable, to an AVR or soundbar. The MHL to HDMI bridge function is available on two input ports; this allows consumers to attach their mobile devices to the AVR or DTV and view high definition content while the AVR or DTV charges the mobile device battery. The SiI9575 device supports ViaPort Matrix Switch. While the main HDMI output selects one of the HDMI inputs, the second HDMI output can select another HDMI input or parallel video input. This is ideal for AVR Zone 2 support or PIP/POP function in DTV. 1.1. HDMI Inputs and Outputs Six HDMI input ports support 300 MHz simultaneously Two HDMI output ports that support 300 MHz simultaneously TMDS™ cores run up to 3.0 Gb/s HDMI, MHL, HDCP, and DVI compatible Supports video resolutions up to 4K × 2K @ 30 Hz, 8-bit, 1080p @ 60 Hz, 12-bit or 720p/1080i @ 120 Hz, 12-bit Supports 4K × 2K 50P/60P FPS when pixel format is YCb Cr 4:2:0. Supports all the mandatory and some optional 3D formats up to 300 MHz MHL support up to1080p @ 24 Hz on two input ports Pre-programmed with HDCP keys Repeater function supports up to 127 devices Figure 1.1. Port Processor Application © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 7 SiI9573 and SiI9575 Port Processor Data Sheet 1.2. Performance Improvement Features InstaPort™ viewing technology reduces port switching time to less than one second InstaPrevue technology provides a picture-inpicture preview of connected source devices AVI, Audio InfoFrame, and video input resolution detection for all input ports, accessible port-byport Hardware-based HDCP error detection and recovery minimizes firmware intervention Automatic output mute and unmute based on link stability, such as cable connect/detach 1.3. Audio Inputs and Outputs Two S/PDIF inputs and two S/PDIF outputs supporting PCM and compressed audio formats up to 192 kHz such as Dolby Digital, DTS, and AC-3 DSD output supports Super Audio CD applications, up to 6 channels I S outputs support PCM, DVD-Audio output, up to 8-channel 192 kHz I S inputs support PCM, DVD-Audio input, up to 2channel 192 kHz 2 High-Bitrate audio output support such as DTS-HD MA and Dolby® TrueHD Sample Rate Converter (SRC) supports down sampling 2:1 and 4:1 Two HDMI ARC inputs or outputs support 1.4. Control Capability Two independent Consumer Electronics Control (CEC) interfaces with HDMI-compliant CEC I/O to support two sink devices Integrated EDID in non-volatile memory and DDC support for the HDMI ports using separate 256-byte SRAM for the HDMI ports and 128-byte SRAM for VGA EDID Individual control of Hot Plug Detect (HPD) for each of the input ports Controllable by the local I C bus 2 1.5. Packaging 176-pin, 20 mm × 20 mm, 0.4 mm pitch TQFP package with an exposed pad (ePad) 2 © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 8 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet 2. Functional Description Figure 2.1 shows the block diagram of the SiI957n port processor. Always-On Section CEC A0 CBUS/ HPD CBUS0 CBUS1 Serial Ports DDC0 DDC1 DDC2 DDC3 DDC4 DDC5 DDC6 DDC I2C Booting Sequencer NVRAM EDID SRAM HDCP Registers Local I 2C Configuration, Status, and Interrupt-Control Registers OTP DDC TX E Power-Down Section TMDS Rx (Port 0) R1X TMDS Rx (Port 1) R2X TMDS Rx (Port 2) R3X TMDS Rx (Port 3) R4X TMDS Rx (Port 4) HDMI/ MHL Receiver InstaPort M U X HDCP Decryption Stream Mixer TMDS Rx (Port 5) Audio Output Main Multi-Channel C SPI OSD Main TMDS Tx (Port 0) HDCP Encryption T0X SRC InstaPrevue D HDMI/ MHL Receiver InstaPort Video/ Audio Splitter M U X F Parallel Video Input I2S/SPDIF Audio Input M U X B M U X I2S/SPDIF/ DSD M U X A R5X D[19..0] RnPWR5V, SBVCC5V Power INT TPI HW R0X CEC A1 CEC Interface Controller 1 CEC Interface Controller 0 Mobile HD Control M U X M U X G Sub TMDS Tx (Port 1) HDCP Encryption Audio Output Sub 2 Channel T1X I2S/SPDIF ENB Audio Input Video Pattern Generator ARC0/1 Rx ARC0/1 Tx ARC Input and Output Figure 2.1. Functional Block Diagram 2.1. Always-on Section 2 The Always-on section contains the low speed control circuits of the HDMI connection, and includes the I C interfaces, internal memory blocks, and the registers that control the blocks of the Power-down section. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 9 SiI9573 and SiI9575 Port Processor Data Sheet 2.1.1. Serial Ports Block 2 The Serial Ports Block provides eight I C serial interfaces: six DDC ports to communicate with the HDMI or DVI hosts, 2 one VGA DDC port, and one local I C port for initialization and control by a local microcontroller in the display or AVR. 2 Each interface is 5 V tolerant. Figure 2.2 shows the connection of the local I C port to the system microcontroller. VDD33 Standby Power SiI957n Port Processor CSDA CSCL System Microcontroller INT 2 Figure 2.2. I C Control Configuration The seven DDC interfaces (DDC 0–6) on the SiI957n port processor are slave interfaces that can run up to 400 kHz. Each interface connects to one E-DDC bus and is used to read the integrated EDID and HDCP authentication information. The port is accessible on the E-DDC bus at device addresses 0xA0 for the EDID and 0x74 for HDCP control. The transmitter 2 DDC master controller supports accessing HDCP and EDID up to 100 kHz. Local I C can also access the transmitter DDC bus; in this case, an internal oscillator provides the clock source. 2.1.2. Static RAM Block The Static RAM (SRAM) Block contains 2,560 bytes of RAM. Each port is allocated a 256-byte block for DDC; this allows all ports to be read simultaneously from six different sources connected to the SiI957n device. A 128-byte block is available for VGA DDC, 768 bytes are available for Key Selection Vectors (KSV), 64 bytes are used for the auto-boot feature, and 64 bytes are reserved. Every EDID and SHA KSV has an offset location. The SRAM can be written to and read from using the 2 local I C interface and it can be read through the DDC interface. The memory can be read through the DDC interface without main TV power, using only 5 V power from the HDMI connector. 2.1.3. NVRAM Block The port processor contains 512 bytes of NVRAM, 256 of which is used to store common EDID data used by each of the ports, 128 of which is used for VGA DDC, and 64 of which is used by the auto boot feature. 64 bytes are unused. Both 2 the NVRAM EDID data and NVRAM auto-boot data should be initialized by software using the local I C bus at least once during the time of manufacture. 2.1.4. HDCP Registers Block The HDCP Registers Block controls the necessary logic to decrypt the incoming audio and video data. The decryption process is controlled entirely by the host-side microcontroller using a set sequence of register reads and writes through the DDC channel. The decryption process uses preprogrammed HDCP keys and Key Selection Vector (KSV) stored in the on-chip nonvolatile memory. 2.1.5. OTP ROM Block The Receiver One-Time Programmable (OTP) ROM Block is preprogrammed at the factory with HDCP keys. System manufacturers do not need to purchase key sets from Digital Content Protection, LLC. Lattice Semiconductor handles all purchasing, programming, and security for the HDCP keys. The preprogrammed HDCP keys provide the highest level of security possible, as it is not possible to read out the keys after they are programmed. 2.1.6. Booting Sequencer The Booting Sequencer boots up the required data, such as EDID, initial HPD status, and MHL port selection from NVRAM during power on. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 10 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet 2.1.7. Configuration, Status, and Interrupt Control Block The Configuration, Status, and Interrupt Control Registers Block incorporate the registers required for configuring and managing the features of the SiI957n port processor. These registers are grouped by functions such as RPI, TPI, CPI, MHL, and miscellaneous and are used to perform audio, video, and auxiliary format processing, HDMI 1.4a InfoFrame 2 Packet format, and power-down control. The registers are accessible from the local I C port. This block also handles interrupt operation. 2.1.8. Mobile HD Control Block The Mobile HD Control Block handles MHL DDC control. This block handles CBUS conversion to DDC signals for accessing the EDID and HDCP interface blocks. 2.1.9. CEC Interface Controller Two independent Consumer Electronics Control (CEC) interface controllers are available in the SiI957n port processor. This gives the system designer the option to design a system that supports both primary CEC line and a secondary CEC line that are not physically connected to each other. For example, using an AVR featuring two DTV connections from the SiI957n device, the primary CEC line (CEC_A0 pin) can be connected to the CEC signal of all HDMI input ports of the AVR while the secondary CEC line (CEC_A1 pin) connects to the CEC signal of the second DTV. Each CEC interface controller provides a CEC-compliant signal and has a high-level register interface accessible through 2 the I C interface. Programming is done through the Lattice Semiconductor CEC Programming Interface (CPI). This controller makes CEC control easy and straightforward by removing the burden of requiring that the host processor perform these low-level transactions on the CEC bus. As a result, CEC pass-through mode is neither required nor supported. The CEC controllers (CEC_A0 and CEC_A1) are identical except for the device address used to access them. 2.1.10. Power Block The Power Block features an analog power multiplexer with inputs from the +5 V power from the R[0–5]PWR5V and the SBVCC5V sources. The output of the analog power multiplexer supplies power to the Always-On Section. 2.2. Power-down Section The Power-down Section contains the HDMI high-speed data paths, including the analog TMDS input and output blocks and the digital logic for HDMI data and HDCP processing. 2.2.1. TMDS Receiver Blocks The TMDS Receiver Blocks, defined as Port 0, Port 1, Port 2, Port 3, Port 4, and Port 5, are terminated separately, 2 equalized under the control of the receiver digital block, and controlled by the local I C bus. Input data is over-sampled by five to enable the downstream DPLL block to capture the most stable signal at any given time. 2.2.2. 6:1 Input Multiplexer Blocks A and B and 4:1 Input Multiplexer Blocks C and D 6:1 Input Multiplexer Block A selects one of the six TMDS inputs and sends it to the main pipe. 6:1 Input Multiplexer Block B selects one of the six TMDS inputs and sends it to the subpipe. 4:1 Input Multiplexer Block C selects among main pipe, subpipe, parallel video, and video pattern generator sources and sends it to HDMI output Tx0. 4:1 Input Multiplexer Block D selects among main pipe, subpipe, parallel video, and video pattern generator sources and sends it to HDMI output Tx1. The specific function of the multiplexers is determined by whether InstaPort, InstaPrevue, or matrix switch mode is enabled. In InstaPort or InstaPrevue modes, Multiplexer Block A selects the active input and sends it to the main pipe for processing. The subpipe functions as a roving pipe whereby Multiplexer Block B sequentially selects one of the five inactive inputs and sends it to the InstaPort or InstaPrevue blocks for processing. Multiplexer Blocks C and D can each independently select among main pipe, parallel video, and video pattern generator sources to send to HDMI output Tx0 and Tx1 respectively. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 11 SiI9573 and SiI9575 Port Processor Data Sheet In matrix switch mode, Multiplexer Block A selects one active input and sends it to the main pipe for processing. roving is disabled and the subpipe functions as a second processing pipe for another active input selected by Multiplexer Block B. Multiplexer Blocks C and D can each independently select between main pipe and subpipe sources to send to HDMI output Tx0 and Tx1, respectively. Matrix Switch mode is supported on the SiI9575 device only. 2.2.3. HDMI, MHL, and InstaPort Receiver Blocks The HDMI, MHL, and InstaPort Receiver blocks perform functions including deskewing, analyzing packets, processing the main pipe and roving pipe, multiplexing, demultiplexing, repeater functions, and HDCP authentication. The SiI957n device supports six HDMI input ports. MHL can be enabled on any two input ports selected at the time of manufacture by programming a register in the NVRAM. 2.2.4. Video/Audio Splitter Block The Video/Audio Splitter Block separates the video and audio data from the TMDS stream for the roving pipe. The video is sent to the InstaPrevue block and the audio is sent to Multiplexer Blocks C and D. This can be used in the InstaPrevue Picture-In-Picture (PIP) mode in which a single sub-window is displayed on the main video. The audio from the subwindow can replace the audio from the main video before being sent to Tx0 and Tx1. 2.2.5. InstaPrevue Block The InstaPrevue Block captures and processes all of the preauthenticated HDMI/DVI/MHL subframe images from the roving pipe. The operating preview mode is configured in this block. 2.2.6. Stream Mixer Block The Stream Mixer Block replaces a region of the main port video with a sub-frame image from the InstaPrevue block. It merges sub-frames with the main video input at the proper screen locations specified by external software register settings. 2.2.7. 2:1 Input Multiplexer Blocks E and F and Main and Subaudio Formatting Blocks 2:1 Input Multiplexer Block E selects either the decoded audio stream from the TMDS input to main pipe or the subpipe 2 and sends it to the main audio block to be processed as I S and S/PDIF. The main audio block supports 8-channel PCM 2 and 6-channel DSD for I S and 2-channel PCM and compressed audio formats for S/PDIF. 2:1 Input Multiplexer Block F selects either the decoded audio stream from the TMDS input to main pipe or the subpipe and sends it to the subaudio 2 2 block to be sent out as I S and S/PDIF. The subaudio block supports 2-channel PCM for I S and 2-channel PCM and compressed audio formats for S/PDIF. 2.2.8. Parallel Video Input Block The Parallel Video Input Block features a 20-bit parallel video input interface which supports input clocks up to 165 MHz in dual edge and single edge modes. In dual edge mode, incoming data is latched on both edges of the clock for double data rate (DDR) to support up to 720p/1080i @ 60 Hz for RGB/YCbCr 4:4:4 formats. In single edge mode, incoming data is latched on one edge of the clock for single data rate (SDR) to support up to 1080p @ 60 Hz and UXGA @ 60 Hz for YCbCr 4:2:2 formats. Video processing features support color space conversion, 4:2:2 to 4:4:4 up- and 4:4:4 to 4:2:2 down-sampling, RGB range expansion, RGB/YCbCr range compression, clipping, and dithering functions. All of these functions can be bypassed through register settings. The color space conversion feature performs color conversion from YCbCr to RGB and RGB to YCbCr according to the selected color space standard ITU-R BT.601 for standard-definition DTV and ITU-R BT.709 for high-definition DTV. Chrominance up-sampling increases the number of chrominance samples in each line of video. Up-sampling doubles the number of chrominance samples in each line, converting 4:2:2 sampled video to 4:4:4 sampled video. Chrominance down-sampling decreases the number of chrominance samples in each line of video. Down-sampling halves the number of chrominance samples in each line, converting 4:4:4 sampled video to 4:2:2 sampled video. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 12 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet The SiI957n port processor can scale the input color range from limited-range into full range using the range expansion block. When enabled by itself, the range expansion block expands 16–235 limited-range data into 0–255 full-range data for each video channel. When range expansion and the YCbCr to RGB color space converter are both enabled, the input conversion range for the Cb and Cr channels is 16–240. When enabled by itself, the range compression block compresses 0–255 full range data into 16–235 limited range data for each video channel. When enabled with the RGB to YCbCr converter, this block compresses to 16–240 for the Cb and Cr channels. The color range scaling is linear. When enabled, the clipping block clips the values of the output video to 16–235 for RGB video for the Y channel, and to 16–240 for the Cb and Cr channels. The SiI957n port processor can dither the video by adding a pseudorandom number to every value. The 18-bit dithering result can be truncated or rounded. Additionally, dithering can be enabled or disabled by video component (R, G, B, Y, Cb, or Cr). 2.2.9. Video Pattern Generator Block The Video Pattern Generator (VPG) Block supplies one of eight predefined video patterns to the HDMI transmitters. The predefined video patterns are solid red, solid green, solid blue, solid black, solid white, ramp, 8 × 6 chessboard, and color bars. The video patterns have an RGB color space at 480p, 576p, and 720p video resolutions. An example use for the VPG is to combine the predefined video pattern with an external audio input to create a complete HDMI stream which can then be sent out of the HDMI transmitter to a sound bar. The VPG can also be used for test purposes during product development. The VPG requires a pixel clock for its operation. One of several clock sources, including the crystal oscillator (xclk), audio VCO clock 0, or audio VCO clock 1, can be used to generate the pixel clock for the VPG. If the crystal oscillator (xclk), audio VCO clock 0, or audio VCO clock 1 is used as the clock source for the VPG, then the frequency of the external audio crystal must be 27 MHz to generate the correct pixel clock frequencies for the VPG. Incorrect pixel clock frequencies will be generated if the external audio crystal used is not 27 MHz; the range specified in Table 3.20 on page 23 will not work for this function. The xclk is generated from the external audio crystal. The audio VCO clock 0 is an output of a PLL which uses the xclk as the input. The audio VCO clock 1 is an output of another PLL which also uses the xclk as the input. Table 2.1 shows the pixel clock source and frequency for the VPG at 480p, 576p and 720p video resolutions. Refer to the Programmer’s Reference for details on configuring the VPG. Table 2.1. Pixel Clock Source and Frequency Video Resolution 480p, 576p Pixel Clock Source xclk Pixel Clock Frequency 27 MHz 720p audio VCO clock 0 or audio VCO clock 1 (27 MHz) • (11/4) = 74.25 MHz The audio VCO clock 0 and VCO clock 1 PLLs are shared with the audio extraction logic. Therefore, if audio VCO clock 0 or VCO clock 1 is used for the VPG, the respective main or subport audio extraction mode needs to be disabled. 2.2.10. Audio Sampling Rate Converter Block The audio Sampling Rate Converter (SRC) Block allows the inserted 2-channel PCM audio from either the main- or subaudio ports to be down-sampled before combining with the HDMI stream from the main pipe and sending to Tx0. The audio data can be down-sampled by a factor of 2 or 4 by register control. Conversions from: 192 kHz to 48 kHz, 176.4 kHz to 44.1 kHz, 96 kHz to 48 kHz, and 88.2 kHz to 44.1 kHz are supported. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 13 SiI9573 and SiI9575 Port Processor Data Sheet 2.2.11. On-screen Display Controller The On-screen Display Controller (OSD) Block supports a text-based onscreen display that allows for up to four character-based windows to be overlaid onto the video displayed from the Tx0 HDMI output. The OSD supports three font sizes: 12×16, 16 × 24 and 24 × 32 pixels, to provide flexibility for choosing the character and icon size in the OSD windows. OSD supports 480p, 576p, 720p, 1080p, and 1080iHDMI 2D video formats. OSD is supported on SiI957n Tx0 HDMI output only. OSD may be combined on the displayed video along with InstaPrevue windows to form a complete menu system. A 12 kB on-chip RAM memory stores the OSD font bit maps and window index information. The OSD memory can be 2 loaded by the host microcontroller through the I C bus or from an external flash memory though the Serial Peripheral Interface (SPI). The SPI supports clock frequencies of 1.6875 MHz, 3.375 MHz, 13.5 MHz, and 27 MHz. This interface is used to read and write the external flash memory. In addition, the host microcontroller can program the external flash 2 memory using I C through the SPI interface. 2.2.12. Audio Input Block The Audio Input Block supports external audio insertion into the transmitted HDMI streams. There are two audio input 2 blocks: the main audio port and the subaudio port. The inserted audio to the main audio port is two-channel I S or a 2 single S/PDIF. Similarly, the inserted audio to the subaudio port is two-channel I S or a single S/PDIF. Both main audio port and subaudio port insertion support the following audio formats: 2 I S: 2 channels PCM: 2 channels S/PDIF: IEC 60958 and IEC 61937 PCM: 2channels Compressed bit-stream: Dolby Digital, Dolby Digital Plus, Dolby Digital EX, Dolby Digital Surround EX DTS, DTS ES ® 2 2 Each of the SiI957n I S main and subaudio port insertion requires SCK, WS, and SD0 signals for two channel I S. For both the main and subaudio ports, the SiI957n device supports CTS and N value generation without requiring an MCLK input. 2 The SiI957n main audio port S/PDIF insertion shares the same pin with SD0 of the I S insertion. The function of this pin is configured by software. 2 The SiI957n subaudio port S/PDIF insertion shares the same pin with SD0 of the I S insertion. The function of this pin is 2 configured by software. In addition, the subaudio port I S and S/PDIF insertion pins are multiplexed with the subaudio 2 port I S and S/PDIF extraction pins. The functions of these pins are configured by software. The audio inserted into the main audio port can be combined with the HDMI stream from the main pipe and sent to Tx0 or combined with the HDMI stream from the subpipe and sent to Tx1. Similarly, the audio inserted to the subaudio port can be combined with the HDMI stream from the main pipe and sent to Tx0 or combined with the HDMI stream from the subpipe and sent to Tx1. The audio sampling rate converter block selects between inserted audio from the main audio port and the subaudio port to send to Tx0. Input Multiplexer G selects between inserted audio from the main audio port and the subaudio port to send to Tx1. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 14 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet 2.2.13. Audio Output Block The Audio Output Block supports audio extraction from the received HDMI/MHL streams. There are two audio output blocks, the main audio port and the subaudio port. The extracted audio from the main audio port is eight-channel I2S, six-channel DSD, or a single S/PDIF audio. The extracted audio from the subaudio port is either two-channel I2S or single S/PDIF audio. Main Audio Port Extraction I S: 8 channels PCM: up to 8 channels HBR: Dolby TrueHD, DTS-HD Master Audio DSD: 6 channels S/PDIF: IEC 60958 and IEC 61937 PCM: 2 channels Compressed bit-stream: Dolby Digital, Dolby Digital Plus, Dolby Digital EX, Dolby Digital Surround EX, DTS, DTS-ES 2 Subaudio Port Extraction I S: 2 channels PCM: 2 channels S/PDIF: IEC 60958 and IEC 61937 PCM: 2 channels Compressed bit-stream: Dolby Digital, Dolby Digital Plus, Dolby Digital EX, Dolby Digital Surround EX, DTS, DTS-ES 2 2 By default, the main audio port is configured for eight-channel I S audio extraction from the main pipe and the 2 subaudio port is configured for two-channel I S audio extraction from the subpipe. The SiI957n device allows swapping 2 2 the main and subaudio ports to provide two-channel I S audio extraction from the main pipe and eight-channel I S audio extraction from the subpipe. 2 2 The SiI957n I S audio extraction provides the MCLK, SCK, WS, SD0, SD1, SD2, and SD3 signals for eight-channel I S from 2 the main audio port and SCK, WS, and SD0 for two-channel I S for the subaudio port. To generate the MCLK for the subaudio port, an external PLL clock generator can be used. 2 The SiI957n main audio port I S, DSD, and S/PDIF audio extraction pins are shared. The functions of these pins are configured by software. 2 The SiI957n subaudio port S/PDIF audio extraction shares the same pin with SD0 of the I S audio extraction. The 2 function of this pin is configured by software. In addition, the subaudio port I S and S/PDIF audio extraction pins are 2 multiplexed with the subaudio port I S and S/PDIF audio insertion pins. The functions of these pins are configured by software. 2.2.14. Audio Return Channel (ARC) Input and Output The Audio Return Channel (ARC) feature eliminates an extra cable when sending audio from an HDMI sink device to an adjacent HDMI source or repeater device. This is done by allowing a single IEC60958-1 or IEC61937 audio stream to travel in the opposite direction of the TMDS signal on its own conductor in the HDMI cable, after negotiation using CEC Audio Return Channel Control. The HDMI sink device implements the ARC transmitter and the HDMI source or repeater device implements the ARC receiver. The SiI957n device provides two ARC transceiver channels. Each pin can be independently configured to operate as an ARC transmitter or an ARC receiver. For example, the SiI957n device designed into a DTV can use the ARC transmitter feature while the SiI957n device designed into an AVR can use the ARC receiver feature. For an ARC transmitter, the ARC transceiver pin is connected to the ARC pin of the connector for the HDMI Rx port that is designated as ARCcapable. For an ARC receiver, the ARC transceiver pin is connected to the ARC pin of the HDMI connector for the transmitter port that is designated as ARC-capable. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 15 SiI9573 and SiI9575 Port Processor Data Sheet ARC transceivers can share pins with the HDMI Ethernet Channel (HEC) signals. The SiI957n device does not support HEC and therefore cannot use HEC and ARC simultaneously on the same receiver port. The SiI957n device supports only single mode ARC. The SiI957n ARC receiver can be made compatible for common mode ARC by using an AC-coupling network between the HPD and NC pins of the HDMI connector of the transmitter port and the SiI957n ARC receiver pin. 2.2.15. TMDS Transmitter Block The TMDS Transmitter Blocks perform HDCP encryption and 8-to-10-bit TMDS encoding on the data to be transmitted over the HDMI link. The encoded data is sent to the three TMDS differential data lines, along with a TMDS differential clock line. Internal source termination eliminates the need to use external R-C components for signal shaping. The internal source termination can be disabled by registers settings. The SiI957n port processor integrates two HDMI output ports, which enables zone-2 support by using the ViaPort Matrix Switch feature of the device. Both transmitter ports support up to 300 MHz. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 16 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet 3. Electrical Specifications 3.1. Absolute Maximum Conditions Table 3.1. Absolute Maximum Conditions Symbol AVDD33 Parameter TMDS core supply voltage Min −0.3 Typ — Max 4.0 Unit V Notes 1, 2 IOVCC33 I/O supply voltage −0.3 — 4.0 V 1, 2 SBVCC5 5 V standby power supply voltage −0.3 — 5.7 V 1, 2 R[0–5]PWR5V 5 V input from power pin of HDMI connector −0.3 — 5.7 V 1, 2 XTALVCC33 PLL crystal oscillator power −0.3 — 4.0 V 1, 2 AVDD13 TMDS receiver core supply voltage −0.3 — 1.5 V 1, 2 APLL13 PLL Analog VCC −0.3 — 1.5 V 1, 2 CVCC13 Digital core supply voltage −0.3 — 1.5 V 1, 2 TDVDD13 TMDS transmitter core supply voltage −0.3 — 1.5 V 1, 2 TPVDD13 TMDS transmitter core supply voltage −0.3 — 1.5 V 1, 2 VI Input voltage −0.3 — IOVCC33 + 0.3 V 1, 2 VO Output voltage −0.3 — IOVCC33 + 0.3 V 1, 2 TJ Junction temperature 0 — 125 C — TSTG Storage temperature −65 — 150 C — Notes: 1. Permanent damage can occur to the device if absolute maximum conditions are exceeded. 2. Functional operation should be restricted to the conditions described in the Normal Operating Conditions section below. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 17 SiI9573 and SiI9575 Port Processor Data Sheet 3.2. Normal Operating Conditions Table 3.2. Normal Operating Conditions Symbol AVDD33 Parameter TMDS core supply voltage Min 3.14 Typ 3.3 Max 3.46 Unit V Notes — IOVCC33 I/O supply voltage 3.14 3.3 3.46 V — SBVCC5 5 V standby power supply voltage 4.5 5.0 5.5 V 1 R[0–5]PWR5V 5 V input from power pin of HDMI connector 4.5 5.0 5.5 V — XTALVCC33 PLL crystal oscillator power 3.14 3.3 3.46 V — AVDD13 TMDS receiver core supply voltage 1.25 1.3 1.35 V 2 APLL13 PLL Analog VCC 1.25 1.3 1.35 V 2 CVCC13 Digital core supply voltage 1.25 1.3 1.35 V 2 TDVDD13 TMDS transmitter core supply voltage 1.25 1.3 1.35 V 2 TPVDD13 TMDS transmitter core supply voltage 1.25 1.3 1.35 V 2 AVDD13 TMDS receiver core supply voltage 1.27 1.3 1.35 V 3 APLL13 PLL Analog VCC 1.27 1.3 1.35 V 3 CVCC13 Digital core supply voltage 1.27 1.3 1.35 V 3 TDVDD13 TMDS transmitter core supply voltage 1.27 1.3 1.35 V 3 TPVDD13 TMDS transmitter core supply voltage 1.27 1.3 1.35 V 3 TA Ambient temperature (with power applied) 0 +25 +70 C — ja Ambient thermal resistance (Theta JA) — 22.0 — C/W — jc Junction to case resistance (Theta JC) — — 6.0 C/W — Notes: 1. SBVCC5 voltage is measured at SBVCC5TP as shown in Figure 3.1. 2. For 4 HDMI Inputs and 2 HDMI output running simultaneously at 300MHz 3. For 5 or 6 HDMI Inputs and 2 HDMI Outputs running simultaneously at 300MHz SBVCC5TP 10Ω SBVCC5 10 F 0.1 F SiI957n GND Figure 3.1. Test Point SBVCC5TP for SBVCC5 Measurement © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 18 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet 3.3. DC Specifications Table 3.3. Digital I/O DC Specifications Symbol VIH Parameter HIGH-level Input Voltage Pin Type LVTTL Conditions — Min 2.0 Typ — Max — Unit V VIL LOW-level Input Voltage LOW-to-HIGH Threshold, DDC Buses HIGH-to-LOW Threshold, DDC Buses LVTTL — — — 0.8 V Schmitt — 3.0 — — V Schmitt — — — 1.5 V Schmitt — 2.0 — — V Schmitt — — — 0.8 V LVTTL LVTTL — — 2.4 — — — — 0.4 V V — High Impedance −10 — 10 4 mA Digital Output Drive LVTTL VOUT = 2.4 V VOUT = 0.4 V 4 4 — — — — A mA mA LOW-to-HIGH Threshold, Reset Schmitt — 2.0 — — V Schmitt — — — 0.8 V All — — — V All — — — GND –0.3 IOVCC33 +0.3 VTH+DDC VTH-DDC VTH+I2C VTH-I2C LOW-to-HIGH Threshold, 2 I C Buses HIGH-to-LOW Threshold, 2 I C Buses VOH VOL HIGH-level Output Voltage LOW-level Output Voltage IOL Output Leakage Current IOD4 VTH+RESET VCINL HIGH-to-LOW Threshold, Reset Input Clamp Voltage VCIPL Input Clamp Voltage VTH-RESET V Table 3.4. TMDS Input DC Specifications – HDMI Mode Symbol VID Parameter Differential Mode Input Voltage VICM Common Mode Input Voltage Conditions — Min 150 Typ — Max 1200 Units mV — AVDD33 –400 — AVDD33 –37.5 mV Table 3.5. TMDS Input DC Specifications – MHL Mode Symbol Parameter Conditions Min AVDD33 –1200 Typ VIDC Single-ended Input DC Voltage — VIDF Differential Mode Input Swing Voltage — 200 — VICM Common Mode Input Swing Voltage — 170 — — Max AVDD33 –300 Units 1000 Min (720, 0.85 VIDF) mV mV mV © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 19 SiI9573 and SiI9575 Port Processor Data Sheet Table 3.6. TMDS Output DC Specifications Symbol VSWING Parameter Single-ended Output Swing Voltage Conditions RLOAD = 50 Ω Min 400 AVDD33 –200 AVDD33 –700 Typ — VH Single-ended High-level Output Voltage — VL Single-ended Low-level Output Voltage — VTH+RSEN LOW-to-HIGH Threshold, RSEN VTH-RSEN Notes: 4. 5. HIGH-to-LOW Threshold, RSEN Max 600 AVDD33 +10 AVDD33 –400 Units mV Notes — mV — mV — — 0.8 — 1.1 V 1 — 0.3 — 0.5 V 2 — — RSEN deasserted state to asserted state threshold voltage when sink Rx termination transitions from disabled to enabled. RSEN asserted state to deasserted state threshold voltage when sink Rx termination transitions from enabled to disabled. Table 3.7. Single Mode Audio Return Channel DC Specifications Symbol Vel Vel swing Parameter Operating DC Voltage Swing Amplitude Conditions — — Min 0 400 Typ — — Max 5 600 Units V mV Table 3.8. S/PDIF Input Port DC Specifications Symbol Parameter ZI_SPDIF Termination Impedance VI_SPDIF Input Voltage Notes: 1. 2. 3. Conditions — — 75 Ω termination, AC-coupled Min — — Typ 75 4 Max — — Units Ω kΩ Notes 1 2 400 — 600 mVPP 3 This impedance is implemented with an external 75 Ω resistor to ground and is used when the interconnection is over a 75 Ω COAX cable. This is the internal impedance of the S/PDIF input. The S/PDIF input can also be safely driven at LVTTL voltage levels without AC coupling. The 75 Ω termination is not required in this case. Table 3.9. CEC DC Specifications Symbol VTH+CEC VTH-CEC Parameter LOW to HIGH Threshold HIGH to LOW Threshold VOH_CEC VOL_CEC HIGH-level Output Voltage LOW-level Output Voltage IIL_CEC Input Leakage Current Conditions — — Min 2.0 — Typ — — Max — 0.8 Units V V — — Power Off; RnPWR5V = 0 V 2.5 — — — — 0.6 V V — — 1.8 A Table 3.10. CBUS DC Specifications Symbol VIH_CBUS VIL_CBUS Parameter High-level Input Voltage Low-level Input Voltage Conditions — — Min 1.0 — Typ — — Max — 0.6 Units V V VOH_CBUS High-level Output Voltage IOH = 100 A 1.5 — 1.9 V VOL_CBUS Low-level Output Voltage — 0.2 V Pull-down Resistance – Discovery IOL = –100 A — — ZDSC_CBUS 800 1000 1200 Ω ZON_CBUS Pull-down Resistance – Active 100 110 kΩ Input Leakage Current — High Impedance 90 IIL_CBUS — — 1 A CCBUS Capacitance Power On — — 80 pF © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 20 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet Table 3.11. Power Symbol IAPLL13 Parameter Supply Current for APLL13 Min — Typ — Max 3 Unit mA Notes 1 IAVDD13 Supply Current for AVDD13 — — 250 mA 1 IAVDD33 Supply Current for AVDD33 — — 345 mA 1 IIOVCC33 Supply Current for IOVCC33 — — 2 mA 1 IXTALVCC33 Supply Current for XTALVCC33 — — <1 mA 1 ICVCC13 Supply Current for CVCC13 — — 680 mA 1 ISBVCC5STBY Supply Current for SBVCC5 in Standby mode — — 8 mA 2 ISBVCC5ACT Supply Current for SBVCC5 in Active mode — — 30 mA 1 ITDVDD13 Supply Current for TDVDD13 — — 60 mA 1 ITPVDD13 Supply Current for TPVDD13 — — 30 mA 1 Total Total Power — — 2.6 W 1 Notes: 1. With six 300 MHz HDMI receiver inputs with InstaPort, InstaPrevue, audio outputs, and OSD on and two 300 MHz transmitter outputs. 2. With no active AV sources connected to the HDMI Rx inputs. 3.4. AC Specifications Table 3.12. TMDS Input Timing AC Specifications – HDMI Mode Symbol TRXDPS Parameter Intrapair Differential Input Skew TRXCCS Channel-to-Channel Differential Input Skew FRXC Differential Input Clock Frequency TRXC Differential Input Clock Period TIJIT Differential Input Clock Jitter Tolerance (0.3Tbit) Conditions — Min — Typ — Max 0.4 Units TBIT — — — 0.2TPIXEL + 1.78 ns — 25 — 300 MHz — 3.33 — 40 ns 300 MHz — — 100 ps Conditions — Min — Typ — Max 93 Units ps Table 3.13. TMDS Input Timing AC Specifications – MHL Mode Symbol TSKEW_DF Parameter Input Differential Intrapair Skew TSKEW_CM FRXC Input Common-mode Intrapair Skew Differential Input Clock Frequency — — — 25 — — 93 75 ps MHz TRXC Differential Input Clock Period — 13.33 — ns TCLOCK_JIT Common Mode Clock Jitter Tolerance — — — TDATA_JIT Differential Data Jitter Tolerance — — — 40 0.3TBIT + 266.7 0.4TBIT + 88.88 ps ps Table 3.14. TMDS Output Timing AC Specifications Symbol TTXDPS Parameter Intrapair Differential Output Skew Conditions — Min — Typ — Max 0.15 Units TBIT TTXRT TTXFT FTXC Data/Clock Rise Time Data/Clock Fall Time Differential Output Clock Frequency 20%–80% 80%–20% — 75 75 25 — — — — — 300 ps ps MHz TTXC TDUTY Differential Output Clock Period Differential Output Clock Duty Cycle — — 3.33 40% — — 40 60% ns TTXC TOJIT Differential Output Clock Jitter — — — 0.25 TBIT © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 21 SiI9573 and SiI9575 Port Processor Data Sheet Table 3.15. Single Mode Audio Return Channel AC Specifications Symbol TASMRT TASMFT Parameter Rise Time Fall Time TASMJIT FASMDEV Jitter Max Clock Frequency Deviation Conditions 10%–90% 90%–10% Min — — Typ — — Max 60 60 Units ns ns — — — –1000 — — 0.05 1000 UI* ppm *Note: Proportional to unit time (UI), according to sample rate. Refer to the S/PDIF specification. Table 3.16. CEC AC Specifications Symbol TR_CEC Parameter Rise Time Conditions 10%–90% Min — Typ — Max 250 Units s TF_CEC Fall Time 90%–10% — — 50 s Conditions 1 MHz clock Min 0.8 Typ — Max 1.2 — –1% — +1% Units s TBIT_CBUS — 0.2 V–1.5 V 0.2 V–1.5 V 40% 5 5 — — — 60% 200 200 TBIT_CBUS ns ns — — — 100 ns Table 3.17. CBUS AC Specifications Symbol TBIT_CBUS Parameter Bit Time TBJIT_CBUS Bit-to-Bit Jitter TDUTY_CBUS TR_CBUS TF_CBUS Duty Cycle of 1 Bit Rise Time Fall Time ΔTRF Rise-to-Fall Time Difference Table 3.18. Video Input Timing AC Specifications Symbol TCIP FCIP TCIP12 Parameter IDCK Period, One Pixel per Clock IDCK Frequency, One Pixel per Clock IDCK Period, Dual-edge Clock Conditions — — — Min 6.06 25 12.12 Typ — — — Max 40 165 40 Units ns MHz ns Figure — — — Notes 1 1 2 FCIP12 TDUTY IDCK Frequency, Dual-edge Clock IDCK Duty cycle, One Pixel per Clock — — 25 40% — — 82.5 60% MHz TCIP — Figure 4.1 2 — TDUTY12 TIJIT TSIDF IDCK Duty Cycle, Dual-edge Clock Worst Case IDCK Clock Jitter Setup Time to IDCK Falling Edge — — 45% — 1.0 — — — 55% 1.0 — TCIP12 ns ns Figure 4.1 — — 3, 4 5 THIDF TSIDR Hold Time to IDCK Falling Edge Setup Time to IDCK Rising Edge 2.2 1.0 — — — — ns ns THIDR TSIDD THIDD Hold Time to IDCK Rising Edge Setup Time to IDCK Rising or Falling Edge Hold Time to IDCK Rising or Falling Edge 2.2 1.0 2.2 — — — — — — ns ns ns EDGE = 0 EDGE = 1 Dual-edge Clocking Figure 4.3 Figure 4.2 Figure 4.4 5 6 Notes: 1. TCIP and FCIP apply in single-edge clocking modes. TCIP is the inverse of FCIP and is not a controlling specification. 2. TCIP12 and FCIP12 apply in dual-edge mode. TCIP12 is the inverse of FCIP12 and is not a controlling specification. 3. Input clock jitter is estimated by triggering a digital scope at the rising edge of the input clock, and measuring peak-to-peak time spread of the rising edge of the input clock 1 microsecond after the triggering. 4. Actual jitter tolerance can be higher depending on the frequency of the jitter. 5. Setup and hold time specifications apply to Data, DE, VSYNC, and HSYNC input pins, relative to IDCK input clock. 6. Setup and hold limits are not affected by the setting of the EDGE bit for 8/10/12-bit dual-edge clocking mode. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 22 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet 3.4.1. Control Signal Timing Specifications Under normal operating conditions unless otherwise specified. Table 3.19. Control Signal Timing Specifications Symbol TRESET TI2CDVD Parameter RESET# signal LOW time required for reset SDA Data Valid Delay from SCL falling edge on READ command tSU;DAT I C data setup time THDDAT I C data hold time Response time for INT output pin from change in input condition (HPD, Receiver Sense, VSYNC change, etc.). TINT Conditions — CL = 400pF Min 50 Typ — Max — 700 Units µs ns — — 2 — 210 2 0–400 kHz 2.0 RESET# = HIGH — Notes 1, 5 2, 6 — — ns 7 — — ns 3, 6 — 100 µs — FSCL Frequency on master DDC SCL signal — 40 70 100 kHz 4 FCSCL Frequency on master CSCL signal — 40 — 400 kHz — Notes: 1. Reset on RESET# signal can be LOW as the supply becomes stable (shown in Figure 4.5), or pulled LOW for at least TRESET (shown in Figure 4.6). 2 2 2. All standard-mode (100 kHz) I C timing requirements are guaranteed by design. These timings apply to the slave I C port (pins 2 CSDA and CSCL) and to the master I C port (pins DSDA and DSCL). 2 3. This minimum hold time is required by CSCL and CSDA signals as an I C slave. The device does not include the 300 ns internal 2 delay required by the I C Specification (Version 2.1, Table 5, note 2). 2 4. The master DDC block provides an SCL signal for the E-DDC bus. The HDMI Specification limits this to I C Standard Mode or 100 kHz. Use of the Master DDC block does not require an active IDCK. 5. Not a Schmitt trigger. 2 2 6. Operation of I C pins above 100 kHz is defined by LVTTL levels VIH, VIL, VOH, and VOL. For these levels, I C speeds up to 400 kHz (fast mode) are supported. 2 7. In default configuration, operation at 400 kHz does not meet the tSU;DAT data setup time required by the I C Specification. For advanced configuration information, refer to SiI-PR-1054 revision D or later. Table 3.20. Audio Crystal Frequency Symbol FXTAL Parameter External Crystal Frequency Conditions — Min 26 Typ 27 Max 28.5 Units MHz Note: Fxtal must be 27 MHz if the crystal oscillator (xclk) is used as the clock source for the Video Pattern Generator. 3.3 V XTALVCC33 XTALIN C1 27 MHz R XTALOUT C2 XTALGND The values of C1, C2, and R depend upon the characteristics of the crystal. Figure 3.2. Audio Crystal Schematic Note: The XTALIN/XTALOUT pin pair must be driven with a clock in all applications. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 23 SiI9573 and SiI9575 Port Processor Data Sheet 3.4.2. Audio Input Timing Table 3.21. S/PDIF Input Port AC Specifications Symbol FS_SPDIF Parameter Sample Rate Conditions 2 Channel Min 32 Typ — Max 192 Units kHz Figure — Notes — TSPCYC S/PDIF Cycle Time TSPDUTY S/PDIF Duty Cycle Note: Refer to the notes for Table 3.22. CL = 10 pF CL = 10 pF — 90% — — 1.0 110% UI UI Figure 4.10 Figure 4.10 1 1 Conditions — CL = 10 pF CL = 10 pF Min 32 — 90% Typ — — — Max 192 1.0 110% Units kHz UI UI Figure — Figure 4.9 Figure 4.9 Notes — 1 — CL = 10 pF CL = 10 pF 15 0 — — — — ns ns Figure 4.9 Figure 4.9 2 2 2 Table 3.22. I S Input Port AC Specifications Symbol FS_I2S TSCKCYC TSCKDUTY Parameter Sample Rate 2 I S Cycle Time 2 I S Duty Cycle TI2SSU TI2SHD I S Setup Time 2 I S Hold Time 2 Notes: 2 1. Proportional to unit time (UI) according to sample rate. Refer to the I S or S/PDIF specifications. 2 2. Setup and hold minimum times are based on 13.388 MHz sampling, which is adapted from Figure 3 of the Philips I S Specification. 3.4.3. Audio Output Timing 2 Table 3.23. I S Output Port AC Specifications Symbol TTR Parameter SCK Clock Period (TX) Conditions CL = 10 pF Min 1.0 Typ — Max — Units TTR THC SCK Clock HIGH Time CL = 10 pF 0.35 — — TTR TLC SCK Clock LOW Time CL = 10 pF 0.35 — — TTR TSU Setup Time, SCK to SD/WS CL = 10 pF 0.4TTR – 5 — — ns THD Hold Time, SCK to SD/WS CL = 10 pF 0.4TTR – 5 — — ns TSCKDUTY SCK Duty Cycle CL = 10 pF 40 — 60 % TTR TSCK2SD SCK to SD or WS Delay CL = 10 pF –5.0 — 5.0 ns Note: Refer to Figure 4.11 on page 29. Table 3.24. S/PDIF Output Port AC Specifications Symbol TSPCYC Parameter SPDIF Cycle Time Conditions CL = 10 pF Min — Typ 1.0 Max — Units 1 UI FSPDIF SPDIF Frequency — 4.0 — 24.0 MHz TSPDUTY SPDIF Duty Cycle CL = 10 pF 90.0 — 110.0 % TSPCYC TMCLKCYC MCLK Cycle Time CL = 10 pF 20.0 — 250 ns FMCLK MCLK Frequency CL = 10 pF 4.0 — 50.0 MHz — 65 % TMCLKCYC TMCLKDUTY MCLK Duty Cycle CL = 10 pF 45 Notes: 1. Proportional to unit time (UI), according to sample rate. Refer to the S/PDIF specification. 2. Refer to Figure 4.12 on page 29 and Figure 4.13 on page 29. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 24 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet 3.5. Serial Flash SPI Interface AC Specifications Table 3.25. Serial Flash AC Specifications Symbol FSCLK Parameter Clock Frequency Min 1.6875 Typ — Max 27 Unit MHz TSCLKH TSCLKL Clock HIGH Time Clock LOW Time 16 16 — — — — ns ns TSLCH TCHSH TDVCH SS Active Setup Time SS Not Active Hold Time SDI Data Out Setup Time 11 11 6 — — — — — — ns ns ns TCHDX TCLQV SDI Data Out Hold Time Clock LOW-to-SDO Data In Valid 6 — — — — 16 ns ns Note: Refer to Figure 4.14 on page 30. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 25 SiI9573 and SiI9575 Port Processor Data Sheet 4. Timing Diagrams 4.1. Video Input Timing Diagrams TCIP/TCIP12 50% 50% 50% TDUTY /TDUTY12 Figure 4.1. IDCK Clock Duty Cycle TCIP IDCK 50 % TSIDR D[19:0] , DE, HSYNC, VSYNC 50 % THIDR no change allowed 50 % 50 % Signals may change only in the unshaded portion of the waveform , to meet both the minimum setup and minimum hold time specifications . Figure 4.2. Control and Data Single-Edge Setup and Hold Times—EDGE = 1 IDCK 50 % TSIDF D[19:0] , DE, HSYNC, VSYNC 50 % 50 % THIDF no change allowed 50 % Signals may change only in the unshaded portion of the waveform , to meet both the minimum setup and minimum hold time specifications . Figure 4.3. Control and Data Single-Edge Setup and Hold Times—EDGE = 0 © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 26 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet TCIP12 IDCK 50 % TSIDD D[11:0], DE, HSYNC,VSYNC 50 % 50 % THIDD no change allowed TSIDD 50 % THIDD no change allowed 50 % Signals may change only in the unshaded portion of the waveform, to meet both the minimum setup and minimum hold time specifications. Figure 4.4. Control and Data Dual-Edge Setup and Hold Times 4.2. Reset Timing Diagrams VCC must be stable between the limits shown in the Normal Operating Conditions section on page 18 for TRESET before RESET# goes HIGH, as shown in Figure 4.5. Before accessing registers, RESET# must be pulled LOW for TRESET. This can be done by holding RESET# LOW until TRESET after stable power, or by pulling RESET# LOW from a HIGH state for at least TRESET, as shown in Figure 4.6. Note: VCC can be one of RnPPWR5V or SBVCC5V. VCCmax VCCmin VCC TRESET RESET# Figure 4.5. Conditions for Use of RESET# RESET# TRESET Figure 4.6. RESET# Minimum Timing © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 27 SiI9573 and SiI9575 Port Processor Data Sheet 4.3. I2C Timing Diagrams CSDA, DSDA TI2CDVD CSCL, DSCL 2 Figure 4.7. I C Data Valid Delay (Driving Read Cycle Data) CSDA, DSDA tSU:DAT CSCL, DSCL 2 Figure 4.8. I C Data Setup Time 4.4. Digital Audio Input Timing TSCKCYC TSCKDUTY SCK 50 % 50 % TI2SSU SD[0:3], WS TI2SHD no change allowed 50 % 50 % 2 Figure 4.9. I S Input Timing TSPCYC T SPDUTY 50% SPDIF Figure 4.10. S/PDIF Input Timing © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 28 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet 4.5. Digital Audio Output Timing TTR TSCKDUTY SCK TSCK2SD {Max} WS SD TSU Data Valid THD TSCK2SD {Min} Data Valid Data Valid 2 Figure 4.11. I S Output Timing TSPCYC T SPDUTY 50% SPDIF Figure 4.12. S/PDIF Output Timing TMCLKCYC MCLK 50% 50% TMCLKDUTY Figure 4.13. MCLK Timing © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 29 SiI9573 and SiI9575 Port Processor Data Sheet TCHSH SS TSLCH SCLK TDVCH TCHDX SDI SS and SDI Timing SS TSCLKH SCLK TCLQV TSCLKL SDO SDO Timing Figure 4.14. SPI Flash Memory Timing © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 30 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet 5. Pin Diagram and Pin Descriptions 5.1. Pin Diagram SD0_IN/SPDIF0_IN SCK1_IN/SCK1_OUT WS1_IN/WS1_OUT SD1_IN/SD1_OUT/SPDIF1_IN/SPDIF1_OUT ARC0 ARC1 CVCC13 TPVDD13 TDVDD13 T1XC– T1XC+ T1X0– T1X0+ T1X1– T1X1+ T1X2– T1X2+ TPVDD13 TDVDD13 T0XC– T0XC+ T0X0– T0X0+ T0X1– T0X1+ T0X2– T0X2+ CVCC13 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 IDCK IOVCC33 D11 D12 D13 Figure 5.1 shows the pin assignments of the SiI957n port processor. Individual pin functions are described in the Pin Descriptions section on the next page. The package is a 20 × 20 × 0.4 mm 176-pin TQFP with an ePad, which must be connected to ground. 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 96 D14 1 132 SCK0_IN/GPIO10 D15 2 131 WS0_IN/GPIO11 D16 3 130 SPDIF0_OUT/DL2 D17 4 129 MUTEOUT/GPIO9 D18 5 128 SD0_3/DR2/GPIO8 D19 6 127 SD0_2/DL1/GPIO7 DE 7 126 SD0_1/DR1/GPIO6 VSYNC 8 125 MCLK HSYNC 9 124 SD0_0/DL0 R0XC– 10 123 IOVCC33 R0XC+ 11 122 SCK0/DDCK R0X0– 12 121 WS0_OUT/DR0 R0X0+ 13 120 SDI/GPIO5 R0X1– 14 119 SDO/GPIO4 R0X1+ 15 118 SCLK/GPIO3 R0X2– 16 117 SS/GPIO2 R0X2+ 17 116 CVCC13 AVDD13 18 115 XTALGND AVDD33 19 114 XTALIN R1XC– 20 113 XTALOUT R1XC+ 21 112 XTALVCC33 R1X0– 22 111 APLL13 R1X0+ 23 110 TXDSCL1 R1X1– 24 109 TXDSDA1 R1X1+ 25 108 TX_HPD1 R1X2– 26 107 TXDSCL0 R1X2+ 27 106 TXDSDA0 R2XC– 28 105 TX_HPD0 R2XC+ 29 104 MHL_CD1/GPIO1 R2X0– 30 103 MHL_CD0/GPIO0 R2X0+ 31 102 VCC33OUT R2X1– 32 101 SBVCC5 R2X1+ 33 100 R5PWR5V R2X2– 34 99 CBUS_HPD5 R2X2+ 35 98 DSCL5 AVDD13 36 97 DSDA5 CVCC13 37 96 RSVDL AVDD33 38 95 R4PWR5V R3XC– 39 94 CBUS_HPD4 R3XC+ 40 93 DSCL4 R3X0– 41 92 DSDA4 R3X0+ 42 91 R3PWR5V R3X1– 43 90 CBUS_HPD3 R3X1+ 44 89 DSCL3 SiI957n Top View 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 R3X2– R4XC– R4XC+ R4X0– R4X0+ R4X1– R4X1+ R4X2– R4X2+ AVDD13 AVDD33 R5XC– R5XC+ R5X0– R5X0+ R5X1– R5X1+ R5X2– R5X2+ CVCC13 CSCL CSDA INT RESET# TPWR_CI2CA CEC_A1 CEC_A0 DSDA6(VGA) DSCL6(VGA) 75 76 77 78 79 80 81 82 83 84 85 86 87 88 DSDA3 57 R2PWR5V 56 DSCL2 55 CBUS_HPD2 54 DSDA2 53 R1PWR5V 52 CBUS_HPD1 51 DSCL1 50 DSDA1 49 R0PWR5V 48 CBUS_HPD0 47 DSCL0 46 RSVDL DSDA0 45 R3X2+ ePad (GND) Figure 5.1. Pin Diagram (Top View) © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 31 SiI9573 and SiI9575 Port Processor Data Sheet 5.2. Pin Descriptions 5.2.1. HDMI Receiver and MHL Port Pins Name R0X0+ Pin 13 Type TMDS Dir Input Description HDMI Receiver Port 0 TMDS Input Data Pairs. R0X0– R0X1+ 12 15 R0X1– R0X2+ 14 17 R0X2– R0XC+ R0XC– 16 11 10 TMDS Input HDMI Receiver Port 0 TMDS Input Clock Pair. R1X0+ R1X0– 23 22 TMDS Input HDMI Receiver Port 1TMDS Input Data Pairs. R1X1+ R1X1– R1X2+ 25 24 27 R1X2– R1XC+ 26 21 R1XC– R2X0+ R2X0– 20 31 30 TMDS Input HDMI Receiver Port 1 TMDS Input Clock Pair. TMDS Input HDMI Receiver Port 2 TMDS Input Data Pairs. R2X1+ R2X1– 33 32 R2X2+ R2X2– R2XC+ 35 34 29 R2XC– 28 TMDS Input HDMI Receiver Port 2 TMDS Input Clock Pair. R3X0+ R3X0– 42 41 TMDS Input HDMI Receiver Port 3 TMDS Input Data Pairs. R3X1+ R3X1– R3X2+ 44 43 46 R3X2– R3XC+ 45 40 TMDS Input HDMI Receiver Port 3 TMDS Input Clock Pair. R3XC– R4X0+ 39 50 TMDS Input HDMI Receiver Port 4 TMDS Input Data Pairs. R4X0– R4X1+ R4X1– 49 52 51 R4X2+ R4X2– 54 53 R4XC+ 48 TMDS Input HDMI Receiver Port 4 TMDS Input Clock Pair. R4XC– 47 © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 32 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet 5.2.2. HDMI Receiver and MHL Port Pins (continued) Name R5X0+ R5X0– Pin 60 59 R5X1+ R5X1– 62 61 R5X2+ R5X2– R5XC+ 64 63 58 Type TMDS Dir Input Description HDMI Receiver Port 5 TMDS Input Data Pairs. TMDS Input HDMI Receiver Port 5 TMDS Input Clock Pair. R5XC– 57 Note: For Port n and Port m that have been configured as MHL inputs, the RnX0+ and RnX0– pin pair and RmX0+ and RmX0– pin pair carry the respective MHL signals. 5.2.3. HDMI Transmitter Port Pins Name T0X0+ Pin 155 T0X0– 154 T0X1+ 157 T0X1– 156 T0X2+ 159 T0X2– 158 T0XC+ 153 T0XC– 152 T1X0+ 145 T1X0– 144 T1X1+ 147 T1X1– 146 T1X2+ 149 T1X2– 148 T1XC+ 143 T1XC– 142 Type TMDS Dir Output Description HDMI Transmitter Port 0 TMDS Output Data Pairs. Main HDMI transmitter output port TMDS data pairs. TMDS Output HDMI Transmitter Port 0 TMDS Output Clock Pair. Main HDMI transmitter output port TMDS clock pair. TMDS Output HDMI Transmitter Port 1 TMDS Output Data Pairs. Sub-HDMI transmitter output port TMDS data pairs. TMDS Output HDMI Transmitter Port 1 TMDS Output Clock Pair. Sub-HDMI transmitter output port TMDS clock pair. 5.2.4. Audio Return Channel Pins Name ARC0 Pin 137 ARC1 138 Type Analog Dir Input/ Output Description Audio Return Channels 0 and 1. These pins are used to transmit or receive an IEC60958-1 audio stream. In ARC transmitter mode, received on the SPDIFn_IN input pin, this pin transmits an S/PDIF signal to an ARC receiver-capable source (such as HTiB) or a repeater (such as AVR) devices, using single-mode ARC. In ARC receiver mode, transmitted through the SPDIFn_OUT pin, this pin receives an S/PDIF signal from an ARC transmitter-capable sink (such as DTV) device, using single-mode ARC. In combination with external components, common-mode ARC can be received. Each channel can either be an ARC input or an ARC output at one time. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 33 SiI9573 and SiI9575 Port Processor Data Sheet 5.2.5. Audio Pins Name MCLK SCK0/ DDCK WS0_OUT/ DR0 SD0_0/ DL0 SD0_1/DR1/ GPIO6 SD0_2/DL1/ GPIO7 SD0_3/DR2/ GPIO8 SPDIF0_OUT/ DL2 Pin 125 122 Type LVTTL LVTTL Dir Output Output Description Master Clock Output 2 Main Port I S Serial Clock Output/DSD Clock Output. 121 LVTTL Output Main Port I S Word Select Output/DSD Data Right Bit 0. 124 LVTTL Output Main Port I S Serial Data 0 Output/DSD Data Left Bit 0 Output. 126 LVTTL Output 127 LVTTL Output 128 LVTTL Output Main Port I S Serial Data 1 Output/DSD Data Right Bit 1 Output/ Programmable GPIO 6. 2 Main Port I S Serial Data 2 Output/DSD Data Left Bit 1 Output/ Programmable GPIO 7. 2 Main Port I S Serial Data 3 Output/DSD Data Right Bit 2/ Programmable GPIO 8. 130 Output Main Port S/PDIF Output/DSD Data Left Bit 2. SCK0_IN/ GPIO10 132 Analog/ LVTTL LVTTL Input/ Output Main Port I S Serial Clock Input/Programmable GPIO 10. WS0_IN/ GPIO11 131 LVTTL Main Port I S Word Select Input/Programmable GPIO 11. SD0_IN/ SPDIF0_IN 133 SCK1_IN/ SCK1_OUT 134 Analog/ LVTTL LVTTL Input/ Output Input Input/ Output Subport I S Serial Clock1 Input/I S Serial bit Clock Output. WS1_IN/ WS1_OUT 135 LVTTL Subport I S Word Select Input/I S Word Select Output. SD1_IN/ SD1_OUT/ SPDIF1_IN/ SPDIF1_OUT MUTEOUT/ GPIO9 136 LVTTL Input/ Output Input/ Output 129 LVTTL Input/ Output Mute Audio Output/Programmable GPIO 9. Dir Output Description Crystal clock output. 2 2 2 2 2 2 Main Port I S Serial Data Input/S/PDIF Input. 2 2 2 2 2 2 Subport I S Serial Data Input/I S Serial Data1 Output/ SPDIF Input//SPDIF Output. 5.2.6. Crystal Pins Name XTALOUT Pin 113 XTALIN 114 Type LVTTL 5 V tolerant LVTTL 5 V tolerant Input Crystal clock input. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 34 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet 5.2.7. SPI Interface Pins Name SS/ GPIO2 Pin 117 Type LVTTL Dir Input/ Output Description SPI Slave Select/Programmable GPIO 2. SCLK/ GPIO3 118 LVTTL Schmitt Open-drain\ Input/ Output SPI Clock/Programmable GPIO 3. SDO/ GPIO4 119 LVTTL Schmitt Open-drain Input/ Output SPI Slave Data Output/Master Data Input/Programmable GPIO 4. SDI/ GPIO5 120 LVTTL Schmitt Open-drain Input/ Output SPI Slave Data Input/Master Data Output/Programmable GPIO 5. 5.2.8. Parallel Video Bus Name D0 Pin 161 Type LVTTL Dir Input Description Video Data Inputs. The video data inputs can be configured to support a wide variety of input formats, including multiple RGB and YCbCr bus formats, using register settings. D1 162 D2 163 D3 164 D4 165 D5 166 D6 167 D7 168 D8 169 D9 170 D10 171 D11 174 D12 175 D13 176 D14 1 D15 2 D16 3 D17 4 D18 5 D19 6 DE 7 LVTTL Input Data Enable Input HSYNC 9 LVTTL Input Horizontal Sync Input VSYNC 8 LVTTL Input Vertical Sync Input IDCK 172 LVTTL Input Input Data Clock © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 35 SiI9573 and SiI9575 Port Processor Data Sheet 5.2.9. DDC I2C Pins Name DSDA0 Pin 76 Type LVTTL Schmitt Open-drain 5 V tolerant Dir Input/ Output Description 2 DDC I C Data for respective HDMI receiver port. These signals are true open drain, and do not pull to ground when power is not applied to the device. These pins require an external pull-up resistor. DSDA1 DSDA2 DSDA3 80 84 88 DSDA4 DSDA5 92 97 DSDA6(VGA) 73 LVTTL Schmitt Open-drain 5 V tolerant Input/ Output DDC I C data for VGA port. This signal is true open drain, and does not pull to ground when power is not applied to the device. This pin requires an external pull-up resistor. DSCL0 77 Input DSCL1 81 DSCL2 85 DDC I C Clock for respective HDMI receiver port. These signals are true open drain, and do not pull to ground when power is not applied to the device. These pins require an external pull-up resistor. DSCL3 DSCL4 89 93 LVTTL Schmitt Open-drain 5 V tolerant DSCL5 DSCL6(VGA) 98 74 Input DDC I C Clock for VGA port. This signal is true open drain, and does not pull to ground when power is not applied to the device. This pin requires an external pull-up resistor. TXDSDA0 106 Input/ Output DDC Master I C Data for HDMI transmitter Port 0. This signal is true open drain, and does not pull to ground when power is not applied to the device. This pin requires an external pull-up resistor. TXDSDA1 109 Input/ Output DDC Master I C Data for HDMI transmitter Port 1. This signal is true open drain, and does not pull to ground when power is not applied to the device. This pin requires an external pull-up resistor. TXDSCL0 107 Input/ Output DDC Master I C Clock for HDMI transmitter Port 0. This signal is true open drain, and does not pull to ground when power is not applied to the device. This pin requires an external pull-up resistor. TXDSCL1 110 LVTTL Schmitt Open-drain 5 V tolerant LVTTL Schmitt Open-drain 5 V tolerant LVTTL Schmitt Open-drain 5 V tolerant LVTTL Schmitt Open-drain 5 V tolerant LVTTL Schmitt Open-drain 5 V tolerant Input/ Output DDC Master I C Clock for HDMI transmitter Port 1 This signal is true open drain, and does not pull to ground when power is not applied to the device. This pin requires an external pull-up resistor. 2 2 2 2 2 2 2 © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 36 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet 5.2.10. Control Pins Name CSCL Pin 66 Type Schmitt Open-drain 5 V tolerant Dir Input Description 2 Local Configuration/Status I C Clock. 2 Chip configuration/status is accessed via this I C port. This pin is true open drain, so it does not pull to ground if power is not applied. See Figure 2.2 on page 10. CSDA 67 Input/ Output Local Configuration/Status I C Data. 2 Chip configuration/status is accessed via this I C port. This pin is true open drain, so it does not pull to ground if power is not applied. See Figure 2.2 on page 10. RESET# 69 LVTTL Schmitt Open-drain 5 V tolerant Schmitt 2 Input External reset. Active LOW. Must be pulled up to VCC33OUT. When main power is not provided to the system, the microcontroller must present a high impedance of at least 100 kΩ to RESET#. If this condition is not met, a circuit to block the leakage from VCC33OUT to the microcontroller GPIO may be required. Type Power Dir Input Description 5 V Port detection input for respective HDMI receiver port. Connect to 5 V signal from HDMI input connector. These pins require a 10 Ω series resistor, a 5.1 kΩ pull down resistor, and at least a 1 µF capacitor to ground. LVTTL 1.5 mA 5 V tolerant Analog Input/ Output Input Hot Plug Detect Input for HDMI transmitter Port 0. Input Hot Plug Detect Input for HDMI transmitter Port 1. 5.2.11. System Switching Pins Name R0PWR5V R1PWR5V Pin 79 83 R2PWR5V 87 R3PWR5V R4PWR5V 91 95 R5PWR5V 100 CBUS_HPD0 78 CBUS_HPD1 82 CBUS_HPD2 86 CBUS_HPD3 90 CBUS_HPD4 94 CBUS_HPD5 99 TX_HPD0 105 TX_HPD1 108 MHL_CD0/ GPIO0 103 LVTTL 5 V tolerant LVTTL 5 V tolerant LVTTL MHL_CD1/ GPIO1 104 LVTTL Hot Plug Detect output for the respective HDMI receiver port. In MHL mode, these pins serve as the respective CTRL bus. Input/ Output MHL Cable Detect 0/Programmable GPIO 0. MHL_CD0 is 5 V tolerant if SBVCC5 or one of the R[0-5]PWR5V is applied to the device. If none of these power supplies are applied, then MHL_CD0 is 3.3 V tolerant. Input/ Output MHL Cable Detect 1/Programmable GPIO 1. MHL_CD1 is 5 V tolerant if SBVCC5 or one of the R[0-5]PWR5V is applied to the device. If none of these power supplies are applied, then MHL_CD1 is 3.3 V tolerant. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 37 SiI9573 and SiI9575 Port Processor Data Sheet 5.2.12. Configuration Pins Name TPWR_CI2CA Pin 70 Type LVTTL Dir Input/ Output Description 2 I C Slave Address Input/Transmit Power Sense Output. 2 During power-on-reset (POR), this pin is used as an input to latch the I C subaddress. The level on this pin is latched when the POR transitions from the asserted state to the de-asserted state. After completion of POR, this pin is used as the TPWR output. A register setting can change this pin to show if the active port is receiving a TMDS clock. INT 68 Schmitt Open-drain 8 mA 3.3 V tolerant Output Interrupt Output. This is an open-drain output and requires an external pull-up resistor. This output can be safely pulled up to 3.3 V with no power (no SBVCC5, no R[0-5]PWR5V, no 3.3 V, and no 1.3 V) applied to the device. 5.2.13. CEC Pins Name CEC_A0 Pin 72 Type CEC Compliant 5 V tolerant, Schmitt triggered, LVTTL Dir Input/ Output Description Primary CEC I/O used for interfacing to CEC devices This signal is electrically compliant with the CEC specification. As an input, this pin acts as an LVTTL Schmitt triggered input and is 5 V tolerant. As an output, the pin acts as an NMOS driver with resistive pull-up. This pin has an internal pull-up resistor. This signal should be connected to the CEC signal of all HDMI input and output ports if the system supports just one CEC line. OR In a system designed to have separate CEC connectivity for the HDMI input and output ports, this signal should be connected to the CEC signal of all the input ports supported in the system. This signal and CEC_A0 each connect to a separate CEC controller within the port processor and are independent of each other. CEC_A1 71 CEC Compliant 5 V tolerant, Schmitt triggered, LVTTL Input/ Output Secondary CEC I/O used for interfacing to CEC devices. This signal is electrically compliant with the CEC specification. As an input, this pin acts as an LVTTL Schmitt triggered input and is 5 V tolerant. As an output, the pin acts as an NMOS driver with resistive pull-up. This pin has an internal pull-up resistor. This is an optional CEC signal provided for system designers who want to implement a system with two independent CEC lines, such as a system that supports a separate CEC line for the HDMI input ports and the HDMI output ports. In the example of a DTV that provides a second HDMI output using the SiI957n port processor; this signal can be connected to the CEC signal of the output port while the CEC_A1 signal is connected to the CEC signal of the input ports. This signal and CEC_A1 each connect to a separate CEC controller within the port processor and are independent of each other. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 38 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet 5.2.14. Power and Ground Pins Name AVDD33 Pin 19, 38, 56 Type Power Description TMDS Core VDD. AVDD33 should be isolated from other system supplies to prevent leakage from the source device through the TMDS input pins. AVDD33 should not be used to power other system components that can be adversely affected by such leakage. Supply 3.3 V IOVCC33 123, 173 Power I/O VCC. 3.3 V SBVCC5 101 Power Local Power from system. This pin requires a 10 Ω series resistor. 5.0 V AVDD13 18, 36, 55 Power TMDS Receiver Core VDD. 1.3 V CVCC13 37, 65, 116, 139, 160 Power Digital Core VCC. 1.3 V APLL13 111 Power PLL Analog VCC. 1.3 V VCC33OUT 102 Power Internal regulator 3.3 V output. VCC33OUT should not be used as a power source to provide power to other external circuits 3.3 V TPVDD13 140, 150 Power Analog Power for TMDS Tx core. 1.3 V TDVDD13 141, 151 Power Digital Power for TMDS Tx core. 1.3 V XTALVCC33 112 Power PLL crystal oscillator power. 3.3 V XTALGND 115 Ground PLL crystal oscillator ground. GND GND ePad Ground The ePad must be soldered to ground, as this is the only ground connection for the device. GND 5.2.15. Reserved Pin Name RSVDL RSVDL Pin 75 96 Type Reserved Reserved Description Reserved, must be tied to ground. Reserved, must be tied to ground through a 4.7 kΩ pull-down resistor. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 39 SiI9573 and SiI9575 Port Processor Data Sheet 6. Feature Information 6.1. Standby and HDMI Port Power Supplies The port processor has a 5-volt standby power supply pin (SBVCC5V) that can be used to supply power to the EDID and CEC portions of the device when all other power supplies are turned off. This arrangement results in a low-power mode, but allows the EDID to be readable and the CEC controllers to be operational. Table 6.1 summarizes the power modes available in the SiI957n port processor. Figure 6.1 shows a block diagram of the standby power supply sources and the always-on power island. Table 6.1. Description of Power Modes Power Mode Power-on Mode Standby Power mode HDMI Port-only Power Description All power supplies to the SiI957n chip are on. All functions are available. The standby power supply is 5 V. The always-on power domain is on, supplied from the internal power MUX; all other supplies are off. The standby power supply is 5 V. In this mode, EDID and CEC are functional, but video and audio processing is not performed and all outputs are off. Power is off to the device. HDMI +5 V from the HDMI cable is the only power source. For example, if the TV is unplugged from AC wall outlet, the EDID and CEC are functional in this mode. SBVCC5 5V RnPWR5V NA AVDD33 3.3 V AVDD13 1.3 V 5V NA Off Off Off 5 V on any input Off Off Note: All other supplies are on in the power-on mode and off in all other modes. AVDD33 AVDD13 CVCC13 TDVDD13 TPVDD13 HDMI Connectors n = 0 to 5 RnPWR5V ARC SBVCC5 ARC Block Power Multiplexer EDID RAM CEC Always-on Power Island Video and Audio Processing Blocks SiI957n Port Processor Figure 6.1. Standby Power Supply Diagram © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 40 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet If all power is off to the device, such as if the AVR or TV is unplugged from the AC electrical outlet, the EDID can still be read from the source by using power from the HDMI connector +5 V signal. In this case, the internal power MUX automatically switches to the HDMI connector power for powering the always-on logic. In this mode, only the EDID and CEC blocks are functional; all other functions of the device are in power-off mode. No damage will occur to the device in this mode. 6.2. InstaPort The SiI957n port processor supports the InstaPort™ HDCP preauthentication feature, which hides the HDCP authentication time from the user. HDCP authentication is started on an upstream (input) port immediately after a source device is connected, regardless of whether the port is currently selected for output to the downstream sink device. All nonselected ports are HDCP authenticated in this manner and when HDCP is authenticated, it is maintained in the background. When a nonselected port is then selected, the authenticated content is immediately available because it does not have to reauthenticate HDCP. This InstaPort HDCP preauthentication feature reduces port switching times to less than one second. 6.3. InstaPrevue The SiI957n device incorporates the InstaPrevue feature, which provides periodically updated picture-in-picture previews of each connected source device. The contents of each preauthenticated TMDS source device not being viewed can be displayed as a small subwindow overlaid onto the main video currently being viewed. With this feature, DTV and AVR manufacturers can provide the end-user with a content based, rather than a text based user interface for changing or selecting among various Blu-ray disc players, set-top boxes, DVD players, game consoles, or other HDMI/DVI/MHL connected sources. InstaPrevue operates in one of three modes: The All Preview mode displays one to five sub-windows, selected by the user, regardless of whether a source device is connected or not. A subwindow with a manufacturer defined color is displayed for an unconnected source device. The Active mode displays only the subwindows for which there is a connected, active, and authenticated source device. The Selected mode displays a single subwindow for a connected source device selected by the user and is intended as a Picture-In-Picture (PIP) type preview. InstaPrevue can be displayed on both Tx0 and Tx1 outputs of the SiI957n device. On the SiI9575 device, InstaPrevue does not operate in ViaPort Matrix Switch mode. The supported combinations of main video display and InstaPrevue window formats are shown in the following table. InstaPrevue is compatible with RGB, YC4:4:4, and YC4:2:2 color formats. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 41 SiI9573 and SiI9575 Port Processor Data Sheet Table 6.2. Supported InstaPrevue Window Formats Main Video Display Format All supported 2D Resolutions 720p and 1080p 3D Frame Packing InstaPrevue Window Format Supported? All supported 2D Resolutions except 4K×2K Yes 720p and 1080p 3D Frame Packing Yes 480p and 1080i 3D Frame Packing No 3D Side-by-Side (Half) No 3D Side-by-Side (Full) No 3D Top & Bottom No All supported 2D Resolutions except 4K×2K Yes 720p and 1080p 3D Frame Packing Yes 480p and 1080i 3D Frame Packing No 3D Side-by-Side (Half) No 3D Top & Bottom No All Formats No All Formats No 480p and 1080i 3D Frame Packing 3D Top & Bottom 3D Side-by-Side (Half) 3D Side-by-Side (Full) 4K×2K 6.4. Support for UltraHD resolution at 50P/60P frames per second The SiI957n device support 4K × 2K 50P and 4K × 2K 60p frame per second when pixel format is YCbCr 4:2:0 with TMDS clock frequency of 300 MHz. When configuring this mode, On-screen Display (OSD) and InstaPrevue must be disabled by the Firmware. 6.5. ViaPort Matrix Switch The ViaPort Matrix Switch feature is available only on the SiI9575 device. When enabled, a different input source is sent to each of the two HDMI transmitter ports. The available input sources for the ViaPort Matrix Switch are any one of six TMDS input ports, an external parallel video input port, and an internal video pattern generator. This feature allows the system designer to implement a two zone system in an AVR or similar device. 6.6. MHL Receiver The SiI957n port processor supports the Mobile High-definition Link (MHL) as a sink device on two of the six RX receiver ports selected at the time of manufacture. MHL is a high-speed multimedia data transfer protocol intended for use between mobile and display devices. The SiI957n device supports HDMI and MHL modes on the two selected RX receiver ports simultaneously. When an HDMI source is connected, the receiver port is configured as an HDMI port. When an MHL source is connected, an MHL cable detect sense signal from the cable is asserted and sent to the SiI957n device and also to the host microcontroller as an interrupt to configure the receiver port as an MHL port and to initiate the CBUS discovery process. MHL carries video, audio, auxiliary, control data, and power across a cable consisting of five conductors. One connection is for a dedicated ground which is used as the 0V reference for the signals on the remaining four connections. Two other conductors form a single channel TMDS differential signal pair used to send video, audio and auxiliary data from the source device to the sink device. On the SiI957n device, the MHL TMDS channel differential signal pair pins are shared with the RX0+ and RX0– pins of the HDMI TMDS channel differential signal pair. Another connection is for the MHL Control Bus (CBUS). The CBUS carries control information that provides configuration and status exchanges between the source and the sink devices. CBUS is a software/hardware protocol that supports four types of packet transfers: Display Data Control (DDC), Vendor Specific, MHL Sideband Channel (MSC), and a reserved type. EDID data can be transferred © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 42 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet between the source and sink devices using the CBUS. On the SiI957n device, the CBUS signal pin is shared with the HPD signal pin. Another connection is used as the VBUS which provides +5V power to charge the connected MHL source device. An external power switch is typically used on the system board to supply the +5 V power to the VBUS. Enabling the switch provides the +5 V power on the VBUS when the MHL source is connected and the MHL cable detect signal is asserted. 6.7. 3D Video Formats on Main Display The SiI957n port processor supports the pass-through of 3D video modes described in the HDMI 1.4a Specification. All modes support RGB 4:4:4, YCbCr 4:4:4, and YCbCr 4:2:2 color formats and 8-, 10-, and 12-bit data-width per color component. Table 6.3 shows only the maximum possible resolution with a given frame rate; for example, Side-by-Side (Half) mode is defined for 1080p @ 60 Hz, which implies that 720p, 60 Hz and 480p @ 60 Hz are also supported. Furthermore, a frame rate of 24 Hz also means that a frame rate of 23.98 Hz is supported and a frame rate of 60 Hz also means a frame rate of 59.94 Hz is supported. The input pixel clock changes accordingly. The SiI957n device supports pass-through of the HDMI Vendor Specific InfoFrame, which carries 3D information to the receiver. It also supports extraction of the HDMI Vendor Specific InfoFrame, which allows the 3D information contained 2 in the InfoFrame to be passed to the host system over the I C port. Table 6.3. Supported 3D Video Formats 3D Format Extended Definition Frame Packing — Side-by-Side Full Line Alternative — L + Depth — Frame Packing — Side-by-Side Full Half Top & Bottom — Resolution Frame Rate (Hz) Input Pixel Clock (MHz) 1080p 50/60 297 1080p 24/30 720p/1080i 50/60 1080p 24/30 720p/1080i 50/60 1080p 50/60 1080p 50/60 1080p 24/30 720p/1080i 50/60 1080p 24/30 720p/1080i 50/60 — 1080i 50/60 — 1080p 24/30 Line Alternative — Field Alternative L + Depth 148.5 74.25 148.5 6.8. VS Insertion The SiI957n device features logic that can be used to assist the downstream SoC in processing 3D video for display. It can monitor the 3D video stream and insert a VS pulse in the VS signal during the Active space period for demarcating the L and R video frames. Figure 6.2 on the next page shows the VS insertion mode. The front porch, pulse width, back porch, and polarity of the inserted VS signal can be individually set. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 43 SiI9573 and SiI9575 Port Processor Data Sheet Original 3D Stream HS VS Vact_video Vact_space Vact_video Modified 3D Stream HS VS Vact_video Vfront Vsync Vback Vact_video Figure 6.2. VS Insertion in Active Space 6.9. 3D L/R and Active Space Indicators Output on GPIO Pins The SiI957n device can also monitor the 3D video stream and output L, R and Active Space indicators on GPIO pins for 2 both the main pipe and the subpipe. The main pipe GPIO pins are shared with the main pipe I S audio extraction pins and the subpipe GPIO pins are shared with the SPI interface pins as shown in Table 6.4. Table 6.4. L/R and Active Space Indicator Mapping to GPIO Pins Pin 118 119 Name SCLK/GPIO3 SDO/GPIO4 Primary Function SPI SCLK SPI SDO Secondary Function SP_3D_R_FLAG SP_3D_V_FLAG 120 126 SDI/GPIO5 SD0_1/DR1/GPIO6 SPI SDI 2 Audio Out I S/DSD SP_3D_L_FLAG MP_3D_R_FLAG 127 128 SD0_2/DL1/GPIO7 SD0_3/DR2/GPIO8 Audio Out I S/DSD 2 Audio Out I S/DSD 2 MP_3D_V_FLAG MP_3D_L_FLAG 2 The main pipe I S audio extraction must be disabled when the main pipe 3D indicators are output on the respective GPIO pins. The SPI interface to the external Flash memory cannot be used when the subpipe 3D indicators are output on the respective GPIO pins. Figure 6.3 shows the 3D L, R and Active Space indicators output on the respective GPIO pins. 3D indicators are supported only for 720p frame-packed, and 1080p frame-packed video modes. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 44 SiI-DS-1089-F GPIO6/GPIO3 GPIO8/GPIO5 H GPIO7/GPIO4 SiI9573 and SiI9575 Port Processor Data Sheet Active video Delay L V Active space Delay Active video Delay Single register controls delay for all three markers R 3D Frame Packing Video Figure 6.3. L/R and Active Space Indicators Output on GPIO Pins 6.10.Parallel Video Input Data Bus Mapping 6.10.1. Common Video Input Formats Table 6.5. Video Input Formats 4:4:4 Bus Width/ 4 SYNC 5 VGA/ Color 480i 576i 480p Depth 1x, dual 12/8 Sep 27 25/27 27 27 65 74.25 74.25 — — — 1 46 4:4:4 1x, dual 12/8 Sep 27 25/27 27 27 65 74.25 74.25 — — — 1 46 1x, single 16/8 20/10 Sep 27 25/27 27 27 65 74.25 74.25 108 148.5 162 2 48 Emb 27 25/27 27 27 65 74.25 74.25 108 148.5 162 2, 3 49 Sep — 50/54 54 54 130 148.5 148.5 — — — 2 52 Emb — 50/54 54 54 130 148.5 148.5 — — — 2, 3 56 Sep 27 25/27 27 27 65 74.25 74.25 108 148.5 162 1 — Emb 27 25/27 27 27 65 74.25 74.25 108 148.5 162 1, 3 — Color Video Space Format RGB YCbCr 4:2:2 Clock Mode 8/8 2x, single/ 10/10 YC Mux 12/12 8/8 1x, dual/ 10/10 YC Mux 12/12 Input Clock (MHz) 576p XGA 720p 1080i SXGA 1080p UXGA Notes Page Notes: 1. Falling or rising edge latched first is programmable. 2. Latching on falling or rising edge is programmable. 3. If embedded syncs are provided, DE is generated internally from SAV/EAV sequences. Embedded syncs use ITU-R BT 656 SAV/EAV sequences of FF, 00, 00, XY. 4. Sep = separate sync; Emb = embedded sync. 5. 480i must be provided at 27 MHz, using pixel replication, to be transmitted across the HDMI link. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 45 SiI9573 and SiI9575 Port Processor Data Sheet 6.10.2. RGB and YCbCr 4:4:4 Formats Dual Clock Edge The input clock runs at the pixel rate and a complete definition of each pixel is received on each input clock cycle. One clock edge latches in half the pixel data. The opposite clock edge latches in the remaining half of the pixel data on the same pins. The same timing format is used for RGB and YCbCr 4:4:4. Each pair of columns in Table 6.6 shows the first pixel of n + 1 pixels in the line of video. The figures below the table show RGB and YCbCr data; the YCbCr 4:4:4 data is given in braces {}. Data and control signals (Dx, DE, HSYNC, and VSYNC) must change state to meet the setup and hold times specified for the dual edge mode, with respect to the first edge of IDCK as defined by the setting of the Edge Select bit (see the Programmer’s Reference). The figures show IDCK latching input data when the Edge Select bit is set to 1 (first edge is the rising edge). Table 6.6. RGB/YCbCr 4:4:4 Separate Sync Dual Clock Edge Data Mapping Video Bus Setting YCSWAP DRA Pin Name D0 D1 D2 12-bit Data Bus 8-bit Color Depth N/A 0 RGB 1st Clock 2nd Clock Edge Edge LOW LOW LOW LOW LOW LOW 12-bit Data Bus 8-bit Color Depth N/A 1 RGB 1st Clock 2nd Clock Edge Edge B0[0] G0[4] B0[1] G0[5] B0[2] G0[6] 12-bit Data Bus 8-bit Color Depth N/A 0 YCbCr 1st Clock 2nd Clock Edge Edge LOW LOW LOW LOW LOW LOW 12-bit Data Bus 8-bit Color Depth N/A 1 YCbCr 1st Clock 2nd Clock Edge Edge Cb0[0] Y0[4] Cb0[1] Y0[5] Cb0[2] Y0[6] D3 D4 LOW LOW LOW LOW B0[3] B0[4] G0[7] R0[0] LOW LOW LOW LOW Cb0[3] Cb0[4] Y0[7] Cr0[0] D5 D6 D7 LOW LOW LOW LOW LOW LOW B0[5] B0[6] B0[7] R0[1] R0[2] R0[3] LOW LOW LOW LOW LOW LOW Cb0[5] Cb0[6] Cb0[7] Cr0[1] Cr0[2] Cr0[3] D8 D9 B0[0] B0[1] G0[4] G0[5] G0[0] G0[1] R0[4] R0[5] Cb0[0] Cb0[1] Y0[4] Y0[5] Y0[0] Y0[1] Cr0[4] Cr0[5] D10 D11 D12 B0[2] B0[3] B0[4] G0[6] G0[7] R0[0] G0[2] G0[3] LOW R0[6] R0[7] LOW Cb0[2] Cb0[3] Cb0[4] Y0[6] Y0[7] Cr0[0] Y0[2] Y0[3] LOW Cr0[6] Cr0[7] LOW D13 D14 B0[5] B0[6] R0[1] R0[2] LOW LOW LOW LOW Cb0[5] Cb0[6] Cr0[1] Cr0[2] LOW LOW LOW LOW D15 D16 D17 B0[7] G0[0] G0[1] R0[3] R0[4] R0[5] LOW LOW LOW LOW LOW LOW Cb0[7] Y0[0] Y0[1] Cr0[3] Cr0[4] Cr0[5] LOW LOW LOW LOW LOW LOW D18 D19 G0[2] G0[3] R0[6] R0[7] LOW LOW LOW LOW Y0[2] Y0[3] Cr0[6] Cr0[7] LOW LOW LOW LOW HSYNC VSYNC DE HSYNC VSYNC DE HSYNC VSYNC DE HSYNC VSYNC DE HSYNC VSYNC DE HSYNC VSYNC DE HSYNC VSYNC DE HSYNC VSYNC DE HSYNC VSYNC DE © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 46 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet blank Pixel 0 Pixel 1 Pixel 2 Pixel n - 1 D[19:16] val G0[3:0] {Y0[3:0]} R0[7:4] {Cr0[7:4]} G1[3:0] {Y1[3:0]} R1[7:4] {Cr1[7:4]} G2[3:0] {Y2[3:0]} R2[7:4] {Cr2[7:4]} Gn-1[3:0] {Yn-1[3:0]} Rn-1[7:4] {Crn-1[7:4]} D[15:12] val B0[7:4] {Cb0[7:4]} R0[3:0] {Cr0[3:0]} B1[7:4] {Cb1[7:4]} R1[3:0] {Cr1[3:0]} B2[7:4] {Cb2[7:4]} R2[3:0] {Cr2[3:0]} Bn-1[7:4] {Cbn-1[7:4]} D[11:8] val B0[3:0] {Cb0[3:0]} G0[7:4] {Y0[7:4]} B1[3:0] {Cb1[3:0]} G1[7:4] {Y1[7:4]} B2[3:0] {Cb2[3:0]} G2[7:4] {Y2[7:4]} Bn-1[3:0] {Cbn-1[3:0]} blank Pixel n blank Gn[3:0] {Yn[3:0]} Rn[7:4] {Crn[7:4]} val val val val Rn-1[3:0] {Crn-1[3:0]} Bn[7:4] {Cbn[7:4]} Rn[3:0] {Crn[3:0]} val val val val Gn-1[7:4] {Yn-1[7:4]} Bn[3:0] {Cbn[3:0} Gn[7:4] {Yn[7:4]} val val val val IDCK DE HSYNC, VSYNC Figure 6.4. 8-bit Color Depth RGB/YCbCr 4:4:4 Dual Edge Timing (DRA = 0) blank Pixel 0 Pixel 1 Pixel 2 Pixel n - 1 R0[7:4] {Cr0[7:4]} G1[3:0] {Y1[3:0]} R1[7:4] {Cr1[7:4]} G2[3:0] {Y2[3:0]} R2[7:4] {Cr2[7:4]} Gn-1[3:0] {Yn-1[3:0]} Rn-1[7:4] {Crn-1[7:4]} blank Pixel n blank Gn[3:0] {Yn[3:0]} Rn[7:4] {Crn[7:4]} val val val val D[11:8] val G0[3:0] {Y0[3:0]} D[7:4] val B0[7:4] {Cb0[7:4]} R0[3:0] {Cr0[3:0]} B1[7:4] {Cb1[7:4]} R1[3:0] {Cr1[3:0]} B2[7:4] {Cb2[7:4]} R2[3:0] {Cr2[3:0]} Bn-1[7:4] {Cbn-1[7:4]} Rn-1[3:0] {Crn-1[3:0]} Bn[7:4] {Cbn[7:4]} Rn[3:0] {Crn[3:0]} val val val val D[3:0] val B0[3:0] {Cb0[3:0]} G0[7:4] {Y0[7:4]} B1[3:0] {Cb1[3:0]} G1[7:4] {Y1[7:4]} B2[3:0] {Cb2[3:0]} G2[7:4] {Y2[7:4]} Bn-1[3:0] {Cbn-1[3:0]} Gn-1[7:4] {Yn-1[7:4]} Bn[3:0] {Cbn[3:0} Gn[7:4] {Yn[7:4]} val val val val IDCK DE HSYNC, VSYNC Figure 6.5. 8-bit Color Depth RGB/YCbCr 4:4:4 Dual Edge Timing (DRA = 1) © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 47 SiI9573 and SiI9575 Port Processor Data Sheet 6.10.3. YC 4:2:2 Separate Sync Formats The input clock runs at the pixel rate and a complete definition of each pixel is received on each input clock cycle. A luma (Y) value is carried for every pixel, but the chroma values (Cb and Cr) change only every second pixel. The data bus can be 16 or 20 bits. HSYNC and VSYNC are driven explicitly on their own signals. Each pair of columns in Table 6.7 shows the first and second pixel of n + 1 pixels in the line of video. The DE HIGH time must contain an even number of pixel clocks. Table 6.7. YC 4:2:2 Separate Sync Data Mapping Video Bus Setting YCSWAP 16-bit Data Bus 8-bit Color Depth 0 16-bit Data Bus 8-bit Color Depth 1 N/A 20-bit Data Bus 10-bit Color Depth 0 N/A 20-bit Data Bus 10-bit Color Depth 1 DRA Pin Name D0 D1 Pixel #0 LOW LOW Pixel #1 LOW LOW Pixel #0 LOW LOW Pixel #1 LOW LOW Pixel #0 Cb0[0] Cb0[1] N/A Pixel #1 Cr0[0] Cr0[1] Pixel #0 Y0[0] Y0[1] Pixel #1 Y1[0] Y1[1] D2 D3 Cb0[0] Cb0[1] Cr0[0] Cr0[1] Y0[0] Y0[1] Y1[0] Y1[1] Cb0[2] Cb0[3] Cr0[2] Cr0[3] Y0[2] Y0[3] Y1[2] Y1[3] D4 D5 D6 Cb0[2] Cb0[3] Cb0[4] Cr0[2] Cr0[3] Cr0[4] Y0[2] Y0[3] Y0[4] Y1[2] Y1[3] Y1[4] Cb0[4] Cb0[5] Cb0[6] Cr0[4] Cr0[5] Cr0[6] Y0[4] Y0[5] Y0[6] Y1[4] Y1[5] Y1[6] D7 D8 Cb0[5] Cb0[6] Cr0[5] Cr0[6] Y0[5] Y0[6] Y1[5] Y1[6] Cb0[7] Cb0[8] Cr0[7] Cr0[8] Y0[7] Y0[8] Y1[7] Y1[8] D9 D10 D11 Cb0[7] LOW LOW Cr0[7] LOW LOW Y0[7] LOW LOW Y1[7] LOW LOW Cb0[9] Y0[0] Y0[1] Cr0[9] Y1[0] Y1[1] Y0[9] Cb0[0] Cb0[1] Y1[9] Cr0[0] Cr0[1] D12 D13 Y0[0] Y0[1] Y1[0] Y1[1] Cb0[0] Cb0[1] Cr0[0] Cr0[1] Y0[2] Y0[3] Y1[2] Y1[3] Cb0[2] Cb0[3] Cr0[2] Cr0[3] D14 D15 D16 Y0[2] Y0[3] Y0[4] Y1[2] Y1[3] Y1[4] Cb0[2] Cb0[3] Cb0[4] Cr0[2] Cr0[3] Cr0[4] Y0[4] Y0[5] Y0[6] Y1[4] Y1[5] Y1[6] Cb0[4] Cb0[5] Cb0[6] Cr0[4] Cr0[5] Cr0[6] D17 D18 Y0[5] Y0[6] Y1[5] Y1[6] Cb0[5] Cb0[6] Cr0[5] Cr0[6] Y0[7] Y0[8] Y1[7] Y1[8] Cb0[7] Cb0[8] Cr0[7] Cr0[8] D19 Y0[7] Y1[7] Cb0[7] Cr0[7] Y0[9] Y1[9] Cb0[9] Cr0[9] HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC DE DE DE DE DE DE DE DE DE Pixeln - 1 Pixel n blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 D[19:12] val Y0[7:0] Y1[7:0] Y2[7:0] Y3[7:0] Yn -1[7:0] D[9:2] val Cb0[7:0] Cr0[7:0] Cb2[7:0] Cr2[7:0] Cbn-1[7:0] N/A blank blank blank Yn [7:0] val val val Crn-1[7:0] val val val IDCK DE HSYNC, VSYNC Figure 6.6. 8-bit Color Depth YC 4:2:2 Timing (YCSWAP = 0) © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 48 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet Pixeln - 1 Pixel n blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 D[19:12] val Cb0[7:0] Cr0[7:0] Cb2[7:0] Cr2[7:0] Cbn-1[7:0] D[9:2] val Y0[7:0] Y1[7:0] Y2[7:0] Y3[7:0] Yn -1[7:0] blank blank blank Crn-1[7:0] val val val Yn [7:0] val val val blank blank blank IDCK DE HSYNC, VSYNC Figure 6.7. 8-bit Color Depth YC 4:2:2 Timing (YCSWAP = 1) Pixeln - 1 Pixel n blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 D[19:10] val Y0[9:0] Y1[9:0] Y2[9:0] Y3[9:0] Yn -1[9:0] Yn [9:0] val val val D[9:0] val Cb0[9:0] Cr0[9:0] Cb2[9:0] Cr2[9:0] Cbn-1[9:0] Crn-1[9:0] val val val blank blank blank IDCK DE HSYNC, VSYNC Figure 6.8. 10-bit Color Depth YC 4:2:2 Timing (YCSWAP = 0) Pixeln - 1 Pixel n blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 D[19:10] val Cb0[9:0] Cr0[9:0] Cb2[9:0] Cr2[9:0] Cbn-1[9:0] Crn-1[9:0] val val val D[9:0] val Y0[9:0] Y1[9:0] Y2[9:0] Y3[9:0] Yn -1[9:0] Yn [9:0] val val val IDCK DE HSYNC, VSYNC Figure 6.9. 10-bit Color Depth YC 4:2:2 Timing (YCSWAP = 1) 6.10.4. YC 4:2:2 Embedded Syncs Formats The Embedded Sync format is identical to the YC 4:2:2 formats with Separate Syncs, except that the syncs are embedded and not explicit. The data bus is 16 bits. Each pair of columns in Table 6.8 shows the first and second pixel of n + 1 pixels in the line of video. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 49 SiI9573 and SiI9575 Port Processor Data Sheet Table 6.8. YC 4:2:2 Embedded Sync Data Mapping Video Bus Setting YCSWAP DRA Pin Name D0 D1 16-bit Data Bus 8-bit Color Depth 0 N/A Pixel #0 Pixel #1 LOW LOW LOW LOW 16-bit Data Bus 8-bit Color Depth 1 N/A Pixel #0 Pixel #1 LOW LOW LOW LOW 20-bit Data Bus 10-bit Color Depth 0 N/A Pixel #0 Pixel #1 Cb0[0] Cr0[0] Cb0[1] Cr0[1] 20-bit Data Bus 10-bit Color Depth 1 N/A Pixel #0 Pixel #1 Y0[0] Y1[0] Y0[1] Y1[1] D2 D3 Cb0[0] Cb0[1] Cr0[0] Cr0[1] Y0[0] Y0[1] Y1[0] Y1[1] Cb0[2] Cb0[3] Cr0[2] Cr0[3] Y0[2] Y0[3] Y1[2] Y1[3] D4 D5 Cb0[2] Cb0[3] Cr0[2] Cr0[3] Y0[2] Y0[3] Y1[2] Y1[3] Cb0[4] Cb0[5] Cr0[4] Cr0[5] Y0[4] Y0[5] Y1[4] Y1[5] D6 D7 D8 Cb0[4] Cb0[5] Cb0[6] Cr0[4] Cr0[5] Cr0[6] Y0[4] Y0[5] Y0[6] Y1[4] Y1[5] Y1[6] Cb0[6] Cb0[7] Cb0[8] Cr0[6] Cr0[7] Cr0[8] Y0[6] Y0[7] Y0[8] Y1[6] Y1[7] Y1[8] D9 D10 Cb0[7] LOW Cr0[7] LOW Y0[7] LOW Y1[7] LOW Cb0[9] Y0[0] Cr0[9] Y1[0] Y0[9] Cb0[0] Y1[9] Cr0[0] D11 D12 D13 LOW Y0[0] Y0[1] LOW Y1[0] Y1[1] LOW Cb0[0] Cb0[1] LOW Cr0[0] Cr0[1] Y0[1] Y0[2] Y0[3] Y1[1] Y1[2] Y1[3] Cb0[1] Cb0[2] Cb0[3] Cr0[1] Cr0[2] Cr0[3] D14 D15 Y0[2] Y0[3] Y1[2] Y1[3] Cb0[2] Cb0[3] Cr0[2] Cr0[3] Y0[4] Y0[5] Y1[4] Y1[5] Cb0[4] Cb0[5] Cr0[4] Cr0[5] D16 D17 D18 Y0[4] Y0[5] Y0[6] Y1[4] Y1[5] Y1[6] Cb0[4] Cb0[5] Cb0[6] Cr0[4] Cr0[5] Cr0[6] Y0[6] Y0[7] Y0[8] Y1[6] Y1[7] Y1[8] Cb0[6] Cb0[7] Cb0[8] Cr0[6] Cr0[7] Cr0[8] D19 Y0[7] Y1[7] Cb0[7] Cr0[7] Y0[9] Y1[9] Cb0[9] Cr0[9] HSYNC VSYNC LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW DE LOW LOW LOW LOW LOW LOW LOW LOW SAV Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 EAV Pixel n D[19:12] FF 00 00 XY Y0[7:0] Y1[7:0] Y2[7:0] Y3[7:0] Yn-1[7:0] Yn[7:0] FF D[9:2] FF 00 00 XY Cb0[7:0] Cr0[7:0] Cb2[7:0] Cr2[7:0] Cbn-1[7:0] Crn-1[7:0] FF 00 00 XY 00 00 XY IDCK Active video Figure 6.10. 8-bit Color Depth YC 4:2:2 Embedded Sync Timing (YCSWAP = 0) © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 50 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet SAV D[19:12] FF 00 00 D[9:2] FF 00 00 Pixel n - 1 Pixel 0 Pixel 1 Pixel 2 Pixel 3 XY Cb0[7:0] Cr0[7:0] Cb2[7:0] Cr2[7:0] Cbn-1[7:0] XY Y0[7:0] Y1[7:0] Y2[7:0] Y3[7:0] Yn-1[7:0] EAV Pixel n Crn-1[7:0] FF 00 00 XY Yn[7:0] FF 00 00 XY IDCK Active video Figure 6.11. 8-bit Color Depth YC 4:2:2 Embedded Sync Timing (YCSWAP = 1) SAV Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 EAV Pixel n D[19:10] FF 00 00 XY Y0[9:0] Y1[9:0] Y2[9:0] Y3[9:0] Yn-1[9:0] Yn[9:0] FF 00 00 XY D[9:0] FF 00 00 XY Cb0[9:0] Cr0[9:0] Cb2[9:0] Cr2[9:0] Cbn-1[9:0] Crn-1[9:0] FF 00 00 XY IDCK Active video Figure 6.12. 10-bit Color Depth YC 4:2:2 Embedded Sync Timing (YCSWAP = 0) SAV Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 EAV Pixel n D[19:10] FF 00 00 XY Cb0[9:0] Cr0[9:0] Cb2[9:0] Cr2[9:0] Cbn-1[9:0] Crn-1[9:0] FF 00 00 XY D[9:0] FF 00 00 XY Y0[9:0] Y1[9:0] Y2[9:0] Y3[9:0] Yn-1[9:0] Yn[9:0] FF 00 00 XY IDCK Active video Figure 6.13. 10-bit Color Depth YC 4:2:2 Embedded Sync Timing (YCSWAP = 1) © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 51 SiI9573 and SiI9575 Port Processor Data Sheet 6.10.5. YC Mux 4:2:2 Separate Sync Formats Single Clock Edge The video data is multiplexed onto fewer pins than the mapping described in the YC 4:2:2 Separate Sync Formats section on page 48. The input clock runs at double the pixel rate so a chroma value is sent for each pixel, followed by a corresponding luma value for the same pixel. Thus, a luma (Y) value is provided for each pixel, while the Cb and Cr values alternate on successive pixels. Each group of four columns in Table 6.9 shows the four clock cycles for the first two pixels of the line. Pixel values for Cb0 and Y0 values are sent with the first pixel (first two clock cycles). Then the Cr0 and Y1 values are sent with the second pixel (next two clock cycles). The figures below the table show how this pattern is extended for the rest of the pixels in a video line of n + 1 pixels. Table 6.9. YC Mux 4:2:2 8-bit Color Depth Separate Sync Data Mapping Video Bus Setting YCSWAP DRA 8-bit Data Bus 8-bit Color Depth N/A 0 Pixel #0 1st Clock 2nd Clock Cycle Cycle LOW LOW LOW LOW Pin Name D0 D1 8-bit Data Bus 8-bit Color Depth N/A 1 Pixel #1 3rd Clock 4th Clock Cycle Cycle LOW LOW LOW LOW Pixel #0 1st Clock 2nd Clock Cycle Cycle LOW LOW LOW LOW Pixel #1 3rd Clock 4th Clock Cycle Cycle LOW LOW LOW LOW D2 D3 D4 LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW Cb0[0] LOW LOW Y0[0] LOW LOW Cr0[0] LOW LOW Y1[0] D5 D6 LOW LOW LOW LOW LOW LOW LOW LOW Cb0[1] Cb0[2] Y0[1] Y0[2] Cr0[1] Cr0[2] Y1[1] Y1[2] D7 D8 D9 LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW Cb0[3] Cb0[4] Cb0[5] Y0[3] Y0[4] Y0[5] Cr0[3] Cr0[4] Cr0[5] Y1[3] Y1[4] Y1[5] D10 D11 LOW LOW LOW LOW LOW LOW LOW LOW Cb0[6] Cb0[7] Y0[6] Y0[7] Cr0[6] Cr0[7] Y1[6] Y1[7] D12 D13 D14 Cb0[0] Cb0[1] Cb0[2] Y0[0] Y0[1] Y0[2] Cr0[0] Cr0[1] Cr0[2] Y1[0] Y1[1] Y1[2] LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW D15 D16 Cb0[3] Cb0[4] Y0[3] Y0[4] Cr0[3] Cr0[4] Y1[3] Y1[4] LOW LOW LOW LOW LOW LOW LOW LOW D17 D18 Cb0[5] Cb0[6] Y0[5] Y0[6] Cr0[5] Cr0[6] Y1[5] Y1[6] LOW LOW LOW LOW LOW LOW LOW LOW D19 Cb0[7] Y0[7] Cr0[7] Y1[7] LOW LOW LOW LOW HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC DE DE DE DE DE DE DE DE DE Pixel 0 D[19:12] val Cb0[7:0] Pixel 1 Y0[7:0] Cr0[7:0] Y1[7:0] Pixel 2 Cb2[7:0] Y2[7:0] Pixel 3 Cr2[7:0] Y3[7:0] Pixel n - 1 Cbn-1[7:0] Yn-1[7:0] Pixel n Crn-1[7:0] Yn[7:0] val IDCK DE HSYNC VSYNC Figure 6.14. 8-bit Color Depth YC Mux 4:2:2 Timing (DRA = 0) © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 52 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet Pixel 0 D[11:4] val Cb0[7:0] Pixel 1 Y0[7:0] Cr0[7:0] Pixel 2 Y1[7:0] Cb2[7:0] Pixel 3 Y2[7:0] Cr2[7:0] Pixel n - 1 Y3[7:0] Cbn-1[7:0] Yn-1[7:0] Pixel n Crn-1[7:0] Yn[7:0] val IDCK DE HSYNC VSYNC Figure 6.15. 8-bit Color Depth YC Mux 4:2:2 Timing (DRA = 1) Table 6.10. YC Mux 4:2:2 10-bit Color Depth Separate Sync Data Mapping Video Bus Setting 10-bit Data Bus 10-bit Color Depth 10-bit Data Bus 10-bit Color Depth YCSWAP DRA N/A 0 N/A 1 Pin Name D0 Pixel #0 1st Clock 2nd Clock Cycle Cycle LOW LOW Pixel #1 3rd Clock 4th Clock Cycle Cycle LOW LOW Pixel #0 1st Clock 2nd Clock Cycle Cycle LOW LOW Pixel #1 3rd Clock 4th Clock Cycle Cycle LOW LOW D1 D2 LOW LOW LOW LOW LOW LOW LOW LOW LOW Cb0[0] LOW Y0[0] LOW Cr0[0] LOW Y1[0] D3 D4 LOW LOW LOW LOW LOW LOW LOW LOW Cb0[1] Cb0[2] Y0[1] Y0[2] Cr0[1] Cr0[2] Y1[1] Y1[2] D5 D6 D7 LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW Cb0[3] Cb0[4] Cb0[5] Y0[3] Y0[4] Y0[5] Cr0[3] Cr0[4] Cr0[5] Y1[3] Y1[4] Y1[5] D8 D9 LOW LOW LOW LOW LOW LOW LOW LOW Cb0[6] Cb0[7] Y0[6] Y0[7] Cr0[6] Cr0[7] Y1[6] Y1[7] D10 D11 D12 Cb0[0] Cb0[1] Cb0[2] Y0[0] Y0[1] Y0[2] Cr0[0] Cr0[1] Cr0[2] Y1[0] Y1[1] Y1[2] Cb0[8] Cb0[9] LOW Y0[8] Y0[9] LOW Cr0[8] Cr0[9] LOW Y1[8] Y1[9] LOW D13 D14 Cb0[3] Cb0[4] Y0[3] Y0[4] Cr0[3] Cr0[4] Y1[3] Y1[4] LOW LOW LOW LOW LOW LOW LOW LOW D15 D16 D17 Cb0[5] Cb0[6] Cb0[7] Y0[5] Y0[6] Y0[7] Cr0[5] Cr0[6] Cr0[7] Y1[5] Y1[6] Y1[7] LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW D18 D19 Cb0[8] Cb0[9] Y0[8] Y0[9] Cr0[8] Cr0[9] Y1[8] Y1[9] LOW LOW LOW LOW LOW LOW LOW LOW HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 53 SiI9573 and SiI9575 Port Processor Data Sheet Pixel 0 D[19:10] val Cb0[9:0] Pixel 1 Y0[9:0] Cr0[9:0] Y1[9:0] Pixel 2 Cb2[9:0] Y2[9:0] Pixel 3 Cr2[9:0] Y3[9:0] Pixel n - 1 Cbn-1[9:0] Yn-1[9:0] Pixel n Crn-1[9:0] Yn[9:0] val IDCK DE HSYNC VSYNC Figure 6.16. 10-bit Color Depth YC Mux 4:2:2 Timing (DRA = 0) Pixel 0 D[11:2] val Cb0[9:0] Pixel 1 Y0[9:0] Cr0[9:0] Y1[9:0] Pixel 2 Cb2[9:0] Y2[9:0] Pixel 3 Cr2[9:0] Y3[9:0] Pixel n - 1 Cbn-1[9:0] Yn-1[9:0] Pixel n Crn-1[9:0] Yn[9:0] val IDCK DE HSYNC VSYNC Figure 6.17. 10-bit Color Depth YC Mux 4:2:2 Timing (DRA = 1) © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 54 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet Table 6.11. YC Mux 4:2:2 12-bit Color Depth Separate Sync Data Mapping Video Bus Setting YCSWAP DRA 12-bit Data Bus 12-bit Color Depth N/A 0 Pixel #0 1st Clock 2nd Clock Cycle Cycle LOW LOW Pin Name D0 12-bit Data Bus 12-bit Color Depth N/A 1 Pixel #1 3rd Clock 4th Clock Cycle Cycle LOW LOW Pixel #0 1st Clock 2nd Clock Cycle Cycle Cb0[0] Y0[0] Pixel #1 3rd Clock 4th Clock Cycle Cycle Cr0[0] Y1[0] D1 D2 LOW LOW LOW LOW LOW LOW LOW LOW Cb0[1] Cb0[2] Y0[1] Y0[2] Cr0[1] Cr0[2] Y1[1] Y1[2] D3 D4 D5 LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW Cb0[3] Cb0[4] Cb0[5] Y0[3] Y0[4] Y0[5] Cr0[3] Cr0[4] Cr0[5] Y1[3] Y1[4] Y1[5] D6 D7 LOW LOW LOW LOW LOW LOW LOW LOW Cb0[6] Cb0[7] Y0[6] Y0[7] Cr0[6] Cr0[7] Y1[6] Y1[7] D8 D9 D10 Cb0[0] Cb0[1] Cb0[2] Y0[0] Y0[1] Y0[2] Cr0[0] Cr0[1] Cr0[2] Y1[0] Y1[1] Y1[2] Cb0[8] Cb0[9] Cb0[10] Y0[8] Y0[9] Y0[10] Cr0[8] Cr0[9] Cr0[10] Y1[8] Y1[9] Y1[10] D11 D12 Cb0[3] Cb0[4] Y0[3] Y0[4] Cr0[3] Cr0[4] Y1[3] Y1[4] Cb0[11] LOW Y0[11] LOW Cr0[11] LOW Y1[11] LOW D13 D14 Cb0[5] Cb0[6] Y0[5] Y0[6] Cr0[5] Cr0[6] Y1[5] Y1[6] LOW LOW LOW LOW LOW LOW LOW LOW D15 D16 D17 Cb0[7] Cb0[8] Cb0[9] Y0[7] Y0[8] Y0[9] Cr0[7] Cr0[8] Cr0[9] Y1[7] Y1[8] Y1[9] LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW D18 D19 Cb0[10] Cb0[11] Y0[10] Y0[11] Cr0[10] Cr0[11] Y1[10] Y1[11] LOW LOW LOW LOW LOW LOW LOW LOW HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE Pixel 0 D[19:8] val Cb0[11:0] Pixel 1 Y0[11:0] Cr0[11:0] Y1[11:0] Pixel 2 Cb2[11:0] Y2[11:0] Pixel 3 Cr2[11:0] Y3[11:0] Pixel n - 1 Cbn-1[11:0] Yn-1[11:0] Pixel n Crn-1[11:0] Yn[11:0] val IDCK DE HSYNC VSYNC Figure 6.18. 12-bit Color Depth YC Mux 4:2:2 Timing (DRA = 0) © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 55 SiI9573 and SiI9575 Port Processor Data Sheet Pixel 0 D[11:0] val Cb0[11:0] Pixel 1 Y0[11:0] Cr0[11:0] Pixel 2 Y1[11:0] Cb2[11:0] Y2[11:0] Pixel 3 Cr2[11:0] Pixel n - 1 Y3[11:0] Cbn-1[11:0] Yn-1[11:0] Pixel n Crn-1[11:0] Yn[11:0] val IDCK DE HSYNC VSYNC Figure 6.19. 12-bit Color Depth YC Mux 4:2:2 Timing (DRA = 1) 6.10.6. YC Mux 4:2:2 Embedded Sync Formats Single Clock Edge This format is identical to the one described in the YC Mux 4:2:2 Separate Sync Formats Single Clock Edge section on page 52, except the syncs are embedded and not explicit. The figures following this table show only the first two pixels and last pixel of the line and the SAV and EAV sequences, but the remaining pixels are similar to those shown in the figures of the previous section. Table 6.12. YC Mux 4:2:2 8-bit Color Depth Embedded Sync Data Mapping Video Bus Setting YCSWAP DRA Pin Name D0 8-bit Data Bus 8-bit Color Depth N/A 0 Pixel #0 1st Clock 2nd Clock Cycle Cycle LOW LOW 8-bit Data Bus 8-bit Color Depth N/A 1 Pixel #1 3rd Clock 4th Clock Cycle Cycle LOW LOW Pixel #0 1st Clock 2nd Clock Cycle Cycle LOW LOW Pixel #1 3rd Clock 4th Clock Cycle Cycle LOW LOW D1 D2 LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW D3 D4 D5 LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW Cb0[0] Cb0[1] LOW Y0[0] Y0[1] LOW Cr0[0] Cr0[1] LOW Y1[0] Y1[1] D6 D7 LOW LOW LOW LOW LOW LOW LOW LOW Cb0[2] Cb0[3] Y0[2] Y0[3] Cr0[2] Cr0[3] Y1[2] Y1[3] D8 D9 D10 LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW Cb0[4] Cb0[5] Cb0[6] Y0[4] Y0[5] Y0[6] Cr0[4] Cr0[5] Cr0[6] Y1[4] Y1[5] Y1[6] D11 D12 LOW Cb0[0] LOW Y0[0] LOW Cr0[0] LOW Y1[0] Cb0[7] LOW Y0[7] LOW Cr0[7] LOW Y1[7] LOW D13 D14 Cb0[1] Cb0[2] Y0[1] Y0[2] Cr0[1] Cr0[2] Y1[1] Y1[2] LOW LOW LOW LOW LOW LOW LOW LOW D15 D16 D17 Cb0[3] Cb0[4] Cb0[5] Y0[3] Y0[4] Y0[5] Cr0[3] Cr0[4] Cr0[5] Y1[3] Y1[4] Y1[5] LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW D18 D19 Cb0[6] Cb0[7] Y0[6] Y0[7] Cr0[6] Cr0[7] Y1[6] Y1[7] LOW LOW LOW LOW LOW LOW LOW LOW HSYNC LOW LOW LOW LOW LOW LOW LOW LOW VSYNC DE LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 56 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet SAV D[19:12] FF 00 Pixel 0 00 XY Cb0[7:0] Y0[7:0] Pixel 1 Cr0[7:0] Y1[7:0] EAV Pixel n Crn-1[7:0] Yn[7:0] FF 00 00 XY IDCK Active video Figure 6.20. 8-bit Color Depth YC Mux 4:2:2 Embedded Sync Timing (DRA = 0) SAV D[19:10] FF 00 00 D[9:0] FF 00 00 Pixel n - 1 Pixel 0 Pixel 1 Pixel 2 Pixel 3 XY Cb0[9:0] Cr0[9:0] Cb2[9:0] Cr2[9:0] Cbn-1[9:0] XY Y0[9:0] Y1[9:0] Y2[9:0] Y3[9:0] Yn-1[9:0] EAV Pixel n Crn-1[9:0] FF 00 00 XY Yn[9:0] FF 00 00 XY IDCK Active video Figure 6.21. 8-bit Color Depth YC Mux 4:2:2 Embedded Sync Timing (DRA = 1) Table 6.13. YC Mux 4:2:2 10-bit Color Depth Embedded Sync Data Mapping Video Bus Setting YCSWAP DRA Pin Name D0 10-bit Data Bus 10-bit Color Depth N/A 0 Pixel #0 1st Clock 2nd Clock Cycle Cycle LOW LOW 10-bit Data Bus 10-bit Color Depth N/A 1 Pixel #1 3rd Clock 4th Clock Cycle Cycle LOW LOW Pixel #0 1st Clock 2nd Clock Cycle Cycle LOW LOW Pixel #1 3rd Clock 4th Clock Cycle Cycle LOW LOW D1 D2 LOW LOW LOW LOW LOW LOW LOW LOW LOW Cb0[0] LOW Y0[0] LOW Cr0[0] LOW Y1[0] D3 D4 LOW LOW LOW LOW LOW LOW LOW LOW Cb0[1] Cb0[2] Y0[1] Y0[2] Cr0[1] Cr0[2] Y1[1] Y1[2] D5 D6 D7 LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW Cb0[3] Cb0[4] Cb0[5] Y0[3] Y0[4] Y0[5] Cr0[3] Cr0[4] Cr0[5] Y1[3] Y1[4] Y1[5] D8 D9 LOW LOW LOW LOW LOW LOW LOW LOW Cb0[6] Cb0[7] Y0[6] Y0[7] Cr0[6] Cr0[7] Y1[6] Y1[7] D10 D11 D12 Cb0[0] Cb0[1] Cb0[2] Y0[0] Y0[1] Y0[2] Cr0[0] Cr0[1] Cr0[2] Y1[0] Y1[1] Y1[2] Cb0[8] Cb0[9] LOW Y0[8] Y0[9] LOW Cr0[8] Cr0[9] LOW Y1[8] Y1[9] LOW D13 D14 Cb0[3] Cb0[4] Y0[3] Y0[4] Cr0[3] Cr0[4] Y1[3] Y1[4] LOW LOW LOW LOW LOW LOW LOW LOW D15 D16 D17 Cb0[5] Cb0[6] Cb0[7] Y0[5] Y0[6] Y0[7] Cr0[5] Cr0[6] Cr0[7] Y1[5] Y1[6] Y1[7] LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW D18 D19 Cb0[8] Cb0[9] Y0[8] Y0[9] Cr0[8] Cr0[9] Y1[8] Y1[9] LOW LOW LOW LOW LOW LOW LOW LOW HSYNC LOW LOW LOW LOW LOW LOW LOW LOW VSYNC DE LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 57 SiI9573 and SiI9575 Port Processor Data Sheet SAV D[19:10] FF 00 Pixel 0 00 XY Cb0[9:0] Y0[9:0] Pixel 1 Cr0[9:0] Y1[9:0] EAV Pixel n Yn[9:0] Crn-1[9:0] FF 00 00 XY 00 XY IDCK Active video Figure 6.22. 10-bit Color Depth YC Mux 4:2:2 Embedded Sync Timing (DRA = 0) SAV D[11:2] FF 00 Pixel 0 00 XY Cb0[9:0] Y0[9:0] Pixel 1 Cr0[9:0] Y1[9:0] EAV Pixel n Crn-1[9:0] Yn[9:0] FF 00 IDCK Active video Figure 6.23. 10-bit Color Depth YC Mux 4:2:2 Embedded Sync Timing (DRA = 1) Table 6.14. YC Mux 4:2:2 12-bit Color Depth Embedded Sync Data Mapping 12-bit Data Bus 12-bit Color Depth N/A 0 Video Bus Setting YCSWAP DRA Pin Name D0 D1 Pixel #0 1st Clock 2nd Clock Cycle Cycle LOW LOW LOW LOW 12-bit Data Bus 12-bit Color Depth N/A 1 Pixel #1 3rd Clock 4th Clock Cycle Cycle LOW LOW LOW LOW Pixel #0 1st Clock 2nd Clock Cycle Cycle Cb0[0] Y0[0] Cb0[1] Y0[1] Pixel #1 3rd Clock 4th Clock Cycle Cycle Cr0[0] Y1[0] Cr0[1] Y1[1] D2 D3 D4 LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW Cb0[2] Cb0[3] Cb0[4] Y0[2] Y0[3] Y0[4] Cr0[2] Cr0[3] Cr0[4] Y1[2] Y1[3] Y1[4] D5 D6 LOW LOW LOW LOW LOW LOW LOW LOW Cb0[5] Cb0[6] Y0[5] Y0[6] Cr0[5] Cr0[6] Y1[5] Y1[6] D7 D8 D9 LOW Cb0[0] Cb0[1] LOW Y0[0] Y0[1] LOW Cr0[0] Cr0[1] LOW Y1[0] Y1[1] Cb0[7] Cb0[8] Cb0[9] Y0[7] Y0[8] Y0[9] Cr0[7] Cr0[8] Cr0[9] Y1[7] Y1[8] Y1[9] D10 D11 Cb0[2] Cb0[3] Y0[2] Y0[3] Cr0[2] Cr0[3] Y1[2] Y1[3] Cb0[10] Cb0[11] Y0[10] Y0[11] Cr0[10] Cr0[11] Y1[10] Y1[11] D12 D13 Cb0[4] Cb0[5] Y0[4] Y0[5] Cr0[4] Cr0[5] Y1[4] Y1[5] LOW LOW LOW LOW LOW LOW LOW LOW D14 D15 D16 Cb0[6] Cb0[7] Cb0[8] Y0[6] Y0[7] Y0[8] Cr0[6] Cr0[7] Cr0[8] Y1[6] Y1[7] Y1[8] LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW D17 D18 Cb0[9] Cb0[10] Y0[9] Y0[10] Cr0[9] Cr0[10] Y1[9] Y1[10] LOW LOW LOW LOW LOW LOW LOW LOW D19 Cb0[11] Y0[11] Cr0[11] Y1[11] LOW LOW LOW LOW HSYNC VSYNC LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW DE LOW LOW LOW LOW LOW LOW LOW LOW © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 58 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet SAV D[19:8] FF 00 Pixel 0 00 XY Cb0[11:0] Y0[11:0] Cr0[11:0] Y1[11:0] EAV Pixel n Pixel 1 Crn-1[11:0] Yn[11:0] FF 00 00 XY 00 XY IDCK Active video Figure 6.24. 12-bit Color Depth YC Mux 4:2:2 Embedded Sync Timing (DRA = 0) SAV D[11:0] FF 00 Pixel 0 00 XY Cb0[11:0] Y0[11:0] Cr0[11:0] Y1[11:0] EAV Pixel n Pixel 1 Crn-1[11:0] Yn[11:0] FF 00 IDCK Active video Figure 6.25. 12-bit Color Depth YC Mux 4:2:2 Embedded Sync Timing (DRA = 1) 6.10.7. YC Mux 4:2:2 Separate Sync Formats Dual Clock Edge The video data is multiplexed onto fewer pins than the mapping described in the YC 4:2:2 Separate Sync Formats on page 48. The input clock runs at the pixel rate and a complete definition of each pixel is received on each input clock cycle. The chroma value is sent for each pixel, followed by a corresponding luma value for the same pixel. Thus, a luma (Y) value is provided for each pixel, while the Cb and Cr values alternate on successive pixels. One clock edge latches in half the pixel data. The opposite clock edge latches in the remaining half of the pixel data on the same pins. Each group of four columns in Table 6.9 shows the two clock cycles for the first two pixels of the line. Pixel values for Cb0 and Y0 values are sent with the first pixel (first and second clock edges of the first clock cycle). Then the Cr0 and Y1 values are sent with the second pixel (first and second clock edges of the second clock cycle). The figures below the table show how this pattern is extended for the rest of the pixels in a video line of n + 1 pixels. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 59 SiI9573 and SiI9575 Port Processor Data Sheet Table 6.15. YC Mux 4:2:2 8-bit Color Depth Separate Sync Dual Clock Edge Data Mapping Video Bus Setting YCSWAP DRA 8-bit Data Bus 8-bit Color Depth 0 0 Pixel #0 1st Clock 1st Clock 2nd Clock Edge Edge LOW LOW Pin Name D0 8-bit Data Bus 8-bit Color Depth 1 1 Pixel #1 2nd Clock 1st Clock 2nd Clock Edge Edge LOW LOW Pixel #0 1st Clock 1st Clock 2nd Clock Edge Edge LOW LOW Pixel #1 2nd Clock 1st Clock 2nd Clock Edge Edge LOW LOW D1 D2 D3 LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW D4 D5 LOW LOW LOW LOW LOW LOW LOW LOW Y0[0] Y0[1] Cb0[0] Cb0[1] Y1[0] Y1[1] Cr0[0] Cr0[1] D6 D7 D8 LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW Y0[2] Y0[3] Y0[4] Cb0[2] Cb0[3] Cb0[4] Y1[2] Y1[3] Y1[4] Cr0[2] Cr0[3] Cr0[4] D9 D10 LOW LOW LOW LOW LOW LOW LOW LOW Y0[5] Y0[6] Cb0[5] Cb0[6] Y1[5] Y1[6] Cr0[5] Cr0[6] D11 D12 D13 LOW Cb0[0] Cb0[1] LOW Y0[0] Y0[1] LOW Cr0[0] Cr0[1] LOW Y1[0] Y1[1] Y0[7] LOW LOW Cb0[7] LOW LOW Y1[7] LOW LOW Cr0[7] LOW LOW D14 D15 Cb0[2] Cb0[3] Y0[2] Y0[3] Cr0[2] Cr0[3] Y1[2] Y1[3] LOW LOW LOW LOW LOW LOW LOW LOW D16 D17 Cb0[4] Cb0[5] Y0[4] Y0[5] Cr0[4] Cr0[5] Y1[4] Y1[5] LOW LOW LOW LOW LOW LOW LOW LOW D18 D19 Cb0[6] Cb0[7] Y0[6] Y0[7] Cr0[6] Cr0[7] Y1[6] Y1[7] LOW LOW LOW LOW LOW LOW LOW LOW HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE Pixel n - 1 Pixel n Pixel 0 D[19:12] val Cb0[7:0] Y0[7:0] Pixel 1 Cr0[7:0] Y1[7:0] Pixel 2 Cb2[7:0] Y2[7:0] Pixel 3 Cr2[7:0] Y3[7:0] Cbn-1[7:0] Yn-1[7:0] Crn-1[7:0] Yn[7:0] val IDCK DE HSYNC VSYNC Figure 6.26. 8-bit Color Depth YC Mux 4:2:2 Dual Edge Timing (DRA = 0, YCSWAP = 0) © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 60 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet Pixel 0 D[11:4] val Y0[7:0] Cb0[7:0] Pixel 1 Y1[7:0] Pixel 2 Cr0[7:0] Y2[7:0] Pixel 3 Cb2[7:0] Y3[7:0] Pixel n - 1 Cr2[7:0] Yn-1[7:0] Cbn-1[7:0] Pixel n Yn[7:0] Crn-1[7:0] val IDCK DE HSYNC VSYNC Figure 6.27. 8-bit Color Depth YC Mux 4:2:2 Dual Edge Timing (DRA = 1, YCSWAP = 1) Table 6.16. YC Mux 4:2:2 10-bit Color Depth Separate Sync Dual Clock Edge Data Mapping Video Bus Setting YCSWAP DRA Pin Name D0 D1 10-bit Data Bus 10-bit Color Depth 0 0 Pixel #0 1st Clock 1st Clock 2nd Clock Edge Edge LOW LOW LOW LOW 10-bit Data Bus 10-bit Color Depth 0 1 Pixel #1 2nd Clock 3rd Clock 4th Clock Edge Edge LOW LOW LOW LOW Pixel #0 1st Clock 1st Clock 2nd Clock Edge Edge LOW LOW LOW LOW Pixel #1 2nd Clock 3rd Clock 4th Clock Edge Edge LOW LOW LOW LOW D2 D3 LOW LOW LOW LOW LOW LOW LOW LOW Cb0[0] Cb0[1] Y0[0] Y0[1] Cr0[0] Cr0[1] Y1[0] Y1[1] D4 D5 LOW LOW LOW LOW LOW LOW LOW LOW Cb0[2] Cb0[3] Y0[2] Y0[3] Cr0[2] Cr0[3] Y1[2] Y1[3] D6 D7 D8 LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW Cb0[4] Cb0[5] Cb0[6] Y0[4] Y0[5] Y0[6] Cr0[4] Cr0[5] Cr0[6] Y1[4] Y1[5] Y1[6] D9 D10 LOW Cb0[0] LOW Y0[0] LOW Cr0[0] LOW Y1[0] Cb0[7] Cb0[8] Y0[7] Y0[8] Cr0[7] Cr0[8] Y1[7] Y1[8] D11 D12 D13 Cb0[1] Cb0[2] Cb0[3] Y0[1] Y0[2] Y0[3] Cr0[1] Cr0[2] Cr0[3] Y1[1] Y1[2] Y1[3] Cb0[9] LOW LOW Y0[9] LOW LOW Cr0[9] LOW LOW Y1[9] LOW LOW D14 D15 Cb0[4] Cb0[5] Y0[4] Y0[5] Cr0[4] Cr0[5] Y1[4] Y1[5] LOW LOW LOW LOW LOW LOW LOW LOW D16 D17 D18 Cb0[6] Cb0[7] Cb0[8] Y0[6] Y0[7] Y0[8] Cr0[6] Cr0[7] Cr0[8] Y1[6] Y1[7] Y1[8] LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW D19 Cb0[9] Y0[9] Cr0[9] Y1[9] LOW LOW LOW LOW HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 61 SiI9573 and SiI9575 Port Processor Data Sheet Pixel 0 D[19:10] val Cb0[9:0] Y0[9:0] Pixel 1 Cr0[9:0] Y1[9:0] Pixel 2 Cb2[9:0] Y2[9:0] Pixel 3 Cr2[9:0] Y3[9:0] Pixel n - 1 Cbn-1[9:0] Yn-1[9:0] Pixel n Crn-1[9:0] Yn[9:0] val IDCK DE HSYNC VSYNC Figure 6.28. 10-bit Color Depth YC Mux 4:2:2 Dual Edge Timing (DRA = 0, YCSWAP = 0) Pixel 0 D[11:2] val Cb0[9:0] Y0[9:0] Pixel 1 Cr0[9:0] Y1[9:0] Pixel 2 Cb2[9:0] Y2[9:0] Pixel 3 Cr2[9:0] Y3[9:0] Pixel n - 1 Cbn-1[9:0] Yn-1[9:0] Pixel n Crn-1[9:0] Yn[9:0] val IDCK DE HSYNC VSYNC Figure 6.29. 10-bit Color Depth YC Mux 4:2:2 Dual Edge Timing (DRA = 1, YCSWAP = 0) © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 62 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet Table 6.17. YC Mux 4:2:2 12-bit Color Depth Separate Sync Dual Clock Edge Data Mapping Video Bus Setting YCSWAP DRA 12-bit Data Bus 12-bit Color Depth 0 0 Pixel #0 1st Clock 1st Clock 2nd Clock Edge Edge LOW LOW Pin Name D0 12-bit Data Bus 12-bit Color Depth 0 1 Pixel #1 2nd Clock 3rd Clock 4th Clock Edge Edge LOW LOW Pixel #0 1st Clock 1st Clock 2nd Clock Edge Edge Cb0[0] Y0[0] Pixel #1 2nd Clock 3rd Clock 4th Clock Edge Edge Cr0[0] Y1[0] D1 D2 D3 LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW Cb0[1] Cb0[2] Cb0[3] Y0[1] Y0[2] Y0[3] Cr0[1] Cr0[2] Cr0[3] Y1[1] Y1[2] Y1[3] D4 D5 LOW LOW LOW LOW LOW LOW LOW LOW Cb0[4] Cb0[5] Y0[4] Y0[5] Cr0[4] Cr0[5] Y1[4] Y1[5] D6 D7 D8 LOW LOW Cb0[0] LOW LOW Y0[0] LOW LOW Cr0[0] LOW LOW Y1[0] Cb0[6] Cb0[7] Cb0[8] Y0[6] Y0[7] Y0[8] Cr0[6] Cr0[7] Cr0[8] Y1[6] Y1[7] Y1[8] D9 D10 Cb0[1] Cb0[2] Y0[1] Y0[2] Cr0[1] Cr0[2] Y1[1] Y1[2] Cb0[9] Cb0[10] Y0[9] Y0[10] Cr0[9] Cr0[10] Y1[9] Y1[10] D11 D12 D13 Cb0[3] Cb0[4] Cb0[5] Y0[3] Y0[4] Y0[5] Cr0[3] Cr0[4] Cr0[5] Y1[3] Y1[4] Y1[5] Cb0[11] LOW LOW Y0[11] LOW LOW Cr0[11] LOW LOW Y1[11] LOW LOW D14 D15 Cb0[6] Cb0[7] Y0[6] Y0[7] Cr0[6] Cr0[7] Y1[6] Y1[7] LOW LOW LOW LOW LOW LOW LOW LOW D16 D17 D18 Cb0[8] Cb0[9] Cb0[10] Y0[8] Y0[9] Y0[10] Cr0[8] Cr0[9] Cr0[10] Y1[8] Y1[9] Y1[10] LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW D19 Cb0[11] Y0[11] Cr0[11] Y1[11] LOW LOW LOW LOW HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE Pixel n - 1 Pixel n Pixel 0 D[19:8] val Cb0[11:0] Y0[11:0] Pixel 1 Cr0[11:0] Y1[11:0] Pixel 2 Cb2[11:0] Y2[11:0] Pixel 3 Cr2[11:0] Y3[11:0] Cbn-1[11:0] Yn-1[11:0] Crn-1[11:0] Yn[11:0] val IDCK DE HSYNC VSYNC Figure 6.30. 12-bit Color Depth YC Mux 4:2:2 Dual Edge Timing (DRA = 0, YCSWAP = 0) © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 63 SiI9573 and SiI9575 Port Processor Data Sheet Pixel 0 D[11:0] val Cb0[11:0] Y0[11:0] Pixel 1 Cr0[11:0] Pixel 2 Y1[11:0] Cb2[11:0] Pixel 3 Y2[11:0] Cr2[11:0] Pixel n - 1 Y3[11:0] Cbn-1[11:0] Yn-1[11:0] Pixel n Crn-1[11:0] Yn[11:0] val IDCK DE HSYNC VSYNC Figure 6.31. 12-bit Color Depth YC Mux 4:2:2 Dual Edge Timing (DRA = 1, YCSWAP = 0) 6.10.8. YC Mux 4:2:2 Embedded Sync Formats Dual Clock Edge This format is identical to the one described in the YC Mux 4:2:2 Separate Sync Formats Dual Clock Edge section on page 59, except the syncs are embedded and not explicit. The figures following this table show only the first two pixels and last pixel of the line and the SAV and EAV sequences, but the remaining pixels are similar to those shown in the figures of the previous section. Table 6.18. YC Mux 4:2:2 8-bit Color Depth Embedded Sync Dual Clock Edge Data Mapping Video Bus Setting YCSWAP DRA Pin Name D0 8-bit Data Bus 8-bit Color Depth 0 0 Pixel #0 1st Clock 1st Clock 2nd Clock Edge Edge LOW LOW 8-bit Data Bus 8-bit Color Depth 1 1 Pixel #1 2nd Clock 3rd Clock 4th Clock Edge Edge LOW LOW Pixel #0 1st Clock 1st Clock 2nd Clock Edge Edge LOW LOW Pixel #1 2nd Clock 3rd Clock 4th Clock Edge Edge LOW LOW D1 D2 D3 LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW D4 D5 LOW LOW LOW LOW LOW LOW LOW LOW Y0[0] Y0[1] Cb0[0] Cb0[1] Y1[0] Y1[1] Cr0[0] Cr0[1] D6 D7 D8 LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW Y0[2] Y0[3] Y0[4] Cb0[2] Cb0[3] Cb0[4] Y1[2] Y1[3] Y1[4] Cr0[2] Cr0[3] Cr0[4] D9 D10 LOW LOW LOW LOW LOW LOW LOW LOW Y0[5] Y0[6] Cb0[5] Cb0[6] Y1[5] Y1[6] Cr0[5] Cr0[6] D11 D12 LOW Cb0[0] LOW Y0[0] LOW Cr0[0] LOW Y1[0] Y0[7] LOW Cb0[7] LOW Y1[7] LOW Cr0[7] LOW D13 D14 D15 Cb0[1] Cb0[2] Cb0[3] Y0[1] Y0[2] Y0[3] Cr0[1] Cr0[2] Cr0[3] Y1[1] Y1[2] Y1[3] LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW D16 D17 Cb0[4] Cb0[5] Y0[4] Y0[5] Cr0[4] Cr0[5] Y1[4] Y1[5] LOW LOW LOW LOW LOW LOW LOW LOW D18 D19 Cb0[6] Cb0[7] Y0[6] Y0[7] Cr0[6] Cr0[7] Y1[6] Y1[7] LOW LOW LOW LOW LOW LOW LOW LOW HSYNC LOW LOW LOW LOW LOW LOW LOW LOW VSYNC DE LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 64 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet SAV D[19:12] FF FF 00 00 Pixel 0 00 00 00 00 XY XY 00 00 Pixel 1 Cb0[7:0] Y0[7:0] XY XY Cr0[7:0] Y1[7:0] IDCK Active video Pixel n D[19:12] EAV Yn[7:0] Crn-1[7:0] FF FF IDCK Active video Figure 6.32. 8-bit Color Depth YC Mux 4:2:2 Embedded Sync Dual Edge Timing (DRA = 0, YCSWAP = 0) SAV D[11:4] FF FF 00 00 Pixel 0 00 00 XY XY 00 00 Pixel 1 Y0[7:0] Cb0[7:0] XY XY Y1[7:0] Cr0[7:0] IDCK Active video Pixel n D[11:4] Yn[7:0] Crn-1[7:0] EAV FF FF 00 00 IDCK Active video Figure 6.33. 8-bit Color Depth YC Mux 4:2:2 Embedded Sync Dual Edge Timing (DRA = 1, YCSWAP = 1) © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 65 SiI9573 and SiI9575 Port Processor Data Sheet Table 6.19. YC Mux 4:2:2 10-bit Color Depth Embedded Sync Dual Clock Edge Data Mapping Video Bus Setting YCSWAP DRA Pin Name D0 10-bit Data Bus 10-bit Color Depth 0 0 Pixel #0 1st Clock 1st Clock 2nd Clock Edge Edge LOW LOW 10-bit Data Bus 10-bit Color Depth 0 1 Pixel #1 2nd Clock 3rd Clock 4th Clock Edge Edge LOW LOW Pixel #0 1st Clock 1st Clock 2nd Clock Edge Edge LOW LOW Pixel #1 2nd Clock 3rd Clock 4th Clock Edge Edge LOW LOW D1 D2 D3 LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW Cb0[0] Cb0[1] LOW Y0[0] Y0[1] LOW Cr0[0] Cr0[1] LOW Y1[0] Y1[1] D4 D5 LOW LOW LOW LOW LOW LOW LOW LOW Cb0[2] Cb0[3] Y0[2] Y0[3] Cr0[2] Cr0[3] Y1[2] Y1[3] D6 D7 D8 LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW Cb0[4] Cb0[5] Cb0[6] Y0[4] Y0[5] Y0[6] Cr0[4] Cr0[5] Cr0[6] Y1[4] Y1[5] Y1[6] D9 D10 LOW Cb0[0] LOW Y0[0] LOW Cr0[0] LOW Y1[0] Cb0[7] Cb0[8] Y0[7] Y0[8] Cr0[7] Cr0[8] Y1[7] Y1[8] D11 D12 D13 Cb0[1] Cb0[2] Cb0[3] Y0[1] Y0[2] Y0[3] Cr0[1] Cr0[2] Cr0[3] Y1[1] Y1[2] Y1[3] Cb0[9] LOW LOW Y0[9] LOW LOW Cr0[9] LOW LOW Y1[9] LOW LOW D14 D15 Cb0[4] Cb0[5] Y0[4] Y0[5] Cr0[4] Cr0[5] Y1[4] Y1[5] LOW LOW LOW LOW LOW LOW LOW LOW D16 D17 D18 Cb0[6] Cb0[7] Cb0[8] Y0[6] Y0[7] Y0[8] Cr0[6] Cr0[7] Cr0[8] Y1[6] Y1[7] Y1[8] LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW D19 Cb0[9] Y0[9] Cr0[9] Y1[9] LOW LOW LOW LOW HSYNC LOW LOW LOW LOW LOW LOW LOW LOW VSYNC DE LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW SAV D[19:10] FF FF 00 00 Pixel 0 00 00 XY XY 00 00 Pixel 1 Cb0[9:0] Y0[9:0] XY XY Cr0[9:0] Y1[9:0] IDCK Active video Pixel n D[19:10] Crn-1[9:0] Yn[9:0] EAV FF FF 00 00 IDCK Active video Figure 6.34. 10-bit Color Depth YC Mux 4:2:2 Embedded Sync Dual Edge Timing (DRA = 0, YCSWAP = 0) © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 66 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet SAV D[11:2] FF FF 00 00 Pixel 0 00 00 XY XY 00 00 Pixel 1 Cb0[9:0] Y0[9:0] XY XY Cr0[9:0] Y1[9:0] IDCK Active video Pixel n D[11:2] Crn-1[9:0] Yn[9:0] EAV FF FF 00 00 IDCK Active video Figure 6.35. 10-bit Color Depth YC Mux 4:2:2 Embedded Sync Dual Edge Timing (DRA = 1, YCSWAP = 0) Table 6.20. YC Mux 4:2:2 12-bit Color Depth Embedded Sync Dual Clock Edge Data Mapping Video Bus Setting YCSWAP DRA Pin Name D0 D1 12-bit Data Bus 12-bit Color Depth 0 0 Pixel #0 1st Clock 1st Clock 2nd Clock Edge Edge LOW LOW LOW LOW 12-bit Data Bus 12-bit Color Depth 0 1 Pixel #1 2nd Clock 3rd Clock 4th Clock Edge Edge LOW LOW LOW LOW Pixel #0 1st Clock 1st Clock 2nd Clock Edge Edge Cb0[0] Y0[0] Cb0[1] Y0[1] Pixel #1 2nd Clock 3rd Clock 4th Clock Edge Edge Cr0[0] Y1[0] Cr0[1] Y1[1] D2 D3 LOW LOW LOW LOW LOW LOW LOW LOW Cb0[2] Cb0[3] Y0[2] Y0[3] Cr0[2] Cr0[3] Y1[2] Y1[3] D4 D5 LOW LOW LOW LOW LOW LOW LOW LOW Cb0[4] Cb0[5] Y0[4] Y0[5] Cr0[4] Cr0[5] Y1[4] Y1[5] D6 D7 D8 LOW LOW Cb0[0] LOW LOW Y0[0] LOW LOW Cr0[0] LOW LOW Y1[0] Cb0[6] Cb0[7] Cb0[8] Y0[6] Y0[7] Y0[8] Cr0[6] Cr0[7] Cr0[8] Y1[6] Y1[7] Y1[8] D9 D10 Cb0[1] Cb0[2] Y0[1] Y0[2] Cr0[1] Cr0[2] Y1[1] Y1[2] Cb0[9] Cb0[10] Y0[9] Y0[10] Cr0[9] Cr0[10] Y1[9] Y1[10] D11 D12 D13 Cb0[3] Cb0[4] Cb0[5] Y0[3] Y0[4] Y0[5] Cr0[3] Cr0[4] Cr0[5] Y1[3] Y1[4] Y1[5] Cb0[11] LOW LOW Y0[11] LOW LOW Cr0[11] LOW LOW Y1[11] LOW LOW D14 D15 Cb0[6] Cb0[7] Y0[6] Y0[7] Cr0[6] Cr0[7] Y1[6] Y1[7] LOW LOW LOW LOW LOW LOW LOW LOW D16 D17 D18 Cb0[8] Cb0[9] Cb0[10] Y0[8] Y0[9] Y0[10] Cr0[8] Cr0[9] Cr0[10] Y1[8] Y1[9] Y1[10] LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW D19 Cb0[11] Y0[11] Cr0[11] Y1[11] LOW LOW LOW LOW HSYNC VSYNC LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW LOW DE LOW LOW LOW LOW LOW LOW LOW LOW © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 67 SiI9573 and SiI9575 Port Processor Data Sheet SAV D[19:8] FF FF 00 00 Pixel 0 00 00 XY XY 00 00 Pixel 1 Cb0[11:0] Y0[11:0] XY XY Cr0[11:0] Y1[11:0] IDCK Active video Pixel n D[19:8] Crn-1[11:0] EAV Yn[11:0] FF FF 00 00 IDCK Active video Figure 6.36. 12-bit Color Depth YC Mux 4:2:2 Embedded Sync Dual Edge Timing (DRA = 0, YCSWAP = 0) SAV D[11:0] FF FF 00 00 Pixel 0 00 00 XY XY 00 00 Pixel 1 Cb0[11:0] Y0[11:0] XY XY Cr0[11:0] Y1[11:0] IDCK Active video Pixel n D[11:0] Crn-1[11:0] Yn[11:0] EAV FF FF 00 00 IDCK Active video Figure 6.37. 12-bit Color Depth YC Mux 4:2:2 Embedded Sync Dual Edge Timing (DRA = 1, YCSWAP = 0) © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 68 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet 7. Design Recommendations 7.1. Power Supply Decoupling Designers should include decoupling and bypass capacitors at each power signal in the layout. These are shown schematically in Figure 7.1. Connections in one group (such as AVDD33) can share C2, C3, and the ferrite, with each pin having a separate C1 placed as close to the pin as possible. Figure 7.2 is representative of the various types of power connections on the port processor. The recommended impedance of the ferrite is 10 or more in the frequency range of 1 to 2 MHz. +3.3 V L1 VDD Pin C1 C2 C3 GND Figure 7.1. Decoupling and Bypass Schematic +3.3 V C1 C2 L1 VDD Ferrite C3 Via to GND Figure 7.2. Decoupling and Bypass Capacitor Placement 7.2. Power Supply Control Timing and Sequencing All power supplies in the SiI957n port processor are independent. However, identical supplies must be provided at the same time. For example, all three AVDD33 supplies have to be turned on at the same time. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 69 SiI9573 and SiI9575 Port Processor Data Sheet 8. Package Information 8.1. ePad Requirements The SiI957n device is packaged in a 176-pin, 20 mm × 20mm TQFP package with an exposed pad (ePad) that is used for the electrical ground of the device and for improved thermal transfer characteristics. The ePad dimensions are 7.500 mm × 6.740 mm ±0.20 mm. Soldering the ePad to the ground plane of the PCB is required to meet package power dissipation requirements at full speed operation, and to correctly connect the chip circuitry to electrical ground. A clearance of at least 0.25 mm should be designed on the PCB between the edge of the ePad and the inner edges of the lead pads to avoid the possibility of electrical short circuits. The thermal land area on the PCB may use thermal vias to improve heat removal from the package. These thermal vias also double as the ground connections of the chip and must attach internally in the PCB to the ground plane. An array of vias should be designed into the PCB beneath the package. For optimum thermal performance, the via diameter should be 12 mils to 13 mils (0.30 mm to 0.33 mm) and the via barrel should be plated with 1-ounce copper to plug the via. This design helps to avoid any solder wicking inside the via during the soldering process, which may result in voids in solder between the pad and the thermal land. If the copper plating does not plug the vias, the thermal vias can be tented with solder mask on the top surface of the PCB to avoid solder wicking inside the via during assembly. The solder mask diameter should be at least 4 mils (0.1 mm) larger than the via diameter. Package stand-off when mounting the device also needs to be considered. For a nominal stand-off of approximately 0.1 mm, the stencil thickness of 5 mils to 8 mils should provide a good solder joint between the ePad and the thermal land. Figure 8.1 on the next page shows the package dimensions of the SiI957n port processor. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 70 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet 8.2. Package Dimensions These drawings are not to scale. All dimensions are in millimeters. D D1 D2 7.500 ± 0.20 D 132 89 88 133 A A R1 R2 B A 6.740 ± 0.20 H GAGE PLANE E2 E1 E S 0.25 C L SECTION A-A 0.05 176 Pin 1 Identifier 45 1 44 e 0.07 b M C A–B S D S A2 L1 4X 4X A S H A–B D H A–B D 0.20 0.20 A1 DETAIL A TOP VIEW 0.08 DETAIL B DETAIL A SIDE VIEW C SEATING PLANE C DETAIL B JEDEC Package Code MS-026 Item Description Min Typ Max Item Description A Thickness 1.00 1.10 1.20 b Lead width A1 A2 D Stand-off Body thickness Footprint 0.05 0.95 0.10 1.00 22.00 BSC 0.15 1.05 C e L Lead thickness Lead pitch Lead foot length E D1 Footprint Body size L1 R1 E1 D2 E2 Body size — — R2 S 22.00 BSC 20.00 BSC — — 20.00 BSC 17.20 17.20 — — Min Typ Max — 0.16 — 0.09 0.20 0.45 — 0.40 BSC 0.60 Total lead length Lead radius, inside 0.08 1.00 REF — — Lead radius, outside Lead horizontal run 0.08 0.20 — — 0.20 — 0.75 Figure 8.1. Package Diagram © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 71 SiI9573 and SiI9575 Port Processor Data Sheet 8.3. Marking Specification Figure 8.2 shows the markings of the SiI957n package. This drawing is not to scale. Logo SiI957n CTUC LLLLLL.LL-L YYWW XXXXXXX Pin 1 location Silicon Image Part Number Lot # (= Job#) Date code Trace code SiIxxxxrpppp-sXXXX Product Designation Special Designation Revision Speed Package Type Figure 8.2. Marking Diagram 8.4. Ordering Information Production Part Numbers: Device Part Number Standard SiI9573CTUC With ViaPort Matrix Switch SiI9575CTUC © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 72 SiI-DS-1089-F SiI9573 and SiI9575 Port Processor Data Sheet References Standards Documents This is a list of standards abbreviations appearing in this document, and references to their respective specifications documents. Abbreviation HDMI HCTS Standards publication, organization, and date High Definition Multimedia Interface, Revision 1.4a, HDMI Licensing, LLC, March 2010 HDMI Compliance Test Specification, Revision 1.4a, HDMI Licensing, LLC, March 2010 HDCP DVI High-bandwidth Digital Content Protection, Revision 1.4, Digital Content Protection, LLC; July 2009 Digital Visual Interface, Revision 1.0, Digital Display Working Group; April 1999 E-EDID E-DID IG EDDC Enhanced Extended Display Identification Data Standard, Release A Revision 1, VESA; Feb. 2000 VESA EDID Implementation Guide, VESA, June 2001 Enhanced Display Data Channel Standard, Version 1.1, VESA; March 2004 MHL MHL (Mobile High-Definition Link) Specification, Version 1.2, MHL, LLC, June 2010 Standards Groups For information on the specifications that apply to this document, contact the responsible standards groups appearing on this list. Standards Group ANSI/EIA/CEA Web URL http://global.ihs.com VESA HDCP http://www.vesa.org http://www.digital-cp.com DVI HDMI MHL http://www.ddwg.org http://www.hdmi.org http://www.mhlconsortium.org Lattice Semiconductor Documents This is a list of the related documents that are available from your Lattice Semiconductor sales representative. The Programmer Reference requires an NDA with Lattice Semiconductor. Document SiI-PR-1054 SiI-PR-0041 Title SiI9573, SiI9575, and SiI9523 Port Processor Programmer’s Reference CEC Programming Interface (CPI) Programmer’s Reference Technical Support For assistance, submit a technical support case at www.latticesemi.com/techsupport. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1089-F 73 SiI9573 and SiI9575 Port Processor Data Sheet Revision History Revision F, March 2016 Updated to latest template. Revision F, December 2013 Added 4K × 2K 50/60 FPS support. Added new section on Support for UltraHD resolution at 50P/60P frames per second. Revision E, September 2013 Removed statement of “only” on OSD resolution limitations in On-screen Display Controller section. Added Note 2 and updated to Note 3 in Table 3.2. Updated current values in Table 3.11: IAVDDI13 from 240 to 250, IAVDDI33 from 330 to 345, and ICVCC13 from 650 to 680 mA. Updated Note 3 in Table 3.11 from “three 225 MHz” to “six 300 MHz.” Revision D, May 2013 2 Added information about I C setup time. Revision C, January 2013 Updated OSD video support and SBVCC5 voltage measurement; added VS insertion description. Revision B, August 2012 Updated 3D L/R section, and Table 7; global grammatical changes. Revision A, January 2012 First production release. © 2010-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 74 SiI-DS-1089-F th th 7 Floor, 111 SW 5 Avenue Portland, OR 97204, USA T 503.268.8000 www.latticesemi.com